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Abstract. For a half integral weight modular form f we study the signs of the Fourier
coefficients a(n). If f is a Hecke eigenform of level N with real Nebentypus character, and
t is a fixed square-free positive integer with a(t) 6= 0, we show that for all but finitely many
primes p the sequence (a(tp2m))m has infinitely many signs changes. Moreover, we prove
similar (partly conditional) results for arbitrary cusp forms f which are not necessarily
Hecke eigenforms.

1. Introduction

Let f be a non-zero elliptic cusp form of positive real weight κ, with multiplier v and with
real Fourier coefficients a(n) for n ∈ N. Then under quite general conditions, using the
theory of L-functions, it was shown in [KKP] that the sequence (a(n))n∈N has infinitely
many sign changes, i.e., there are infinitely many n such that a(n) > 0 and there are
infinitely many n such that a(n) < 0.

This is particularly interesting when κ is an integer and f is a Hecke eigenform of level
N , and so the a(n) are proportional to the Hecke eigenvalues. For recent work in this
direction we refer to e.g. [KoSe], [IKS], [KSL].

In the present note we shall consider the case of half-integral weight κ = k+1/2, k ∈ N,
and level N divisible by 4. Note that this case is distinguished through the celebrated
works of Shimura [Sh] and Waldspurger [Wa] in the following way. First, for each square-
free positive integer t, there exists a linear lifting from weight k + 1/2 to even integral
weight 2k determined by the coefficients a(tn2) (where n ∈ N), see [Ni], [Sh]. In particular,
through these liftings, the theory of Hecke eigenvalues is the same as that in the integral
weight case. Secondly, if f is a Hecke eigenform, then the squares a(t)2 are essentially
proportional to the central critical values of the Hecke L-function of F twisted with the

quadratic character χt,N = ( (−1)kN2t
·

), see [Wa]. Here F is a Hecke eigenform of weight 2k
corresponding to f under the Shimura correspondence.

These facts motivate the following questions. First, it is natural to ask for sign changes
of the sequence (a(tn2))n∈N where t is a fixed positive square-free integer. We start with
a conditional result here, namely if the Dirichlet L-function associated to χt,N has no
zeros in the interval (0, 1) (Chowla’s conjecture), then the sequence (a(tn2))n∈N –if not
identically zero– changes sign infinitely often (Theorem 2.1). Note that by work of Conrey
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and Soundararajan [CS], Chowla’s conjecture is true for a positive proportion of positive
square-free integers t. If f is a Hecke eigenform, we can in fact prove an unconditional and
much better result on the sign changes of the sequence (a(tp2m))m∈N where p is a prime
not dividing N (see Theorem 2.2).

Secondly, one may ask for sign changes of the sequence (a(t))t, where t runs through the
square-free integers only. This question is more difficult to treat. Numerical calculations
seem to suggest not only that there are infinitely many sign changes, but also that “half”
of these coefficients are positive and “half” of them are negative.

It seems quite difficult to prove any general theorem here, and we can only prove a
result that seems to point into the right direction (see Theorem 2.4): Under the (clearly
necessary) assumption for k = 1 that f is contained in the orthogonal complement of the
space of unary theta functions, there exist infinitely many positive square-free integers t
and for each such t a natural number nt, such that the sequence (a(tn2

t ))t has infinitely
many sign changes. Note that we do not require f to be an eigenform. We in fact prove a
slightly stronger result (Theorem 2.5).

As an immediate application, in the integral weight as well as in the half-integral weight
case, we may consider representation numbers of quadratic forms. Let Q be a positive
definite integral quadratic form, and for a positive integer n let rQ(n) be the number of
integral representations of n by Q. Then the associated theta series is the sum of a modular
form lying in the space of Eisenstein series and a corresponding cusp form. An infinity
of sign changes of the coefficients of the latter (the “error term” for rQ(n)) means that
rQ(n) for infinitely many n is larger (respectively less) than the corresponding Eisenstein
coefficient (the “main term” for rQ(n)).

Exact statements of our results are given in Section 2, while Section 3 contains their
proofs. These are based on the existence of the Shimura lifts, the theory of L-functions,
and on results on quadratic twists proved in [Br]. In Section 4 some numerical examples
are given.

2. Notation and statement of results

We denote by N the set of positive integers. The set of square-free positive integers is
denoted by D. Throughout we write q = e2πiz for z in the upper complex half plane H.

