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CRITERIA FOR EQUIDISTRIBUTION OF SOLUTIONS
OF MATRIX EQUATIONS

TATIANA BANDMAN, BORIS KUNYAVSKĬI

Abstract. We study equidistribution of solutions of word equa-
tions of the form w(x, y) = g in the family of finite groups SL(2, q).
We provide criteria for equidistribution in terms of the trace poly-
nomial of w. This allows us to get an explicit description of certain
classes of words possessing the equidistribution property and show
that this property is generic within these classes.

1. Introduction

Equidistribution of solutions of various (systems of) diophantine
equations has been remaining one of central topics in number theory,
arithmetic geometry, ergodic theory. It is not our goal to review vast lit-
erature in the area. The reader interested in evolution of ideas in this
fascinating domain of mathematics may find instructive to overview
materials of ICM’s, starting from the foundational address by Lin-
nik (Stockholm, 1962) until impressive contributions of the past two
decades: Margulis, Sarnak (Kyoto, 1990); Dani, Ratner (Zürich, 1994);
Eskin (Berlin, 1998); Ullmo (Beijing, 2002); Einsiedler–Lindenstrauss,
Michel–Venkatesh, Tschinkel (Madrid, 2006); Oh, Shah (Hyderabad,
2010). Each of the approaches mentioned above assumes its own un-
derstanding of the notion of equidistribution. What most of them share
in common is focusing on certain group actions arising in a natural way
and allowing one to combine methods of number theory and dynamical
systems with group-theoretic considerations.

Let us describe the circle of problems we are interested in. First, we
want to study polynomial matrix equations. In the most general form,
one can consider equations of the form P (A1, . . . , Am, X1, . . . , Xd) =
0 where n × n-matrices A1, . . . , Am with entries from a ring R are
given (both n and R are fixed, X1, . . . , Xd are unknowns, and P is
an associative noncommutative polynomial). We, however, restrict our
attention to a particular class of equations of the form P (X1, . . . , Xd) =
A where A is a fixed matrix, X1, . . . , Xd are unknowns, and a solution
must belong to a fixed subset M ⊂ M(n,R)d. There are several cases
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where such an equation has a solution for a “generic” A (here R = K
is an algebraically closed field):

• M = G(K)d where G(K) is the group of rational points of
a connected semisimple algebraic group and P = w 6= 1 is
a nontrivial word (=monomial in X1, X

−1
1 , . . . , Xd, X

−1
d [Bo],

[La]);
• M = gd where the Lie algebra g of a semisimple algebraic
K-group and a Lie polynomial P satisfy some additional as-
sumptions [BGKP];

• M = M(n,K)d and P satisfies some additional assumptions
[KBMR].

If R = Z, in all these cases we may interpret the situation as follows:
the generic fibre of the morphism P : Md → M of Z-schemes, induced
by the polynomial P , is a dominant morphism of Q-schemes.

One can ask whether the situation is similar in special fibres of the
morphism P . As the notion of dominance does not make much sense
for finite sets, we would like to formalize the following phenomena:

• all maps Pq : (Mq)
d →Mq have “large” images;

• the number #{(A1, . . . , Ad) ∈ (Mq)
d : Pq(A1, . . . , Ad) = A}

(where q = pn; p = 2, 3, 5, . . . ; A runs over a “large” subset of
Mq) is, in some reasonable sense, almost independent of A.

(Here Mq denotes the set of Fq-points of the fibre of the scheme M
at q, and Pq is the fibre of the morphism P at q.)

Roughly, the conditions formulated above mean that the equations
P (X1, . . . , Xd) = A, with the right-hand side running, for each q, over
“almost whole” set Mq, have many and almost equally many solu-
tions in (Mq)

d, respectively. We shall call such morphisms p-almost
equidistributed, or almost equidistributed (depending on whether p in
the second condition is or is not fixed); the word “almost” will often
be dropped. See Section 2 for precise definitions.

According to [La], [LS], the word map is “fibrewise dominant” for
any w 6= 1 and any Chevalley group G (i.e., the images of the maps
Pq are “large”). Our main result (Theorem 2.14) provides a necessary
and sufficient condition on the word w in two variables under which
the corresponding morphism w : SL2× SL2 → SL2 is almost equidis-
tributed. This result can be viewed, on the one hand, as a refinement
(in the SL2-case) of equidistribution theorems of [LP], [LST] on general
words w and general Chevalley groups G, and, on the other hand, as a
generalization of equidistribution theorems for some particular words:
[GS] (commutator words on any G), [BGG] (Engel words on SL2), [BG]
(positive words on SL2).

Acting in the spirit of [GS], we deduce a criterion for w : SL2× SL2 →
SL2 to be almost measure-preserving.
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Note that certain word maps are measure-preserving in a much stron-
ger sense. Namely, if w is primitive, i.e., is a part of a basis of the free
d-generated group Fd, then the corresponding word map Gd → G is
measure-preserving for every finite group G, i.e., all fibres of this map
have the same cardinality. Only primitive words possess this property,
this was proven for d = 2 in [Pu] and recently extended to arbitrary
d by Puder and Parzanchevski. It is well known (see, e.g., [MS]) that
primitive words are asymptotically rare (negligible, in the terminol-
ogy of [KS]). We are looking for criteria for equidistribution for more
general words.

