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p-ADIC BETTI LATTICES

Yves Andre

Under the label "p-adic Betti lattices", we shall discuss two kinds of objects.

The first type of lattices arises via Artin's embedding of integral Betti cohomology into

p-adic etale cohomology for complex algebraic varieties; there are comparison theorems with

algebraic De Rham cohomology both over the complex numbers (Grothendieck) and p-adically

(Fontaine-Messing-Faltings). The second type of lattices, which we believe be new, arises in

connection with p-adic tori. Although its definition is purely p-adic, it is d'osely tied to the

classical Betti lattice of some related complex torus, and can be viewed as a bridge between the

Dwork and Fontaine theories of p-adic periods; "hal!" of this lattice is provided by the

cohomology of the rigid analytic constant sheaf -u.. In fact, both themes of this p~per are

motivated by a question of Fontaine about the p-adic analog of the Grothendieck period

conjecture, as folIows.

1.. Let X be a proper smooth variety over the field of rational numbers ~. The singular rational

cohomology space H~:= Hn(X(,~) carries a rational Hodge structure (for any n); this

structure is defined by a complex one-parameter subgroup of GL(H~ ~ () , whose rational

Zariski closure in GL(H~) is the so-called Mumford-Tate group of H~ .

Let HßR enote the nth algebraic De Rham cohomology group of X. There is a canonical

isomorphism

provided by the functor GAGA and the analytic Poincare lemma. The entries in ( of a matrix of

9J w.r.t. some bases of H~R' H~ ,. are usually called periods.
One variant of the Grothendieck period conjecture [GI] predicts that the transcendence degree of

the extension of ~ generated by the periods is the dimension of the Mumford-Tate group.

2. On the other hand, let H~t:= H~t(X~,~p) denote the n
th

p-a.dic etale cohomology group of



X~ ,where ~ stands for the complex algebraic closure of ~ .
A

Let us choose an embedding r of 'Gl into the field (p = lp . The successive works of Fontaine,

Messing and Faltings [FM] [Fa] managed to construct a canonical isomorphism of filtered

Gal(~p/~p)-modules:

where BnR denotes the quotient field of the universal pro-infinitesimal thickening of (p. Via

Artin I s comparison theorem and the theorem of proper base change for etale cohomology (applied

to r) [SGA 4] 111, this supplies us with an isomorphism

The entries in BnR of a matrix of .9 r w.r. t. some bases of HßR' H~ are called (r)-p-adic .

periods.

Fontaine asked whether the analog of Grothendieck's conjecture for p-adic periods holds true. The

answer turns out to be negative; indeed, we shall prove:

Proposition 1. Let X be the elliptic modular curve XO(ll), and n = 1, P = 11 . There are two

choices of r for which the transcendence degree of the extension of ~ generated by the

"respective p-adic periods differ.

Nevertheless, onecan still ask in general whether the property holds true for "sufficiently general"

r . This would be a eonsequenee of a standard conjeeture on "geometrie p-adie representations":

Proposition 2. Let G be the image of Gal('Gl/~) ~ GL(H~t) ~ GL(H~) I~p . Assume that the

rational Zariski closure of G in GL(H~) contains the Mumford-Tate group. Then for

"sufficiently general" r, the transcendence degree of the extension of ~ generated by the p-adic

periods is not smaller than the dimension of the Mumford-Tate groupj if moreover n = 1 , there

is equality.

3. Let us next turn to p-adie Betti lattiees of the second kind, the construetion of which it

modelIed on the following pattern. Let us assume that over some finite extension E of ~ in (p'

XE acquires semi-stable reduction, Le. admits locally a model over the valuation ring of the

p-adic completion K of E, which is smooth over the scheme defined by an equation

x1~' ..xn = some uniformizing parameter of K. In this situation Hyodo and Kato showed the



existence of a semi-stable structure on HßR (as was conjectured by Jannsen and Fontaine):

namely an isocrystal (Ho'{f') endowed with a nil~tent endomorphism N satisfyjng N{f' = p{f'N ,

together with an isomorphism H~R 0 E K~ HO 0 KOK depending on the choice of a branch

ß of the p-adic logarithm on K
X

(here· KO denotes the maximal absolutely unramified subfield

of K).

On the other side, one can sometimes use the combinatorics of the intersection graph of the

reduction to provide lattices, well-behaved under ep, in suitable twited graded (w.r.t. the

"p-adic monodromy" N) forms of HßR' and then use {f' in order to lift them to HßR' For

instance, this works pretty well when XE = A is an Abelian variety with multiplicative .

reduction at p.

4. Before we describe this situation, let us remind the classical situation (E C () : A(() is a

complex torus (g/L , where Lis a lattice of rank 2g; furthermore HbR ~ ( ~ Hom(L,() .

Composition with a suitably normalized exponential map yjelds the Jacobi parametrization:

A(() ~ (xg/M where M is a lattice of rank g; thus Lappears as an extension of M by

2i1r M I v , where M' denotes the character group of (xg. The bilinear map on M, say q,

obtained by composing any "polarization" M' --+ M with the bilinear map M x M' --+ @m

(the multiplicative group) describing M --+ (xg , enjoys the following property: -log Iq I is a

scalar product.

Similarly, at any place of multiplicative reduction above p, there is the Tate parametrization:

A((p) ~ (;g/M where M is again a lattice of rank g; there is an analogous bilinear map

q I on M such that -log Iq Ip is a scalar product.

Using the semi-stable structure, we construct the "p-adic" lattice L
ß

of rank 2g, formed of

<p-invariants and depending on ß, which sits in an exact sequence like L (in this new context,

2i7r has to be understood as a generator of IIp(l) inside BnR ).

Setting KHT := K [2i1r,(2i1r)-1] , we have moreover a canonical isomorphism:
1 . N

!fJß : HnR ~E KHT -----+ Homll(Lß'KHT) .

5. We call the entries in KHT of a matrix of !fJß w.r.t. some basis of HbR' Lß , "(ß)-p-adic

periods". We may now state a more rigid p-adic transcendence conjecture:

Conjecture 1: for suitable choice of ß, the transcendence degree of the extension of E generated

by the ß- p-adic periods equals the dimension of the Mumford-Tate group of H~ .



This conjecture splits into two parts:

We first prove the inequality tr.degE E [ !fJ~ Sdim M.T. under some extra hypothesis (*)
(theorem 3); this amounts to showing the rationality of Bodge c1asses w.r.t. Lß . (The hypothesis

(*) concerns the Shimura variety associated to A, but we think it is unnecessary, or even always

satisfied). On the other side, we use G-function methods to prove inequalities of the type

"boundary tr.degE E [ !fJ~ ~ dim M.T." refering to polynomial relations of bounded degree

between periods (theorems 4 and 5).

Roughly speaking, this is made possible because, when A varies in adegenerating family defined

over E, the ß-p-adic periods involve the ß-Iogarithm and p-adic evaluations of Taylor series

with coefficients in E, whose complex evaluations give the usual periods (theorem 2).

6. The previous considerations suggest the possibility of a purely p-adic definition of (absolute)

Bodge c1asses on A.

Conjecture 2: Let E'be any extension of E, and let e be a mixed tensor on BbR 0 E'

lying in the O-step of the Bodge filtration. Then e is an absolute Bodge class (i.e. rational w.r.t.

L for every E' c-. ( ) if and only if e is rational w.r.t. L
ß

for every E' c-. (p and

every branch ß of the p-adic logarithm.

I The p-adic comparison isomorphic

11 Bodge c1asses

III Covanishing cycles and the monodromy filtration

IV Frobenius and the p-adic Betti lattice

V p-Adic lattice and Bodge classes

Convention: In this text, a smooth separated commutative group scheme will be called

semi-abelian if each each fiber is an extension of an abelian variety by a torus.
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sits in an exact sequence

defined by the diagram:

1. The p-adie eomparison isomorphism

1. The "Barsotti rings" BDR and Beris

Let K be a p-adie field, i.e. a finite extension of ~p with valuation v Ip . Let KO, resp. K, (p

denote the maximal nonramified extension of ~p inside K, resp. an algebraie c10sure of K , and

its eompletion. Let R, RO, Ir, IRp denote the respeetive rings of integers, and let ~ denote the

Galois group Gal(K/K). Fontaine has eonstructed a universal o-adie pro-infinitesimal thieke­

ning of (p , see e.g. [Fl] [F2].

It is denoted by BriR and ean be eonstructed as folIows.

Let us consider the Witt ring W of the perfeetion 1im R/pR of the residual ring R/pR. It
+--

xt--+xP

°~ F1~ W~ IR ~ °, where the ring homomorphism isp

[vn] E

(Te i chmüller

1 i f tin g of vn )

W ------t) lim R/pR
+--

lff
lim R
+--

3

This provides a continuous surjective homomorphism BriR~ (p , where BriR denotes the

F1-adie eompletion of W[!] . The fraction field BDR of BriR is a K [ ~ ] -module, endowed
p .

with the F1-adic (ealled Bodge) filtration F, and GrFBDR ~. EI) ( (r) (Tate twists).
rE7l. p

On the other hand, there is a universal PD-thickening of (p' denoted by B~ris . It is obtained

n
by inverting p in the p-adie eompletion of the subalgebra of W [.!.] generated by the ~'s . Forp n.

instanee, if € = (€O'€l' ... ) is a generator of n. (1) = lim IJ-L n(K) ,
p +-- p

(_,n-l( r ~1_1 ,n
t := log[€] = \~ E B+ .. The Frobenius cp of W then extends top l n ens



+ 1Bcris = B cris [t
p
l (cptp = ptp) and commutes with the p'-action. Moreover BCris ~O K

imbeds into BnR .

