On the Heat Kernel Comparison

Theorems for Minimal Submanifolds

by

Steen Markvorsen

Max~Planck~Institut
fUr Mathematik
Gottfried-Claren-Str. 26

D~5300 Bonn 3
Federal Republic of Germany

MPI/SFB 85 - 32



Abstract. In [3] Cheng, Li and Yau proved comparison theorems
(upper bounds) for the heat kernels on minimal submanifolds of
space forms. In the present note we show, that these comparison
theorems together with a series of corollaries remain true for
minimal submanifolds in ambient spaces with just an upper bound

on the sectional curvature.

1. Introduction. Let M" be a minimally immersed submanifold

of N® . For a given point p €M we define the normal range

U(p) to be the complement of the cut locus of p in N .
Let rp(-) denote the distance function from p in N . The
ball Bp(p) = {x€N | rp(x) $R} is then regular if B_(p) < U(p)

and (when sup Ky =b>0) Rsn/2vVb.

Let DcM®™ be a compact domain of M «containing p . Follow-
ing [3] we denote the p-centered heat kernels on
D by H(p,y,t) (with Dirichlet boundary condition) and

K(p,y,t) (with Neumann boundary condition) respectively.

If 52(5) denotes the totally geodesic disc with center D ,

radius R and dimension m in a space form ﬁg of constant
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curvature b ER , then the S—centered heat kernels on D
only depend on rg(-) and t ; Hence we may, and do, write

them as ﬁg(rs(y),t) and 'I?bR(rg(y),t) respectively.

We can now formulate the extended comparison theorems for

H and K as follows.

Theorem 1. Let M" be a minimally immersed submanifold of

n

N with XK _=s=b . Let D be a compact domain

N
in M.,
i) If D 4is contained in a regular ball BR(p) cN

for some p€D , then the Dirichlet heat kernel

on D satisfies

{(1.1) H(p,y.,t) $ﬁg(rp(y),t) for all y€D and t€]R+.

ii}) If D =BR(p) nM for some (not necessarily regular)
ball BR(p) cU(p) cN , p€D , and (if b >0)
Rsn/Vvb , then the Neumann heat kernel on D sa-

tisfies

(1.2) R(p,¥,t) sﬁg(rp(y) t) for all y€D and teER,.

This type of theorem was first proved by Cheng, Li and Yau for
space form ambient spaces N (cf. [3] Theorems 1 to 5). The

extension to ambient spaces with variable curvature is essen-



tially a consequence of the following result, which may be

proved by standard index comparison theory (cf. [4] Propos. 8).

Proposition 2. We make the same assumptions as in Theorem 1.

Let P :[0,R] —> R be a smooth function with
F'(r) 20 for all re€[0,R] , and let {Xj}, 1£jsm,
be an orthonormal basis of T _D. Then the Laplacian

q
AD of D satisfies the following inequality at g :

w

(1.3) A (Fer (F"(r) —F'(r)hb(r))‘

J

il ~18

2
plD) ] <gra§ r, Xj>

+

mF' (r)hy (x) ,

where hb(r) is the constant mean curvature of any
distance sphere of radius r in a space form of con-

stant curvature b .

For the proof of Theorem 1 we also need the following special

version of a result due to Cheeger and Yau ([1] Lemma 2.3).

Proposition 3.

3 ob
(1.4) e HR(r,t) <0 ,
and

3 b
(1.5) 3 KR(r,t) <0



for all t>0 and re€[0,R]

(with R < (rsp. s) n/Vb if b > O))

2. Proof of Theorem 1 and some consequences. Following [3]

closely throughout, we only have to show that the transplanted

heat kernels HR(rp(y),t) and KR(J:'p (y),t) =

{p}x. Dx [0,o[ —>[0,=»] satisfy cy?l' £0 and ny'ﬁ' £ 0 respec-
: ca - 2 . : i,

tively. Here ny = Ay ST ! where Ay is the Laplacian opera

ting on functions on the second factor in the domain

{p} xDx [0,=[ .