The criteria we are talking about are formulated in terms of the
trace polynomial of the word w. It turns out (see our main results in
Section 2; they are proved in Section 3) that “good” (equidistributed,
measure-preserving) words are essentially those whose trace polyno-
mial cannot be represented as a composition of two other polynomials.
Since a “bad” trace polynomial turns out to be the trace polynomial
of some power word (see Section 4), we conclude (see Section 5) that
within certain natural classes of words a “random” word is “good”
(“good” words, i.e., those whose trace map is p-equidistributed for all
but finitely many primes p, form an exponentially generic set, in the
sense of [KS]).

2. Main results

We start with precise definitions of notions described in the intro-
duction. All schemes under consideration are assumed geometrically
integral and of finite type.

We will follow the approach to equidistribution adopted in [GS]:

Definition 2.1. (cf. [GS, §3]) Let f : X → Y be a map between finite
non-empty sets, and let ε > 0. We say that f is ε-equidistributed if
there exists Y ′ ⊆ Y such that

(i) #Y ′ > #Y (1− ε);
(ii) |f−1(y)− #X

#Y
| < ε#X

#Y
for all y ∈ Y ′.

Our setting is as follows. Let a family of maps of finite sets Pq : Xq →
Yq be given for every q = pn. Assume that for all sufficiently large q
the set Yq is non-empty. For each such q take y ∈ Yq and denote

Py = {x ∈ Xq : Pq(x) = y}
(Py may be empty).

Definition 2.2. Fix a prime p. With the notation as above, we say
that the family Pq : Xq → Yq, q = pn, is p-equidistributed if there exist
a positive integer n0 and a function εp : N → N tending to 0 as n→∞
such that for all q = pn with n > n0 the set Yq contains a subset Sq

with the following properties:



4 BANDMAN, KUNYAVSKĬI

(i) #Sq < εp(q) (#Yq);

(ii) |Py − #Xq

#Yq
| < εp(q)

#Xq

#Yq
for all y ∈ Yq \ Sq.

Remark 2.3. Definition 2.2 means that for q = pn large enough, the
map Xq → Yq is εp(q)-equidistributed, in the sense of Definition 2.1.

Definition 2.4. We say that the family Pq : Xq → Yq is equidistributed
if it is p-equidistributed for all p and there exists a function ε : N → N
tending to 0 as n → ∞ such that for every p and every q = pn large
enough, we have εp(q) ≤ ε(q).

Remark 2.5. Typically, the situation of Definitions 2.2 and 2.4 arises
for the family of special fibres of a morphism P : X → Y of Z-schemes
(or, more generally, of O-schemes where O is the ring of integers of
a global field) when Xq = Xq(Fq), Yq = Yq(Fq). In this situation we
shorten our terminology and say that the morphism P is p-equidistri-
buted (or equidistributed). Note that since Y is assumed geometrically
integral, the condition Yq 6= ∅ holds automatically if q is large enough.

We have adopted a slightly more flexible setting in Definitions 2.2
and 2.4 which allows broader applications, see Remark 2.16 below.

Let us now consider the case where Yq = Gq is a Chevalley group
over Fq, Xq = (Gq)

d is a direct product of its d copies (d ≥ 2 is
fixed), and Pq = Pw,q : (Gq)

d → Gq is the morphism induced by some
fixed word w ∈ Fd: to each d-tuple (g1, . . . , gd) we associate the value
w(g1, . . . , gd).

In the present paper we focus our attention on a particular case
d = 2, Gq = SL(2, q). Accordingly, we say that w is equidistributed (or
p-equidistributed) if so is the family of maps Pw,q : SL(2, q)×SL(2, q) →
SL(2, q) (or, in other words, if so is the morphism Pw : SL2,Z× SL2,Z →
SL2,Z of group schemes over Z).

In such a situation, there is a natural way to associate to a word
w = w(x, y) ∈ F2 its trace polynomial. This construction goes back to
the 19th century (Vogt, Fricke, Klein), see, e.g., [Ho] for a modern expo-
sition: we embed F2 into SL(2,Z) and denote by tr its trace character,
then the trace of w ∈ F2 can be expressed as tr(w) = fw(s, u, t) where
fw ∈ Z[s, u, t] is an integer polynomial in three variables s = tr(x),
u = tr(xy), t = tr(y). We denote by the same letters the induced
morphisms of affine Z-schemes

fw : A3
s,u,t = Spec Z[s, u, t] → A1

z = Spec Z[z],

of affine Fp-schemes:

fw,p : Spec Fp[s, u, t] → Spec Fp[z],

and also maps of sets of Fp-points:

fw,p : A3
s,u,t(Fp) → A1

z(Fp)
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(here AN
x1,...,xN

stands for affine space with coordinates x1, . . . , xN).
Our criteria for equidistribution of w will be formulated in terms of

the polynomial fw. Some recollections and definitions on polynomials
are on order.

Definition 2.6. Let F be a finite field. We say that h ∈ F[x] is a
permutation polynomial if the set of its values {h(z)}z∈F coincides with
F.

Theorem 2.7. [LN, Theorem 7.14] Let q = pn. A polynomial h ∈ Fq[x]
is a permutation polynomial of all finite extensions of Fq if and only if

h = axpk
+ b, where a 6= 0 and k is a non-negative integer.