2. The comparison theorem for Abelian varieties

Let A = AK be an Abelian variety over K. According to Fontaine-Messing [Fl] [FM], there

is a canonical isomorphism of filtered r; -modules:

* *In particular HDR can be recovered from' Het as the space of ~ -invariants in the R.H.S.

This isomorphism can be reformulated as a pairing:

[Faltings and Wintenberger have generallzed this pairing to the relative case [W]; the relative

*HDR and BDR are endowed with connections and the relative comparison isomorphism is hori-

zontal.]

In order to describe part of this pairing in down-ta-earth terms, let us assume that A has

semi-stable reduction, Le. extends to a semi-abelian scheme AR over R. (By a fundamental

result of Grothendieck this always happens after replacing K by a finite extension). Let AR be
,.

the formal group attached to AR; then Tp(AR)(K) is the "fixed part" of Tp(AK) [G2]. Now

the restricted pairing H~R(A) ~ Tp(AR)(K) ----4 Bcris ~O K is easily described as folIows:

1" "-
a) It factorizes through the quotient HnR(AR)K ~ Tp(AR)(K) .

b) Using the formal Poincare lemma, write any w E"HßR(AR)K in the form w= df,

fE (JA .
K

c) For any , = ('0"1"") E T (AR)(R) = T (AR)(K), lift every , E R to '1 E B ..p p n n cns

d) The coupling constant <w,,> E B . 0 0 K is then given by lim pnf('1 ).See [Co].
cns K n n

3. The crystalline and semi-stable structures

a) Let us first assume that A has good reduction, i.e. extends to an Abelian scheme AR over



· *R, and let us denote the special fiber of AR by A. In this case HDR(A) carries a natural

KO----structure, namely H~:= H:ris(A/RO) :0 KO ; moreover this KO----space is a crystal: it is ca­

nonically endowed with a semi-linear "Frobenius" isomorphism c.p. The Fontaine-Messing iso­

morphism is then induced by an isomorphism of filtered .c.p- and r;- modules:

* N *HO 00 B . ------t H t(AK'~ ) 0"" B . .K cns e p "(p cns

* * °In particular Het can be recovered from HO as the space of c.p-invariants in the F -subspace of

the L.H.S.

b)· If contrawise A has bad reduction, let us use Grothendieck's theorem to reduce to the case

*of semi-stable reduction. [Jannsen had the idea that there is still a fine structure on HDR ,

*involving some "monodromy operator", and such that Het could be recovered in a similar way as

in the good reduction case [J]. Fontaine then formulated a precise conjecture and proved it in the

case of Abelian varieties] . The result is [F2]:

Choose a branch ß of the v-adic logarithm. Then

bl ) there exists a canonical K°-structure H~ on H~R(A), endowed with a nilpotent

endomorphism N; N = ° iff A has good reduction.

*b2) HO is naturally endowed with a semi-linear "Frobenius" c.p = c.pß ' related to N by

means of the formula: Nc.p = pc.pN .

b3) there exists ußE BDR such that Bss := Bcris [u~ is P' -stable, and such that

N = d/duß and the extension of c.p to Bss given by CPUß = pUß commute with the P' -action.

b4) the p-adic comparison isomorphism is induced by an isomorphism of filtered

KO( r; )-modules compatible with c.p and N:

* * ° * c.p-I N- °In particular Het can be recovered from HO as the space [F (Het 0 Bss)] - , - .

For a concrete description of the semi-stable structure due to Raynaud, see below III 4, IV 1 and

[R2] .

4. Rigid I-motives and Fontaine's LOG

In the study of the comparison isomorphism, it is useful to embed Abelian varieties into the bigger

category of I-motives [DI].



a) Reeall that a smooth I-motive [M L G] on a seheme S eonsists in

i) an etale sheaf M loeally defined by a free abelian group of finite rank

ii) a semi-abelian seheme G over S

iii) a morphism 1/J: M ---+ G .

For eaeh prime p, one attaehes to [M L G] a (Barsotti-Tate) p-divisible group, and its

etale eohomology (= etale realization of [M L G] ).

On the other hand, the universal veetorial extension M ---+ G It of M ---+ G provides the

De Rham realization HbR [M ---. G] := Colie G;, with its Hodge filtration

FIHbR = Colie G .

b) There is a notion of duality for I-motives. We shall only eonsider symmetrizable I-motives,

Le. I-motives isogeneous to their duals (the isogeny inducing a polarization of the Abelian

quotient ofG ). This amounts to giving

i) a polarized Abelian s,eheme (A,J.) over S

ii)
v

a morphism X; M ---. A ,where M is an etale sheaf of lattiees; let X =,\ 0 X

iii) asymmetrie trivialization of the inverse image by (X,X v ) of the Poineare

biextension ofAx A'.

-1 0
e) It is eonvenient to view I-motives as eomplexes in degree (-1,0): M~ G. When

S = Spee K, K = p-adie field, it is more eonvenient, aeeording to Raynaud [R2] '. to identify

I-motives whieh are quasi-isomorphie in the rigid analytie eategory; for instanee, if A is isomor­

phie to the rigid quotient G/M, we eonsider A (or [0 ---. A] ) and [M ---. G] as two in­

earnations of the same rigid I-motive.

Indeed, the associated p-divisible groups, resp. filtered De Rham realizations, are isomorphie;

furthermore this isomorphism is eompatible with the Fontaine-Messing comparison isomorphism,

which extends to the case of I-motives (its semi-stable refinement also extends to this case

(Fontaine-Raynaud)) .

d) Let us illustrate this in the simple case [ll L @m] (when q is not a unit in K, this is

, 1 t----+ q

the I-motive attached to the Tate curve K
X

/ qll ). The Tate module sits in an exact sequence

IIo---. II (1) ---. T ---. q 0 11 11 ---. 0p p p

Let tp be a generator of IIp(I) , and let up E Tp lift q. Let moreover JL be a generator of the

1eharaeter group X( <Gm) , so that dJL/l +P, generates the K -spaee n <G . At last let us repre-
m



sent Up by a sequence (q,ql' ... ) with q~+1 = qn ' and let <In lift qn in BDR · The p-adic

periods of [ll L (Gm] are given by:

n
<u ,dtt/1+tt> = !im log <I p /q .
. P n n

By abuse language, one denotes this limit by LOG q ; its dass mod 71. (1) depends only on q. Ifp
one requires more rigidity, one may embed K into (: somehow, and choose up in the ll-lattice

given by the Betti realization of the corresponding complex I-motive; LOG q is then defined up

to addition by 71.tp ' as in the classical case.

e) More generally, let us consider a' I-motive [M L T] ,where T is a torus. In this case

the universal extension splits canonically: G *. = T x Höm(M,(Ga) v ; this induces a canonical

splitting of the Hodge filtration: H~R [M ----+ T] = F1
ED Hom(M,K) . On the other hand, let

M' denote the character group of T and q: M )( M' ----+ (G the bilinear form induced bym
1/J . Again the etale cohomology sits in an extension

. 1o----+ Hom(M,Q' ) ----+ H t [M ----+ T] ----+ M' @ll ~ (-1) ----+ 0 .pep

Now assume that M and M I are constant.

Let (m~) denote a basis of Hom(M,ll) as well as its images in H~t and H~R resp.; let

(p) denote a basis of M' ,let dp/HPj be the corresponding basis in F1 , and let Pj lift

p/tp inside H~t. At last, let (mi) denote the basis of M dual to (m~), and set

qij = q(mi,Pj) . Then in the bases of Hfm (resp. H~t) given by {dpp+Pj;mj} (resp.

{Pi,m ~ } ), the matrix of the comparison isomorphism takes the shape:

[

t pI

(LOG q..)
IJ .

This completes the description of this isomorphism for

any Abelian variety with split multiplicative reduction.



II. Bodge classes.

1. The complex setting.

a) Let E be a field embeddable into (, and let AE be an Abelian variety over E. An

o[ 1 ~ 1 ~] o[ 1]~ .element eE. F HnR(AE) ~ BnR(AE) = F End BnR(AE) (for any n) 1S called

a Hodge class if its image in [End H~(A(,()J~ lies in the rational subspace

[End H~(A(,~)J~ . By Deligne's theorem on absolute Hodge cycles [D2] , this definition does

not depend on the chosen embedding E ~ ( . Moreover, after a preliminary finite extension of

E , one gets no more Bodge class by further extending E. It follows that the connected

component of identity of the Bodge group of AE (which is by definition the algebraic subgroup of

GL [H~R(AE)J which fixes the Hodge classes) is an E-form of the Mumford-Tate group of

B~(A(,~) . It is known that the Bodge group is a classical reductive group.

b) Let us fix an embedding t: E ~ ( . For any E-algebra E', the E I -linear bijections

BbR(,·AE) ~E E'~B~(AE ~t (,~) .~~ E' which preserve Bodge classes form the set of

E' -valued points of a E-torsor Pt under the Bodge group; for E' = ( , one has a canonical

point ~ given by "integration of differential forms of second kind".

Lemma 1: the torsor Pt is irreducible.

Indeed, there exists a finite Galois extension E' of E such that the Bodge group of AE I is

connected; hence the associated torsor P ~ is geometrically irreducible. But via the isomorphism

* *HnR(AE) ~E E' = HnR(AE/) , a Hodge dass on AE is just a Hodge dass on AE, which is

fixed by Gal(E I JE) . Therefore Pt is the Zariski closure of P ~ over E, and is irreducible.

Conjecture (Grothendieck): if E is algebraic over ~, ~ is a (Weil) generic point of Pt (over

E) .

Thanks to the irreducibility lemma, this amounts to say that the transcendence degree over ~ of

the periods equals the dimension of the Mumford-Tate group (here, "periods" means entries of a

matrix of ~ w.r.t. bases of HÖR(AE), H~(A(,~)). [This deep problem is solved only for

Abelian varieties isogeneous to some power of an elliptic curve with complex multiplication

(Chudnovsky).



