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TRUTH, RIGOR, AND COMMON SENSE

Yu. I. Manin

Max-Planck-Institut fiir Mathematik, Bonn, Germany

To Misha Saveliev on the occasion 0/ his 50th anniversary

§o. Preface

The main difficulty of discussing the nature of mathematical truth in 1995 as I see it
is that no new insights into it were gained since the epoch of deep cliscoveries crowned by
Gödel 's results of thc late thirtics.

To avoid repetition and to enliven the discourse one can try to Pllt the matter into
a broader context alld add a personal note. Both solutions tend to divert the reader's
attention to vaguely related topics, and I offer my apology for choosing these dubious
tactics.

This talk is divided into three parts: a) musings on the history of lnathematics per
ceived as a genre of symbolic (or semiotic) games; b) a discussion of truth and proof in the
context of contemporary research (centering on arecent controversy prompted by a letter
by A. Jaffe and F. Quinn [JQ]); c) materials for three case studies (it being understood
that the study itself will be carried out by the interested reader).

We adopt for this talk most naive philosophical background.

Naively, a truthful statement is a statement that could be submitted to verification,
and would then pass this test. Verification is a procedure involving SOlne cOlnparison of
the statement with reality, i.e., invoking an idea of meaning. (This applies equally well to
"evident" statements whose verification is skipped.) The reality in question can be any
kind of mental construct, from freely falling bodies to transfinite cardinals. We will pass
over in silence the problell1 of how to verify statements about transfinite cardinals which
surely will be addressed by other speakers.

The statement itself is a linguistic construct. As such, it lUust be grammatically
correct in the first place, and meaningful in the second, before it can be submitted to a
verification procedure.

Logic teaches us that certain formal constructions produce truthful statements when
applied to truthful statements (syllogisms were the earliest exalnples). Mathematics uses
such constructions recursively. All comparison with reality is relegated to cOlnparatively
scarse encounters with applications and, possibly, foundational studies. The lnain body of
mathematical knowledge looks like a vast mental gan1e with strict rules.

We might also contemplate the notion of truth applied not to isolated statements hut
to entities like a novel, a scientific theory, or a thcological doctrine. The ideas of gram
matical correctness, meaning, reality, and verification proceelures acquire new dimensions,
but seemingly do not lose their heuristic value. A new phenomenon is what can be called
their non-Iocality: neither meaningfulness nor truthfulness of a theory resides entirely in
its constituent statements, hut rather in the whole boely of the doctrine.
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All the common sense nations mentioned above were subrnitted to fine theoretical
analysis in many philosophical works. All of them, including the idea of reality, were also
thoroughly criticised, to the extent of complete annihilation. One pertinent example is that
of the idea of verification of a theory: it was argued that a theory can never be verified,
but only falsified.

In what follows I will try to be commonsensical and to avoid extremist views. Same
truth creeps even into the wildest deconstructions of this notion, but weaknesses of such
attacks usually become apparent as soon as we start judging them by their own standards.

§1. Mathematical truth in history

The modern notion of mathematical truth goes back to ancient Greecej as Bourbaki
succintly pats it, "Depuis les Grecs, qui dit Mathematiques, dit demonstration."

It is the demonstration that counts, which is understood as a cllain of well-organized
consecutive standard steps, not as a physical act of showing, contrary to what the etymol
ogy of the word "demonstration" suggests.

Among other things, this means that modern mathematics is an essentially linguistic
activity relying upon language, notation, symbolic manipulation as a means of convincing
even when dealing with geometrie, physical et al. realities. Consistency of argumentation
free of contradictions and avoiding hideous gaps plays a major role in establishing that a
given utterance proves what it purports to provc. The status of the postulates P upon
which the demonstration/proof of the statement S is built strictly speaking need not be
discussed in mathematics, which is responsible mainly for the structure of the deduction.

This idealized image had a long pre-history, and we will try to briefiy review some
archaic modes of protomathematical behaviour.

The economic and military life of early human collectives ,was corrclated with ac
counting and keeping track of food rcsources, size of the tribe, seasons etc. E1ementary
arithmetic as we know it only gradually emerged as a subdialect of language supporting
such activities.