The following notions are essential for our criteria.

Definition 2.8. Let F be a field. We say that a polynomial P ∈
F [x1, . . . , xn] is F -composite if there exist Q ∈ F [x1, . . . , xn], degQ ≥ 1,
and h ∈ F [z], deg h ≥ 2, such that P = h ◦Q. Otherwise, we say that
P is F -noncomposite.

Note that if E/F is a separable field extension, it is known [AP,
Theorem 1 and Proposition 1] that P is F -composite if and only if P
is E-composite. In particular, working over perfect ground fields, we
may always assume, if needed, that F is algebraically closed.

Definition 2.9. Let P ∈ Z[x1, . . . , xn]. Fix a prime p.

• We say that P is p-composite if the reduced polynomial Pp ∈
Fp[x1, . . . , xn] is Fp-composite. Otherwise, we say that P is p-
noncomposite.

• We say that a p-composite polynomial P is p-special if, in the
notation of Definition 2.8, Pp = h ◦ Q where h ∈ Fp[x] is a
permutation polynomial of all finite extensions of Fp.

Definition 2.10. We say that a polynomial P ∈ Z[x1, . . . , xn] is almost
noncomposite if for every prime p it is either p-noncomposite or p-
special. Otherwise we say that P is very composite.

Remark 2.11. If a polynomial P ∈ Z[x1, . . . , xn] is Q-noncomposite,
it is p-noncomposite for all but finitely many primes p [BDN, 2.2.1]. If
P ∈ Z[x1, . . . , xn] is Q-composite, it is very composite.

Example 2.12. Consider the family of Dickson polynomials Dn(x, a).
Denote Dn(x) = Dn(x, 1). We have Dn(x) = 2Tn(x/2) where Tn(x)
is the nth Chebyshev polynomial. If n is not prime then Dn is very
composite (see, e.g., Section 4 below). If n = p is prime, then Dn is
almost noncomposite and p-special since Dp(x) = xp in Fp[x].

We can now formulate our main results.

Theorem 2.13. Let w ∈ F2. The morphism Pw : SL2,Z× SL2,Z →
SL2,Z is p-equidistributed if and only if the trace polynomial fw is either
p-noncomposite or p-special.
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Theorem 2.14. Let w ∈ F2. The morphism Pw : SL2,Z× SL2,Z →
SL2,Z is equidistributed if and only if the trace polynomial fw is almost
noncomposite.

For a given word w ∈ F2, let us now consider the family of groups
Ĝq = PSL(2, q) and the corresponding word maps wq : Ĝq × Ĝq → Ĝq.

Proposition 2.15. If the morphism Pw : SL2,Z× SL2,Z → SL2,Z is
equidistributed (or p-equidistributed), then so is the family of maps

wq : Ĝq × Ĝq → Ĝq.

Remark 2.16. This proposition partially explains our flexibility in
Definitions 2.2 and 2.4: since PSL(2,Z) does not exist as a group
scheme, the family wq cannot arise as the family of fibres of a word
morphism of Z-schemes.

3. Proofs

Fix a word w in F2. We slightly change the general notation, and for
a group Γ and g ∈ Γ we denote

Wg,Γ = {(x, y) ∈ Γ× Γ : w(x, y) = g}.
We will omit the subscript Γ when no confusion may arise. For Γ =
Gq = SL(2, q) we denote this set by Wg,q (or just Wg).

Since #Gq = q(q2 − 1), we will replace, if needed, #Gq by q3 in all
asymptotic estimates.

Proof of Theorem 2.13. Slightly rephrasing Definition 2.2, we are going
to prove that there exist positive numbers n0, A, B, α, β, all indepen-
dent of g ∈ Gq, such that for every q > q0 = pn0 there exists Sq ⊂ Gq

with the following properties:

(i) #Sq/q
3 < Aq−α;

(ii) for every g ∈ Tq := Gq \ Sq we have

∣∣∣∣#Wg,q

q3
− 1

∣∣∣∣ < Bq−β.
(1)

Indeed, this is enough for proving that w is p-equidistributed: in Defi-
nition 2.2 one can then take εp(q) := max{Aq−α, Bq−β}.

Towards this end, we will use the following commutative diagram:

Gq ×Gq
w−−−→ Gq

π

y ytr

A3
s,u,t(Fq)

fw−−−→ A1
z(Fq)

(2)

where

π(x, y) = (tr(x), tr(xy), tr(y)). (3)

“Typical” fibres of the maps in this diagram should consist of O(q3)
elements (for w and π), and of O(q2) elements (for tr and fw). Below
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we will show how to attain this with an error term of order O(q−β) by
throwing away O(q−α) elements.

We will use an explicit Lang–Weil estimate of the following form: if
H ⊂ A3

Fq
is an absolutely irreducible hypersurface of degree d, then

|#H(Fq)− q2| ≤ (d− 1)(d− 2)q3/2 + 12(d+ 3)4q

(see, e.g., [GL, Remark 11.3]), or, equivalently, #H(Fq) = q2(1 + r1)
with

|r1| ≤ q−1/2[(d− 1)(d− 2) + 12(d+ 3)4q−1/2]. (4)

(The remainder term r1 = r1(H), as well as all remainder terms in
the sequel, may depend on the hypersurface under consideration. To
ease the notation, we do not include this dependence in formulas.)