The conjecture can also be formulated as follows: every polynomial relation between periods, with

coefficients in E, comes from Bodge classes. A major result in transcendence theory establishes

this for linear relations (Wüstholz); the only Bodge classes which appear in this context are classes

of endomorphisms.]

2. Behaviour under the p-adic comparison isomorphism

Assume now that E is a number field; let v Ip be a finite place of E, and K = Ev be the

completion of E w.r.t. v; E denotes the algebraic closure of E in K.

Let us choose an embedding ,: K ~ (: and denote by /, its restriction to K.

At last, let

isomorphism:

BI3$ius-ogus [BI] and independently Wintenberger have recently proved the following striking

result:

Theorem 1. For every , above /', .9
7

is a BDR-valued point of P/, .

[The Wintenberger proof uses the relative comparison isomorphism while the Blasius-ogus proof

uses Faltings's comparison theorem applied to smooth compactifications of "total spaces" of

Abelian schemes]. With the notation of I 3, it follows formally that Bodge classes lie in

(End B~)~ , are Frobenius-invariant and killed by N .

In view of this theorem, it is natural to ask whether the p-adic analog of Grothendieck's

conjecture holds, namely whether .9
7

is a (Weil) generic point of P /, over K. [After I

communicated the counterexample in prop. 3 to Fontaine, he suggested the following:]

Coniecture 4: for "sufficiently general" , above /', .9, is a (Weil) generic point of P/, over

K.



See below, § 4.

3. Proof of proposition 1.

In this example E = ~ ,and A~ is the elliptic curve XO(11). For p = 11, A~ is a Tate
p

curve ~;/q1l., q E. p1l.p . With the notations of I 4b, consider the exact sequence

o---+ 71p(I) ---+ Tp(A( ---+ q71 f'J71 71p ---+ 0 , and let tp be a 71p-generator of 71p(I) such

2 2
that tp Aup is a 71-generator of the image of ABI(A~ f'J7 «:,71) in ATp(A-( for some fixed

1 : ~ e:..-,. (: ; this determines tp up to sign. Let moreover 11 be a unit in 1l.p such that

w := i t$/-1. belongs to the rational subspace nÄ
Q

of nÄ
Q

. According to I 4b, we then have:
p

Now let g E. Gal(~/~) ; changing 1 into log modifies the Betti lattice inside Tp via the

formula:

T (A~~ T (A~ ~ H1(A 8 (:,1l.) 81l. ,
Pfg Pf ~1 P

*w:here g denotes the image of gunder the group homomorphism

But in our case, this homomorphism is surjective, according to Serre [S 1]. In particular, there

*exists some g E. Gal(~/~) ,with det g = 1 , and such that 11 tp E. Tp lies in the Betti lattice

*BI(A~ f'J7
0

g «:,71) j since det g = I ,changing 7 to 7 0 g preserves tp '

It then follows from the relation < vtp'w > = ::i: t p that the Zariski closure of .91og over ~ is

contained in a hypersurface of P . On the other hand, it follows from Serre's result and the next

lemma that for some other I' : ~ e:..-,. (: , the Zariski closure of .9
1

, over ~ is the full torsor

P.

4. Proof of proposition 2 (Abelian case).

We prove the following variant for an Abelian variety AE over a number field E [Proposition 2

itself is proved in the same way with only minor modifications involving simple general facts



about absolute Hodge cycles contained in the beginning of [] J .

Let us fix "'0: E c:..-. ( and denote by Hl the rational structure H~{A 8 (,~) inside
"'0 E "'0

Helt{A ,~ ) = Helt{A ,~ ) (for E = algebraic closure of E in J{, where K = E , v Ip ). The
E p K p v

Galois representation H~t(AE'~P) is described by a homomorphism:

Gal{E/E) --+ GL(Hl )(Q ) .
'0 p

Let us denote by G,.,o the Zariski closure of the image of Gal{E/E) over Q, which is the

smallest algebraic subgroup of GL{Hl ) whose group of p-adic points contains the image of
"'0

Gal{E/E) .

Conjecture 5: the Mumford-Tate group of H~O is the connected component of identity in G
iO

'

[One easily checks that the truth of this conjecture does not depend on the choice of "'0 ; on the

other side, the fact that the Mumford-Tate group contains GO is a theorem of Borovoi [Bo]].
"'0

This conjecture is a weak form of the well-known conjecture of Mumford-Serre-Tate (replace ~

by ~p in the statement).

:P<l'oposition 2' : Conjecture 5 implies conjecture 4.

Ga denote any connected component of G . For any g E. Ga (~ ) ,
"'0 "'0 a,.,O p

-E
Proof: let .9'0

P = P t (t = "'0 IE) ; let

let

denote the Zariski closure of .9 over E, inside the torsor
"'0

1Pg : Spec BDR --+ Spec E [.9 ] x Spec Q --+,grE x Ga IE
a "'0 p ,., "'0

be the composed morphism of affine schemes given by (.9"'o,ga).

From lemma 1 and conjecture 5, it follows that G
io

IE = UG~o IE acts transitivelyon P, and

that Q•Ga IE = P for any non--empty E-subscheme Q of P . We can now make the
"'0 -

expression "sufficiently general ,.," (in conjecture 4) precise: it means "any ,., of the form

,., = 10 0 g where g E. Im Gal{E/E) is such that 1P maps to the generic point"; indeed for
a a ga



these embeddings 1,

nrE E -E (-.~) ~E a
.:r =!fJ -g =.9 - g IE=,r- -G IE=P.

1 /0 a /0 a /0 /0

It remains to prove the existence of (uncountably many) such ga. To this aim, let us remark

that there are only countably many subvarieties of G~ IE(!fJ ) ; we denote them by Qn'
o 10

n E. IN . Hence there exist linear subspaces n of End H1 GD ~ ,of codimension dim P -1 ,
10 p

such that n nG~o(~p) nQn f n nG~o(~p) for every n. Any ga E n nG~o(~p)

being outside the countable subset U n nGa (~ ) nQ then satisfies the required property
n 10 p n

E(.9
1

)
- 0 a
ga = G1 IE(!fJ ).o 10



111. Covanishing eycles and the monodromy filtration.

1. Covanishing eycles.

a) Let again A be an Abelian variety of dimension g over the p-adie field K, with

semi-stable reduetion. For any finite extension K I of K , let A~ }g denote the associated

rigid analytie variety ("Abeloid variety") over K ' .

y 1 rig rigThe (Ceeh) eohomology H (AK I ,71) of the eonstant sheaf 71 on AK I ean be interpreted as

the group of Galois covers of A~} g with group 71 [Rl ] [U].

For reasons whieh will soon be clear, we denote this group by MV (K ') . One defines this way an

etale sheaf M on Spee K , deseribed by the 1- module MV := MV (K) ; points of the lattiee

MV will be called (integral) eovanishing eyc1es.

b) In order to understand the geometrieal meaning of MV, let us eonsider the Raynaud

extension G (resp. G') of A (resp. of the dual Abelian variety A'):

M M'

! !
T -+ G -+ B T' -+ G -+ B'

! !
A A'

G is an extension of an Abelian variety B by an unramified torus T of dimension r ~ g (lifting

the torus part oi the semi-stable reduetion oi A), and A (resp. A( ) is the rigid analytie
p .

quotient oi G (resp. G() by the lattiee M(K) oi K-eharaeters (resp. the lattiee
p

M := M(K) of eharaeters) of T'; and symmetrieally for G' ...

This deseription of A( shows that MV is the dual of M ; in partieular the (finite) 1- action

is unramified (sinee T P is). [In Berkovieh's astonishing theory of analytie spaees, one associates

with A some pathwise conneeted loeally simply eonneeted topologieal spaee Aan; M(K) should



then appear as its fundamental group in the ordinary topologieal sense [Be]].

e) Composing the morphisms

[where GAGR denotes the funetor studied by Kiehl [K]], yields a natural injeetion of

ll.p [ 1J -modules:

d) On the other side, the lattiee MV (K) is naturally isomorphie to the group of rigid analytie

homomorphisms from Qjm to A' [Rl ] , see also [BL] for the variant over (p.

Composing the morphisms

Hom . (Qj A') pull-baek I Hom(H 1 (A I rig) H 1 (Qj r ig))
ng m' DR' DR m

yields a natural embedding:

[Le Stum [IS] interprets the image of 'uR as folIows. By means of some eompaetifieation A of

the semi-abelian group seheme AR over Rextending A, there is the notion of striet
• A

neighborhood in A~lg of the formal eompletion A. For any (/Arig-module .:7, set

+ * Aj .:7= lim jA jA .:7, where jA runs over all embeddings of striet neighborhoods of A inside
-x-+ *

Arig; j+ is an exact functor, and there is a canonical epimorphism .:7----H j+ F [B]. Define

the covanishing complex by l/J:= Ker(nÄrig~ j+nÄrig) , which gives rise to a long exact

sequence

involving Berthelot's rigid cohomology of the special fiber A. The group Hl(Arig,l/J) can then be



identified with Im 'uR ; this justifies the label "covanishing cycles" by analogy with the complex

case.]

e) It turns out that the maps "et and 'uR are compatible with the Fontaine-Messing

isomorphism; More precisely:

Proposition 3: the following triangle is commutative:

"DR I
GD Q
11 P

\ "et

F.M. H1 (A ) GD B) et Ir Qp DR

Proof: let us introduce the Raynaud realization' [M -----. G] of the (rigid) 1-motive A.

The map "et can be identified with the natural injection of

Hom(M(K),Qp) ~ H~t [M -----. G] .

