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ALGEBRAS AND ALGEBRAIC CURVES ASSOCIATED WITH PDES
AND BÄCKLUND TRANSFORMATIONS

SERGEY IGONIN

Abstract. Using the language of jet spaces, for any analytic PDE E we define, in a coordinate-
free way, a family of associative algebras A(E).

In the considered examples, which include the KdV, Krichever-Novikov, nonlinear Schrödinger,
Landau-Lifshitz equations, the algebras A(E) are commutative and are isomorphic to the function
field of an algebraic curve of genus 1 or 0. This provides an invariant meaning for algebraic curves
related to some PDEs.

Also, the algebras A(E) help to prove that some pairs of PDEs from the above list are not
connected by Bäcklund transformations.

To define A(E), we use fundamental Lie algebras F(E) of E introduced in [15]. Elements of A(E)
are intertwining operators for the adjoint representations of Lie subalgebras of certain quotients
of F(E).

In the last 30 years, it has been relatively well understood how to construct integrable PDEs
from some infinite-dimensional Lie algebras and algebraic curves (see, e.g., [1, 4, 6, 8, 7, 9, 10, 12,
16, 20, 21, 27, 31, 33] and references therein).

This preprint belongs to a series of papers, where we study the inverse problem: given a PDE,
how to determine whether it is related to Lie algebras and algebraic curves, and how to recover
these algebraic structures from the PDE, in a coordinate-independent way?

Our strategy is to define geometric invariants for arbitrary (not necessarily integrable) PDEs
such that for integrable PDEs these invariants reproduce infinite-dimensional Lie algebras and
algebraic curves. Some invariants in the form of Lie algebras have been introduced in [15]. Using
the results of [15], in the present preprint we study how to recover an algebraic curve from a PDE.
We use the geometric coordinate-independent approach to PDEs by means of infinite jet spaces.

It is well known that many PDEs possess a zero-curvature representation1 (ZCR) parametrized
by points of an algebraic curve C. However, the invariant meaning of the curve C for a given
PDE is not clear, because a PDE may have several ZCRs parametrized by different curves.

For example, the Landau-Lifshitz equation has a ZCR with elliptic parameter [9, 32] and a ZCR
with rational (polynomial) parameter [2]. Nevertheless, there are strong indications that, for this
PDE, the elliptic curve is ‘more important’ than the rational curve (e.g., the elliptic curve is used
in the construction of solutions for the Landau-Lifshitz equation [4, 22]).

On the other hand, for the nonlinear Schrödinger (NLS) equation, only a ZCR with rational
(polynomial) parameter is known [9]. All the experience in the study of this PDE suggests that
there is no nontrivial ZCR with elliptic parameter for the NLS equation, but this has never been
proved.

Remark 1. A well-known empirical explanation of the difference between the NLS and Landau-
Lifshitz equations is the following. Some Riemann-Hilbert problems on the rational curve CP 1

lead to solutions of certain PDEs, including the NLS equation [9]. On the other hand, solutions
of the Landau-Lifshitz equation can be obtained from a Riemann-Hilbert problem on an elliptic
curve [4, 22].

1For PDEs in two independent variables the notion of ZCR is essentially equivalent to that of Lax pair.
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However, since there is no canonical way to associate a Riemann-Hilbert problem with a given
PDE, this does not provide a fully invariant meaning for the curves.

Similarly, an elliptic curve often occurs in the study of the Krichever-Novikov equation [20, 21,
23, 24].

In this preprint, the following interpretation for such curves is presented. We consider arbitrary
analytic PDEs E . In particular, PDEs may have any number of variables. For any E , we define,
in a coordinate-free way, a family of associative algebras A(E) such that the following property
holds.

In all studied examples, if E is an integrable PDE in two independent variables related to an
algebraic curve C of genus ≤ 1 then the algebras A(E) are commutative and are isomorphic to
the function field of the curve C.