Whereas the main (and for millenia the only) fonn of existence of naturallanguages
was oral speech, the oral and then written 1anguage of c1ementary arithmetics fiuSt have
s1ow1y cristallized from many archaic fonns including counting by fingers and other body
parts, collecting stones and sticks, tying knots etc. (This process is now reversed as we
observe how electronic arithmetics takes over the written one.)

If a mathematician is inclined to stress the "isomorphism" of al1 these realizations
describing the universe of natural numbers and operations on theIn, he llluSt understand
that this is an appalling modernization.

In terms of the classical Saussurean dichotomy Langue (as system) vs Parole (as
activity), we observe a slow and difficult emergence of "language" froln "speech," the
latter invo1ving direct manipulation of things and body parts as symbols of sOluething
else. Whatever notion of truth can be reael into such activity, it must be in the final
account a function of the efficiency of socia! behaviour supported by it. Exchange and
trade furnish obvious examples. Correct counting means just exchange and profitable
trade, pure and simple.
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This is not however the whole story. It is important to realize that not only materially
profitable, but virtually any form of organized behaviour ean have a special meaning for
a human being 01' a human collective. This puts arehaie arithmetie on a par with rites,
musie and danee, and 311 sorts of magie. The traces of this undifferentiated pereeption
of mathematics as a fonn of magie are registered quite late in the history. A person who
effieiently prediets an eclipse, 01' an outcome of an uncertain situation, is not necessarily a
sage, but more appropriately a trickstel' who makes things happen by manipulating their
symbolie representations.

Many philosophers tried to demythologize the image of mathematies as predominantly
intellectual activity. A. Schopenhauer for one, already in the days of modern institution
alized mathematics, wrote: "Rechnungen haben bloß Werth für die Praxis, nicht für die
Theorie. Sogar kann man sagen: wo das Rechnen anfangt, hört das Verstehen auf."

Citing this , S. Hildebrandt ([Hi], p. 13) continues: "Die Anbetroffenen lesen es
staunend und denken sich, daß Schopenhauer schwerlich einen Blick in die Arbeiten von
Euler, Lagrange oder Gauß getan haben kann."

However, taken literally, Schopenhauer is right. Not only does computation tell1pOrar
ily interrupt thinking, but an ultimate justification of the act of computation is that it
replaces the act of thinking (01' a stage of it) by a virtually mechanical interlude, in order
to support a much higher level of competence for the next act. If thought is an interior
ized and tentative action, then computation is an exteriorized thought, and the degree of
possible exteriorization achieved by modern computers is stunning.

In the same vein, during the previous era of biological evolution, emergence of con
scious thinking served to stop instinctive action and to replace it by planned behavior.
An animal brain calculates in order to keep the animal body alive and kicking, runrnng,
flying, seeing, hearing. A human brain does the sarne, anel this activity is the main content
of the (non-Freudian) individual subconscious which must not allow any intervention of
consciousness in order not to break the complex architecture of the relevant computations.
Otherwise correct (biologically optimal) results cannot bc secured.

The arrival of language and consciousness in a sense allowed the human brain to
elevate this unconscious computation to the level of COll1lnOnSense thinking anel later to
the level of theoretical thinking. A price paid was a loss of spontaneity of action arId
emergence of less and less biological patterns of individual and collective behaviour. In
short, civilization was made possible.

This complelnentarity of action/thought/COll1putation tencls to reproduce on various
levels.

The new alienation of thought in computerized systelns of information processing is
a grotesque materialization of the (non-Jungian) collective unconscious. Hs running out
of control is a recurring nightnlare of our society, as weIl as the conditioll of its efficient
functioning.

The abstract nature of modern mathematics unelerstood not as its epistemological
feature but as a psychological fact, supports our metaphor. The gaping abyss between the
habits of our everyday thinking and thc norms of mathematical reflection must remain
intact if we want mathematics to fulfill its functions.
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The heated battles about the foundations of mathematics which continued for several
decades of this century did not resolve any of the episteul0logical problems under discus
sion. Let me remind Y0lt that at the center of attention and criticislU was Cantor's theory
of infinity.

