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p—ADIC BETTI LATTICES

Yves André

Under the label "p—adic Betti lattices", we shall discuss two kinds of objects.

The first type of lattices arises via Artin’s embedding of integral Betti cohomology into
p—adic étale cohomology for complex algebraic varieties; there are comparison theorems with
algebraic De Rham cohomology both over the complex numbers (Grothendieck) and p—adically
(Fontaine—Messing—Faltings). The second type of lattices, which we believe be new, arises in
connection with p—adic tori. Although its definition is purely p—adic, it is closely tied to the
classical Betti lattice of some related complex torus, and can be viewed as a bridge between the
Dwork and Fontaine theories of p—adic periods; "half' of this lattice is provided by the
cohomology of the rigid analytic constant sheaf Z . In fact, both themes of this paper are
motivated by a question of Fontaine about the p—adic analog of the Grothendieck period
conjecture, as follows.

1. Let X be a proper smooth variety over the field of rational numbers Q . The singular rational
cohomology space HB = Hn(XC,Q) carries a rational Hodge structure (for any n); this

structure is defined by a complex one—parameter subgroup of GL(HE ® C), whose rational

Zariski closure in GL(Hp) is the so—alled Mumford—Tate group of Hp .

Let HBR enote the nE]—l- algebraic De Rham cohomology group of X . There is a canonical
isomorphism

P DRQQC——)HBQQC

provided by the functor GAGA and the analytic Poincaré lemma. The entries in € of a matrix of

&£ w.r.t. some bases of HBR, Hg ,-are usually called periods.
One variant of the Grothendieck period conjecture [G1] predicts that the transcendence degree of
the extension of Q generated by the periods is the dimension of the Mumford—Tate group.

h

2. On the other hand, let Hle:t = et(XQ Q.) denote the it p—adic étale cohomology group of -



Xq , where Q stands for the complex algebraic closure of Q .

A
Let us choose an embedding 7 of Q into the field € p= 'Q'p . The successive works of Fontaine,
Messing and Faltings [FM] [Fa] managed to construct a canonical isomorphism of filtered

Ga,l(Q'p/ Qp)—modules:
n ~N n
Hpr®Bpr — Het(XCp’Qp) @Qp BpR >

where Bpp denotes the quotient field of the universal pro—infinitesimal thickening of Cp . Via
Artin’s comparison theorem and the theorem of proper base change for étale cohomology (applied
to 7) [SGA 4] III, this supplies us with an isomorphism

| ~ n ~ n
97 : HDR @Q BDR_’ Het QQP BDR—» HB @Q BDR .

The entries in Byp of a matrix of 2 y w.r.t. some bases of H]lZI)R’ Hg are called (7)—p—adic -
periods. »

Fontaine asked whether the analog of Grothendieck’s conjecture for p—adic periods holds true. The
answer turns out to be negative; indeed, we shall prove:

Proposition 1. Let X be the elliptic modular curve Xo(ll) ,and n=1, p=11. There are two
choices of 7 for which the transcendence degree of the extemsion of Q generated by the
respective p—adic periods differ.

Nevertheless, one can still ask in general whether the property holds true for "sufficiently general"
7 . This would be a consequence of a standard conjecture on "geometric p—adic representations":

Proposition 2. Let G be the image of Gal(§/Q) — GL(Hy,) ~ GL(Hp)| Q, . Assume that the

rational Zariski closure of G in GL(HE) contains the Mumford—Tate group. Then for
"sufficiently general" 7, the transcendence degree of the extension of Q generated by the p—adic
periods is not smaller than the dimension of the Mumford—Tate group; if moreover n =1, there
is equality.

3. Let us next turn to p—adic Betti lattices of the second kind, the construction of which it
modelled on the following pattern. Let us assume that over some finite extension E of Q in C_,
XE acquires semi—stable reduction, i.e. admits locally a model over the valuation ring of the
p—adic completion K of E, which is smooth over the scheme defined by an equation
X Xy...X ) = S0me uniformizing parameter of K . In this situation Hyodo and Kato showed the



existence of a semi—stable structure on HBR (as was conjectured by Jannsen and Fontaine):
namely an isocrystal (Ho,cp) endowed with a nilpotent endomorphism N satisfying Ny = ppN ,

together with an isomorphism HBR ®: K A HO ® o K depending on the choice of a branch
. K _

B of the p—adic logarithm on K* (here K denotes the maximal absolutely unramified subfield

of K).

On the other side, one can sometimes use the combinatorics of the intersection graph of the
reduction to provide lattices, well-behaved under ¢, in suitable twited graded (w.r.t. the

"p—adic monodromy" N ) forms of HBR , and then use ¢ in order to lift them to HBR . For
instance, this works pretty well when XE = A is an Abelian variety with multiplicative
reduction at p.

4. Before we describe this situation, let us remind the classical situation (E CC): A(C) is a

complex torus Cg/L , where L ‘is a lattice of rank 2g ; furthermore Hll)R ® € ~ Hom(L,C) .
Composition with a suitably normalized exponential map yields the Jacobi parametrization:

A(Q) ~ C*8/M where M is a lattice of rank g ; thus L appears as an extension of M by

2ir M’V | where M’ denotes the character group of C*8 . The bilinear mapon M, say q,
obtained by composing any "polarization" M’ —— M with the bilinear map M x M/ — Gm

(the multiplicative group) describing M — ™8 , enjoys the following property: —log|q| is a
scalar product. '
Similarly, at any place of multiplicative reduction above p, there is the Tate parametrization:

A(Cp) ~ C;g/ M where M is again a lattice of rank g ; there is an analogous bilinear map
q’ on M such that —log|q|p is a scalar product.
Using the semi—stable structure, we construct the "p—adic" lattice L, of rank 2g, formed of
¢—invariants and depending on 3, which sits in an exact sequence like L (in this new context,
2i7 has to be understood as a generator of le(l) inside Bpp ).

Setting Kgp = K[2i7r,(2i7r)_1], we have moreover a canonical isomorphism:

gl ] ~
E’ﬂ :Hpp ®p Kgp — HomZZ(Lﬁ’KHT) :
5. We call the entries in Kgp of a matrix of 2 3 w.r.t. some basis of Hll)R’ L 8 "(B)—p—adic
periods". We may now state a more rigid p—adic transcendence conjecture:

Conjecture 1: for suitable choice of , the transcendence degree of the extension of E generated

by the 3— p—adic periods equals the dimension of the Mumford—Tate group of Hfl3 .



This conjecture splits into two parts:

We first prove the inequality tr.degE E[ # ﬂ] < dim M.T. under some extra hypothesis (*)
(theorem 3); this amounts to showing the rationality of Hodge classes w.r.t. L L (The hypothesis
(*) concerns the Shimura variety associated to A , but we think it is unnecessary, or even always
satisfied). On the other side, we use G—function methods to prove inequalities of the type
"boundary tr.degp E[ £ 5] 2 dim M.T." refering to polynomial relations of bounded degree
between periods (theorems 4 and 5).

Roughly speaking, this is made possible because, when A varies in a degenerating family defined
over E , the f—p—adic periods involve the f—logarithm and p—adic evaluations of Taylor series
with coefficients in E , whose complex evaluations give the usual periods (theorem 2).

6. The previous considerations suggest the possibility of a purely p—adic definition of (absolute)
Hodge classes on A .

Conjecture 2: Let E’ be any extension of E, and let ¢ be a mixed tensor on Hll)R ®@E’
lying in the O—step of the Hodge filtration. Then ¢ is an absolute Hodge class (i.e. rational w.r.t.
L for every E/ =—— C) if and only if ¢ is rational w.r.t. Lﬂ for every E/ =— Cp and
every branch 8 of the p—adic logarithm. ‘

I The p—adic comparison isomorphic

II Hodge classes

II1 Covanishing cycles and the monodromy filtration
v Frobenius and the p—adic Betti lattice

\% p—Adic lattice and Hodge classes

Convention: In this text, a smooth separated commutative group scheme will be called
semi—abelian if each each fiber is an extension of an abelian variety by a torus.
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partially supported by the Humboldt Stiftung; I thank both institutions heartily. The paper
benefited very much from several conversations with W. Messing, J.M. Fontaine and especially
J.P. Wintenberger.



I. The p—adic comparison isomorphism

Ii 3 n
1. The "Barsotti rings BDR and Bcris

Let K be a p—adic field, i.e. a finite extension of Q b with valuation v|p . Let K , tesp. K, Cp
denote the maximal nonramified extension of Qp inside K , resp. an algebraic closure of K , and

its compietion. Let R, RO, R, [Rp denote the respective rings of integers, and let ¥ denote the

Galois group Gal(K/K) . Fontaine has constructed a universal p—adic pro—infinitesimal thicke-

ning of Cp , see e.g. [F1] [F2].

It is denoted by BBR and can be constructed as follows.