For d > 4 and q > 16, equation (4) gives

|r1| < q−1/2(d2 + 12 · 24d4/4) < d4q−1/2(1/d2 + 48) < 50d4q−1/2. (5)

Moreover, if d > 4 and q > 4(50d4)2, then |r1| < 1/2. This remains
true also for d ≤ 3. Without loss of generality, we may and will assume
that the latter inequality is valid.

Step 1. Suppose that the polynomial fw is p-noncomposite.

Denote the degree of fw by d, the degree of the reduced polyno-
mial fw,p is then at most d. Consider the corresponding reduced map

fw,p : A3
s,u,t(Fp) → A1

z(Fp).
Denote by σ(fw,p) the spectrum of fw,p, i.e., the set of all points

z ∈ A1
z(Fp) such that the hypersurface Hz ⊂ A3

s,u,t(Fp), defined by the
equation fw(s, u, t) = z, is reducible. By a generalized Stein–Lorenzini
inequality [Na], this set contains at most d−1 points. The same is true
for each σq(fw) := σ(fw,p)∩Fq. Without loss of generality, we may and
will assume that ±2 are inside σq(fw) (by enlarging #σq(fw) to d+ 1).

Let z ∈ A1
z(Fp)\σ(fw,p). Then Hz is an irreducible hypersurface and

hence (4), (5) are valid for Hz.

Lemma 3.1. Let H ⊂ A3
s,u,t(Fp) be a hypersurface of degree d. Let

D(s, u, t) = (t2 − 4)(s2 − 4)(s2 + t2 + u2 − ust− 4), and let ∆ ⊂ A3
s,u,t

be defined by the equation D = 0. Assume that H 6⊂ ∆. Then (see (3))
we have #π−1(H)(Fq) = #H(Fq)q

3(1 + r2), where |r2| < 157d/q.

Proof. We use the following fact (see, [BG, Proposition 7.2]):

#π−1(s, u, t)(Fq) = q3(1 + δ1(s, u, t)), |δ1| ≤ 3/q,

if (s, u, t) 6∈ ∆(Fq), and

#π−1(s, u, t)(Fq) ≤ 2q3(1 + 1/q)

if (s, u, t) ∈ ∆(Fq).
Denote H ∩∆ by H∆. By Bezout’s theorem, this is a curve of degree

at most 7d, hence #H∆(Fq) ≤ 7d(q + 1).
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We have

#π−1(H)(Fq) = #π−1(H \H∆)(Fq) + #π−1(H∆)(Fq)

≤ #(H \H∆)(Fq)q
3(1 + α1) + #H∆(Fq)q

3α2,

where |α1| ≤ 3/q and |α2| ≤ 2(1 + 1/q) ≤ 3. Thus

#π−1(H)(Fq) = #H(Fq)q
3

[(
1− #H∆(Fq)

#H(Fq)

)
(1 + α1) +

#H∆(Fq)

#H(Fq)
α2

]
= #H(Fq)q

3(1 + r2)

with

|r2| ≤
#H∆(Fq)

#H(Fq)
(1 + |α1|+ |α2|) + |α1|

≤ 7d(q + 1)

q2(1 + r1)
(1 + |α1|+ |α2|) + |α1|

≤ 7d · 2q · (11/2)

q2/2
+

3

q
≤ 157d

q
.

�

Let S ′q be the set of all z ∈ Fq such that Hz ⊂ ∆ (see Lemma 3.1).
This set is finite, and #S ′q ≤ 7 since ∆ is of degree 7 and thus cannot
contain more than 7 irreducible components.

Let τ : Gq → A1 be the trace map, τ(g) = tr(g). We have #τ−1(z) ≤
q(q + 1).

We define S̃q := σq(fw) ∪ S ′q and Sq := τ−1(S̃q). By construction,

#Sq ≤ (d+ 8)q(q + 1) ≤ q3 2(d+ 8)

q
.

According to Lemma 3.1, for any z ∈ Tq we have

#π−1(Hz)(Fq) = #Hz(Fq)q
3(1 + r2) = q5(1 + r1)(1 + r2).

On the other hand, all g ∈ Gq with tr(g) = z ∈ Tq are conjugate, and
there are #τ−1(z) = q(q± 1) such elements. Hence for every such g we
have (see diagram(2))

#Wg =
#π−1(Hz)(Fq)

q(q ± 1)
=
q5(1 + r1)(1 + r2)

q(q ± 1)
= q3(1 + r3)

with

|r3| ≤ 2(|r1|+ |r2|+ |r1r2|) ≤ 2|r1|+ 3|r2|.
Recall that q ≥ 4(50d4)2, hence

|r3| ≤ 2 · 50d4q−1/2 + 3 · 157d/q ≤ q−1/2(100d4 + 1).

So for q > q0 = 4(50d4)2, in equation (1) we can take

A = 2(d+ 8), α = 1, B = 100d4 + 1, β = 1/2. (6)

Thus fw is p-equidistributed.
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Remark 3.2. Note that q0 and all numbers in (6) depend only on w
(through d, the degree of the trace polynomial fw) and not on p.