Example 1. For the KdV and nonlinear Schrödinger equations, the algebras A(E) are isomorphic
to the function field of a rational curve.

For the Landau-Lifshitz and Krichever-Novikov equations, the algebras A(E) are isomorphic to
the function field of an elliptic curve.

The definition of A(E) uses only the PDE E . In particular, the definition does not use any
specific ZCRs or Lax pairs. However, in order to compute A(E) explicitly, it is helpful to know
ZCRs of E .

Since A(E) is a coordinate-independent invariant of E , one has the following property. Suppose
that two PDEs E1 and E2 are isomorphic, i.e., E1 can be obtained from E2 by a change of variables,
and vice versa. Then A(E1) is isomorphic to A(E2). We allow arbitrary (consistent) changes
of variables, which may mix independent variables, dependent variables, and derivatives in the
PDEs.

To give the definition of A(E), we need to recall a geometric approach to PDEs by means of jet
spaces (see, e.g., [3, 15, 17, 18, 26] and references therein).

Using infinite jet spaces, one can treat a PDE as a geometric object: a manifold E with an n-
dimensional distribution C called the Cartan distribution2, where n is the number of independent
variables in the PDE. If vector fields X, Y belong to the distribution C then the commutator
[X,Y ] belongs to C as well.

The manifold E is usually infinite-dimensional in the following sense. For each point a ∈ E
there is a countable system of coordinates vi, i ∈ Z+, on a neighborhood of a. A function f on
a neighborhood of a is said to be smooth at a if f depends smoothly on a finite number of the
coordinates vi.

Solutions of the PDE correspond to n-dimensional integral submanifolds of the distribution C.
Note that the Frobenius theorem on integral submanifolds of involutive distributions is not appli-
cable, because E is infinite-dimensional.

In local coordinates, let a system of PDEs for functions ui = ui(x1, . . . , xn), i = 1, . . . , d, be
given by equations

(1) Fα

(
x1, . . . , xn, u

1, . . . , ud, . . . ,
∂kuj

∂xi1 . . . ∂xik

, . . .
)

= 0, α = 1, . . . , q.

Recall that xi, u
j , and all partial derivatives of uj play the role of coordinates for the corresponding

infinite jet space J∞. Then E is the submanifold of J∞ given by the infinite collection of equations

(2) Dxi1
. . . Dxis

(Fα) = 0, ik = 1, . . . , n, α = 1, . . . , q, s = 0, 1, 2, . . . ,

2An n-dimensional distribution on E is an n-dimensional subbundle of the tangent bundle of E .
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where Dxi are the total derivatives operators. In other words, the set of equations (2) consists of
all differential consequences of equations (1).

The assumption that the set E determined by (2) is a nonsingular submanifold of J∞ requires
some non-degeneracy conditions for equations (1). These conditions are valid on an open dense
subset of J∞ for practically all PDEs in applications. For analytic PDEs these conditions are
always3 valid on an open dense subset of J∞.

The operators Dx1 , . . . , Dxn can be regarded as vector fields on J∞. They are tangent to the
submanifold E ⊂ J∞, and the restrictions of the vector fields Dx1 , . . . , Dxn to E span the Cartan
distribution C on E .

Points of E are in one-to-one correspondence with ‘formal solutions’ of the system of PDEs, i.e.,
formal Taylor series satisfying the PDEs.

Note that if two systems of PDEs are isomorphic (i.e., are connected by a change of variables)
then the corresponding manifolds E are connected by a diffeomorphism that preserves the Cartan
distribution. Therefore, the pair (E , C) is the right object to study if one is interested in properties
that are invariant with respect to changes of variables.

The pair (E , C) is called the infinite prolongation of the initial system of PDEs.
Let (E1, C1) and (E2, C2) be the infinite prolongations of two systems of PDEs. A morphism

between (E1, C1) and (E2, C2) is a smooth map ϕ : E1 → E2 such that for any a ∈ E1 one has
ϕ∗(C1

a) ⊂ C2
ϕ(a), where ϕ∗ is the differential of ϕ and for b ∈ E i the vector subspace Ci

b ⊂ TbE i is
determined by the distribution Ci for i = 1, 2.