Let k be a positive integer. Let N be a positive integer divisible by 4, and let χ be a
Dirichlet character modulo N . We write χ∗ for the Dirichlet character modulo N given by

χ∗(a) =
(

−4
a

)k
χ(a). Moreover, we write Sk+1/2(N,χ) for the space of cusp forms of weight

k + 1/2 for the group Γ0(N) with character χ in the sense of Shimura [Sh].
If m and r are positive integers and ψ is an odd primitive Dirichlet character modulo r,

then the unary theta function

θψ,m(z) =
∑

n∈Z

ψ(n)nqmn
2

belongs to S3/2

(

N,
(

−4m
·

)

ψ
)

for all N divisible by 4r2m, cf. [Sh]. Let S∗
3/2(N,χ) be the

orthogonal complement with respect to the Petersson scalar product of the subspace of
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S3/2(N,χ) spanned by such theta series. For k ≥ 2 we simply put S∗
k+1/2(N,χ) =

Sk+1/2(N,χ). It is well known that the Shimura lift maps S∗
k+1/2(N,χ) to the space

S2k(N/2, χ
2) of cusp forms of integral weight 2k for Γ0(N/2) with character χ2.

Throughout this section, let f =
∑∞

n=1 a(n)qn ∈ S∗
k+1/2(N,χ) be a non-zero cup form

with Fourier coefficients a(n) ∈ R. In our first result we consider the coefficients a(tn2) for
fixed t ∈ D and varying n.

Theorem 2.1. Let t ∈ D such that a(t) 6= 0, and write χt,N for the quadratic character

χt,N = ( (−1)kN2t
·

). Assume that the Dirichlet L-function L(s, χt,N) has no zeros in the

interval (0, 1). Then the sequence (a(tn2))n∈N has infinitely many sign changes.

For Hecke eigenforms, we prove the following unconditional result.

Theorem 2.2. Suppose that the character χ of f is real, and suppose that f is an eigenform

of all Hecke operators T (p2) with corresponding eigenvalues λp for p coprime to N . Let

t ∈ D such that a(t) 6= 0. Then for all but finitely many primes p coprime to N the

sequence (a(tp2m))m∈N has infinitely many sign changes.

Remark 2.3. Let Kf be the number field generated by the Hecke eigenvalues λp of f .
The number of exceptional primes in Theorem 2.2 is bounded by r where 2r is the highest
power of 2 dividing the degree of Kf over Q.

Next, we consider the coefficients a(tn2) for varying t ∈ D.

Theorem 2.4. For every t ∈ D there is an nt ∈ N such that the sequence (a(tn2
t ))t∈D has

infinitely many sign changes.

In the special case when f is a Hecke eigenform, Theorem 2.4 is an easy consequence of
Theorem 2.2. However, we do not assume this in Theorem 2.4. Notice that the statement
is obviously wrong for the theta functions θψ,m. We shall also prove the following slightly
stronger statement.

Theorem 2.5. Let p1, . . . , pr be distinct primes not dividing N and let ε1, . . . , εr ∈ {±1}.
Write D′ for the set of t ∈ D satisfying ( t

pj
) = εj for j = 1, . . . , r. Then for every t ∈ D′

there is an nt ∈ N such that the sequence (a(tn2
t ))t∈D′ has infinitely many sign changes.

3. Proofs

Here we prove the results of the previous section.

Proof of Theorem 2.1. Put

A(n) :=
∑

d|n

χt,N (d)dk−1a(
n2

d2
t).(3.1)

According to [Sh, Ni], the series

F (z) :=
∑

n≥1

A(n)qn
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is in S2k(N/2, χ
2) and is non-zero due to our assumption a(t) 6= 0. Note that (3.1) is

equivalent to the Dirichlet series identity
∑

n≥1

a(tn2)n−s =
1

L(s− k + 1, χt,N)
· L(F, s)(3.2)

in the range of absolute convergence, where L(F, s) is the Hecke L-function attached to F .
Now suppose that a(tn2) ≥ 0 for all but finitely many n. Then by a classical theorem

of Landau, either the Dirichlet series on the left hand side of (3.2) has a singularity at the
real point of its line of convergence or must converge everywhere.

By our hypothesis, L(s, χt,N ) has no real zeros for <(s) > 0. Hence the series on the left
hand side of (3.2) converges for <(s) > k − 1. In particular, we have

a(tn2) �ε n
k−1+ε (ε > 0).