Step 2. Suppose that the polynomial fw is p-composite.
This means that fw(s, u, t) = R(Q(s, u, t)) where R ∈ Fp[x] is a

polynomial in one variable of degree d1 ≥ 2 and Q ∈ Fp[s, u, t] is a
noncomposite polynomial in three variables.

Consider three separate cases.

Case 1. fw is p-special, i.e., R is a permutation polynomial of all
fields Fq, q = pn. For any z ∈ Fq there is a unique x ∈ Fq such that the
hypersurfaceHz ⊂ A3, defined by the equation fw(s, u, t) = z, coincides
with the hypersurface H̃x, defined by the equation Q(s, u, t) = x. Since
Q is noncomposite, Step 1 implies that w is p-equidistributed in this
case.

Remark 3.3. In this case, the parameters q0, A, B, α, β also do not
depend on p. They depend on the word w, this time through the degree
of Q which is less than the degree of the trace polynomial of w.

Case 2. R is not a permutation polynomial for Fq, q = pn. Then it
is not a permutation polynomial for any extension Fqm of Fq.

According to [Wa], [WSC], there exists a subset Um ⊂ A1
z(Fqm) such

that

• #Um ≥ (qm − 1)/d1;
• R−1(s)(Fqm) = ∅ for every s ∈ Um.

It follows that f−1
w (s)(Fqm) = ∅ for every m and every s ∈ Um. So the

polynomial π ◦ fw also omits at least (qm − 1)/d1 values, and hence so
does w ◦ tr (see diagram (2)), i.e., w(Gqm ×Gqm) contains no elements
g ∈ Gqm with tr(g) ∈ Um. For every s ∈ Fqm , s 6= ±2, the group Gqm

contains at least (qm)2 − qm elements with trace s. Thus w omits at
least

qm(qm − 1)[(qm − 1)/d1 − 2] ≈ (qm)3/d1

values. Hence w is not p-equidistributed.

Case 3. R is a permutation polynomial for Fq but not for an exten-
sion Fqm . Then we can start with Fqm and proceed as in Case 2.

Theorem 2.13 is proved. �

Proof of Theorem 2.14. If fw is almost noncomposite, then, according
to Remarks 3.2 and 3.3, the word is equidustributed.

If fw is very composite, then for some p it is p-composite but not
p-special and, by Theorem 2.13, it is not p-equidistributed. Hence it is
not equidistributed. �
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Proof of Proposition 2.15. We can assume that q is odd. Consider the
commutative diagram

Gq ×Gq
w1 //

ρ′

��

κ

##GG
GG

GG
GG

GG
Gq

ρ

��

Ĝq × Ĝq

w2 // Ĝq

where ρ and ρ′ are natural projections, and w1 and w2 correspond to
the map (x, y) → w(x, y) on Gq ×Gq and on Ĝq × Ĝq, respectively.

Suppose w is p-equidistributed with respect to {Gq} so that for q > q0
we have inequalities (1) with parameters A, B, α, β. Define Ŝq :=

ρ(Sq), T̂q := Ĝq \ Ŝq.

For any element ĝ ∈ Ĝq the set ρ−1(ĝ) contains precisely two elements
g1, g2 of Gq. Therefore,

• #Ŝq = #Sq/2 = #Gqεp(q)/2 = #Ĝqεp(q);
• Wĝ,Ĝq

= ρ′(Wg1,Gq ∪Wg2,Gq);

• #Wĝ,Ĝq
= (#Wg1,Gq + #Wg2,Gq)/4;

• for every ĝ ∈ T̂q we have

#Wĝ,Ĝq
= (#Wg1,Gq+#Wg2,Gq)/4 = #Gq(1+εp(q))/2 = #Ĝq(1+εp(q)).

Hence, w is p-equidistributed on {Ĝ}q with the same parameters as
on {Gq}. �

Remark 3.4. In [GS] there is a discussion on relationship between two
close properties of word maps on finite groups: be equidistributed and
preserve the uniform measure. In our context, the proof of Theorem
2.14 allows us to formulate this relationship explicitly.

Corollary 3.5. Assume that a word w has an almost noncomposite
trace polynomial fw of degree d. Let q > 4(50d4)2, and let ε(d, q) =
3(100d4 + 1)q−1/2. Let G = SL(2, q) or G = PSL(2, q). Then the word
map w : G×G→ G is ε(d, q)-measure-preserving in the sense of [GS].

Proof. According to (6), the word map w is ε(d, q)/3-equidistributed,
in the sense of Definition 2.1, and hence ε(d, q)-measure-preserving, by
[GS, Proposition 3.2]. �

4. Composite trace polynomials

Our goal in this section is to describe words in two variables whose
trace polynomial is composite.

Throughout this section Tn(x) stands for the nth Chebyshev poly-
nomial, and Dn(x) = 2Tn(x/2) for the nth Dickson polynomial. It
is well known (see, e.g., [LMT, (2.2)]) that this polynomial satisfies
Dn(x + 1/x) = xn + 1/xn and is completely determined by this func-
tional equation.
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We always assume that w(x, y) is written in the form

w = xa1yb1 . . . xarybr (7)

and is reduced (all integers ai, bj are nonzero). We call the number r
complexity of w.