If ϕ is a surjective submersion and the map

ϕ∗

∣∣∣
C1

a

: C1
a → C2

ϕ(a)

is an isomorphism of vector spaces for any a ∈ E1 then the morphism ϕ is said to be a (differential)
covering. Then ϕ maps integral submanifolds of the distribution C1 to integral submanifolds of the
distribution C2 and preserves the dimension of integral submanifolds. Therefore, ϕ maps solutions
of the system E1 to solutions of E2.

The notion of coverings was introduced by I. S. Krasil′shchik and A. M. Vinogradov [19] in
order to give a geometric interpretation for various well-known constructions in the theory of
nonlinear PDEs. In particular, Bäcklund transformations, Lax pairs, and Wahlquist-Estabrook
prolongation structures from soliton theory are determined by coverings.

Note that even local classification of differential coverings is highly nontrivial due to different
possible configurations of the distributions.

Example 2. It is easy to check that if a function v(x, t) is a solution of the modified KdV equation

(3) vt = vxxx − 6v2vx

then the function

(4) u = vx − v2

satisfies the KdV equation

(5) ut = uxxx + 6uux, u = u(x, t).

This is the well-known Miura transformation. Formula (4) determines a covering from the infinite
prolongation of equation (3) to the infinite prolongation of (5).

3If system (1) is inconsistent then E = ∅, which can also be regarded as a (trivial) submanifold of J∞.
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A Bäcklund transformation between two systems E1 and E2 is given by another system E3 and
a pair of coverings

E3

τ1

~~}}
}}

}}
}

τ2

  A
AA

AA
AA

E1 E2

such that for any ai ∈ E i the fibers τ−1
i (ai) ⊂ E3 are finite-dimensional for i = 1, 2.

Then one can obtain solutions of E2 from solutions of E1 (and vice versa) as follows. Take a
solution s of E1, compute its preimage τ−1

1 (s) in E3, which is a family of solutions of E3, and map
this family to E2 by τ2. In local coordinates, in order to compute τ−1

1 (s) for a given solution s of
E1 one needs to solve a system of ordinary differential equations.

If E1 = E2 = E then in this way one obtains new solutions for E from known solutions.
For example, the coverings

vt = vxxx − 6v2vx

u=vx−v2

uujjjjjjjjjjjjjjj
u=−vx−v2

))TTTTTTTTTTTTTTT

ut = uxxx + 6uux ut = uxxx + 6uux

determine a well-known Bäcklund auto-transformation for the KdV equation. One can find hun-
dreds of examples of Bäcklund transformations in [25, 29, 30] and references therein.

The name ‘coverings’ for such morphisms is used because they generalize usual topological
coverings of finite-dimensional manifolds M . Indeed, let M1, M2 be finite-dimensional manifolds
and ϕ : M1 →M2 be a smooth map that is a topological covering. Then ϕ becomes a differential
covering if we consider the distribution Ci equal to the entire tangent bundle of M i for i = 1, 2.

Recall that topological coverings of M correspond to actions of the fundamental group π1(M, b)
for b ∈M .

From now on we suppose that all manifolds and maps of manifolds are complex-analytic. Let
(E , C) be the infinite prolongation of an analytic PDE, and a ∈ E . In [15] we have defined, in
a coordinate-independent way, the fundamental Lie algebra F(E , a), which plays the role of ‘fun-
damental group’ for differential coverings. The algebra F(E , a) generalizes Wahlquist-Estabrook
prolongation algebras [13, 35]. Note that Wahlquist-Estabrook algebras are defined only for some
narrow classes of PDEs and do not have any coordinate-independent meaning.