From (3.1) we therefore deduce that

A(n) �ε

∑

d|n

dk−1
(n

d

)k−1+ε

�ε n
k−1+2ε (ε > 0).

Consequently, the Rankin-Selberg Dirichlet series

RF (s) =
∑

n≥1

A(n)2n−s

must be convergent for <(s) > 2k− 1. However, it is well-known that the latter has a pole
at s = 2k with residue ck‖F‖2, where ck > 0 is a constant depending only on k, and ‖F‖2

is the square of the Petersson norm of F . Since F 6= 0, we obtain a contradiction. This
proves the claim. �

Proof of Theorem 2.2 and Remark 2.3. We use the same notation as in the proof of The-
orem 2.1. Since f is an eigenfunction of T (p2), the function F is an eigenfunction under
the usual Hecke operator T (p) with eigenvalue λp. Since χ2 = 1, the eigenvalue λp is real.
One has

∑

m≥1

a(tp2m)p−ms = a(t)
1 − χt,N (p)pk−1−s

1 − λpp−s + p2k−1−2s
(3.3)

for <(s) sufficiently large, which is the local variant of (3.2).
The denominator of the right-hand side of (3.3) factors as

1 − λpp
−s + p2k−1−2s = (1 − αpp

−s)(1 − βpp
−s)

where αp + βp = λp and αpβp = p2k−1. Explicitly one has

αp, βp =
λp ±

√

λ2
p − 4p2k−1

2
.(3.4)

Now assume that a(tp2m) ≥ 0 for almost all m. Then by Landau’s theorem the Dirichlet
series on the left hand side of (3.3) either converges everywhere or has a singularity at the



SIGN CHANGES OF COEFFICIENTS MODULAR FORMS 5

real point of its abscissa of convergence. The first alternative clearly is impossible, since
the right-hand side of (3.3) has a pole for ps = αp or ps = βp.

Thus the second alternative must hold, and in particular αp or βp must be real. By
Deligne’s theorem, we have

λ2
p ≤ 4p2k−1,

hence in combination with (3.4) we find that

λp = ±2pk−1/2.

In particular we conclude that
√
p is contained in the number field Kf generated by the

Hecke eigenvalues of f .
Since for different primes p1, . . . , pr the degree of the field extension

Q(
√
p1, . . . ,

√
pr)/Q

is 2r, we deduce our assertion. �

Throughout the rest of this section, let f =
∑∞

n=1 a(n)qn ∈ Sk+1/2(N,χ) be an arbitrary
non-zero cup form with Fourier coefficients a(n) ∈ R. For the proof of Theorem 2.4 we
need the following three propositions.

Proposition 3.1. There exist infinitely many n ∈ N such that a(n) is negative.

Proof. This result is proved in [KKP] in much greater generality. For the convenience of
the reader we sketch the argument in the present special case.

Assume that there exist only finitely many n ∈ N such that a(n) < 0. Then the Hecke
L-function of f (which is entire, cf. [Sh]) converges for all s ∈ C by Landau’s theorem.
Consequently,

a(n) �C n
C

for all C ∈ R.
This implies that the Rankin L-function of f also converges for all s ∈ C. Arguing as at

the end of the proof of Theorem 2.1 we find that f vanishes identically, contradicting the
assumption f 6= 0. �

Proposition 3.2. Let p be a prime not dividing N , and let ε ∈ {±1}. Assume that

a(n) ≥ 0 for all positive integers n with (n
p
) = ε. Then f is an eigenform of the Hecke

operator T (p2) with eigenvalue −εχ∗(p)(pk + pk−1).

Proof. We consider the cusp form

f̃ :=
∑

n≥1

(n
p )=ε

a(n)qn.

According to [Br], Section 2 (iii) and (iv), it belongs to the space Sk+1/2(Np
2, χ). By

assumption, f̃ has non-negative real coefficients. Using Proposition 3.1 we find that f̃ = 0.
Consequently, a(n) = 0 for all positive integers n with (n

p
) = ε. Now the assertion follows

from [Br], Lemma 1. �
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Proposition 3.3. Let p be a prime not dividing N , and let ε ∈ {±1}. Assume that f is

contained in S∗
k+1/2(N,χ). Then there exist positive integers n, n′ such that

(

n

p

)

= ε and a(n) < 0,

(

n′

p

)

= ε and a(n′) > 0.