Definition 4.1. We say that two reduced words w = xa1yb1 . . . xarybr

and v = xc1yd1 . . . xcr′ydr′ , written in form (7), are trace-similar if r =
r′, the array {|ai|} is a rearrangement of {|ci|}, and the array {|bi|} is
a rearrangement of {|di|}.

We start with a list of facts we are going to use:

(i) Any two decompositions of a polynomial f(x) in one variable
into noncomposite polynomials

f = ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕr = ψ1 ◦ ψ2 ◦ · · · ◦ ψr′

contain the same number of polynomials: r = r′; the degrees of
polynomials in one decomposition are the same as those in the
other, except, perhaps, for the order in which they occur [Ri].

(ii) Let n = p1p2 . . . pk be a prime decomposition of n. Then we
have Tn = Tp1 ◦ · · · ◦ Tpk

with any order of p1, p2, . . . , pk, and
this is the only decomposition of Tn up to composition with
linear polynomials [Ri].

(iii) Assume that two reduced words w = xa1yb1 . . . xarybr and v =
xc1yd1 . . . xcr′ydr′ , written in form (7), have the same trace poly-
nomial fw(s, u, t) = fv(s, u, t). Then w and v are trace-similar
[Ho].

Example 4.2. The words w = xy and v = xy−1 are trace-similar but
have different trace polynomials: tr(w) = u, tr(v) = st− u.

The words x2y−1xy and x2yxy−1 are trace-similar, have the same
trace polynomial but are not conjugate in F2 [Ho].

Further on we will work over the field C.

Proposition 4.3. Let w(x, y) = xa1yb1 . . . xarybr , A =
∑
ai, B =∑

bi. Assume that either A 6= 0 or B 6= 0. Assume that the trace
polynomial fw(s, u, t) is C-composite, fw(s, u, t) = h(q(s, u, t)), where
q ∈ C[s, u, t] and h ∈ C[z], deg h ≤ 2. Then h = Dd(z) for some d ≥ 2.

Proof. Taking y = id, x = id, x = y−1, and x = y, we get, respectively
(taking into account that tr(g−1) = tr(g)):

fw(s, s, 2) = h(q(s, s, 2)) = D|A|(s),

fw(2, t, t) = h(q(2, t, t)) = D|B|(t),

fw(s, 2, s) = h(q(s, 2, s)) = D|A−B|(s),

fw(s, s2 − 2, s) = h(q(s, s2 − 2, s)) = D|A+B|(s).
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These decompositions, together with property (ii) and the condition
deg h ≥ 2, imply that there is a common divisor d ≥ 2 of all the non-
zero numbers from the list A, B, A − B, A + B such that h(z) =
Dd(z). �

Proposition 4.4. Let w be a reduced word of complexity r written
in form (7). If its trace polynomial fw is C-composite, fw(s, u, t) =
h(q(s, u, t)) where q ∈ C[s, u, t] and h(x) = µxn + . . . is a polynomial
in one variable of degree n, then r = nm and w is trace-similar to
v(x, y)n where v is a word of complexity m.

Proof. First note that the trace polynomial of wi(x, y) = xaiybi is linear
in u: fwi

(s, u, t) = ugai,bi
(s, t) + hai,bi

(s, t), see [BG]. Moreover,

Pw(s, u, t) =
r∑

k=0

ukGk(s, t) and Gr(s, t) =
r∏

k=1

gai,bi
(s, t). (8)

All polynomials belong to Z[s, u, t].
We need the following lemma.

Lemma 4.5. Let w′(x, y) = xayb so that fw′(x, y) = uga,b(s, t) +
ha,b(s, t). Then

ga,b(s, s) =
D|a+b|(s)−D|a−b|(s)

s2 − 4
, (9)

ha,b(s, s) =
(s2 − 2)D|a−b|(s)− 2D|a+b|(s)

s2 − 4
. (10)

Proof of Lemma 4.5. We have

trxax−b = 2ga,b(s, s) + ha,b(s, s) = D|a−b|(s), (11)

trxaxb = (s2 − 2)ga,b(s, s) + ha,b(s, s) = D|a+b|(s) (12)

Computing ga,b(s, s), ha,b(s, s) from (11) and (12), we obtain (9) and
(10). �

We now continue the proof of the proposition.
According to (9), we have

ga,b(s, s) =
(cos((a+ b)ϕ)− (cos((a− b)ϕ)

2(cos2(ϕ)− 1)
= −sin(aϕ) sin(bϕ)

sin2(ϕ)

where 2 cos(ϕ) = s.

Let q(s, u, t) =
m∑

k=0

ukHk(s, t). Then

fw(s, u, t) = h(q(s, u, t)) = µumnHn
m(s, t) + Φ(u, s, t)

where degu Φ(u, s, t) < mn. Hence r = nm and µHn
m(s, t) = Gr(s, t) =

r∏
i=1

gai,bi
(s, t) (cf.(8)).
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Therefore,

µHn
m(s, s) = (−1)r

r∏
i=1

sin(aiϕ) sin(biϕ)

(sin2(ϕ))r
.