According to [15], the Lie algebra F(E , a) has a natural topology. For any Lie algebra L, a
homomorphism ψ : F(E , a) → L is said to be admissible if ψ is continuous, where L is endowed
with discrete topology.

An element w ∈ F(E , a) is said to be solvable if for any Lie algebra L and any admissible
homomorphism ψ : F(E , a) → L the element ψ(w) lies in a solvable ideal of the algebra ψ

(
F(E , a)

)
.

Clearly, solvable elements form an ideal I(E , a) ⊂ F(E , a).
Studied examples suggest that the ideal I(E , a) is not important for main applications to

Bäcklund transformations. Therefore, it makes sense to consider the quotient Lie algebra
RF(E , a) = F(E , a)/I(E , a). We do not impose any topology on RF(E , a).

Remark 2. Below we will use the following standard construction. Let g be a Lie algebra and A
be a commutative associative algebra over C. Then the tensor product g⊗CA has the Lie algebra
structure

(6) [g1 ⊗ a1, g2 ⊗ a2] = [g1, g2]⊗ a1a2, g1, g2 ∈ g, a1, a2 ∈ A.
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Example 3. Consider the infinite-dimensional Lie algebra

sl2(C[λ]) ∼= sl2(C)⊗C C[λ],

where C[λ] is the algebra of polynomials in λ. If we regard λ as a coordinate on the rational
curve C = C, the algebra sl2(C[λ]) becomes equal to the algebra of sl2(C)-valued functions on the
curve C.

Let E be the infinite prolongation of the KdV equation. From the description of F(E , a) in [15]
it follows that

(7) RF(E , a) ∼= sl2(C[λ]) ∀ a ∈ E .

The same result is valid also for the nonlinear Schrödinger equation.

Example 4. The Landau-Lifshitz equation reads (see, e.g, [9] and references therein)
(8)

LL(e1, e2, e3) =

{
St = S × Sxx + S × (J · S), S =

(
s1(x, t), s2(x, t), s3(x, t)

)
,

3∑
i=1

(si)2 = 1

}
,

where J = diag(e1, e2, e3) is a constant diagonal (3 × 3)-matrix with e1, e2, e3 ∈ C and × is the
usual vector product. We consider the fully anisotropic case e1 6= e2 6= e3 6= e1.

Consider the ideal I ⊂ C[v1, v2, v3] generated by the polynomials

(9) v2
i − v2

j + (ei − ej), i, j = 1, 2, 3.

Set

(10) E = C[v1, v2, v3]/I.

Then E is the algebra of regular functions on the elliptic curve C ⊂ C3 defined by polynomials (9).
Let v̄j ∈ E be the image of vj ∈ C[v1, v2, v3]. Consider also a basis α1, α2, α3 of the Lie algebra
so3(C) with the relations

(11) [α1, α2] = α3, [α2, α3] = α1, [α3, α1] = α2

and endow the space so3(C)⊗C E with the Lie algebra structure described in (6).
Denote by R(e1, e2, e3) the Lie subalgebra generated by the elements

α1 ⊗ v̄1, α2 ⊗ v̄2, α3 ⊗ v̄3 ∈ so3(C)⊗ E.

The Lie algebra R(e1, e2, e3) is infinite-dimensional, it was studied in [28] and is isomorphic to a
subalgebra of algebras studied in [4, 11].

Let E be the infinite prolongation of the Landau-Lifshitz equation. From the description of
F(E , a) in [15] it follows that

(12) RF(E , a) ∼= R(e1, e2, e3) ∀ a ∈ E .

For constants e1, e2, e3 ∈ C with e1 6= e2 6= e3 6= e1, consider the Krichever-Novikov equa-
tion [21, 34]

(13) KN(e1, e2, e3) =
{
ut = uxxx −

3
2
u2

xx

ux
+

(u− e1)(u− e2)(u− e3)
ux

, u = u(x, t)
}
.