Cantor's trernendous contribution to XXth century mathematics was twofold. First
and foremost, he introduced an extremely economical and universallanguage of sets which
subsequently proved capable to accomodate the semantics of all actual and potential math
ematical constructions. This was understood only gradually, and full realization came only
somewhere in the mid-century. What I mean is a kind of Bourbaki picture: every single
mathematical 01' even metamathematical notion, be it probability, Frobenius morphism,
01' a deduction rule, is an instance of a structure which is a construct recursively procluced
from initial sets with the help of a handful of primitive operations.The formallanguage of
mathematics itself is such a structure. (Sometimes, as in categorical constructions, classes
instead of sets are allowed, but from the viewpoint I am advocating here this is a minor
distinction) .

I believe that Hilbert when he spoke with prescience about "Cantor's Paradise" had
this grandiose picture in mind.

Eut second, Cantor produced some deep and unconventional mathematical reasonings
about orders of infinity, thus spurring a long and heated controversy. As we now see it, he
discovered probably the simplest imaginable and natural undecidable problem, the Con
tinuum Hypothesis (CH). (For a penetrating discussion of the meaning of undecidability
in this context cf. [G], p. 162.)

The austere and barren wodel of unstructured infinite sets of various orders of luag
nitude uneloubteelly has a magic charm of its own, and reflections about this wodel in
turn attracted and repelled philosophicallY-luinded matheluaticians and mathematically
minded philosophers for several decades. Cohen's famous proof of the consistency of the
negation of eH, completing Gödel's earlier proof of the consistency of eH itself, calne
already when the fascination with lnysteries of infinity was waning, precisely because by
that time the language of sets had become the language of virtually every lnathematical
discourse.

Rethinking these old arguments, recalling the birth of intuitionism and constructivism,
I am struck by thc utterly classical mindset of some of Cantor's critics. A considerable part
of the discussion concentrated on the principles of thinking about infinite sets. The Axiom
of Choice was considered basically as a wild extension of lnundane experience of picking
randomly individual objects from heaps of them. Both thc constructivist and intuitionist
view of this picture revealed a deep emotional revulsion towards such an action involving
infinite choice (in a later Essenin-Volpin decadent ultraintuitionistic wodd even ilnagining
finite and rather small collections of things became an unbearable strain. )

Of course, the idea of a collection of distinguishable and inlmutable objects belongs to
layman's physics. Many actors of the great Foundation Drama seelningly were convinced
that the axiomatics of Set Theory fiUSt be understood as a direct extension of this naive
physics.

The fact that even small sets of quantum objects behave quitc differently was never
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taken in consideration. (It probably should not be.) The fact that working infinities of
working mathematicians (real numbers, complex numbers, spectra of operators ... ) were
efficiently used for understanding of the real world was deemed irrelevant for foundations.
(It probably is.)

In any case, the uneasiness about Cantor's argulnents led Hilbert to start a deep for
mal study of the syntax of mathematical language (as opposed to the semantics of this
language), thus preparing the ground for Tarski, Church, Gödel (and prompting philo
sophical platitudes like Carnap's view of mathematics as "systelns of auxiliary statements
without objects and without content" , cf. [G], p. 335).

What these studies taught us was a highly technical picture of the relationships be
tween the structure of formal deductions, their naive (01' formal) sct-theoretical lTIodels,
and degrees of (un)solvability and (un)expressibility of the relevant precisely defined ver
sions of mathematical truth. Popularizations ("vulgarizations") of Gödel's work rarely
manage to convey the complexity of this picture, because they cannot convey thc richness
of its mathematical (as opposed to epistemologieal) context.

It is this richness that fascinates us most.