Let us consider the Witt ring W of the perfection lim R/pR of the residual ring R/pR . It
—

Xt—— Xp

sits in an exact sequence 00— F1 y W A,IRp — 0, where the ring homomorphism is
defined by the diagram:

W —— lim R/pR
PR

. . .= 0.1
[v,] € Witt(lim R) —— lim R 3 vy = (Vpvye)
—
(Teichmiiller Tp [v,]
lifting of v ) I
R ¥ p" V0
p n

This provides a continuous surjective homomorphism B]'*)'R——e Cp , where BBR denotes the

CFladic completion of W[%] .Thevfraction field By of BBR isa K[ ¢ ]—module, endowed

with the Fl-adic (called Hodge) filtration F, and Grp Bpp rgﬂ Cp(r) (Tate twists).

+ . )
cris - It is obtained

On the other hand, there is a universal PD—thickening of Cp , denoted by B
n
by inverting p in the p—adic completion of the subalgebra of W [%] generated by the E—r’s . For

instance,  if €= (€5,€q,-) is a generator of ﬂp(l) = limp (K),
o — p

n—1 n '
,tp :=log[ €] =2L_) I(ILGJ_I) EBtris‘ The Frobenius ¢ of W then extends to



_nt rl _ . s
B.ris = Beris [f—l-)-] (<,a1;p = ptp) and commutes with the ¥ —action . Moreover B_. go K

imbeds into BDR )

2. The comparison theorem for Abelian varieties

Let A = Ay be an Abelian variety over K . According to Fontaine—Messing [F1] [FM], there
is a canonical isomorphism of filtered % —modules:

* ~ *
F.M. : Hyp(A) g Bpg —— Hey(AgQy) GQPBDR .

* *
In particular HDR can be recovered from H ot 88 the space of ¥ —invariants in the R.H.S.
This isomorphism can be reformulated as a pairing:

HLR(A)® T,(Ag) — By, -

[Faltings and Wintenberger have generalized this pairing to the relative case [W]; the relative

HBR and BDR are endowed with connections and the relative comparison isomorphism is hori-
zontal. ]

In order to describe part of this pairing in down—to—earth terms, let us assume that A has
semi—stable reduction, i.e. extends to a semi—abelian scheme AR over R. (By a fundamental

result of Grothendieck this always happens after replacing K by a finite extension). Let AR be

~

the formal group attached to Ap ; then Tp(AR)(K) is the "fixed part" of Tp(AK) [G2]. Now
the restricted pairing Hll)R(A) ® TP(AR)(E — B¢ go K is easily described as follows:

-~ -

. . 1 ,
a) It factorizes through the quotient Hpop(Ag)k ® Tp(AR)(K) .'
b) Using the formal Poincaré lemma, write any w € Hll)R(AR)K in the form w = df,
fe oy .
AK ) )
c) Foramy 7=/(747)€ Tp(AR)(R) = Tp(AR)(K) , lift every 7, €R to 7711 €EB
d)  The coupling constant <w,y> € B cris 8o K is then given by lim pnf(':;n) . See [Co].
K n

cris *

3. The crystalline and semi—stable structures

a) Let us first assume that A has good reduction, i.e. extends to an Abelian scheme AR over



. . *
R, and let us denote the special fiber of Ap by X . In this case HDR(A) carries a natural

0

* *
K"—structure, namely H0 =H

. (K/RO) ®, K’ ; moreover this KO—space is a crystal: it is ca-
cris R0
nonically endowed with a semi—linear "Frobenius" isomorphism ¢ . The Fontaine—Messing iso-

morphism is then induced by an isomorphism of filtered ¢— and % — modules:

* ~ *
H, EO Beris ’ Het(AK’Qp) ®Qp Beris -

* *
In particular H et €3N be recovered from HO as the space of p—invariants in the Fo—subspace of
the L.H.S.

b) If contrawise A has bad reductibn, let us use Grothendieck’s theorem to reduce to the case
*
of semi—stable reduction. [Jannsen had the idea that there is still a fine structure on Hpp

*
involving some "monodromy operator", and such that Het could be recovered in a similar way as
in the good reduction case [J]. Fontaine then formulated a precise conjecture and proved it in the
case of Abelian varieties]. The result is [F2]: |

Choose a branch 3 of the v—adic logarithm. Then

* *
b;)  there exists a canonical K —structure Hy on Hpp(A), endowed with a nilpotent

endomorphism N; N =0 iff A has good reduction.

*
b2) H0 is naturally endowed with a semi-linear "Frobenius" ¢ = v related to N by
means of the formula: Ny = ppN .
b3) there exists ug € Bpp such that B :=B_. [uﬂ] is ¢ -stable, and such that
N= d/duﬂ and the extension of ¢ to B, given by pug = pug commute with the ¥ —action.
b 4) the p—adic comparison isomorphism is induced by an isomorphism of filtered

KO( % )-modules compatible with ¢ and N:

*

H,

~ *
20 Bgs Hei(Ag) QQPBSS '

. * * 0™ ¢=1,N=0
In particular H, can be recovered from H as the space [F (Het ® Bss)] :
For a concrete description of the semi—stable structure due to Raynaud, see below III 4, IV 1 and

[R2].

4. Rigid 1—motives and Fontaine’s LOG

In the study of the comparison isomorphism, it is useful to embed Abelian varieties into the bigger
category of 1-motives [D1].



a)  Recall that a smooth 1-motive [M ¥, G] on ascheme S consists in

i) an étale sheaf M locally defined by a free abelian group of finite rank

ii) a semi—abelian scheme G over S

iii) . a morphism . M ——G.
For each prime p, one attaches to [M—L—) G] a (Barsotti—Tate) p—divisible group, and its
étale cohomology (= étale realization of [M ¥, G}l ).
On the other hand, the universal vectorial extension M — G § of M—— G provides the
De Rham realization  Hpp[M— Q] := ColieG?, with its Hodge fltration

FlHll)R = Colie G .

b)  There is a notion of duality for 1-motives. We shall only consider symmetrizable 1-motives,
i.e. 1—motives isogeneous to their duals (the isogeny inducing a polarization of the Abelian

quotient of G ). This amounts to giving
i) a polarized Abelian scheme (A,A) over S

ii) a morphism y; M —— A, where M is an étale sheaf of lattices; let xv =)loy

ili) a symmetric trivialization of the inverse image by (x,xv) of the Poincaré
biextension of A x A’ .

-1 0
¢c) It is convenient to view l—motives as complexes in degree (—1,0): M —— G . When

S = Spec K, K = p—adic field, it is more convenient, according to Raynaud [R2], to identify
1—motives which are quasi—isomorphic in the rigid analytic category; for instance, if A is isomor-
phic to the rigid quotient G/M , we consider A (or [0 — A] ) and [M — G] as two in-
carnations of the same rigid 1-motive.

Indeed, the associated p—divisible groups, resp. filtered De Rham realizations, are isomorphic;
furthermore this isomorphism is compatible with the Fontaine—Messing comparison isomorphism,
which extends to the case of 1-motives (its semi—stable refinement also extends to this case
(Fontaine—Raynaud)).

d)  Let us illustrate this in the simple case [Z ¥, G_] (when q is not a unit in K , this is
l—gq

the 1-motive attached to the Tate curve K~ /qﬂ ). The Tate module sits in an exact sequence

0—4ﬂp(1)~+Tp—ﬁq”®”ﬂp—40

Let tp be a generator of Ep(l) , and let ﬁp € Tp lift q . Let moreover u be a generator of the

character group X(Gm) , so that du/1+u generates the K—space QlG . At last let us repre-
m



sent up by a sequence (q,ql,.'..) with qﬁ +1= 9> and let ?in lift q, in BDR' The p—adic
periods of [Z ¥, G ] are given by:

<tp,d,u/1+p> == tp in Bpp

. L.
<up,du/1+p> =lim log qnp /q -
' n

By abuse language, one denotes this limit by LOG q ; its class mod ﬂp(l) depends only on q . If
one requires more rigidity, one may embed K into € somehow, and choose u_ in the Z-lattice
given by the Betti realization of the corresponding complex 1-motive; LOG q is then defined up
to addition By ﬂtp , as in the classical case.

e)  More generally, let us consider a 1-motive M ¥, T] , where T is a torus. In this case
the universal extension splits canonically: Gé =Tx Hom(M,Ga)v ; this induces a canonical

splitting of the Hodge filtration: Hll)R [M—T] = rlo Hom(M,K) . On the other hand, let
M’ denote the character group of T and q: M x M’ — Gm the bilinear form induced by
¥ . Again the étale cohomology sits in an extension ’

0 — Hom(M,Q,) —» H [M—T] — M’ & Q,(-1) —0 .

Now assume that M and M’ are constant.

1

1 :
ot and HDR Iesp.; let.

Let (m‘;) denote a basis of Hom(M,Z) as well as its images in H
(pj) denote a basis of M’ , let d,uj/ 1_+/£j be the corresponding basis in F! , and let sz lift
,uj/tp inside Helzt‘ At last, let (m,) denote the basis of M dual to (m;), and set
q; = q(mi,pj). Then in the bases of H]%)R (resp. Hét) given by {d,uj/1+,uj;m‘3} (resp.

{Zi,m‘; } ), the matrix of the comparison isomorphism takes the shape:

I

0
] . - This completes the description of this isomorphism for

t I
{(LOG qij)_

any Abelian variety with split multiplicative reduction.