According to [15], for the infinite prolongation E of this PDE, there is an isomorphism (12) as
well.
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That is, RF(E , a) in the above-mentioned examples is isomorphic to an infinite-dimensional
Lie algebra of certain matrix-valued functions on an algebraic curve C, where C is rational in
Example 3 and is elliptic in Example 4.

However, this description of RF(E , a) does not yet give an invariant meaning of the curve C,
because isomorphisms (7), (12) are not canonical. In order to recover an algebraic curve from
RF(E , a) in an invariant way, we use the following algebraic constructions.

Let L be a Lie algebra. Recall that a linear map g : L→ L is called an intertwining operator if
g([p1, p2]) = [g(p1), p2] = [p1, g(p2)] for any p1, p2 ∈ L. Equivalently, g ◦ ad (p1) = ad (p1) ◦ g, that
is, the map g is an intertwining operator for the adjoint representation of L.

Such operators are often used in the study of integrable PDEs with Lax pairs (e.g., for con-
struction of Poisson structures [27] and symmetry recursion operators [5]). Relations of our results
with that of [5] are discussed in Remark 3 below.

We need the following version of intertwining operators. Consider a pair (h,H), where
H ⊂ L is a Lie subalgebra of finite codimension and h : H → L is a linear map satisfying
h([p1, p2]) = [h(p1), p2] = [p1, h(p2)] for any p1, p2 ∈ H.

Two such pairs (h,H) and (h̃, H̃) are called equivalent if there is a subalgebra U ⊂ H ∩ H̃ of
finite codimension such that h

∣∣
U

= h̃
∣∣
U
. Denote by [(h,H)] the corresponding equivalence class,

and let IT(L) be the set of equivalence classes. Then IT(L) has a natural structure of associative
algebra, where the sum and the product are defined as follows.

[(h1,H1)] + [(h2,H2)] = [(h1 + h2, H1 ∩H2)], [(h1,H1)] · [(h2,H2)] = [(h1 ◦ h2, Ĥ)],

Ĥ =
{
w ∈ H1 ∩H2

∣∣ h2(w) ∈ H1

}
.

Clearly, if dimL <∞ then IT(L) = 0.
We define A(E) as follows. For a ∈ E , set

(14) A(E , a) = IT
(
RF(E , a)

)
.

Then A(E) is the family of associative algebras A(E , a), a ∈ E .
Since e1 6= e2 6= e3 6= e1, it is easily seen that the ring E defined in (10) is an integral domain.

Consider the fraction field F of E.
Clearly, v̄2

1 + e1 = v̄2
2 + e2 = v̄2

3 + e3 in E. Let Q(e1, e2, e3) ⊂ F be the subfield generated by
the elements z = v̄2

i + ei, y = v̄1v̄2v̄3. Since y2 = (z − e1)(z − e2)(z − e3), the field Q(e1, e2, e3) is
isomorphic to the function field of the elliptic curve

(15) C(e1, e2, e3) =
{

(z̃, ỹ) ∈ C2
∣∣ ỹ2 = (z̃ − e1)(z̃ − e2)(z̃ − e3)

}
⊂ C2.

Theorem 1. For any Lie subalgebra L ⊂ R(e1, e2, e3) of finite codimension, the associative algebra
IT(L) is commutative and is isomorphic to Q(e1, e2, e3).

Proof. The space so3(C)⊗ F has the F -module structure given by

f1 ·
(
w ⊗ f2

)
= w ⊗ f1f2, w ∈ so3(C), f1, f2 ∈ F.

Since E ⊂ F , one has the natural inclusions of Lie algebras

R(e1, e2, e3) ⊂ so3(C)⊗ E ⊂ so3(C)⊗ F.

For each f ∈ F consider the map

Gf : R(e1, e2, e3) → so3(C)⊗ F, Gf (p) = f · p, p ∈ R(e1, e2, e3).