~modules

On the other side, getting rid of double duality, one easily sees that 'uR can be identified with

the natural embedding Hom(M(K),K) ~H~R [M -----+ G] , see also [lS] 6.7. The required

.commutativity then follows from the fact that F.M. is tautological for the quotient 1-motive

[M(K) -----. 1] (whose associated p-divisible group is ~ (Qp/11p)n) .

R) An orientation of (p is an embedding of p\lm((p) = 7lp(1) into (x; this amounts to the

choice of a generator »of the 11p-module 11p(1) up to sign, [a further orientation of ( itself

wou1d fix the signJ, or else to the choice of an embedding of Abelian groups

X*(CGm) -----. Tp(CGm)(= 11p(1)) .

By using an orientation of (p and duality, we get from c) an injection:

Using the Raynaud 1-motive [M~ G] over K, it is then clear that the Fontaine-Messing

pairing between HbR and M I v(1) takes its values in K I tp for some finite unramified

extension K I of K (even in Ktp if the torus part of the semi-stable reduction A splits).



2. Raynaud extensions and the q-matrix.

Let f: A ---+ S be a semi-abelian scheme with proper generic fiber, S being an affine normal

connected noetherian scheme; we put S = Spec .9t, Jl{= Frac .9t.

a) Let us first assume that .9t is complete w.r.t. some ideal I (we set So:= Spec .9t/1 ), and

that the rank r of the toric part TO of AO= A X s So is constant.

One constructs the Raynaud extension over .9t [CF] 11, 0 ---+ T ---+ G ---+ B ---+ 0 , where

T lifts T0 and B is an Abelian scheme. There· is also the Raynaud extension

o ---+ TI ---+ GI --+ BI ---+ 0 attached to the dual Abelian scheme AI, and BI is the dual

of B ; moreover rk T = rk TI = r . These extensions arise via push-out from morphisms of fppf

sheaves

*M ---+ B, where M = X (TI) (character groups).

MI ---+B ' *MI = X (T)

The objects G, T , M ,B (resp. GI, ...) are functorial in A (resp. AI) .

b) Replacing S by some open dense subset U, the Faltings construction (using an auxiliary

ample line bundle .:t' on G Jl{ [CF] II 5.1), or methods of rigid analytic geometry ([BL1] with

less generality), provide a trivialization q (independent of .:t' [CF] III 7.2) of the

@m-biextension of M x MI obtained as inverse image of the Poincare biextension of B x BI;

this amounts to giving a lifting . MU ---+ GU of M ---+ B (whence a smooth 1-motive

[M~ G] on U). When TO splits, so that M = M and MI = MI are constant, one can

use some basis { (mi ,JLj)} of M x M I in order to express the bilinear form

q : M x MI --+ @m,U by a matrix with entries qij E. XX . [If moreover A is principally

polarizable, such a polarization induces an isomorphism M ~ MI, and then q: M 0M ---+ XX

is symmetrie. In the literature on Abeloid varieties, the associated q-matrix is often referred to

as the"period matrix"; however this terminology confiicts with the Fontaine-Messing theory, but

some precise relation will be exhibited in IV] .

c) In order to understand the complex counterpart, we replace S by ~n, where ~ denotes

* *nthe unit disk in (:. Assume that the restrietion of f to the inverse image of S = ~ is proper,

*where ~ stands for the punctured ~.

The kernel A of the exponential map exp: Lie AiS ---+ A is a sheaf of lattices extending the



local system {Hl (As,ll)} * . The (unique) extension in A of the fiber of A over 0 is a local
SE.S

system N of rank 2g - r . Via exp (which factorizes through N), A becomes a quotient of the

semi-abelian family G = (Lie AIS)IN : A = GIM ,where M denotes the sheaf of lattices A/N
(which degenerates at 0).

This supplies us with a (complex analytic) smooth symmetrlzable I-motive [M --+ G] over

S*. Both the Betti realizations H~ and the De Rham reallzations HÖR (endowed with the

Hodge filtration) of A and [M --+ G] are canonically isomorphie. However, one may not

identify these "I-motives" because the weight filtrations diHer, see below § 4.

d) We now start with the following global situation:

SI is an affine variety over a field E of characteristic 0; 0 is a smooth rational point of SI '

and Xl' ... ,xn are local coordinates around 0;

fl : Al --+ SI is a semi-Abelian scheme, proper outside the divisor xlx2 ... xn = 0 , and the

toric rank is constant on this divisor.

Because fl is of finite presentation, it arises by base change from a semi-abelian scheme

11 : Al -----. ~l (where ~ is a sub-ll-algebra of E of finite presentation), with the same

~

properties as fl . If we put .ge = ~ [[xl' ... ,xn]] , S = Spec .ge (the completion of ~l at 0),

}I ~.= (xlx2 ... xn) , f = 1l/s ' we are in the situation a) b). Moreover, the open subscheme U may

be defined by the condition xlx2 ... xn f 0 . It follows that the entries qij of the q-matrix

belong to ~ [ [xl' ... ,X ]] [ . 1 ] .n xl~ ... xn
,

e) Assume moreover that E is a number field, with ring of integers t'E. Then ~ can be

chosen in the fonn 1: [1] ,where v is a product of distinct prime numbers. Thus for every finite

Place v of E not dividing v, the q.. entries are meromorphic functions on ~n, analytic on
. IJ V

* *~ n (~ , resp. ~ denotes the v-adic "open" unit disk, resp. punctured unit disk), andv v v
bounded away from 0 . On the other hand, one can also see (using construction c)) that the qij's

define meromorphic functions on some complex polydisk centered at o.

[Remark: following [C], an element y of E [[xl' ... ,xn]] is said to be globally bounded if

y E. 1:r11[[Xl' ... ,xn]] for some v, and if y has non-zero radius of convergence at every

place ot ~ .(Such series form a regular noetherian ring with residue field E, and the filtered



union of these rings over a11 finite extensions of E, is strietly henselian). One can show that the

(xl ... x )mq..'s are globally bounded series (for suitable m). The problem is to show that the
n IJ

v-adic radius of converge is not 0 for any viII. Using the eompactification of Siegel modular

stacks over 11, one can find a semi-abelian extension of 11 over an l'E-model of some covering

of ~1 ' and afterwards, one has to use the 2--step construction of [CF] 111 10 to keep track of the

possible variation of the torus rank of the reduction, after replacing the divisor xl ... xn = 0 by

lIX1 ... xn = 0] .

b) Lemma 2. If v ~ v , then the entries of the q-matrix are units w.r.t. the v-adie Gauss

norm.

Proof (sketch): let ~ denote the completion of the quotient field of .9t= ~ [[xl' ... xn]] w.r.t.

the v-adic Gauss norm I IGauss (= "sup" norm on .9t). Because v is discrete, so is

I IGauss by Gauss' lemma, hence ~ is a complete discretely valued field of unequal
characteristics.

By construction of the Raynaud extension, the Barsotti-Tate groups associated to AI ~ resp. to

the I-motive [MI ~~ G/~] coincide. 'It follows that Grothendieck's monodromy pairing

associated to AI ~ is induced by the pairing M)( M' --+ 6)( --+ 11 given by the valuation of

the q-matrix w.r.t. I IGauss . Since AI 6 has good reduction modulo the valuation ideal of 6

(indeed its reduction is the generic fiber of the reduction of A modulo v, which is proper when

,v~ v) , this pairing has to be trivial:

g) An example: let us consider the Legendre elliptic pencil with parameter X = A , given by

the affine equation,

2v =u(u-1)(u-x).

Here one can choose l)j = 71 [~] ,and one has the explicit formulae:

( )-1 -G/F16q = X I-x e

(I)

x = 16q(IT (1 + q2m)(1 + q2m-1)-1)8 ,

m=l



CD

where F = l «!)m/m!)2Xm

m=O

CD CD

G = 2 l ((~)m/m!)2( lt)x
m

.

m=l f.=l

This example is studied thoroughly in [Dw].

3. Vanishin~ periods.

a) Let us take up the situation 2d again, and assume that E is contained in the p-adie field

K ,with ~ ( R . Assume also that the torus part of the semi-ßtable reduetion splits.

As before, we then have our eonstant sheaves of lattiees M = M, M' = M on the v-adie unit

polydisk a~; let {Itj} be a basis of M', and let {/Li} be the image of the dual basis of

M/v(l) under jet (defined up to sign, see 111 19).

On the other hand, we have the relative De Rham eohomology sheaf H~R(A/S*) whieh admits a

eanoniealloeally free extension to S (where the Gauss-Manin eonneetion aequires a logarithmie

singularity with nilpotent residue); in faet this extension is free beeause S is loeal, and we denote

Qy {wj} a basis of global seetions. We are aiming to give some analytie recipe to eompute the

Fontaine-Messing "vanishing periods" ~ < J!i ,Cllj (s) > ofthe fiber Al(s), S E ~:n ,see III H.
p

b) Let us express the eomposed morphism

(roof = formal eompletion) in terms of the bases wj ' dltj/l + Itj . We get a (2g,r)-matrix (wij)

with entries in .9l = ~ [ [xl' ... ,xn]] .

*n ILemma 3. For any s E. a , one has the relation w..(s) = ± -t < /L~ ,w.(s) > . Moreover w·· is
v IJ P 1 J IJ

a bounded solution of the Gauss-Manin partial differential equations on an.