II. Hodge classes.

1. The complex setting.

a) Let E be a field embeddable into C , and let AE be an Abelian variety over E . An

0|l gl @®n 1 v®n 0 1 @n .
element £ € F [HDR(AE) ® Hhr(Ag) ] =F [End HDR(AE)] (for any n) is called

a Hodge class if its image in [End Hé(AC,C)]Qn lies in the rational subspace

[End H113(A¢,Q)]®n . By Deligne’s theorem on absolute Hodge cycles [D,], this definition does
not depend on the chosen embedding E =< € . Moreover, after a preliminary finite extension of
E , one gets no more Hodge class by further extending E . It follows that the connected
component of identity of the Hodge group of AE (which is by definition the algebraic subgroup of

GL [Hll)R(AE)] which fixes the Hodge classes) is an E—form of the Mumford—Tate group of
Hé(AC,Q) . It is known that the Hodge group is a classical reductive group.

b) Let us fix an embedding ¢: E =< € . For any E—algebra E’ , the E’—linear bijections

~N

HII)R(“'AE) ®n E/ — H113(AE ® CQ) ®Q E’ which preserve Hodge classes form the set of
E’—valued points of a E—torsor P L under the Hodge group; for E’ = C , one has a canonical
point % given by "integration of differential forms of second kind".

Lemma 1: the torsor P L is irreducible.

Indeed, there exists a finite Galois extension E’ of E such that the Hodge group of Ags is
connected; hence the associated torsor PZ is geometrically irreducible. But via the isomorphism

* *
Hpp(Ag) ®g E' = Hpp(Ag/) , @ Hodge class on Ap is just a Hodge class on Ap, which is
fixed by Gal(E’/E). Therefore P, is the Zariski closure of P’ over E, and is irreducible.

Conjecture (Grothendieck): if E is algebraic over Q, 2 isa (Weil) generic point of P, (over
E).

Thanks to the irreducibility lemma, this amounts to say that the transcendence degree over Q of
the periods equals the dimension of the Mumford—Tate group (here, "periods" means entries of a

matrix of £ w.r.t. bases of ngR(AE) , H113(AC,Q)) . [This deep problem is solved only for
Abelian varieties isogeneous to some power of an elliptic curve with complex multiplication
(Chudnovsky).



The conjecture can also be formulated as follows: every polynomial relation between periods, with
coefficients in E , comes from Hodge classes. A major result in transcendence theory establishes
this for linear relations (Wiistholz); the only Hodge classes which appear in this context are classes
of endomorphisms. ]

2. Behaviour under the p—adic_comparison isomorphism

Assume now that E is a number field; let v|p be a finite place of E, and K = Ev be the

completion of E w.r.t. v; E denotes the algebraic closure of E in K.
Let us choose an embedding v: K = C and denote by ¢ its restriction to K .

1 ~nod
At last, let 5’7: HDR(AE) ® Bpgr — Hp(A5 8, C.Q) QQ Bpp  denote the composed
isomorphism:

F.M.
1 ~ o1 ~ 1
Hpr(Ag) ®g Bpr — Hpp(Ag) ® Bpgp — Hey(Ag) “Qp Bpr

~ 1 ~ 1
o Ey(A) @QP Bpp —— Hp(A_®, €0) 8 Bpp

v ool
— Hy(A 8, €0) 8 B

Blasius—Ogus [Bl] and independently Wintenberger have recently proved the following striking
result:

Theorem 1. For every v above ¢, 5’7 isa BDR—va.lued point of P r

[The Wintenberger proof uses the relative comparison isomorphism while the Blasius—Ogus proof
uses Faltings’s comparison theorem applied to smooth compactifications of "total spaces" of
Abelian schemes]. With the notation of I 3, it follows formally that Hodge classes lie in

(End H(l))‘g’n , are Frobenius—invariant and killed by N .

In view of this theorem, it is natural to ask whether the p—adic analog of Grothendieck’s
conjecture holds, namely whether .9’7 is a (Weil) generic point of P, over K . [After I
communicated the counterexample in prop. 3 to Fontaine, he suggested the following:]

Conjecture 4: for "sufficiently general" + above ¢, 5’7 is a (Weil) generic point of P , over
K.



See below, § 4.

3. Proof of proposition 1.

In this example E =Q , and AQ is the elliptic curve Xo(ll) .For p=11, AQ is a Tate
p
- curve Q;/q” , qe pﬂp . With the notations of I 4b, consider the exact sequence

[/
0 — ﬂp(l) — TP(AQ') —q @y ﬂp — 0, and let tp be a lp—generator of ﬂp(l) such

2 2
that tp A u, is a Z—generator of the image of A HI(AQ @7 C,Z) in A Tp(AQ) for some fixed

7:Q = C ; this determines tp up to sign. Let moreover v be a unit in Ep such that

w:=73 T+Lu belongs to the rational subspace Q}‘Q of QII\Q . According to I 4b, we then have:
P

<vt ,w>==%t
: p’ P

Now let g e Gal(Q/Q) ; changing 4 into 7o g modifies the Betti lattice inside Tp via the
formula:

T (Aq)—*—»T (Aﬁ) 1(A ® Cﬂ)
*
where g denotes the image of g under the group homomorphism

Gal(§/Q) — GL(Tp) .

But in our case, this homomorphism is surjective, according to Serre [S 1]. In particular, there
*
exists some g e Gal(Q/Q), with detg =1, and such that » tp € Tp lies in the Betti lattice

*
HI(AQ- Q’Y og C,Z) ; since det g =1, changing 7 to 7o g preserves tp

It then follows from the relation < th,w >== tp that the Zariski closure of 3’7 og over Q is
contained in a hypersurface of P . On the other hand, it follows from Serre’s result and the next

lemma that for some other 7’ : § = C , the Zariski closure of 5’,7; over Q is the full torsor
P.

4. Proof of proposition 2 (Abelian case).

We prove the following variant for an Abelian variety AE over a number field E [Proposition 2
itself is proved in the same way with only minor modifications involving simple general facts



about absolute Hodge cycles contained in the beginning of [ ] J .

Let us fix N: E < € and denote by H,l70 the rational structure H]13(AE 370 C,Q) inside

Helat(AE’Qp) = Hét(AK,Qp) (for E = algebraic closure of E in K, where K = E,, v|p). The
Galois representation H(Iet(A_,Q p) is described by a homomorphism :
E

Gal(E/E) —» GL(H,I),O)(QP) .

Let us denote by G » the Zariski closure of the image of Gal(E/E) over Q , which is the
0

smallest algebraic subgroup of GL(H,ly ) whose group of p—adic points contains the image of
0

Gal(E/E) .

1 is the connected component of identity in G

Conjecture §: the Mumford—Tate group of H x "
0 0

[One easily checks that the truth of this conjecture does not depend on the choice of Y on the

other side, the fact that the Mumford—Tate group contains Gg is a theorem of Borovoi [Bo]].
0
This conjecture is a weak form of the well-known conjecture of Mumford—Serre—Tate (replace Q

by Qp in the statement).
Proposition 2”: Conjecture 5 implies conjecture 4.

Proof: let STE

" denote the Zariski closure of 5’7 over E , inside the torsor
0 0

P=P, (c= Y | E) ; let G(;O denote any connected component of G N For any By € G(;O(Qp) ,
let

(0

. =~E
¥_ : Spec Bpr — Spec E[3’70] x Spec Qp——» .9’7 x G7O|E

Ea

be the composed morphism of affine schemes given by (3’7 g a) .
0

From lemma 1 and conjecture 5, it follows that G 7| E =U G: |E acts transitively on P, and
0 0

that Q-G% =P for any non—empty E-—subscheme Q of P . We can now make the
70 | E :

expression "sufficiently general 4" (in conjecture 4) precise: it means "any « of the form

7=17° 8, where g € Im Gal(E/E) is such that d’g maps to the generic point"; indeed for
a



these embeddings 7,

E _ - E _ E,—Q — E B Ao -
j'; —'9'70 8a _270 (ga )IE ?% G'ToIE P

It remains to prove the existence of (uncountably many) such g, . To this aim, let us remark

that there are only countably many subvarieties of Gg |E(2, ) ; we denote them by Qn ,
0 g/
0

n e N . Hence there exist linear subspaces T | of End H,l7 ® Qp , of codimension dim P -1,
0

such that T [N G‘,’YO(QP) nQ, #T TN GgO(Qp) for every n . Any g e TTn GE;O(QP)

being outside the countable subset U T T N Gf; (Q p) nQ o then satisfies the required property
n 0



III. Covanishing cycles and the monodromy filtration.

1. Covanishing cycles.

a) Let again A be an Abelian variety of dimension g over the p-adic field K, with

semi—stable reduction. For any finite extension K’ of K, let Af&g denote the associated
rigid analytic variety ("Abeloid variety") over K’ .

The (Cech) cohomology Hl(Ar i/g,ﬂ) of the constant sheaf Z on AIr{ig can be interpreted as
the group of Galois covers of AII{;g with group 7 [R,] [U].