Obviously,

(16) Gf ([p1, p2]) = [Gf (p1), p2] = [p1, Gf (p2)] ∀ p1, p2.
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Recall that

(17) z = v̄2
1 + e1 = v̄2

2 + e2 = v̄2
3 + e3, y = v̄1v̄2v̄3.

According to [28], the following elements form a basis of R(e1, e2, e3)

(18) αi ⊗ v̄iz
l, αi ⊗ v̄j v̄kz

l, i, j, k = 1, 2, 3, j < k, j 6= i 6= k, l = 0, 1, 2, . . .

Let d1(y, z) be a polynomial in y, z and d2(z) 6= 0 be a polynomial in z. Using basis (18), one
gets that

Gd1(y,z)

(
R(e1, e2, e3)

)
⊂ R(e1, e2, e3), Gd2(z)

(
R(e1, e2, e3)

)
⊂ R(e1, e2, e3),

and the space Gd2(z)

(
R(e1, e2, e3)

)
is of finite codimension in R(e1, e2, e3). Using this property

and the assumption codimL <∞, we obtain that

(19) the subspace L̃ =
{
w ∈ L

∣∣ Gd1(y,z)(w) ∈ Gd2(z)(L)
}

is of finite codimension in L.

Since y2 = (z− e1)(z− e2)(z− e3), any element f ∈ Q(e1, e2, e3) can be presented as a fraction of

such polynomials f =
d1(y, z)
d2(z)

. Then from property (19) it follows that the subspace

Lf =
{
w ∈ L

∣∣ Gf (w) ∈ L
}

is of finite codimension in L. Relation (16) implies that Lf is a Lie subalgebra of L. Therefore,
the pair (Gf , Lf ) determines an element of IT(L), and we obtain the embedding

Ψ: Q(e1, e2, e3) ↪→ IT(L), Ψ(f) = [(Gf , Lf )].

It remains to show that the map Ψ is surjective.
Let [(h,H)] ∈ IT(L), where H ⊂ L is a subalgebra of finite codimension and

(20) h : H → L, h([p1, p2]) = [h(p1), p2] = [p1, h(p2)] ∀ p1, p2 ∈ H.
Let Ri ⊂ R(e1, e2, e3) be the subspace spanned by elements (18) for fixed i = 1, 2, 3. Then
R(e1, e2, e3) = R1 ⊕R2 ⊕R3 as vector spaces, and

∀w ∈ Ri there is a unique f ∈ Q(e1, e2, e3) such that w = αi ⊗ v̄if.(21)

Set H i = Ri∩H. Due to properties (11), (21), the space H̃ = H1 +H2 +H3 is a Lie subalgebra
of H. Since H is of finite codimension in R(e1, e2, e3), the subalgebra H̃ is of finite codimension
in H.

Let wi ∈ H i, wi 6= 0, i = 1, 2, 3. Then [h(wi), wi] = h([wi, wi]) = 0. From (11), (21) it follows
that h(wi) = fi · wi for some fi ∈ Q(e1, e2, e3). Then

(22) h([w1, w2]) = [h(w1), w2] = [w1, h(w2)] = f1 · [w1, w2] = f2 · [w1, w2].

Since, by properties (11), (21), one has [w1, w2] 6= 0, relation (22) implies f1 = f2. Similarly, one
shows that f1 = f2 = f3.

Therefore, for any other nonzero elements w′i ∈ H i, we also get h(w′i) = f ′ · w′i for some
f ′ ∈ Q(e1, e2, e3). Similarly to (22), one obtains h([w1, w

′
2]) = f1 · [w1, w

′
2] = f ′ · [w1, w

′
2], which

implies f ′ = f1.
Thus there is a unique f ′ ∈ Q(e1, e2, e3) such that h

∣∣
H̃

= Gf ′
∣∣
H̃

. Therefore, [(h,H)] = [(Gf ′ , H̃)]
in IT(L), that is, [(h,H)] = Ψ(f ′).

�

Similarly to Theorem 1, one proves the following result.