We may assume that |a1| = max{|ai|}. Choose N > max{|bi|} and
consider the word wN(x, y) = w(xN , y). Then

fwN
(s, t) = fw(DN(s), α(s, u, t), t) = h(q(DN(s), α(s, u, t), t))

where α(s, u, t) = tr(xNy) = ugN,1(s, t) + hN,1(s, t). Thus

q(DN(s), α(s, u, t), t) =: q1(s, u, t) =
m∑

k=0

ukFk(s, t)

and

fwN
(s, u, t) = h(q1(s, u, t)) = µumnF n

m(s, t) + Φ1(u, s, t),

where degu Φ1(u, s, t) < mn. Hence, since the words w and wN have
the same complexity r, we have

F n
m(s, s) = (−1)r

r∏
i=1

sin(Naiϕ) sin(biϕ)

(sin2(ϕ))r
. (13)

At the point ϕ = π
Na1

, the order of zero of the product is equal to

the number λ(a1) of appearances of |a1| in the list |a1|, . . . , |ar|. Thus
λ(a1) = nm1 where m1 is the order of the zero of Fm(s, s) at the point
s = 2 cos(π/(Na1)).

We may now divide (13) by (sin(Na1ϕ))nm1 and repeat the same
argument for |ai| = max{|aj| : |aj| 6= |a1|}.

Repeating this procedure, we conclude that there are a1, . . . , aν such
that the list |a1|, . . . , |ar| contains nm1 times |a1|, . . . , nmν times |aν |,
and nothing else. Note that

ν∑
k=1

nmk = r = nm, since altogether we

have r elements in the list.
In a similar way, looking at the word w(x, yM) for M big enough,

we conclude that there are b1, . . . , bµ such that the list |b1|, . . . , |br|
contains np1 times |b1|, . . . , npµ times |bµ|, and nothing else. Note that
µ∑

k=1

npk = r = nm.

Since
ν∑

k=1

mk =
µ∑

k=1

pk = m, we may define a word

v(x, y) = xτ1yκ1 . . . xτmyκm

of complexity m in such a way that among |τi| there will be mi of |ai|,
1 ≤ i ≤ ν, and among |κi| there will be pi of |bi|, 1 ≤ i ≤ µ.

By construction, vn(x, y) is trace-similar to w(x, y) which completes
the proof of the proposition. �
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Proposition 4.6. Let w(x, y) = xayb . . . be a reduced word of complex-
ity n such that fw(s, u, t) = Dn(q(s, u, t)) for some q. Then w(x, y) =
(xayb)n.

Proof. According to Proposition 4.4, every such w is the product of
syllables x±ay±b.

Assume that by cyclic permutation and exchanging roles of x and y
one can modify w to a word v = v1 . . . vn, vk = x±ay±b, k = 1, . . . , n,
containing repeated syllables, i.e., such that for some i < j we have
vi = vj. Then we consider the word

ṽ = vi . . . vj . . . vnv1 . . . vi−1.

The word ṽ will be called a convenient form of w. Note that either
fw(s, u, t) = fṽ(s, u, t) or fw(s, u, t) = fṽ(t, u, s). If this procedure is
impossible, we say that w is already in a convenient form. First consider
the case where a = b = 1.

Lemma 4.7. Let w(x, y) = xy . . . x±1y±1 = w1 . . . wn be a word in a
convenient form, where wi are syllables of the form x±1y±1.

Let u = tr(xy), s = tr(x), t = tr(y). Then

fw(s, u, t) = εun − εmstun−1 + · · ·+ g(s, t)

is a polynomial of degree n in u such that

• the coefficient at un is ε = ±1;
• m is a non-negative integer, and m = 0 if and only if w = (xy)n;
• the coefficient at un−1 is εmst;
• the coefficient fw(s, 0, t) at u0 is a polynomial g in s, t of degree

strictly less than 2n.

It is important here that we defined u as the trace of the first syllable.

Proof of Lemma 4.7. First consider the case when there are no re-
peated syllables.

n=1: tr(xy) = u.
n=2: • tr(xyxy−1) = −u2 + ust− t2 + 2,

• tr(xyx−1y−1) = u2 − ust+ t2 + s2 − 2,
• tr(xyx−1y) = tr(yxyx−1) = −u2 + ust− s2 + 2.

n=3: • the words a1 = xyx−1yx−1y−1, a2 = xyxy−1x−1y and
a3 = xyx−1y−1xy−1 are not in a convenient form;

• for a4 = xyxy−1x−1y−1, we have

tr(a4) = fa4(s, u, t) = (ust− u2 − t2 + 2)u− tr(x3y)

= (ust− u2 − t2 + 2)u− u(s2 − 2) + (st− u)

= −u3 + stu2 + u(3− t2 − s2) + st;

• the word a5 = xyx−1y−1x−1y may be modified to a4 by
cyclic permutation and exchanging roles of x and y, thus
tr(a5) = tr(a4);
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• a6 = xyx−1yxy−1 may be modified to a4 by cyclic permu-
tation and changing roles of y and y−1, thus

tr(a6) = Pa4(s, st−u, t) = u3−u2st+u(s2t2+t2+s2−3)+st(4−t2−s2).

n=4: • b1 = xyxy−1x−1y−1x−1y and b2 = xyx−1yx−1y−1xy−1

are not in a convenient form;
• for b3 = xyxy−1x−1yx−1y−1 we have

tr(b3) = fb3(s, u, t) = (ust− u2 − t2 + 2)2 − tr(x2yx2y−1)

= (ust− u2 − t2 + 2)2 − [(us− t)(s2 − 2)t− (us− t)2 − t2 + 2]

= u4 − 2u3st+ u2h1 + uh2 + (t2 − 2)2 + t2(s2 − 2) + 2t2 − 2,

where h1, h2 are polynomials in s, t;
• b4 = xyx−1yxy−1x−1y−1 may be modified to b3 by cyclic

permutation, and substituting x by y−1 and y by x−1;
• b5 = xyx−1y−1xy−1x−1y may be modified to b3 by cyclic

permutation, and substituting x by y and y by x;
• b6 = xyx−1y−1x−1yxy−1 may be modified to b3 by cyclic

permutation, and substituting x by x−1 and y by y−1.
Note that these substitutions do not change u, and the coef-

ficient m is not zero in convenient words.