Proof: the first assertion is easily proved by eonsidering Raynaud's inearnation [M(s) -----. G(s)]

of the rigid I-motive associated to Al(s) , together with the trivial eomputation of

Fontaine-Messing periods of the split torus T = T(s) : < /Li ,dJLj/I+/Lj > = ± <5ijt p . The seeond



1· * can 1 A A

assertion follows from the horizontality of the map HDR(A/S) ---+ HDR(A/S) w.r.t. the

Gauss-Manin connections v, and the fact that M' is formed of horizontal sections of
1 A

HDR(T)A (see also [vM]).
S

c) Let w denote a uniformizing parameter of R. We modify slightly the setting of 2. d) by

assuming that f1 extends to a semi-abelian scheme '1' : ANSpec R nE • ~ ,proper

outside the divisor Wxl'" xn = 0 , and with constant split toral part on this divisor. Again, the

* *wij's converge on fl~, and for every point s E. SI(E) nflvn ,the v-adic evaluation of wij at s

may be interpreted as in lemma 3 (if furthermore E is a n.umber field, the wij's are in fact

globally bounded series). We next look for complex interpretation.

*d) Let /,: E c:......+ ( be a complex embedding. We now assume that s E. SI(E) satisfies the

following property: ~(() should contain the polydisk of radius Ixi(s) I (to insure the

convergence of the analytic solutions of Gauss-Manin in this polydisk).

By specializing to s, construction 2c provides an embedding: '1l: MV c:......+ HA(As ~/, (,71) ,

where As := A1(s) . Dually, we also have an embedding:

In addition to the orientation of (p' we choose an orientation of ( this eliminates all

ambiguities of signs, and allows to identify jB(Jtj(l)) with Jtj .

Proposition 4. The following diagram is commutative:

In particu1ar (by duality), the complex evaluation of wij at s gives the "usual" period

J-:= < Jt~ ,w.(s) > .
ill1r 1 J



MV
Proof: let us draw a middle vertical arrow ! ' defined by the obvious embedding

H~R (A/S*)V

MV = rMv
«:-+ rH~R[M~ G] * = rH~R(A/S*) (or equivalently, when n = 1 , by the

/S
analog of 'uR in the rigid analytic category over the discretely valued field E((x))).

Then the commutativity on the L.H.S. is essentially the content of prop. 3; the commutativity on

the R.H.S. follows immediately from the definition of "B (details are left to the reader).

This proposition suggests the following open question: . assume that E is a number field, and

denote by E its algebraic c10sure of E inside (p. Does theie exist 'Y: E «:-+ ( above t such

~hat the following diagrams commute?

MV
t B 1 M/v(l)

jB
~ H1B (A(, 7l)c

~ HB(A(,71) c

tet r r rje t
* r

1 :l* 1 T (A-l I
'YN

Tp (A()Het(AE'~P) I Het (A(,~p)
p E

(We leave it as an exercise to answer positively, when AE is an elliptic curve, with help of

TS2] ).

-4. The monodromy filtration.

a) In [G2] , Grothendieck constructs and studies thoroughly a 3-step filtration on Tp(A~,

the "monodromy filtration" (here, we turn back to the setting of section 1)). By duality, we get a

filtration Wet on H~t; it turns out that this filtration is the natural weight filtration on the

H~t of Raynaud's incarnation of the associated rigid I-motive, loc. cit. § 14.

b) According to the semi-stable philosophy (motivated by higher dimensional motives), it

should be natural to handle the monodromy business on the De Rham realization. The

monodromy filtration W-1 = 0, Wo ~ MV(K) ~ K, W2 = H~R' Gr~ ~ M' (K) ~ K , is the

canonical filtration associated with the nilpotent operator of level 2 defined by:



N: 1 1HDR (A) - ------i HDR ( A)

11 11

1 G] 1
HyR[M --l HDR[M -i G]

I1 T]HDR [0 -i HnR[M -i 0]

11 '11

M' (K) 8K J MV(K) 8K
"D. "D.

where the arrow at the bottom M' (K) --+ MV(K) is the map induced by opposite of

Grothendieck's monodromy pairing: v(q) : M 8 M I ~ ce I ....!....."D. (v = valuation), ibid
m Knr

(we change the sign because we work on HbR' not on the covariant H1DR). Assume moreover

that M = M(K) . Then the cokernel of the map M' --+ MV inducing JL is canonically

isomorphie to the group of connected components of the special fiber of the Neron model A, see

[CF] III 8.1. The weight filtrations W and Wet are related via F.-M. :

W W IV W W
Lemma 4 (for M = M(K)) : Gr 0 EB Gr 2 (1) --+ (Gr 0 et EB Gr 2 et) 8 K.

~p

In case A is a Jacobian variety, there is moreover a Picard-Lefschetz formula (loc. cit. § 12),

·w'ihere l,et(Mv) appears once again as the module of covanishing cycles.

c) Like the Raynaud extension, the operator N admits a complex analog (which is

well-known). In the situation 2 c), let D. = ~j--l x {O} x ~n-j (~n be the jth divisor "at
* J

infinity". For any s E. ~ n , there is a monodromy action "around Dj : Mj E. GL(H1(As,71)) ,

which is unipotent of level 2. Set N~:= b logt (M~)-1 E. End H1(As,G:) . These nilpotent
J ~11r J

*operators are constant on ~ n , and can be computed on the limit fiber by: Nj = - ResDjv (the

opposite of the residue at Dj of the Gauss-Manin connection).

Under the identification Hl(As'~) ~ H~ [M(s) --+ G(s)] 8 ~ , the "monodromy" filtration on

the L.H.S. associated with Nj is just the standard weight filtration on the R.H.S. [Dl].

d) One can mimic the construction a) over any complete discretely valued ring instead of K ,

e.g. over 9t= ~ [[x]] , I = (x) , in the situation 3 d), with n = 1 ; We denote by

Nfor
E End Him [AI .9t [~]] the nilpotent endomorphism obtained this way.



Next, we wish to compare N , Nfor and N(I) .

R
Let us consider a double embedding ~ ~ (; and let s ~ SI(E) . Assume that Ix (s) Iv < 1 and

that SI (G:) contains the disk of radius 1 x (s) 12 .

At last, set As = A(s) .

Proposition 5. In this situation, the complex evaluation of

N(I) E. End H~R(As GD f:) ~ End Hl (As,G:,G:) ; the v-adic evaluation of

v(x(s))N E. End H~R(As GD K) .

at

at

s

s

is

is

Proof: the complex fact is well-known. The v-adic assertion reHes on the equality

v(q..(s)) = (val q..) • v(x(s)) , which follows immediately from lemma 2.
IJ X IJ

, [Remarks: d l ) if we only assume that AN --i ~1 is proper outside wx = 0 (instead of

x = 0) , the monodromy filtrations corresponding to N~~) and N = Ns still coincide at the

limit.

~2) Aquite general definition of N is given in [CF] 111 10.]



IV. Frobenius and the p-adic Betti lattice.

1. Semi-stable Frobenius.

We take up again the situation I 3b), and explain a construction of the Frobenius semi-linear

endomorphism CPß (due to Raynaud [R2])·

a) Let ß denote a branch of the logarithm on KX
• This amounts to the choice of some

uniformizing parameter of R, say 'W, characterized (up to a root of unity) by the fact that
x Nll. N x N . N

ß: K ~ w )( (RI wR) )( (1 + wR) --i K factonzes through 1 + wR .

b) Let A be an Abelian variety over K with semi-stable reduction, and let [M~ G] the

Raynaud realization of the associated rigid I-motive (G sits in an extension

° --i T --i G --i B --i ° ,and "p is described by q: M )( M' --i (Gm) .

Let us factorize q = 'Wv(q) • qO , so that qO: M )( M' --i (Gm extends over R. This amounts

to a factorization "p = X
N

• "pO ,where X
N

: M -----:. T = Hom(M ' ,(Gm) is induced by 'Wv(q)
w w

and "pO: M --i G extends over R (we use the same notation "pO for this extension). Because

T is a torus, the universal (M,XN)--€quivariant vectorial extension of T splits canonically,
w

which yields a canonical isomorphism of (Bodge) filtered K-vector spaces:

JFor two uniformizing parameters wI ' w2 ' the map li.
ßI

' li.
ß2

are related by:

(i) li.ß2li.ß~ = exp(-log w2/wI • N) ,where N is the operator defined in the previous section.

[Note the similarity with the definition of the canonical extension in the theory of regular

connections, and also with [CF] III 9] .

N

c) Let BT denote the Barsotti-Tate group attached to the reduction mod. w of

°[M L G] IR (1) and let BI denote the K°-space obtained bydnverting p in its
, crys/KO

°(I) Remember that the Barsotti-Tate group attached to [M L G] IR is given by the

image of "pO under the connecting homomorphism Bom(M, nG) --i Ext(M, nG)
p p

n
associated with the exact sequence ° --i G --i G~ G --i ° .

pn



first crystalline cohomology group with coefficients in RO . Up to isogeny, BT splits into the sum

of two Barsotti-Tate groups: the constant one M(K) flJu. flp/U.p ,and ~ nG flJR R/wR. [It
I P

follows that HI ° does not depend on w; in fact, it depends only on AR e R/w2R , which .
crys/K

determines G e R/w2R .]
R

The K°-structure H~ mentioned in I 3 bl ) is just the image of HI ° under /::"ß inside
crys/K

HÖR(A) ; the element uß is uß:= - LOG w(defined up to translation by IIp(l) ( B~ris) .

By transport of structure, the u-semi-linear Frobenius on H~rys/KO provides the

u-semi-linear endomorphism cp = CPß on H~ (u = Frobenius on KO). Using (i), one gets the

following relation:

r~

·'(ii)

From the functoriality of Raynaud extensions G and of the rigid analytic isomorphisms

GrigIM = Arig , it follows that the semi-stable structure (H~,cp,N) is functorial in A.

e) That construction of Raynaud may be extended to the relative situation 111 2, Le. over

".9l = w- adically complete noetherian normal RO-algebra.