Theorem 2. For any Lie subalgebra L ⊂ sl2(C[λ]) of finite codimension, the associative algebra
IT(L) is commutative and is isomorphic to the field of rational functions in λ.
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Combining Theorems 1, 2 with isomorphisms (7), (12), we obtain the following description of
A(E , a) for the above-mentioned PDEs.

Theorem 3. For the KdV and nonlinear Schrödinger equations, the algebra A(E , a) is isomorphic
to the field of rational functions in λ.

For the Landau-Lifshitz (8) and Krichever-Novikov equations (13), the algebra A(E , a) is iso-
morphic to the field Q(e1, e2, e3).

The next theorem shows that F(E , a) and A(E , a) allow in many cases to obtain non-existence
results for Bäcklund transformations (BT).

Theorem 4. There is no BT between KdV and Krichever-Novikov, between nonlinear Schrödinger
and Landau-Lifshitz.

For i = 1, 2, 3, let ei, e′i ∈ C be such that e1 6= e2 6= e3 6= e1 and e′1 6= e′2 6= e′3 6= e′1.
Consider the corresponding Landau-Lifshitz (8), Krichever-Novikov equations (13), and elliptic
curves (15). Suppose that the curve C(e1, e2, e3) is not birationally equivalent to C(e′1, e

′
2, e

′
3) (that

is, Q(e1, e2, e3) is not isomorphic to Q(e′1, e
′
2, e

′
3)). Then there is no BT between KN(e1, e2, e3)

and KN(e′1, e
′
2, e

′
3), between LL(e1, e2, e3) and LL(e′1, e

′
2, e

′
3).

Proof. Let E1 and E2 be the infinite prolongations of some of the PDEs mentioned in the theorem.
According to [15], if there is a BT between (some open subsets of) E1 and E2 then there are open
subsets Ê1 ⊂ E1, Ê2 ⊂ E2, coverings

Ê3

τ1

��~~
~~

~~
~

τ2

��@
@@

@@
@@

Ê1 Ê2

and points ai ∈ Ê i, i = 1, 2, 3, such that τ1(a3) = a1, τ2(a3) = a2, and

(23) F(Ê3, a3) is isomorphic to a subalgebra of F(E i, ai) of finite codimension, i = 1, 2.

From the description of F(E , a) given in [15] for the above-mentioned PDEs, it follows that prop-
erty (23) in the considered cases implies

(24) RF(Ê3, a3) is isomorphic to a subalgebra of RF(E i, ai) of finite codimension, i = 1, 2.

Combining (24) with Theorems 1, 2, isomorphisms (7), (12), and definition (14), we obtain that
if there is a BT between E1 and E2 then A(Ê3, a3) ∼= A(E1, a1) ∼= A(E2, a2).

Then the required statement follows from the description of A(E , a) given in Theorem 3. �

Remark 3. Recently, D. K. Demskoi and V. V. Sokolov [5] obtained the following interesting
results on the role of elliptic curves for the Landau-Lifshitz and Krichever-Novikov equations.
They constructed some algebra A of symmetry recursion operators for these PDEs such that A
is isomorphic to the algebra of polynomial functions on the elliptic curve (15).

Note that this does not provide a coordinate-independent interpretation for the curve, because
the definition of symmetry recursion operators in [5] uses the symbol D−1

x for a specific coordi-
nate x. Also, there is no proof that the algebra A contains all symmetry recurion operators of the
above-mentioned PDEs.

In order to construct recursion operators for the Landau-Lifshitz equation, Demskoi and Sokolov
use the fact that this PDE has a Lax pair with values in a Lie algebra isomorphic to R(e1, e2, e3).
Also, they noticed that, for functions z, y given by (17), one has

z ·R(e1, e2, e3) ⊂ R(e1, e2, e3), y ·R(e1, e2, e3) ⊂ R(e1, e2, e3).
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This observation from [5] gave us the idea to recover the curves by means of intertwining operators
of R(e1, e2, e3).
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