For reasons which will soon be clear, we denote this group by M' (K’) . One defines this way an
etale sheaf M on Spec K, described by the % — module M’ = Mv (K) ; points of the lattice

M" will be called (integral) covanishing cycles.

b) In order to understand the geometrical meaning of M , let us consider the Raynaud
extension G (resp. G’ ) of A (resp. of the dual Abelian variety A”):

G is an extension of an Abelian variety B by an unramified torus T of dimension r < g (lifting
the torus part of the semi—stable reduction of A ), and A (resp. Ag ) is the rigid analytic

P
quotient of G (resp. Gg ) by the lattice M(K) of K-characters (resp. the lattice
p

M := M(K) of characters) of T’ ; and symmetrically for G’ ...

This description of AC shows that M' is the dual of M ; in particular the (finite) %— action

P

is unramified (since T’ is). [In Berkovich’s astonishing theory of analytic spaces, one associates

with A some pathwise connected locally simply connected topological space AR, M(K) should



then appear as its fundamental group in the ordinary topological sense [Be]].

¢) Composing the morphisms

I"p ,

M' ®, 7 — lim HY(AL81/p"n) SACR, 1im B (A, 1/5"D)
et\"C
n p n p

[where GAGR denotes the functor studied by Kiehl [K]], yields a natural injection of
I p[ﬁl—modules:

1
:M' &)1, a.Ht(AK,p

d) On the other side, the lattice M’ (K) is naturally isomorphic to the group of rigid analytic
homomorphisms from G to A’ [R,], see also [BL] for the variant over ﬂlp.

Composing the morphisms

Hom; (G, A’ ) Rull=back, gom (gl (A/78)HL (GLE))

DR(

duality HDR( Anng) GAGR HDR( A")

yields a natural embedding:
v 1
ipr: M (K)®; K == Hpp(A) .

[Le Stum [IS] interprets the image of ifyp as follows. By means of some compactification A of
the semi—abelian group scheme AR over R extending A , there is the notion of strict

A

neighborhood in Xl?g of the formal completion A . For any 0Arig—module F, set

* A :

jto=1imj A Jx & where j, runs over all embeddings of strict neighborhoods of A inside
_.)

ATI8 : j+ is an exact functor, and there is a canonical epimorphism F—-—— j+ F [B]. Define
the covanishing complex by ¢ := Ker(Q, . g j+Q A g) , which gives rise to a long exact
sequence

— H*(A"8,9) — HE L (A) — HY, (K —

involving Berthelot’s rigid cohomology of the special fiber X . The group lHl(Arig,cp) can then be



identified with Im ‘DR ; this justifies the label "covanishing cycles" by analogy with the complex
case.]

e) It turns out that the maps toy and ipp are compatible with the Fontaine—Messing
isomorphism; More precisely:

Proposition 3: the following triangle is commutative:

K)“’Q

/ \

1
Bpp -~ H, etlA) @ Q, Bpr
Proof: let us introduce the Raynaud realization [M —— G] of the (rigid) 1-motive A .

The map can be identified with the mnatural injection of #-modules

Let
Hom(M(K),Q ) — H [M —iG] .

On the other side, getting rid of double duality, one easily sees that IpR can be identified with

the natural embedding Hom(M(K),K) = HDR [M — G] , see also [IS] 6.7. The required
.commutativity then follows from the fact that F.M. is tautological for the quotient 1—motive

[M(K) — 1] (whose associated p—divisible groupis & (Qp/ﬂp)n) .

D) An orientation of d’,p is an embedding of p m(C )=1 (1) into C€* ; this amounts to the
choice of a generator t_ of the E —module Z (15 up to s1gn [a further orientation of C itself
would fix the sign], or else to the ch01ce of an embedding of Abelian groups
Xe(G) — Ty(6)(= T (1)) -

By using an orientation of Cp and duality, we get from c¢) an injection:

jo M7V (1) =M @X (G )——)H (A I)®T (6 )T (AK)

Using the Raynaud 1-motive [M — G] over K, it is then clear that the Fontaine—Messing
pairing between Hll)R and M’ v(1) takes its values in K’ tp for some finite unramified

extension K’ of K (evenin Kt p if the torus part of the semi—stable reduction X splits).



2. Raynaud extensions and the gq—matrix.

Let f: A—— S be a semi—abelian scheme with proper generic fiber, S being an affine normal
connected noetherian scheme; we put S = Spec &, #=Frac &.

a)  Let us first assume that 2 is complete w.r.t. some ideal I (we set S, := Spec /I ), and
that the rank r of the toric part TO of AO =A Xg S0 is constant.

One constructs the Raynaud extension over £ [CF] II, 0 — T — G — B — 0, where
T  lifts T0 and B is an Abelian scheme. There is also the Raynaud extension
0— T/ —3 G’/ y B/’ — 0 attached to the dual Abelian scheme A’ ,and B’ is the dual
of B ; moreover rk T =1k T’/ =r . These extensions arise via push—out from morphisms of fppf

sheaves
*
M— B, where M =X (T’) (character groups).

M’ =X (T)

M’ — B’
The objects G, T, M ,B (resp. G’ ,...) arefunctorialin A (resp. A’ ).

b) Replacing S by some open dense subset U , the Faltings construction (using an auxiliary
ample line bundle . on G 5 [CF] II 5.1), or methods of rigid analytic geometry ([BL;] with
less generality), provide a trivialization q (independent of .¢ [CF] III 7.2) of the
G m—biéxtension of M x M’ obtained as inverse image of the Poincaré biextension of B x B’ ;
this amounts to giving a lifting My — Gy of M—B (vwhence a smooth l—motive

[_M_l—» G] on U ). When T0 splits, so that- M =M and M’ = M’ are constant, one can

use some basis {(mi’”j)} of MxM’ in order to express the bilinear form
qg:MxM — Gm U by a matrix with entries g € F . [If moreover A is principally
, A

pblarizable, such a polarization induces an isomorphism M~ M’ , and then q: M®M — % X

'is symmetric. In the literature on Abeloid varieties, the associated gq—matrix is often referred to
as the "period matrix"; however this terminology conflicts with the Fontaine—Messing theory, but
some precise relation will be exhibited in IV].

¢) In order to understand the complex counterpart, we replace S by Al , where A denotes
' * *
the unit disk in € . Assume that the restriction of { to the inverse imageof S =a T s proper,

*
where A stands for the punctured a.

The kernel A of the exponential map exp: Lie A/S —— A is a sheaf of lattices extending the



local system {H,(A.,I)} g The (unique) extension in A of the fiber of A over 0 is a local
s€

system N of rank 2g —r . Via exp (which factorizes through N ), A becomes a quotient of the
semi—abelian family G = (Lie A/S)/N: A= G/M, where M denotes the sheaf of lattices A/N
(which degenerates at 0 ). A

This supplies us with a (complex analytic) smooth symmetrizable 1-motive [M — G] over

* .
S . Both the Betti realizations H]13 and the De Rham realizations Hll)R (endowed with the
Hodge filtration) of A and [M —— G] are canonically isomorphic. However, one may not
identify these "1—motives" because the weight filtrations differ, see below § 4.

d) We now start with the following global situation:

S1 is an affine variety over a field E of characteristic 0; 0 is a smooth rational point of S1 ,
and Xy, - X, aTe local coordinates around O ;

f1 : Al — S1 is a semi—Abelian scheme, proper outside the divisor X Xg .. X =0, and the
toric rank is constant on this divisor.

Because fl is of finite presentation, it arises by base change from a semi—abelian scheme

Tl : _K_l — §1 (where ¥ is a sub—Z—algebra of E of finite presentation), with the same

1
properties as fl Ifweput 2= K[ [xl, ,xn]] , S=Spec & (the completion of §1 at 0),

I=(xyxg ... X ), f= Tl g » we are in the situation a) b). Moreover, the open subscheme U may

be defined by the condition x;x,..x #0 . It follows that the entries q;; of the q-matrix
1

belong to E [ [xl, ,Xn]] [i-lxz—x:l .

n

e) Assume moreover that E is a number field, with ring of integers % - Then ¥ can be
chosen in the form G [—Il;] , where v is a product of distinct prime numbers. Thus for every finite

place v of E not dividing v, the %; entries are meromorphic functions on Ag , analytic on

* *
Avn (Av , Tesp. A denotes the v—adic "open" unit disk, resp. punctured unit disk), and
bounded away from 0 . On the other hand, one can also see (using construction c)) that the qij’s

define meromorphic functions on some complex polydisk centered at 0 .

[Remark: following [C], an element y of E[[x;,..,x ]] is said to be globally bounded if

ye dEFl [[x;, ... x,]] for some »,andif y has non—zero radius of convergence at every

v
place of E . (Such series form a regular noetherian ring with residue field E , and the filtered



union of these rings over all finite extensions of E , is strictly henselian). One can show that the

(% - xn)mqi j’s are globally bounded series (for suitable m) . The problem is to show that the
v—adic radius of converge is not 0 for any v|v . Using the compactification of Siegel modular

stacks over Z , one can find a semi—abelian extension of Tl over an (;—model of some covering

of §1 , and afterwards, one has to use the 2—step construction of [CF] III 10 to keep track of the
possible variation of the torus rank of the reduction, after replacing the divisor XX, =0 by
vy ..o x) =0] .

b) Lemma 2. If v v, then the entries of the g—matrix are units w.r.t. the v—adic Gauss
norm.