Let U ( Spec ~ be as in loc. cit., and let us choose a lifting u E. End U of the char. p

Frobenius. By analogy with step c), we can construct, locally for the "loose" topology on U, a

horizontal morphism rPrJ.q) : u*H~R(A/U) ----+ H~R(AtU) i furthermore, this morphism

"stabilizes" MU' and it can be globally defined there. [This is the "stability of vanishing cycles"

./"-....

mentioned in [Dw]; indeed, when say ~ = R [wx] , u: x t----+ xP , tPß is nothing but the

analytic Dwork-Frobenius mapping] .

If A is the fiber A(s) of A at some point s E. U fixed under u, we recover ifJrJu) = CPß.

2. Construction of H~A) .

From now onwards, we shall assume that A has multiplicative reduction.

a) With our previous notations, we then obtain the following consequences:



a1): G = T, r = g ,

a2): the Bodge filtration splits canonically:

aal: the monodromy filtration consists of only two steps:

(these isomorphisms being compatible via F.M., by prop. a and its dual)

MV(K) e1/. K = Ker N ,and F1 projects onto M' (K) e1/. K (this isomorphie

projection being given by F1 = Colie Arig ~ Colie Trig~ M' (K) e1/. K) .

a4): the Fontaine-Messing isomorphism F.M. is described in I 4 cl.

b) The splitting of BT (up to isogeny) reflects on BÖ, and translates into an isomorphism:

t~ acts triviallyon GrO= MV(K) e KO , and by multiplication by p on the image of
1/.

*. -1Let us now choose an orientation of (p (see 111 1f): 1/.(-1):= X (CGm) C-+ 1/.tp (BnR ,and let

us consider the etale lattice A:= MV EB M' (-1) , and let A:= A(K) = A(R) = A(Knr) , where

Knr denotes the maximal subfield of K non ramified over K.

Using 'Eß and the orientation, we can embed A into HbR: Km [~~ (HbR: BDR 'and we

call o-adic Betti lattice its image, which we denote by Rb [This is the dual of the lattice Lß
mentioned in the introduction. The introduction of tp ' the "p-adic 2i1r" , is motivated by the

fact that the complex Betti lattice (in the setting III 4c) is stable under 2i1rN ,not N ] .m m

We thus get a tautological isomorphism:



where in fact Knr could be replaced by some finite extension of K , or else by K itself if T is

split.

From formulae (i) (ii), it follows:

(iii)

From the very construction of Hb and the formula <ptp = ptp , we get:

Lemma 5: The lattice Hb spans the lQp-space of cprnvariants in HÖR: K
nr

[tpJ .

Remark: the image of .9'ß-1Hb under F.M. does not lie in H~t(A,~p); compare with lemma 4. /

c) Let us now describe the complex analog of Eß: A --t Hb . So let A( be a complex

Abelian variety in Jacobi form Tf/M (the quotient being alternatively described by

x *q: M ~ M' --t ( , where M' = X (T(» . Let us orient (, and choose a branch ßfJJ of the

ß oq
..'complex logarithm, and compose with q: M ~ M' fJJ t ( • We get an embedding

.iM ~ M /V ~ll ( ~ Lie T( ~ H1B(A(,1l) ~1l1R which factorizes through H1B(A(,1l). This in

turn provides an isomorphism Eß : A = MV EB M' (-1) = MV EB 2~ 1[" M'~H~(A(,ll) (the
fJJ

injectivity is a consequence of the Riemann condition Re ß (q) < 0) .
fJJ

[d) One can imitate the construction of the p-adic lattice in the case of an Abelian variety B
,.,.-........

with ordinary good reduction over K = KO • Over Knr indeed, the Barsotti-Tate group

B(p) = lim nB becomes isomorphic to the B.-T. group associated to aI-motive [M~ T] ,
+--p

where 'l/J is gjven by the Serre-Tate parameters [K] . However, in contrast to the multiplicative

reduction case, the lattice ~ MV EB M' (-1) obtained in this way is not functorial, as is easily

seen from the case of complex multiplication ('l/J = 1) .

e) The construction of Frobenius generalizes easily to the case of I-motives. This allows to

construct p-adic Betti lattices for I-motives whose Abelian part has multiplicative reduction. We

shall not pursue this generalization any further here.]



3. Computation of periods.

a) We shall compute the matrix of the restrietion of 9'ß to F1HbR w.r.t. the bases

{dJL./l+JL.}g in F1 , {JL~ = 'E"/~(-l)), m!}g in H
ß
1 , assuming that T splits over

J J j=l 1 11' 1 1 i=l
K . In other words, we compute half of the (ß)-p-adic period matrix.

Proposition 6. Let q.. = q(m.,JL.) , as in I 4 cl. The following identity holds in
IJ 1 J

g

dJL./l + JL. = t JL~ + ~ ß(q..)m! .
J J P J l IJ 1

i=l

over .9t = R [[{.. - 6'..]] g 6'.. = Kronecker symbol, wO being
IJ IJ i ,j=l IJ

(so that [M..L T] arise as the fiber at eij = q~j) . For the fiber at

b) Proof: it relles on a deformation argument. First of all, one may replace M by a sublattice

of finite index, such that q == wV
( q)qO with qO == 1 mod w (in this situation BT spllts actually,

[ 0]. w=X -w

not only up to isogeny). Let us consider the analytic deformation M - w - I T of

[
w = XIV - wO ]

M w IT

given 'by the matrix {ij

XIV
t1j = 5ij : [M IIJ I T] ,the FIH~R coincides with I;'Gr'iH~R); more precisely

dJLj/l + JLj = tpILj , at {ij = 6'ij .. By definition of the Kodaira-Spencer mapping K.S. (see e.g.

[CF] 111. 9), one deduces that

. 0

d / " (J qi j S) V t 0JL. 1 + JL. = t JL. + K. . m. , at ~ .. = q...
J J P J { ..=6'.. 1 IJ IJ

1J IJ

But in our bases, K.S. is expressed by the matrix d{ij/{ij (see [Ka] , or [CF] ibid, where-there

is a minus sign because of a sllghtly different convention). One conc1udes by noticing that

olog q.. = ß(q··) .
IJ IJ

c) One could also argue as folIows, using F.M.: it follows from 2 a 3) that dJLj/l + JLj may be

expressed in the form tpJLj + 'Eßijmi ' ßij E. K j furthermore, these coefficients ßij are uniquely

determined by the property that dp,/1 + JLj - I;ßijmI lies in H~ fD0 Bss and is multiplied by p
K

under <pp. Let us show that ßij = ß(qij) satisfies this proPerty: by I 4 c), we have



v V -INdp../l + p.. - E ß· .m. = E(LOG(q..) - ß(q..))m. + t FM (p..).
J J IJ 1 IJ IJ 1 P J

Lemma 6: let c e. KX
• Then "the" element LOG c - {je of Bss is multiplied by p under the

Frobenius cPß .

whence[c'] cP = [c'p] = [c' ] = Cn n n-l n-lWe have[c~] e. W(~ R)

Proof: let us write c = wV(c)cO , so that LOG c -.Be =- v(c)uß + LOG cO -log cO . Now

n -n
LOG cO -log cO = -log lim(cn)P in B~riS' where cn is any lifting of cn = (cO)p e. R .

Let c~ = (... cn+l'cn) e. I im Ir and let c n be the Teichmüller representative
I

n
(lim cnpn)cp = (lim c~ )p . It remains only to take logarithms and remind that CPßuß = pUß.

d) Let us examine the complex counterpart, as in 2 cl. The lattice

(tE )-1
ßaJ

:M EB M,v(l) = Av N t HlB(A(,ll) embeds into Lie T(; the subspace FOHlDR(A()

GI Hl (A(,ll) ~ ( ~ HlDR(A() is just the kernel of the complexification of this embedding. It

follows that the canonical lifting mi of mi inside FOHlDR(A() is given by

m. = m. - J-:: Eß (q. .)p.~ (we set p.~ = (tEß )-l(p.~(l)) , and p.~ = E
ß

(p..(l))) . By
1 1..G11r aJ IJ 1 1 aJ 1 J aJ J

orthogonality (FlH~R = (FoHlDR)1) , we obtain:

Proposition 7: the following identity holds in H~R(A():

dp../l + p.. = 2i1rp.~ + Eß .(q..)m~ .
J J J aJ IJ 1

[The compatibility (resp. analogy) between prop. 6 and formula (iii) resp. prop. 7., is a good test

for having got the right signs. Although p.j is defined quite differently in the p-adic, resp.

complex case, the exterior derivative of the coefficients of mI's describes in both cases the

Kodaira-Spencer mapping.]



4. Periods in the relative case, and Dwork's p-adic cydes.

a) Let us consider the relative situation as in 1. d with r =g; U being subject to be the

complement of divisor with normal crossings Wx1 ... xn = 0 . We set ~= R [[xl' ... ,xnJ J , and

we denote by eil the K-algebra generated by ~[ 1 ] and (ß)-logarithms of non~ero
xl'" xn

elements of ~[ 1 ]. The construction of Hß
1 can be transposed to this relative setting:

xl'" xn
We use "the" relative Frobenius ifJrJ..u) to construct an embedding

1 1
such that ifJlu) I = u* . Of course, when us = s , we recover Hß,u(s) = Hß ·

.ImA

Because ifJrJ..u) is horizontal, so is H~,u (it is locally constant w.r.t. the loose topology), and we

get:

b) In order to interpret the lattice H~,u (for n = 1, ifJ: x ........-+ xP) in terms of Dwork's

p-adic cydes [DwJ , one forgets about tp (or better, one specializes tp to 1: K [tpJ ~ K ,

'Ii.1,u ~ MV EB M' ) . Let us for instance take back the example 111 2g (Legendre). For

K = ~p(1/-1) (p f 2) , we have M = M(K) , with base m. Setting v = uw , the period of the

differential of the first kind w =*for the covanishing cyde mV at x = 0 is given by the

residue of ~ = * at one of the two points above u = 0 on the rational curve
uw w +1

2 ~.w = u -1 ; namely, this is T

Let p, be the basis of M' = M' (K) lifted to H~, such that q = q(m,p,) is given by the
formula displayed in 111 2. g. Then after specializing tp to 1, the matrix of .9ß in terms of the

bases w, w' = v(x k)w is

~ [F
F.log q

= F log x -log 16 + ...

x F ] (with determinant (4x(x _1))-1) .
x(F log q)

= 1 + xF log x + ...