§2. Truth far a working olatheolatician

The Bourbald aphorism cited at the beginning of the previous section does not imply
two millenia of common agreelnent on what constitutes a proof. Moreover, the following
quotation from A. Weil's talk at the 1954 International Mathematical Congress in Amster
dam leaves an impression that the notion of "rigorous" proof is quite recent, perhaps even
due to the efforts of Bourbaki himself. "Rigor has ceased to be thought of as a cumbersome
style of formal dress that one has to wear on state occasions anel discards with a sigh of
relief as soon as one comes horne. We do not ask any more whcther a theorem has been
rigorously proved but whether it has been proved." ([W], p. 180).

Alas, this seems to be only wishful thinking. In the individual psychological develop
ment of a mathematician and in the social his tory of mathematics both the understanding
of what constitutes a proof and the perception of its role greatly vary.

Below I collected a sampie ( A-F) of quite recent opinions of actively working mathe
maticians, taken from [JQ], [T] and [R]. The reader is urged to read the whole discussionj
it is quite instruetive. It was sparked by the letter of A. Jaffe anel F. Quinn "Theoretical
Mathematics": towards a cultural synthesis 0/ mathematics and theoretical physics ([JQ]).
The authors were worried by the loeal situation in the very aetive domain of mathematics
bordering with mathenlatical physics. It seemed to them that the standards of physical
reasoning (which are considerably lower than those in mathematics) tcndcd to unfavorably
infiuence standards of today's mathematical research. At the SaIlle tilne they fully recog
nized the value of cross-fertilization, and suggested some rules of conduct that should be
imposed upon all players, in particular the rules of credit assigning. (The word "theoret
ical" in the title in the present context is a neologism, and not a very lucky one, because
the authors have in lninel a mixture of educated speculations, exarnples, and computer
outputs, as opposed to theorems with proud quantifiers).
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A. "When I started as a graduate student at Berkeley, I had trouble iInagining how
I could 'prove' a new and interesting mathematical theoren1. I didn't really understand
what a 'proof' was.

"By going to seminars, reading papers, and talking to other graduate students, I
gradually began to catch on. Within any field, there are certain theorems and certajn
techniques that are generally known and generally accepted. When you writc a paper, you
refer to these without proof. You look at other papers in the field, and you see what facts
they quote without proof, anel what they cite in their bibliography. You learn from other
people some idea of their proofs. Then you're free to quote the same theorem and cite
the same citations. YOll don't necessaxily have to read the full papers 01' books that are
in your bibliography. Many of the things that are generally known are things for which
there may be no known written source. As long as people in the field are comfortable
that an idea works, it doesn't need to have a formal written source." (W. Thurston,
Fields Medal 1983, (Tl, p. 168. Thurston eloquently argues that the principal goal of
the proof is understanding and communication, and that it is most efficicntly achieved via
personal contacts. His opponents in particular notice that transgenerational contacts can
be achieved only via written texts of sufficient level of precision, and that the fate of.Italian
algebraic geometry should serve as a warning.)

B. "We must carefully distinguish between modern papers containing rnathematical
speculations, and papers published a hundred years ago which wc, today, consider de
fective in rigor, but which were perfectly rigorous according to the standards of thc tirne.
Poincan~ in his work on Analysis Situs was being as rigorous as he could, and certainly was
not consciously speculative. I have seen no evidence that contemporary mathernaticians
considered it "reckless" or "excessively theoretical" (in the JQ sense. Yu. M.). When
young Heegard in his 1898 dissertation brashly called the ruaster's attention to subtle mis
takes, Poincare in 1899, calling Heegard's paper "trcs remarquable" , respectfully admittcd
his errors and repaired them. In contrast, in his 1912 paper on the Annulus Twist theorem
(latel' proved by Birkhoff), Poincaxe apologized for publishing a conjecture, citing age as
his excuse." (M.W. Hirsch, in [R], p. 187.)

C. "Intuition is glorious, but the heaven of mathernatics requires much more [... ] In
theological tenns, we are not saved by faith alone but by faith and works [... ] Physics has
provided mathematics with many fine suggestions and new initiatives, but rnathematics
does not need to copy the style.of experimental physics. Mathematics rests on proof - and
proof is eternal" (S. Mac Lane, in [R], 190-193).