Proof (sketch): let & denote the completion of the quotient field of %= E[[x, .. x ]] w.r.t.
the v-adic Gauss norm | [g, .o (= "sup" norm on ). Because v is discrete, so is
| IGauss by Gauss’ lemma, hence & is a complete discretely valued field of unequal
characteristics.

By construction of the Raynaud extension, the Barsotti—Tate groups associated to A/ & resp. to
the 1-motive [M/ PR G/ &] coincide. Tt follows that Grothendieck’s monodromy pairing

associated to A/ & is induced by the pairing M x M’ — 8" — T given by the valuation of
the g—matrix w.rt. | |g, .- Since A/ & has good reduction modulo the valuation ideal of &
(indeed its reduction is the generic fiber of the reduction of A modulo v, which is proper when
v | v) , this pairing has to be trivial:

193] Gauss =1

g) An example: let us consider the Legendre elliptic pencil with parameter x = A, given by
the affine equation

v2 = u(u—1)(u—x).

Here one can choose B =17 [%] , and one has the explicit formulae:

16q = x(1 — x) e G/F

: [10]
2 2m—-1.—1
x=16q(T T+ ™)+ 2218,
m=1



where F= Y (()/m!)*x™
m=0

G=2 § (@umd*( y P~
£=1

m=1

This example is studied thoroughly in [Dw].

3. Vanishing periods.

a) Let us take up the situation 2d again, and assume that E is contained in the p—adic field

K, with B C R . Assume also that the torus part of the semi—stable reduction splits.

As before, we then have our constant sheaves of lattices M =M, M’ =M on the v—adic unit
polydisk A: ;let {i} beabasisof M’ , andlet {u{} be the image of the dual basis of
M’Y(1) under jot (defined up to sign, see III 1g).

On the other hand, we have the relative De Rham cohomology sheaf HIIDR(A/ S*)_ which admits a
canonical locally free extension to S (where the Gauss—Manin connection acquires a logarithmic
singularity with nilpotent residue); in fact this extension is free because S is local, and we denote
by {“’j} a basis of global sections. We are aiming to give some analytic recipe to compute the

*
‘Fontaine—Messing "vanishing periods" 11;— < u; ,wj(s) > of the fiber A,(s), s € Avn , see III 1f.
p
b)  Let us express the composed morphism
Bl (A/s)?® gL (A/S) — HL (T).2M’ @ ¢
DR*= DR\*= DR § = S

(roof = formal completion) in terms of the bases w5, dp. /1 + ”i.' We get a (2g,r)—matrix ( “’ij)
with entriesin &= E[[x}, .. x 1] .

*
Lemma 3. For any se Avn , one has the relation j(s) =4+ %—— < u{ ,wj(s) > . Moreover w; j is
p

a bounded solution of the Gauss—Manin partial differential equations on A" .

Proof: the first assertion is easily proved by considering Raynaud’s incarnation [M(s) — G(s)]
of the rigid 1-motive associated to A,(s) , together with the trivial computation of
Fontaine—Messing periods of the split torus T = T(s): < u; ,duj/ 1+uj > =4z 6ijtp . The second



. * A A
assertion follows from the horizontality of the map HII)R(A/S yean Hll)R(A/S) w.r.t. the
Gauss—Manin connections v , and the fact that M’ is formed of horizontal sections of

H]l)R('I")§ (see also [vM]).

c) Let w denote a uniformizing parameter of R . We modify slightly the setting of 2. d) by
assuming that f1 extends to a semi—abelian scheme 71 : ANSp ecRNE —————— § | proper
outside the divisor X) o Xp = 0, and with constant split toral part on this divisor. Again, the

* *
wij’s converge on A!; , and for every point s e S,(E) N Avn , the v—adic evaluation of w; j at s
may be interpreted as in lemma 3 (if furthermore E is a number field, the wij’s are in fact
globally bounded series). We next look for complex interpretation.

*
d) Let ¢:E <> C be a complex embedding. We now assume that se S,(E) satisfies the

following property: $(C) should contain the polydisk of radius |x;(s)| (to insure the
convergence of the analytic solutions of Gauss—Manin in this polydisk).

By specializing to s , comstruction 2c provides an embedding: g : MY s H]13(As ®L ¢n),

where A_:= A,(s) . Dually, we also have an embedding:

jg:M/Y(1) =2aM’Y s Hp(A; ¢o0) -

In addition to the orientation of Cp , we choose an orientation of € ; this eliminates all

ambiguities of signs, and allows to identify jB(u}'(l)) with 11,3 :

Proposition 4. The following diagram is commutative:

‘B
\ HY(A, ¢,I)

B

L MY

. et
He, (A ,K’Qp)/
F.M. "1 l - 1 U

1
1 gl (A)e. ¢
HEL(A,)® Bpp pr(4;5) &

v—adic

/
* .
evaluation HII)R(A/S )Y comp lex evaluation

In particular (by duality), the complex evaluation of ;5 at s gives the "usual" period

1 ’



MY
Proof: let us draw a middle vertical arrow , defined by the obvious embedding

1 *
Hpp (A/8)Y
v v 1 Y 1 * .
M"=TM" < T'Hpp M G] S* = I‘HDR(A/S ) (or equivalently, when n =1, by the
analog of ¢p)p in the rigid analytic category over the discretely valued field E((x))) .

Then the commutativity on the L.H.S. is essentially the content of prop. 3; the commutativity on
the R.H.S. follows immediately from the definition of g (details are left to the reader).

This proposition suggests the following open question: “assume that E is a number field, and

denote by E its algebraic closure of E inside Cp . Does there exist 7: E =< € above ¢ such
that the following diagrams commute?

JB

L
MY —2 ., Hl(A[ D) M/Y(1) —B s H g(Ag,D)
et f f f jet f
*
N* T

Hg(AQ) —— Hoi(ApQ)  TH(A) T, (Ag)

(We leave it as an exercise to answer positively, when AE is an elliptic curve, with help of

[S,)
4, The monodromy filtration.

a) In [G,], Grothendieck constructs and studies thoroughly a 3—step filtration on Tp(A_K_) ,
the "monodromy filtration" (here, we turn back to the setting of section 1)). By duality, we get a

filtration Wet on Hét ; it turns out that this filtration is the natural weight filtration on the

Helzt of Raynaud’s incarnation of the associated rigid 1-motive, loc. cit. § 14.
b)  According to the semi—stable philosophy (motivated by higher dimensional motives), it
should be natural to handle the monodromy business on the De Rham realization. The

. 1 \'4 .
monodromy filtration W_, =0, W= MY(K) g K, Wy=Hpp, Gry ~M’(K) ; K , is the

canonical filtration associated with the nilpotent operator of level 2 defined by:



1 1
N: Hpp(A) —-———- — HP(A)

|| u
H%R[M—ﬁ G] Hpp [M — G]

1
Hpp [0 — T] Hyp [M — O]
I l

M'(K)® K — M"(K)®K
I I

where the arrow at the bottom M’(K) —s M'(K) is the map induced by opposite of

Grothendieck’s monodromy pairing: v(q) : M®M’ -3, G —~Y, T (v = valuation), ibid

KRT
(we change the sign because we work on Hll)R , not on the covariant H,pp) . Assume moreover
that M = M(K) . Then the cokernel of the map M’ —— M" inducing p is canonically

isomorphic to the group of connected components of the special fiber of the Néron model A , see
[CF] III 8.1. The weight filtrations W and W, are related via F.—M.:

w w
Lemma 4 (for M = M(K)): Grly @ Gr% (1) = (Gry** @ Gr,*)® K.
QP
In case A is a Jacobian variety, there is moreover a Picard—Lefschetz formula (loc. cit. § 12),

-where ‘et(MY) appears once again as the module of covanishing cycles.

¢) Like the Raynaud extension, the operator N admits a complex analog (which is

h

well-known). In the situation 2 c), let D;= a1 x 0} x a%IC A" be the B divisor "at

*
infinity". For any s € A *, there is a monodromy action "around D : M? € GL(Hl(As,ﬂ)) ,

J
which is unipotent of level 2. Set N? = 2—}? logt (M‘}’)—1 € End HI(AS,C) . These nilpotent
*
operators are constant on A n , and can be computed on the limit fiber by: N'}’ =- ResD jv (the

opposite of the residue at D ; of the Gauss—Manin connection).

Under the identification Hl(As,Q) ~ Hé [M(s) — G(s)] ® Q , the "monodromy" filtration on

the L.H.S. associated with N? is just the standard weight filtration on the R.H.S. [D1].

d) One can mimic the construction a) over any complete discretely valued ring instead of K,
eg over RX=KE[[x]], I=(x), in the situation 3 d), with n=1 ; We denote by
Nfor € End Hll)R [A/ R [)l—c]] the nilpotent endomorphism obtained this way.



Next, we wish to compare N, NIOT and NO.

R
Let us consider a double embedding z C and let s e S,(E) . Assume that |x (s)| <1 and
that S,(C) contains the disk of radius | (s)], .

At last, set A8 = -A-(s) .

Nfor at 8 is

Proposition 5. In this situation, the complex evaluation of
N® e End Hll)R(ASQC)z End Hl(As ¢¥) ; the v-adic evaluation of NOT b s s

v(x(s))N € End B (A, ®K) .