Here "log" is standing for the branch ß, and F for k F .



In fact, Dwork prefers to get rid of the constants log 16 and Ef., by changing the basis {/L,mv}

into - 2.y=I{/L + (log 16)mv,mv} . In this new basis, the entries of the period matrix lie in

GI [ [x]] [ [log x]] ,and the matrix of t/J ..ix .---nP) becomes (- 1)~ [P 1- 0] see
f.1' log 16 P 1

[Dw] 8. 11.

c) In section 3, we computed periods of one-forms of the first kind. The "horizontality lemma"

7 then allows to obtain other periods by taking derivatives; still, we have to show that, in the

multiplicative reduction case, any one-form of the second kind is the Gauss-Manin derivative of

some one-form of the first kind. In other words:

Lemma 8. Let us consider a relative situation, as in 111 2c or 2d. If r = g , then for any

k = 1, ... ,n , the smallest ~[v(xkO/Oxk)]--submodule of HbR(A/S*) containing F1 is

1 *HDR(A/S ) .

Indeed, this amounts to the surjectivity of K.S., which follows from the invertibility of its residue

at xk = 0 ; this follows in turn from the fact that this residue

(F1)gan ~ M' (X) ~ E-e(HbR/F1)gan ~ MV
( X) ~ E is induced by the non-degenerate pairing

val(X:k) 0 q . In the situation of 111 3 a) b), we can now complete the analytic description of the

period matrix: take a basis Ulj of the canonical extension of Hfm(A/S*) in the form

O{ F
1:1 u). E.

° ~ J .
; Ul

j
+

g
= v(xklJ/ lJxk)Ul

j
J = 1, ... g .

Lemma 9. The matrix of .9ß w.r.t. the bases {Wj} , {/Li ,mi} has the form:

[

:!:t w..(s) :!:t (xk 0/ Oxkw. .)( s) ]
P 1J P 1J (for A = A1(s))

w· . (s)log q..(s) (xkO/ Oxk( w. .log q..))(s)
1J IJ 1J IJ

d) We are now in position to state the main result of this section IV, relating p-adic and

complex Betti lattices.

(

Data: d1): a fjeld E, doublyembedded E~ K j orientations of G: and G:p ' A branch

ß (resp. ß ) of the logarithm on KX (resp. on (x); a uniformizing parameter w such that
m

ß(w) = 0 .



d2): an affine curve SI over E; a smooth point 0 E. SI(E) , and a loca! .

parameter x around 0; a regular model ~1 of SI over E nR .

d3): a semi-abelian scheme f: A --+ ~1 ' proper outside the divisor Wx = 0 , and

given by a split torus on this divisor. To f, one attaches as before the constant sheaf of lattices

A = MV EB M' (-1) (outside x = 0) , and the bilinear form q: M 8 M' --+ (Gm (outside

Wx = 0) . Taking bases of M, resp. M', one may expand the entries of a matrix of q into

n..
Laurent series: qij = 1Jrx IJ + h.o.t., and consider the double homomorphism from the E-algebra

;0 K rtpJ . .
EI := E [log 1JiJ·,tJ Induced by ß, t.........--. t (resp. ß , t.........--. 211r) .

\, ( p m

d4): a simply connected open neighborhood of 0 in S(, say U; over U\O, A

is identified with the graded form (w.r.t. the local monodromy N ) of R1d'nlI .
(I)

dS): a point s e. SI (E) such that s e. U and Ix(s) Iv < 1 (from this last

condition, it follows that the fiber A(s) has multiplicative reduction mod w) .

Combining the previous lemma with propositions 4,6, and 7, we obtain:

,Theorem 2. The following diagram is commutative:

8
lI

(

complex evaluation at s
( via log x ~ ß (x ( s)) andm

EI ----+ ()

~Eßm
H~(A( s ) 8 (,lI)

I

A

y
H~(A( s )) 8 lI K[tpJ

p-adi c e va I u a t ion a t s ~
(vi a log x t----+ ßf x( s )) "
and EI ---+ K [tpJ )

(In the example 111 2g, EI is just ~(Al [tJ , and the parameter x = A should be replaced by

x = 16A) .



V. p-Adic lattice and Hodge classes.

1. Rationality of Hodge classes.

a) Let AE be an Abelian variety over a number field E. Let v be a finite place of E where

AE has multiplicative reduction, and let K = Ev denote the completion.

Conjecture 6. Let eE. (End H~R(AE))~ be some Hodge class (1). Then for every branch ß of

the logarithm on KX
, the image of e under .9'ß lies in the rational subspace (End H~,lQ)&n ,

where H~,~:= H~ fA71. ~ . (For instance, this holds if n = 1 just by functoriality of H~) .

b) Let I,: E c:..-. ( and let Sh be the connected Shimura variety associated to the Hodge

structure H~(AE fAl, (,71.) and to some (odd prime-to-p) N-Ievel-structure; Sh descends to

an algebraic variety over some finite extension E' of E, and AE I is the fiber of an Abelian

scheme A --+ Sh at some point s E. Sh(E ') . In terms of Siegel's modular schemes Ag,N [~F]

IV, we have a commutative diagram

Sh ......c - ..... A N fA [1 ]E'
g, 71. N,'N

n n

Sb c~_ ..... Ag,N fA [1 .]E I

71. N,'N

where the superscript - denotes suitable projective toroidal compactifications, see [H].

"-"
In fact A --+ Sh extends to a semi-abelian scheme over anormal projective model Sh of sn

-.J

over ~ I (namely Sh = normalization of the schematic adherence of sn in

Ag,N ~7l [:k'(N] ~/) .

(1) Some authors prefer to look at Hodge classes in the more general twisted tensor spaces
fAm fAm

(H1) 1 fA (H1v) 2(m3) . However such spaces contain Hodge classes only if m1 + m2
is even (in fact if m1 - m2 = 2m3) , and any polarization then provides an isomorphism of

m1+m2fA-"X"-
1fAml 1 m2 1 2

rational Hodge structures HB fA (HBv) (m3) ~ (End HB) . In particular,

these extra Hodge classes do not change the Hodge group.



We consider the following condition:

(*) There exists a zero-dimensional cusp in sn, say 0, such that 0 and s have the same

reduction mode the maximal ideal of R ' . In fancy terms, this means that any Abelian variety

with multiplicative reduction in characteristic p should also degenerate multiplicatively (in

characteristic 0) inside the family "of Bodge type" that it defines [M].

Remark: condition (*) should follow from Gerritzen classification [Ge] of endomorphism rings of

rigid analytic tori (which is the same in equal or unequal characteristics), in the special case of

Shimura families of PEL-type [Sh] (i.e. characterized by endomorphisms).

Theorem 3. Conjecture 6 follows from (*).

Proof: by definition of the Shimura variety, and by the theory of absolute Bodge dasses [D2] ,

e= ((s) is the fiber at s of a global horizontal section eE. r(End B~R(A/Sh)~)V.

Let SI be an algebraic curve on sn, joining 0 and s, and smooth at 0; let x be a local

parameter around 0, with Ix(s) Iv < 1 . Then because 0 is a O-dimensional cusp, A

degenerates multiplicatively at 0 and we are in the situation where theorem 2 applies.

n

TIDe ß-periods of { admit an expansion in the form l a ( log( x , with a OE. E I [ [ x]] ,
(=0

al E. Ei [[x]] ,whose complex evaluation (w.r.t /,: E' c.....+ () gives the corresponding complex

period of {, according to theorem 2. Since { is a global horizontal section and a Bodge dass at

s , the complex periods are rational constants: at = 0 for t > 1 ,and aOE. ~ • Thus the

ß-periods of e={(s) are rational numbers.

Remark: it follows (inconditionally) from theorem 1 and Fontaine' semi-stable theorem that the

1~image of e under .9ß lies in (End Bß) 8u. ~p .

2. o-Adic Bodge dasses.

Let E'be some finitely generated extension of E. We define a p-adic Bodge dass on AE I to

be any element e of FO(end BbR(AE, )~) such that for every ~mbedding of E' into any

finite extension K I of K , and for every branch ß of the logarithm on K I X , the image of e
under .9'ß lies in the rational subspace (End Bl~)~ . Conjecture 6 predicts that any Bodge

dass is a p-adic Bodge dass, and conjecture 2 would identify the two notions.



Proposition 8: if E is algebraically dosed in E' ,then any p-adic Bodge dass e comes from

(End BÖR(AE»~ , and is sent into [(End B~t)~J 1 by F.M.

Proof: the first assertion follows Deligne's proof in the complex case [D2J. To prove the second

one, we remark that e E. FO[(End BÖ)~J (j}=1 ; moreover, by changing ß continuously, the

lattice B~ is moved by exp(-log u.N) , u e. RX
• Since e has to remain rational w.r.t. all these

lattices, we deduce that Ne = 0 , and we conclude by Fontaine semi-ßtable theorem.

Remark: it is essential to take all E-embedding E' ~ K into account; for instance,

mV
E. FOH~R(AE,) for E' = K , and mV

E. H1, FM(mv) E. (H~t) ", but it is higbly probable

that mV is not defined over E nK .