D. "Philip Anderson describes mathematical rigor as 'irrelevant and impossible.' I
would soften the blow by calling it besides thc point and usually distracting, even when
possible." (B. Mandelbrot, in (R], p. 194. Mandelbrot's contribution is a vehcrnent attack
not only on thc abstract notion of rigorous proof, but also on a considerable part of the
American rnathematical community, "CharIes mathematicians," who allegedly are totali
tarian, concentrate on credit assigning, and strive to isolate open-rninded researchers).

E. "Before 1958 I lived in a mathematical milieu involving cssentially Bourbakist
people, and even if I was not particularly rigorous, these people - H. Cartan, J.-P. Serre,

6



and H. Whitney (a would-be Bourbakist) - helped me to maintain a fairly acceptable
level of rigor. It was only after the Fields medal (1958) that I gave way to my natural
tendencies, with the (eventually disastrous) results which followed. Moreover, a few years
after that, I became a colleague of Alexander Grothendieck at the IHES, a fact which
encouraged me to consider rigor as a very unnecessary quality in matheruatical thinking."
(R. Thom, in [R], p. 203. Thom's irony requires a slow reading. In what sense did following
his natural tendencies have eventually disastrous results? How exactly did becoming a
colleague of Grothendieck's inftuence TholU'S thinking? An outsider may remain puzzled
whether Grothendieck himself shared Thom's convictions, 01' whether it was the other
wayaround. Later in the same contribution Thom invokes rigor mortis as an appropriate
connotation to the idea of mathematical rigor.)

F. "I find it difficult to convince students - who are often attracted into mathenlatics
for the same abstract beauty and certainty that brought me here - of the value of the
rnessy, concrete, and specific point of view of possibility and exalnple. In my opinion,
ruore mathematicians stifte for lack of breadth than are mortally stabbed by thc opposing
sword of rigor." (K. Uhlenbeck, in [R], p. 202).

I would like now to summarize, contributing my own share to the general confusion.

First, individually, producing acceptable proofs is an activity that takes arduous train
ing and evokes strong emotional response. A person feels aversion if required to do some
thing contradicting his 01' her nature. Innate 01' acquired preference of geometric reasoning
01' algebraic calculations can inform our career. When we philosophize, we unavoidably
rationalize and generalize these basic instincts, and the whole spectrum of our attitudes
can be traced back to the feelings of bliss 01' frustration that overwhelru us during con
frontations with intellectual challenges of our metier.

Second, socially, we have to rely upon our contemporaries and forebears even when
devising a very rigorous proof Authority in mathematics plays a two-fold role: we acquire
from our fathers and peers a value system (what questions are worth asking, what dOlllains
are worth developing, what problerlls are worth solving), and we rely upon the authority
of published and accepted proofs and reasonings. Nothing is absolute here, but nothing is
less important because of the lack of absoluteness.

Third, epistemologically, all of us who have bothered to think about it, know what a
rigorous proof iso It has an ideal representation which was worked out by mathematical
logicians in this century, but is only more explicit and not fundarnentally different from the
notion Euclides had. (In this respect, BOllrbaki was qllite right.) This ideal representation
is an imaginary text which step by step deduces our theorern from axiorlls, both axioms and
deduction rules being made explicit beforehand, say in aversion ofaxiomatic set theory.

If this image arouses in your heart a strong aversion, 01' at least if you want to be
realistic, you may (and should) object that this ideal is utterly unreachable because of
the fantastic length of even the simplest formal deductions, and because the doser an
exposition is to a formal proof, the more difficult is to check it. Moreover, since formal
deduction strives to be freed of any remnant of meaning (otherwise i t is not formal enough),
it ends by losing meaning itself.
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On the contrary, if this image arouses your enthusiasm, 01' once again if you want to
be realistic, you will agree that the essence of mathematics requires daily maintenance of
the current standards of proof. Whether we are engaged in the rnathematical support of a
vast technological project like moon-landing, 01' simply nurture a natural desire to know
what assertions have a chance to be true and what do not, we have to resort to the ideal
of mathematical proof as an ultimate judge of our efforts.