Proof: the complex fact is well-known. The v—adic assertion relies on the equality
V(g j(s)) = (val_q; j) - v(x(s)) , which follows immediately from lemma 2.

[Remarks: d,) if we only assume that A"~ —— S is proper outside wx=0 (instead of
1 1

x = 0) , the monodromy filtrations corresponding to N?s)l): and N= Ns still coincide at the

limit.

dy) A quite general definition of N is given in [CF] III 10.]



IV. Frobenius and the p-adic Betti lattice.

1. Semi—stﬁble Frobenius.

We take up again the situation I 3b), and explain a construction of the Frobenius semi—linear
endomorphism 2% (due to Raynaud [R,]).

a) Let [ denote a bré,nch of the logarithm on K* . This amounts to the choice of some
uniformizing parameter of R , say w , characterized (up to a root of unity) by the fact that
B: KX~ oL x (R/UR)® x (1 + BR) — K factorizes through 1 + oR .

b) Let A bean Abelian variety over K with semi—stable reduction, and let [M ¥, G] the
Raynaud realization of the associated rigid l-motive (G  sits in an extension
0— T —G—B—0,and 9 is described by q:MxM’—»Gm).

0

0

Let us factorize q = z;v(q) -q ,sothat ¢ :MxM’ — G_ extends over R . This amounts
m

to a factorization ¢ =y, ° 1/)0 , where x: M—T= Hom(M’ ,Gm) is induced by ’;JV(Q)
w w
and 1/10 :M —— G extends over R (we use the same notation 1/10 for this extension). Because

T is a torus, the universal (M,x, )—equivariant vectorial extension of T splits canonically,
w
which yields a canonical isomorphism of (Hodge) filtered K—vector spaces:

0
.ul ~ 1 |
ag: HDR[ML Gl g ®g K ~— Hpy M-¥q] = HLo(A) .
For two uniformizing parameters 51 , ?:)2 ,themap a, , A g, are related by:
1 2
(i) a 3 AB]' = exp(— log 2')2/231 - N), where N is the operator defined in the previous section.
2 "1

[Note the similarity with the definition of the canonical extension in the theory of regular
connections, and also with [CF] III 9].

c) Let BT denote the Barsotti—Tate group attached to the reduction mod. w of

M 2, G/p (1), and 1et B

0 denote the KO-Spa,ce obtained by.inverting p in its
crys/K

(1) . 0 :
Remember that the Barsotti—Tate group attached to [M v, G] /R is given by the

image of ¢0 under the connecting homomorphism Hom(M, G)— Ext(M, G)
P p

n
associated with the exact sequence 0 — nG 4G 256 —0.

P




first crystalline cohomology group with coefficients in RY . Up to isogeny, BT splits into the sum
of two Barsotti—Tate groups: the constant one M(K) @, Q p/”p , and Aim el N R/WR . [It
P
1
crys/ K"
determines G ® R/ ¥R ]
R

follows that H

The K'—structure H: mentioned in I3 b ) is just the image of H! under A, inside
0 1 crys/K0 B
1 . ~ .
Hpp(A) ; the element ug is ug:=— LOG w (defined up to translation by ﬂp(l) C B’g ris) -

By transport of structure, the o—semi—linear Frobenius on H(l:rys/KO provides the

o—semi—linear endomorphism ¢ = g on H(l) (o = Frobenius on KO) . Using (i), one gets the
following relation:

(i) 0g, © soa = exp(— 2 log(&,/ G )P+ N) .

From the functoriality of Raynaud extensions G and of the rigid analytic isomorphisms

Gﬁg/M = AT8 , it follows that the semi—stable structure (H(I),go,N) is functorial in A .

€) That construction of Raynaud may be extended to the relative situation III 2, i.e. over

R=w— adically complete noetherian normal Ro—a.lgebra..

Let U CSpec £ be as in loc. cit., and let us choose a lifting o € End U of the char. p
Frobenius. By analogy with step c), we can construct, locally for the "loose" topology on U , a

*
horizontal morphism ¢ 5(0) 1o Hll)R(A/U) — HII)R(_A_/U) ; furthermore, this morphism
"stabilizes" MIVJ , and it can be globally defined there. [This is the "stability of vanishing cycles"

PN
mentioned in [Dw]; indeed, when say Z=R[Wx] , o:x+—xP , ¢ﬂ is nothing but the

analytic Dwork—Frobenius mapping] .

If A isthefiber A(s) of A at some point s € U fixed under o, we recover ¢ ﬂ(a) =¢3-

2. Construction of HE(A) .

From now onwards, we shall assume that A has multiplicative reduction.

a)  With our previous notations, we then obtain the following consequences:

does not depend on @ ; in fact, it depends only on AR ®R/ Z2R , which -

~



a;: G=T, r=g,
ap):  the Hodge filtration splits canonically:

1 1
Hpp = (M'(K)®; K)®F
a3): the monodromy filtration consists of only two steps:

\%

1 . .
Gr ®Hy > (MY ©;Q)® (M’ 8 Q (1)) (via gy and jy),

GrWHL ~ (M(K) ®; K) ® (M’ (K) € K),

(these isomorphisms being compatible via F.M., by prop. 3 and its dual)
MY(K) ®, K=KerN , and Fl projects onto M’(K) ®; K (this isomorphic
projection being given by F! = Colie AT ~ Colie TH8 M’(K) ®; K).

a4): the Fontaine—Messing isomorphism F.M. is described in I 4 c).

b)  The splitting of BT (up to isogeny) reflects on H(l) , and translates into an isomorphism:

Wl o~ ]
Eﬂ.Gr HO—-—)H0
(e acts trivially on Gr, = MY(K) ® K , and by multiplication by p on the image of
I
Gr, = M’(K);KO) .

* -
Let us now choose an orientation of Cp (see I 1f): Z(—1):=X (G ) = It pl C By sand let
us consider the etale lattice A:=M' ®M’(—1), and let A:= A(K) = A(R) = A(K™"), where

KT denotes the maximal subfield of K non ramified over K .

Using ¥ 3 and the orientation, we can embed A into Hll)R g K™ [%—p] C Hll)R g BDR , and we

call p—adic Betti lattice its image, which we denote by H[li [This is the dual of the lattice L 3
mentioned in the introduction. The introduction of t D the "p—adic 2i7" , is motivated by the
fact that the complex Betti lattice (in the setting III 4c) is stable under 2ixN_,not N ] .

We thus get a tautological isomorphism:



1 nr ~ 1 nr
: ® ®

where in fact K™ could be replaced by some finite extension of K , or else by K itself if T is
split.

From formulae (i) (ii), it follows:
(iii) HY = exp(—log ¥/¥; « N) - H:
By 8“2l By

From the very construction of H[li and the formula gatp = pt_ , we get:

P

Lemma 5: The lattice H}B spans the Qp—space of <pﬂ—invaria.nts in Hll)R g K™ [tp] .

Remark: the image of Qﬂ_IH}B under F.M. does not lie in Hét(A,Qp) . compare with lemma 4.

re

c) Let us now describe the complex analog of X,: A — Hé . So let Adl be a complex
Abelian variety in Jacobi form Tg¢/M  (the quotient being alternatively described by

*
Q:M®M’ — €, where M’ =X (T¢)) - Let us orient €, and choose a branch B of the

°q
.complex logarithm, and compose with q : M®M’ —2 ,C . We get an embedding

M <> M’V ®; Cx~Lie Te ~ H g(Ag,T) ® R which factorizes through H,p(Ae,Z) . This in

turn provides an isomorphism Eﬂ A=M'OM'(-1)=M" Qf%?rM, = H]13(A¢,ﬂ) (the
@

injectivity is a consequence of the Riemann condition Re ﬂm(q) <0).

[d) One can imitate the construction of the p—adic lattice in the case of an Abelian variety B

P
with ordinary good reduction over K = K0 . Over K"T indeed, the Barsotti—Tate group

B(p) = lim 2B becomes isomorphic to the B.—T. group associated to a 1-motive [M 'R T] ,
—Dp v

where 9 is given by the Serre—Tate parameters [K] . However, in contrast to the multiplicative

reduction case, the lattice ~M" ® M’(—1) obtained in this way is not functorial, as is easily

seen from the case of complex multiplication (= 1).

e) The construction of Frobenius generalizes easily to the case of 1—motives. This allows to
construct p—adic Betti lattices for 1-motives whose Abelian part has multiplicative reduction. We
shall not pursue this generalization any further here.]



3. Computation of periods.

a) We shall compute the matrix of the restriction of ‘?ﬂ to FIHII)R w.r.t. the bases
{d,uj/1+uj}g in F! , {B] = Eﬂ(”i(_ 1)), m‘i’}g in H , assuming that T splits over
K . In other words, we compute half of the (§)—p—adic period matrix.