3. A o-adic period conjecture.

For any E-algebra E' ,the E'-linear bijections BÖR(AE) ~E E'~(B~,~) ~~ E' which
preserve p-adic Bodge classes form the set of E' -valued points of an irreducible E-torsor Pß
under the "p-adic Bodge group" of AE (which is by definition the algebraic subgroup of

GL BÖR(AE) which fixes the p-adic Bodge classes; conjecture 2 would identify this group with

the Bodge group). One has a canonical K [tpJ -valued point of Pß given by 9Jß. A variant of

r conjecture 1 may be stated as follows:

Oonjecture 1': for sufficiently general ß,· 9Jß is a (Weil) generic point of Pß.

The next section will offer two partial positive answers.

4. Period relations of bounded degree.

a) We denote by E [ .9'Pv] ~ 6 the quotient of the polynomial ring in 4g2 indeterminates over

E by the ideal genera~ed by relations of degree ~ 8 among (ßv)-p-adic periods (v Ip) . Bence

for sufficiently large 8, there is a natural embedding Spec E [ 9J
ßv

J ~ 6 ( Pß
v

. The same

construction works simultaneously at several places of multiplicative reduction:

E [( ~ß )ve.yJ< 6(n Ev [tpJ ,and we have projections Spec E [( ~ß )ve.yJ< 6 --+ Pß .
v - v v - v

b) Assume that AE is the fiber at s E. S1(E) of a semi-abelian scheme A --+ S1 over an

affine curve S1/Spec E , proper outside some smooth point 0 E. S1(E) , and degenerating to a

split torus at this point. Let x be a local parameter around 0 , and let 8» 0 .



We lay down an extra normalization hypothesis:

n..
(**) the entries of the q-matrix expand q.. = 'fJ.. X IJ +... where 'fJ1'J

' are roots of unity
IJ IJ

(this is the case in example 111 2g), if we set x = 16~ and E =~(~) .

In these circumstances, we have the following two results:

Theorem 4. Assume that Ix(s) Iv is sufficiently small - w.r. to 5 - so that in particular

AE = A(s) has multiplicative reduction at v. Let us choose ß= ßv such that ß(x(s)) = 0 .

Then Spec E [ .9~ ~ 5 = Pß ' and moreover any p-adic. Hodge class on AE is a Hodge class.

Theorem 5. Assume that A --+ SI extends to a semi-abelian scheme over some regular model

of SI over ~,proper outside the divisor lIX = 0, V E. IN . Let V(s) denote the finite set of

finite places v of E where Ix(s) Iv < Ivi v (so that A(s) has multiplicative reduction at

v E. V) . Let us choose ßv such that ßv(x(s)) = 0, V E. V(s) , and let e > 0 . If for every

t: E c.....+ 4:, Ix(s) It ~ e , then the projections SpecE [( ~ß )VE.V] <5 --+ Pß are surjective,
v - v

except possibly if s belong to a certain finite exceptional set (depending on 5,e) .

c) In fact, the proof shows a little bit more: one can replace Pß in the statements by the
v

specialization at s of the Sctorsor formed of isomorphisms HÖR(A/S~) ~? ---+ H~~?
pr..eserving global horizontal classes; this makes sense because any such class is automatically a

() *-linear combination of relative Hodge classes, in virtue of:
SI

*Proposition 9 (Mustafin). On an Abelian scheme A --+ SI degenerating to a torus at

oE. SI\S~ , anyelement e of r(End HbR(A/S~)en)v is alinear combination of relative Hodge

cycles.

See e.g. [A] IX 3.2. The argument given in the course of proving theorem 3 then shows that e is

also a linear combination of relative p-adic Hodge cycles.

d) We thus have to show that any relation (resp. "global relation" for theorem 5) of degree ~ 5
with coefficients in E between (ß)-periods of A(s) is the specialization at s of some relation

of degree ~ 5 with coefficients in E [x] between the relative ßv-periods (which belong to

E [tp,log x] [[x]] in virtue of (**) and lemma 9).

n..
Because t is transcendental over E ,and ß ('fJ••x IJ(S)) = 0 , it suffices to replace in this

p v v IJ



statement ßv-periods by the v-adie evaluations of the G-funetions w
1
'
J
" w~., woolog q~. ,

1J. IJ IJ
1 I 1 1 -nij(woolog q ..) ,where q.. = - q..x = 1 + ...

IJ IJ IJ 1Jij IJ

This ean be now dedueed from standard results in G-function theory [A] VII thm. 4.3, resp.

5.2. See also, ibid IX for more details about the proof of a (complex) analogous statement.



[A]

[Be]

[B]

[Bo]

[BL]

[BI 1]

[CF]

[C]

[Cn]

[Co]

[Dl ]

[D2]

[Dw]

[Fa]

[Fl ]

[Ge]

References

Andre Y.; G-functions and Geometry, Aspects of Mathematics E13, Vieweg 1988.

Berkovich V.G.; Spectral theory and analytic geometry over non-archimedean fields
11. Preprint IBES 1987.

Berthelot P.; Cohomologie rigide, to appear in the 11Asterisque~' series.

Borovoi, M.; On the action of the Galois grolip on rational cohomology classes of

type (p.p) of Abelian varieties, Mat. Sbornik 94 (1974) n°4, 64~52 (Russian).

Bosch S., Lütkebohmert W.; stable reduction and Uniformization of Abelian
varieties II, Inv. Math. 78, 257-297 (1984).

Bosch S., Lütkebohmert W.; Degenerating Abelian Varieties, preprint Münster 1988.

Chai C.L., Faltings G.; Semiabelian degeneration and compactification of Siegel
modular spaces. Forthcoming book (1990). .

Christol G.; Globally bounded solutions of differential equations, to appear in Proc.
of the Tokyo conference on analytic number theory.

Coleman R.; The universal vectorial bi-€xtension, preprint Berkeley 1989.

Colmez P.; Periodes des varietes abeliennes de type CM, preprint Bonn 1987.

Deligne P.; Theorie de Bodge 111, IBES Publ. Math. N° 44 (1974), 5-78.

Deligne P.; Bodge cycles on Abelian varieties, in Lecture Notes in Math. 900

Springer-Verlag 1982 (notes by J. Milne).

Dwork B.; p-adic cycles, IBES Publ. Math. N° 37 (1969), 27-116.

Faltings G.; preprint Princeton on the liDe Rham conjecture" 1989.

Fontaine J.M.; Sur certains types de representations p-adiques du groupe de Galois

d'un corps local, construction d'un anneau de Barsotti-Tate, Ann. of Math. 115,
(1982), 529-577.

Fontaine J.M.; contribution to the proc. of IBES seminar 88 on "p-adic periods".

Fontaine J.M.; Messing W.; p-adic periods and p-adic etale cohomology,
Contemporary mathematics, Vol. 67 AMS (1985), 179-207.

Gerritzen L.; On multiplication algebras of Riemann matrices, Math. Ann. 194
(1971), 109-122.

Grothendieck A.; On the De Rham cohomology of algebraic varieties, IBES Publ.

Math. 29 (1966) (especially footnote 10).

Grothendieck A.; Modeles de Neron et monodromie, exp. IX, SGA 7, in Lecture

Notes in Math. 288 Springer-Verlag 1970.

Grothendieck A.; Groupes de Barsotti-Tate et cristaux de Dieudonne, Seminaire de

Mathematiques Superieures, n° 45, Presses de l'Universite de Montreall974.



[H]

[Ka]

[K]

[IS]

[M]

[Mu]

[SR]

[St]

[T]

CU]

[vM]

[W]

Harris J.; Fonetorial properties of toroidial eompaetifieations of locally symmetrie
varieties. Proe. London Math. Soe. (3) 59 (1989), 1-22.

Katz N.; Serre-Tate Ioeal moduli, in Surfaees Aigebriques, expose 5 bis, Springer
'LNM 868 (1981), 138-202.

Kiehl R.; Die De Rham Kohomologie al~ebraiseher Mannigfaltigkeiten über einem
bewerteten Körper. IHES Publ. Math. 33 (1967), 5-20. ,

Le Stum B.; Cohomologie rigide et varietes abeliennes, these Univ. Rennes 1985.

Mumford D.; Families of Abelian varieties, Algebraie groups and Diseontinuous
subgroup, Proe. Symp. Pure Math. vol. 9, AMS, Providence R.I. (1966), 347-351.

Mustafin G.A.; Families of Aigebraie varieties and invariant eycles, Math. USSR

Izvestiya Vol 27 (1986) n° 2, 251-278.

Ogus A.; Contribution to this eonferenee.

Raynaud M.; Varietes abeIiennes et geometrie rigide. Aetes du congres international

de Nice 1970, t.1, 473-477.

Raynaud M.; Contribution to the proe. of IRES seminar 88 on "p-adie periods".

Serre J.P.; Proprietes galoisiennes des points d'ordre fini des courbes elliptiques, Inv.

Math., 15, 1972, 259-331.

Serre J.P.; Abelian i-adie representations and elliptie eurves. Benjamin, New-York,

1968.

Artin M., Grothendieek A., Verdier J .-L.; Theorie des topos et eohomologie etale

des schemas, t. 3, LNM 269 Springer Verlag (1972).

Shimura G.; On analytie families of polarized abelian varieties and automorphie
funetions, Annals of Math. 78 (1963), 149.

Steenbrink J.; Limits of Hodge struetures, Inv. Math. 31 (1975/76), 229-257.

Tate J.; p-divisible groups. Proe. of a Conf. on Ioeal fields. Springer Verlag (1967).

Ullrieh P.; Rigid analytie eovering maps. Proe. of the Conf. on p-adie analysis,
Hengelhoef (1986), 159-171. .

Van der Marei B.; thesis Rijksuniversiteit Groningen 1987.

Wintenberger J.P.; p-adie Hodge theory for families of abelian varieties, preprint
1989.