Proof. Suppose that a(n) ≥ 0 for all n ∈ N with (n
p
) = ε. Then, by Proposition 3.2, f

is an eigenform of T (p2) with eigenvalue λp = −εχ∗(p)(pk + pk−1). Using the Shimura
lift, we see that λp is also an eigenvalue of the integral weight Hecke operator T (p) on
S2k(N/2, χ

2). But it is easy to see that any eigenvalue λ of this Hecke operator satisfies
the bound |λ| < pk + pk−1, see e.g. [Ko2] (or use the stronger Deligne bound). We obtain
a contradiction.

Finally, replacing f by −f we deduce the existence of n′ with the claimed properties. �

Proof of Theorem 2.4. Suppose that there exist finitely many square-free t1, . . . , th ∈ N

such that a(tn2) ≤ 0 for all square-free integers t different from tν , ν = 1, . . . , h, and all
n ∈ N. Choose a prime p coprime to N such that

(

tν
p

)

= 1, for all ν = 1, . . . , h.

Then a(n) ≤ 0 for all n ∈ N with (n
p
) = −1. But this contradicts Proposition 3.3. Hence

there exist infinitely many square-free t ∈ N for which there is an nt ∈ N such that
a(tn2

t ) > 0.
Finally, replacing f by −f we deduce the existence of infinitely many square-free t ∈ N

for which there is an nt ∈ N such that a(tn2
t ) < 0. �

Proof of Theorem 2.5. The assertion follows combining Theorem 2.4 and Proposition 3.3.
�

4. Examples

Let f ∈ S∗
k+1/2(N,χ0) be a cusp form with trivial character χ0, square-free level, and

real coefficients a(n). We suppose that f is contained in the plus space, that is, a(n) = 0
when (−1)kn ≡ 2, 3 (mod 4), see [KZ], [Ko1]. For a positive number X, we define the
quantity

R+
tot(f,X) =

#{n ≤ X; a(n) > 0}
#{n ≤ X; a(n) 6= 0} .

Moreover, in view of Waldspurger’s theorem, it is natural to consider the coefficients a(d)
especially for fundamental discriminants d. Therefore we put

R+
fund(f,X) =

#{d ≤ X; d fundamental discriminant and a(d) > 0}
#{d ≤ X; d fundamental discriminant and a(d) 6= 0} .
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The numerical experiments below suggest that

lim
X→∞

R+
tot(f,X) = 1/2, lim

X→∞
R+
fund(f,X) = 1/2.

In our first example, we consider the Delta function ∆(z) = q
∏

n≥1(1 − qn)24. A cusp
form of weight 13/2 of level 4 in the plus space corresponding to ∆ under the Shimura lift
is given by

δ(z) =
1

8πi

(

2E4(4z)θ
′(z) − E ′

4(4z)θ(z)
)

∈ S+
13/2(4, χ0),

see [KZ]. Here E4(z) = 1 + 240
∑

n≥1 σ3(n)qn is the classical Eisenstein series of weight 4

and θ(z) =
∑

n∈Z
qn

2

. The Fourier expansion of δ starts as follows:

δ(z) = q − 56q4 + 120q5 − 240q8 + 9q9 + 1440q12 − 1320q13 − 704q16 − 240q17 + . . . .

Computational data for δ is listed in Table 1.

Table 1. The proportion of positive coefficients of δ

X 10 102 103 104 105 106

R+
tot(δ,X) 0.600 0.520 0.518 0.504600 0.499600 0.499822

R+
fund(δ,X) 0.667 0.548 0.515 0.501643 0.500016 0.499836

In our second example, we consider the cusp form G = η(z)2η(11z)2 of weight 2 and level
11 corresponding to the elliptic curve X0(11). Here η = q1/24

∏

n≥1(1− qn) is the Dedekind
eta function. A cusp form of weight 3/2 and level 44 in the plus space corresponding to G
under the Shimura lift is

g(z) =
(

θ(11z)η(2z)η(22z)
)

|U4 ∈ S+
3/2(44, χ0),

see [Du] §2. Here U4 denotes the usual Hecke operator of index 4. The Fourier expansion
of g starts as follows:

g(z) = q3 − q4 − q11 − q12 + q15 + 2q16 + q20 − q23 − q27 − q31 + q44 + q55 + . . . .

Computational data for g is listed in Table 2.

Table 2. The proportion of positive coefficients of g

X 10 102 103 104 105 106

R+
tot(g,X) 0.500 0.500 0.500 0.496042 0.501022 0.499544

R+
fund(g,X) 1.000 0.500 0.503 0.491968 0.500861 0.499589
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