Proposition 6. Let g5 = q(mi,uj) , as in I 4 c). The following identity holds in
1 )
HDR(AK) @ K[tp] :

8
. v
dﬂj/l + ﬂj = tpllfj + .21 ﬂ(qij)m
1=

b)  Proof: it relies on a deformation argument. First of all, one may replace M by a sublattice

0

of finite index, such that q = (Q) with ¢ =1 mod w (in this situation BT splits actually,

, g=x, -2
not only up to isogeny). Let us consider the analytic deformation |M v » T| of

g=x_, -2’
M = »T| over R= R[[gij - ¢5ij]]g 6ij = Kronecker symbol , 10 being
i,j=1

given by the matrix gij (so that [M ¥, T] arise as the fiber at gij = q?j) . For the fiber at
X
"Eij =6, i’ [M—2T] , the FIHII)R coincides with X H(GrVIVHII)R) ; more precisely
dpj/ 1+ py= tpﬂ'; , at gij = 6ij . . By definition of the Kodaira—Spencer mapping K.S. (see e.g.
[CF] III. 9), one deduces that

A1+ = tp +(J KS)m ot g=af).

But in our bases, K.S. is expressed by the matrix d¢, /§ (see [Ka], or [CF] ibid, where there
is a minus sign because of a slightly different conventlon) One concludes by noticing that

logq -ﬁ(q )

¢) One could also argue as follows, using F.M.: it follows from 2 a 3) that d;zj/ 1+ #; may be
expressed in the form t u " + Eﬂ m ﬂ jj € K ; furthermore, these coefficients ﬂ are uniquely
determined by the property that du /1+ u Zﬁ m lies in HO ® B and is multlphed by p

0
K
under ?p - Let us show that f3; i= Bla; j) satisfies this property: by I 4 c), we have



duyf1 + py = ¢ FH‘l(?Zj) + £ LOG(q;)m} , s0 that

P

dusf1 + i~ = fmY = S(LOG(q;;) — Aay))my + ¢ FM (%) .

Because p, eHL |t FM_l(ﬁj) € (H(l) ® Bss)‘p=p , and we conclude by the following:

et’ p

Lemma 6: let ¢ € K* . Then "the" element LOG ¢ — ¢ of B88 is multiplied by p under the
Frobenius v

Proof: let us write ¢ = 5'(%)c? , so that LOGc—pfc=- v(c)uﬂ +LOG ¢° —log ¥ . Now

0 0_ VN + N e o 0p =
LOGc” —logc” =—loglim(c )* in B .. , where c_ is any liftingof ¢ =(c)* eR.
Let c =(..c, +1Cp) € lim R, and let ?:'n be the Teichmiiller representative

xr—xP
[c;] e W(limR) . We have 4 1¥ = [c’p] [e; 4] = 'En—l ,  whence
—

n
(lim rgnpn)<p = (lim '(‘:'g )P . It remains only to take logarithms and remind that Pgig= Pug.

d) Let wus examine the complex counterpart, as in 2 c¢). The lattice
7 (* Eﬂ !

‘MOM’Y(1) =AY —=— H,5(Ae,I) embeds into Lie Tg ; the subspace FOHIDR(AC)
of HI(AC’”) ®Cx~ HIDR(AC) is just the kernel of the complexification of this embedding. It

follows that the canonical lifting I"ﬁi of m, inside FOHIDR(AC) is given by

B =my = pir Syla (e set w{ = ('8 )G(0) L amd w5 =T (1)) - B

orthogonality (F! HDR = (FyHypg)") » we obtain:
Proposition 7: the following identity holds in B p(Ag) :

dujll + p. = 2w

v
i it Eﬁm(qij)mi :

[The compatibility (resp. analogy) between prop. 6 and formula (iii) resp. prop. 7., is a good test
for having got the right signs. Although ”3 is defined quite differently in the p—adic , resp.

complex case, the exterior derivative of the coefficients of m‘i"s describes in both cases the
Kodaira—Spencer mapping. ]



4. Periods in the relative case, and Dwork’s p—adic cycles.

a) Let us consider the relative situation as in 1. d with r=g; U being subject to be the

complement of divisor with normal crossings le ..x, =0.Weset 2=R[[x},...x ]],and

we denote by o the K-—algebra generated by 52[ x 1 = ] and (B)—logarithms of non—zero
1 LI S n
elements of .92[ 3 1 < ] . The construction of Hk can be transposed to this relative setting:
1 e n

We use "the" relative Frobenius ¢ ﬂ(") to construct an embedding

A" Hp  CHDR(A/ L)),

such that ¢ ﬂ(”) | o A = o4 . Of course, when os = s, we recover ﬂb’a(s) = Hé.

Because ¢ ﬂ(”) is horizontal, so is Eéa (it is locally constant w.r.t. the loose topology), and we
get:

1 1
Lemma 7: Hpyp(A/ &/ [t)] VW=H 508 KIt,] -

b) In order to interpret the lattice ﬂka (for n=1, ¢:x+——xP) in terms of Dwork’s
) .
p—adic cycles [Dw], one forgets about tp (or better, one specializes tp to 1: K[tp] —s K,

ﬂ)éa ~MY®M’) . Let us for instance take back the example III 2g (Legendre). For
K= Qp(¢—1) (p#2), we have M = M(K), with base m . Setting v = uw , the period of the

differential of the first kind w= g% for the covanishing cycle m' at x=0 is given by the
residue of g%: -;% at one of the two points above u=0 on the rational curve

w2=u—1;na,mely,thisis 3[51

Let p be the basis of M’ = M’(K) lifted to Hé , such that q = q(m,u) is given by the
formula displayed in III 2. g. Then after specializing tp to 1, the matrix of S’ﬁ in terms of the

bases w, w’ =v(x%i)w is

) F x I -1
3[; (with determinant (4x(x—1))"").
F.log q x(F log q)
=F logx—log16+.. =1+ xF logx+ ...

Here "log" is standing for the branch 3, and ¥ for %i F.



In fact, Dwork prefers to get rid of the constants log 16 and 3@ , by changing the basis {y,m"}
into —2¢~T{p+ (log 16)m",m"} . In this new basis, the entries of the period matrix lie in

. 1
Q[[x]] [[log x]] , and the matrix of ¢ﬂ(x — xP) becomes (— I)RE_ [p 1— ’ ] see

log16~ P 1
[Dw] 8. 11.

¢) In section 3, we computed periods of one—forms of the first kind. The "horizontality lemma"
7 then allows to obtain other periods by taking derivatives; still, we have to show that, in the
multiplicative reduction case, any one—form of the second kind is the Gauss—Manin derivative of
some one—form of the first kind. In other words:

Lemma 8. Let us consider a relative situation, as in IIl 2c or 2d. If r=g , then for any
*
k=1,..,0, the smallest ¢ [v(x,d/dx")]—submodule of HL-(A/S) containing F' is
1 *
L (A/S).

Indeed, this amounts to the surjectivity of K.S., which follows from the invertibility of its residue
at x, = 0 ; this follows in turn from the fact that this residue

(Fl)(c)an ~M/(¥)® ]:‘re(HlljR/Fl)f:)a'Il ~MY(¥)®E is induced by the non—degenerate pairing
val(x,) © q . In the situation of IIT 3 a) b), we can now complete the analytic description of the

N
period matrix: take a basis w; of the canonical extension of Hll)R(A/S ) in the form

E w5 e F! .
J=1,..8.

Uirg = v(xki)/axk)wj

Lemma 9. The matrix of .?ﬂ w.r.t. the bases {wj} , {#],m;} has the form:

[:ttpwi O =)@ T s )

“i (s)log qij(s) (xka/ 5xk( w; jlog qij))(s)

d) We are now in position to state the main result of this section IV, relating p—adic and
complex Betti lattices.

C
7e

~k

B (resp. ﬁm) of the logarithm on K* (resp. on Cx) ; a uniformizing parameter w such that

Bw)=0.

Data: dl): a field E , doubly embedded E ; orientations of € and Cp . A branch



dy): an affine curve S; over E ; a smooth point 0e S (E), and a local -

parameter x around 0 ; a regular model §1 of S1 over ENR.

d3): a semi—abelian scheme f: A — gl , proper outside the divisor wx =0 , and
given by a split torus on this divisor. To f, one attaches as before the constant sheaf of lattices

A=M"®M’'(-1) (outside x=0), and the bilinear form q:M®8M’' — G_ (outside

wx = 0) . Taking bases of M , resp. M’ , one may expand the entries of a matrix of q into

n..
Laurent series: q; = ;X Y 4 h.o.t., and consider the double homomorphism from the E—algebra

1)
»K|[t
E;:= E[log nij’t]s, C P” induced by 8, t+— tp (resp. ﬂm , t—2i7) .

d 4): a simply connected open neighborhood of 0 in S¢ . say ; over 2(\0 , A
is identified with the graded form (w.r.t. the local monodromy Nm) of Rlﬂnl

dg): a point se§;(E) such that se % and |[x(s)| <1 (from this last
condition, it follows that the fiber A(s) has multiplicative reduction mod ) .

Combining the previous lemma with propositions 4, 6, and 7, we obtain:

Theorem 2. The following diagram is commutative:

/\

p—adic evalua.tlon at / complex evaluatlon at s
MRl (x(s)) (via log x — B (x(s)) and
E. — Q)
DR(A/El[[XJ][log x])"Y 1

(In the example III 2g, E. is just Q(4~I)[t] , and the parameter x = A should be replaced by
x = 16A) .