We rewrite 'fbe(rp(y),t) as a function of s and t , i.e.

ﬁ’g(r,t) = 'I:f{s(r),t) = 'I:I'(s,t) , Where

1-cos(vgr) if b> 10
(2.1)  s(x) = r¥2 if b=0
cosh(V=b r) - 1 if b <0 .

Now consider the following identity

(2.2) 4 H(s,t) = H" || gradys 2 + Hra

s , where
Mg

D

~ a ~
LI .
H “asH(s,t) »

From Proposition 2 with F(r) = s{r) and s"(r) -hb(r)s'(r) =0

ds = T T, .
we get Aps 2 m 3= hb(r) = ADs + where Ay is the Laplacian

on the space form disc 52('{5) . Proposition 3 implies

ds,..,, ég' o~y ~'- -
a;H'sO, and since ar 20 we get H ADs s H ADs . Further

A — . -
more || gradys || s || gradys =l gradgy s || , and finally also



-5

ﬁ" 20 (by [3] pp. 1038-1043 and 1045-1049). In total we there-

fore have from (2.2)

~ ~ s 2 ~ ~
(2.3) AyH(s,t) s H" || gradys ||© + H' =AYH(s,t), so that

D
o HsoH=0.
Y Y

The inequality uyﬁ S Eyi?: 0 for the transplanted Neumann heat
kernel follows similarly from ‘R"g()([3] pp. 1044 and 1049-1050).

The proof may now be completed by Proposition 1 of [3].

Once Theorem 1 is in hand we may now consider the series of
corollaries given in [3] for similar extensions. Since the
proofs of the generalized versions follow almost verbatim the

space from proofs we will omit them.

Corollary A. Let M® be a minimally immersed submanifold

of N" . ‘Suppose K, £ b and let £ be a nonnega-

N
tive subharmonic function on M . If pé€EM and

Qp = BR(p) n M for a regular ball BR(p} , then

(2.4) £(p) s ¢ V(m,b,R) jfu

BQR

’

where J
A mn~1 .
(\/Bsin Vb R) if b

v
<

i
o

Clm,b,R) = mu_* . if b
(%_-gsinv’:ﬁmm"‘ if b <0,

and “n is the volume of the unit m-ball in R .



Corollary B. Let M® be a minimally immersed submanifold

of Nn, KN £sb. Let BR(p) be a ball in the normal

range of p€EM . Then

2 ~b
(2.5)  vol(Bp(p) N M) 2 V°1(Dmin{R,n/\/5}) )

In particular, if M is compact and contained in
Bp(p) with Rs n/vb, then b>0 and

{2.6) vol (M) 2 vol(Sz‘) ; where Sg' is the round sphere

of dimension m and constant curvature b .If equality

i 2. a if (
occurs in (2.6) and i MCB“//B(p) cU(p) for all
pE€M , then

(2.7) # {i[0<'Ai(M) smb} sm+1,

where {Ai(M)} is the ordered set of eigenvalues

(with multiplicities)of By -

Remarks. The last statement follows from the generalization
of Theorem 6 in [3]. The inequality (2.6) generalizes a result
of B.-Y. Chen who proved it for compact minimal submanifolds

of spheres (cf. [2]).

Corollary C. Let M" be a minimally immersed submanifold of

N with KNsb . Let D be a compact domain in M
which is contained in a regular ball BR(p) for some
PEM . Then the 1.st Dirichlet eigenvalue

A1(D) of AD satisfies

2
~b mmn
(2.8) A.! {D) 2 ?\1(DR) 2 Z—;{i— .



(2.9)

“Remark. The inequality 11(D) 2 n1n2/4-R

(1]

(2]

{31

(4]

If the first inequality is an equality, then D is
radial, i.e. D 1is generated by geodesics of length

R from p .

Furthermore, if bs0 , then the k.th Dirichlet

eigenvalue for D satisfies
m/2
(l (D))W k-{(4m)™" =
e-vol (D)

2 gas proved in [41].
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