Even the use of mathcmatics "for narrative purposcs" as is nicely put by Hirsch is
not an exception, because such a narration is built of blocks of solid ruathernatics to a
non-mathematical blue--print.

"An author with a story to tell feels it can be expressed most clearly in mathematical
language. In order to tell it coherently without the possibly infinite delay rigor might
require, the author introduces certain assumptions, speculations and leaps of faith, e.g.:
'In order to proceed further we assume the series converges - the randonl variables are
independent - the equilibrium is stable - the determinant is non-zero -.' In such cases
it is often irrelevant whether the mathematics can be rigorized, because the author's goal
is to persuade the reader of the plausibility 01' relevance of a certain view about how some
real world system behaves. The mathematics is a language filled with subtle and useful
metaphors. The validation is to come from experirnent - very possibly on a computer.
The goal in fact may be to suggest a particular experiment. The result of the narrative
will be not new mathematics, but a new description of reality (real reality!)." (M. Hirsch,
in [R], p. 186-187).

A beautiful recent example of such a narrative use of mathematics is furnished by D.
Mumford's talk at the first European Congress of Mathematicians [Mu]. About mathe
matical metaphors see also [Ma].

§3. Materials for three case studies

In this section, I present three cases relevant to our discussioll: GödeIs proof of the
existence of God (1970), the tale of the faulty Pentium chip (1994), and G. Chajtin's claim
(1992 and earlier) that a perfectly weH and uniformly defined sequence of rnathematical
questions can have a "completely random" sequence of answers. For a11 their differences,
these arguments represent human attempts to grapple with infinity by finitary linguistic
means, be it infiuity of God, real numbers, 01' rnathematics itself.

Whatever morallessons (if any) can be drawn from these materials, the reader is free
to decide.

Gödel's Ontological Proof

The third volume of K. Gödel's Collected Works recently published by Oxford Univer
sity Press COlltaillS a note dated 1970. It presents a formal argument purporting to prove
existence of God as an embodiment of all positive properties.

An introductory accollnt by R.M. Adarns ([G], p. 388-402) puts this proof iuto a
historical perspective comparing it in particular to Leibniz's argument and discussing its
possible place in theoretical theology.
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The proof itself is a page of formulas in the language of modal logic (using Necessity
and Possibility quantifiers in addition to the usual stuff). It is subdivided into five Axioms
and two Theorems. A photocopy of the published version of this page (p. 403) may help
the reader.

What Does a Computer COlnpute, or Truth in Advertising

In the Jan. 1995 issue of SIAM News the front page article "A Tale of Two Numbers"
started with the following lines:

"This is the tale of two nUlnbers, and how they found their way over the Internet to
the front pages of the world's newspapers on Thanksgiving Day, embarassing the world's
premier chip manufacturer."

Briefly, it was found that the Intel Corporation's newly launchecl Pentiunl chip (the
Central Processing Unit in Pentium machines) contains a bug in its Floating-Point-Divide
instruction so that e.g. calculating

r = 4195835 - (4195835/3145727)(3145727)

it produces r = 256 instead of the correct value r = o.
Now, this is not something very unusua!. In fact, in all eOluputers the so eallecl real

number arithmetics is programmed in such a way that it systematically produccs incorrect
answers (round-off errors). In this particular case a (slightly inflatecl) public outrage was
incited by the fact that in some cases the error was larger than promised (sinlple-precision
when double-precision was advertised).

Completely precise calculations with rational numbers of arbitrary size ean be pro
grammed in principle (and are programmed for special purposes). This requires a lot of
resources and might need also specialized input-output devices. The ideal Turing machine
is highly impractieal to implement, and real COluputers are not designed to facilitate this
task.

It is not difficult to imagine a eOluputerized system of decision-making which is un
stable w.r.t. small calculational errors. Stock-Iuarket 01' lnilitary applications are sensitive
to such problems. Here is one more example.