V. p=Adic lattice and Hodge classes.

1. Rationality of Hodge classes.

a) Let Ap bean Abelian variety over a number field E . Let v be a finite place of E where
AE has multiplicative reduction, and let K = Ev denote the completion.

Conjecture 6. Let ¢ € (End Hll)R(AE))'8>n be some Hodge class (1), Then for every branch 8 of
the logarithm on KX, the image of ¢ under .723 lies in the rational subspace (End HL Q)en ,
where Hb Q= H}i QE Q . (For instance, this holds if n =1 just by functoriality of Hé) .

b) Let ¢:E = C and let Sh be the connected Shimura variety associated to the Hodge

structure H113(AE ® C,I) and to some (odd prime—to—p) N-level-structure; Sh descends to
an algebraic variety over some finite extension E’ of E, and AE’ is the fiber of an Abelian
scheme A — Sh at some point s € Sh(E’) . In terms of Siegel’s modular schemes A g N [CF]
IV, we have a commutative diagram

Sh =— A ® E’
g,N 1

n n

Sh —— A . ©® E’
N 1., )

where the superscript — denotes suitable projective toroidal compactifications, see [H].

In fact A — Sh extends to a semi—abelian scheme over a normal projective model §E of Sh

over G/ (namely Sh = normalization of the schematic adherence of SE in

A o ® ]"E')-

N® 1
o7 I [N’CN

(1) Some authors prefer to look at Hodge classes in the more general twisted tensor spaces
@m @m 8 g
(H]13) leg (Hév) 2(m3) . However such spaces contain Hodge classes only if m; + m,
is even (in fact if m, —m, = 2m3) , and any polarization then provides an isomorphism of
o 1™
1801 o 1 2 1, 2

rational Hodge structures Hg ®(Hg') “(my)=~(End Hp) . In particular,
these extra Hodge classes do not change the Hodge group.



We consider the following condition:

(*) There exists a zero—dimensional cusp in Sh, say 0, such that 0 and s have the same
reduction mod. the maximal ideal of R’ . In fancy terms, this means that any Abelian variety
with multiplicative reduction in characteristic p should also degenerate multiplicatively (in
characteristic 0) inside the family "of Hodge type" that it defines [M].

Remark: condition (*) should follow from Gerritzen classification [Ge] of endomorphism rings of
rigid analytic tori (which is the same in equal or unequal characteristics), in the special case of
Shimura families of ppy—type [Sh] (i.e. characterized by endomorphisms).

Theorem 3. Conjecture 6 follows from (*).

Proof: by definition of the Shimura variety, and by the theory of absolute Hodge classes [D2],
¢ = {(s) is the fiber at s of a global horizontal section ¢ e I'(End HII)R(A/ Sh)e’n)V .

Let S1 be an algebraic curve on Sh , joining 0 and s, and smooth at 0;let x be a local
parameter around 0 , with |x(s)|V <1 . Then because 0 is a O—dimensional cusp, A
degenerates multiplicatively at 0 and we are in the situation where theorem 2 applies.

n
The [—periods of { admit an expansion in the form 2 ay logp' x , with a, € E'[[x]],

£=0
ay € E][[x]] , whose complex evaluation (w.r.t ¢+: E’ <— C) gives the corresponding complex

period of ¢ , according to theorem 2. Since ¢ is a global horizontal section and a Hodge class at
s , the complex periods are rational constants: ap = 0 for £>1, and g € Q . Thus the
(-periods of £ = §(s) are rational numbers.

Remark: it follows (inconditionally) from theorem 1 and Fontaine’ semi—stable theorem that the

image of ¢ under .?ﬂ lies in (End Hb)®n e, Qp .
2. p—Adic Hodge classes.

Let E’ be some finitely generated extension of E . We define a p—adic Hodge class on AE’ to
be any element ¢ of FO(end Hll)R(AE’ )Qn) such that for every E—embedding of E’ into any

finite extension K’ of K , and for every branch A of the logarithm on K’* , the image of ¢

under 5”[3 lies in the rational subspace (End Hé Q)On . Conjecture 6 predicts that any Hodge

class is a p—adic Hodge class, and conjecture 2 would identify the two notions.



Proposition 8: if E is algebraically closed in E’ , then any p—adic Hodge class ¢ comes from
1 @n . . 1.®n
(End Hpp(Ag)) ™, and is sent into [(End Het) ] 14 by F.M.

Proof: the first assertion follows Deligne’s proof in the complex case [D2] . To prove the second
one, we remark that ¢ e 0 [(End H(l))%] p=1 ; moreover, by changing B continuously, the

lattice Hb is moved by exp(—logu.N), ue R* . Since ¢ has to remain rational w.r.t. all these
lattices, we deduce that N¢{ = 0, and we conclude by Fontaine semi—stable theorem.

Remark: it is essential to take all E—embedding E’ <— K into account; for instance,
m’ e FOHL o (Ags) for B/ =K ,and m" e Hé, FM(m")  (H,) 7, but it is highly probable
that m" is not defined over ENK .

3. A p-adic period conjecture.

~

For any E—algebra E’ ,the E’-linear bijections HII)R(AE) e E’ ———»(Hé Q) QQ E’ which
preserve p—adic Hodge classes form the set of E’—valued points of an irreducible E—torsor P 3
under the "p—adic Hodge group" of AE (which is by definition the algebraic subgroup of

GL Hll)R(AE) which fixes the p—adic Hodge classes; conjecture 2 would identify this group with
the Hodge group). One has a canonical K [tp] —valued point of P 8 given by ﬂﬂ . A variant of
conjecture 1 may be stated as follows:

Conjecture 1”: for sufficiently general 3, 5’ﬂ is a (Weil) generic point of P B
The next section will offer two partial positive answers.

4. Period relations of bounded degree.

a) Wedenote by E [‘Qﬁ ]« 5 the quotient of the polynomial ring in 4g2 indeterminates over
S

E by the ideal generated by relations of degree < ¢ among (ﬂv)—p—adic periods (v|p) . Hence
for sufficiently large & , there is a natural embedding SpecE[ﬂ’ﬂ JcsCP g - The same
v - v

construction works simultaneously at several places of multiplicative reduction:

E[( ‘?ﬂ;)vevj <6 C ]:f E_[t p] , and we have projections Spec E [( yﬁv)vev] <5 P 8,

b) Assume that Ap is the fiber at s e S,(E) of a semi—abelian scheme A — S, over an
affine curve S,/Spec E , proper outside some smooth point 0 e S,(E) , and degenerating to a
split torus at this point. Let x be a local parameter around 0, andlet § >> 0.



We lay down an extra normalization hxpothesis:

n..
(k%) the entries of the gq—matrix expand q i= U j x Y+ ... where ) j are roots of unity

(this is the case in example III 2g), if we set x = 16A and E = Q(4~1)).
In these circumstances, we have the following two results:

Theorem 4. Assume that |x(s)|  is sufficiently small — wI. to & — so that in particular
A = A(s) has multiplicative reduction at v . Let us choose = such that S(x(s))=0.

Then Spec E [f’ﬂ] <s=P 8 and moreover any p—adic Hodge class on Ap is a Hodge class.

Theorem 5. Assume that A — S, extends to a semi—abelian scheme over some regular model
of S1 over ¢y , proper outside the divisor xx=0, ve N. Let V(s) denote the finite set of
finite places v of E where |x(s)| < |v|, (so that A(s) has multiplicative reduction at
veV) . Let us choose S such that ﬂv(x(s)) =0, veV(s), and let £>0 . If for every
t:E == C, [x(s)|,2e¢, then the projections Spec E [( Qﬁv)vev] <6 P 8, are surjective,

except possibly if s belong to a certain finite exceptional set (depending on §,¢) .

¢) In fact, the proof shows a little bit more: one can replace P 3 in the statements by the
\

*
specialization at s of the S,—torsor formed of isomorphisms Hll)R(_A_/Sl) ®? ——»11_}36?
preserving global horizontal classes; this makes sense because any such class is automatically a

0 x—linear combination of relative Hodge classes, in virtue of: .
S
1

*
Proposition 9 (Mustafin). On an Abelian scheme A — S, degenerating to a torus at

* *
0e Sl\S1 , any element £ of I'(End Hll)R(A_/Sl)@n)v is a linear combination of relative Hodge
cycles.

See e.g. [A] IX 3.2. The argument given in the course of proving theorem 3 then shows that £ is
also a linear combination of relative p—adic Hodge cycles.

d) We thus have to show that any relation (resp. "global relation" for theorem 5) of degree < §
with coefficients in E between (fB)—periods of A(s) is the specialization at s of some relation
of degree <& with coefficients in E[x] between the relative [ —periods (which belong to
E[t p,log x] [[x]] in virtue of (**) and lemma 9).

n..
Because tp is transcendental over E_, and 8 (n, * Y(s)) = 0, it suffices to replace in this



statement S v—periods by the v—adic evaluations of the G—functions Wi w; i 4 Jlog q ij
/ 1 _ 1 N
(o logq ) , where q;.=-=—gq;x 1+..
1) j 1

This can be now deduced from standard results in G—function theory [A] VII thm. 4.3, resp.
5.2. See also, ibid IX for more details about the proof of a (complex) analogous statement.
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