Arecent study of sexuality in USA purportedly designed to support epidemiological
models of the spread of AIDS did not include 3 percents of Americans who do not live in
households, i.e. who live in prisons, in hOlueless shelters, 01' on the street. A critic of this
study (R. C. Lewontin, the New York Review of Books, April 20, 1995) reasonably reluarks:
"The authors do not discuss it, ancl they luay not even realize it, hut mathematical and
computer lnodels of the spread of epidemics that take into aceount real conlplexities of thc
problem often turn out, in their predictions, to be extrenlely sensitive to the quantitative
values of the variables. Very small differences in variables can be thc critical dcterminant
of whether an epidemie dies out 01' spreads catastrophically, so the use of inaceurate study
in planning counter-measures can da more harmt hau does total ignorance."

The problem of understanding what is computed by a computer becolues also more
and more relevant with the spread of computer assisted proofs of mathematical theorems.
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I quote M. Hirsch once again ([R], p. 188): "Oscar Lanford pointed out that in order
to justify a computer calculation as apart of proof (as he did in thc first proof of the
Feigenbaum cascade conjecture), you must not only prove that the program is correct (anel
how often this is done?) but you fiUst understand how the computer rounds llumbers, and
how the operating system functions, including how the time-sharing system works".

Randonlness of Mathenlatical Truth

Following A. N. I{olmogorov's, R. Solomonoff's and G. Chaitin's [Ch] discovery of the
notion of complexity and a new definition of randomness based upon it, Chaitin constructed
an example of an exponential Diophatine equation F(t; Xl, ••. ,Xn ) = 0 with the following
property. Put €(tO) = 0 (resp. 1), if this equation has, for t = to, only finitely (resp.
infinitely) many solutions in positive integers Xi. Then the sequenee €(1), €(2), €(3), ... is
random. (Chaitin in fact has written a program producing F. The output is a 200-page
long equation with about 17000 unknowns).

This is a really subtle mathematical construction, using aInong other tools thc Davis
Putnam-Robinson-Matiyasevich presentation of recursively enulnerable sets. The episte
mologically important point is the discovery that randomness can be defined without any
recourse to physical reality (the definition is then justified by checking that all the standard
properties of "physical" randomness are prcsent) in such a way that thc necessity to make
an infinite search to solve a parametric series of problenls leads to the technically random
answers.

Some people find it difficult to imagine that a rigidly detennined discipline likc el
ementary arithmetic may produce such phenomena. Notice that what is called "chaos"
Mandelbrot-style is a considerably less sophisticated model of random behavior.
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Ontological proof

( *1970)

Feb. 10, 1970
P(lp) lp is positive (or lp E P).

Axiom 1. P(lp).P(,p)::> P(lp.tjJ).l

Axiom 2. P(lp) V p(""l{J).2

Definition 1. G(x) =(l{J)(P(l{J) ::> l{J(x)} (God)

Definition 2. l{JEss. x == (tjJ)(,p(x) ::> N(y)(Ip(y) ::> ,p(y)}]. (Essence of x)3

P ::>N q = N(p::> q). Necessity

Axiom 3. P(cp) ::> NP(cp)
""P(cp) ::> N""P(/{J)

because it followB from the na.ture of the property.a

Theorem. G(x)::> GEss.x.

. Definition. E(x) == (/{J)(cp Ess x ::> N (3x) cp(x) ]. (necessary Existence)

Axiom 4. P(E).

Theorem. G(x)::> N(3y)G(y),
hence (3x)G(x) ::> N(3y)G(Y)j
hence M(3x)G(x)::> MN(3y)G(y). (M = possibility)

M(3x)G(x) ::> N(3y)G(y).

I M(3x)G(x) means the system of aJ.l positive properties is compatible. 2

This is true because of:
Axiom 5. P(/{J)./{J::>N,p:::> P(,p), which implies

{

X = x is positive
x #- x is negative.

1 And for any number of summands.

:JExc1usive or.

3Any two essenees of x a.re neee.saarily equivalent.

&Gödel numbered two different axioms with the numeral "2". This double numbering
was maintalned in the printed version found in Babel 1987. We have renumbered here 
in order to simplify reference to the axioms.
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