Any word of complexity ≥ 5 must have repeated syllables. The case
with repeated syllables will be proved by induction on the complexity
n. Assume that for all words in a convenient form of complexity k ≤ n
the statement of the lemma is valid.

Consider w(x, y) = w1 . . . wn where w1 = xy, wi = x±1y±1, i =
2, . . . , n, wj+1 = w1, 0 < j ≤ n−1. Thus w = v1v2 where v1 = w1 . . . wj,
v2 = wj+1 . . . wn. Denote v3 = v1v

−1
2 , it is of complexity n− 2 since its

first syllable is xy and the last is (xy)−1. By induction hypothesis,

tr(v1) = ε1u
j − ε1m1stu

j−1 + · · ·+ g1, deg g1 < 2j;

tr(v2) = ε2u
n−j − ε2m2stu

n−j−1 + · · ·+ g2, deg g2 < 2(n− j).

The word v3 may not be in a convenient form. This means that u =
tr(xy) may not be the trace of the first syllable of v3. Anyway,

tr(v3) = ε3û
n−2 − ε3m3stû

n−3 + · · ·+ g3, deg g3 < 2(n− 2),

where û is either u or st − u. In both cases its degree in u is at most
n− 2 and the coefficient at u0 is of degree at most 2(n− 2). Therefore

tr(w) = tr(v1) tr(v2)− tr(v3)

= ε1ε2u
n − ε1ε2st(m1 +m2)u

n−1 + · · ·+ g1g2 − g3.

Here the degree of the polynomial g1g2 − g3, which is the coefficient at
u0, is less than 2j+2(n−j) = 2n. Moreover, m1 +m2 may be zero only
if m1 = m2 = 0, which means, by induction hypotheses, that v1 = wj

1,
v2 = wn−j

1 , so w = wn
1 . �
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We continue the proof of Proposition 4.6: assume that w(x, y) =
w1 . . . wn, where w1 = xayb, wi = x±ay±b, is written in a convenient
form, and fw(s, u, t) = Dn(q(s, u, t)). We denote z = xa, v = yb, i.e.,
w(x, y) = w̃(z, v), and w̃ is a word of the type considered in Lemma 4.7.
Let s̃ = D|a|(s), t̃ = D|b|(t), and ũ = tr(xayb) = uga,b(s, t) + ha,b(s, t),
where ga,b, ha,b are polynomials in s, t and ga,b 6≡ 0 (see [BG]). Since q is
of degree 1 in u, we have q = α(s, t)ũ+β(s, t), with rational coefficients
α and β. According to Lemma 4.7, we have

fw(s, u, t) = εũn − εms̃t̃ũn−1 + · · ·+ g(s̃, t̃) = qn − nqn−2 + . . .

= (α(s, t)ũ+ β(s, t))n − n(α(s, t)ũ+ β(s, t))n−2 + . . .
(14)

It follows that

α(s, t) = α = const, αn = ε, and β(s, t) = − εms̃t̃

nαn−1
= −mαs̃t̃

n
.

Substituting q = αũ−mαs̃t̃/n into (14), we get:

fw(s, u, t) = εũn − εms̃t̃ũn−1 + · · ·+ g(s̃, t̃)

=
(
αũ−mαs̃t̃/n

)n − n
(
αũ−mαs̃t̃/n

)n−2
+ . . .

Thus, the coefficient at (ũ)0 is a polynomial in s̃t̃ of degree n, hence
it is a polynomial in s̃, t̃ of degree 2n, which implies, by Lemma 4.7,
that β ≡ 0 and w̃ = (zv)n. �

Remark 4.8. The statements of Propositions 4.3, 4.4 and 4.6 remain
valid if we replace C by (the algebraic closure of) a sufficiently big
prime field Fp, and “composite” by “p-composite” (p > p0 depending
on w).

5. Generic words

In this section, we address the following question: picking up a
“generic” word w, should we expect that it is equidistributed? There
is a large body of literature dedicated to the notion of genericity, and
there are several different approaches to this notion. We mostly follow
the setting adopted in [KS].

Definition 5.1 (cf. [KS]). Denote by R some set of reduced words
w ∈ F2 written in form (7). For a word of complexity r, let `(w) =∑r

i=1(|ai|+ |bi|) denote the length of w. Let S ⊆ R. Set

ρ(n, S) = #{w ∈ S : `(w) ≤ n},

µ(n, S) =
ρ(n, S)

ρ(n,R)
.

We say that S is

• generic if
lim

n→∞
µ(n, S) = 1,
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• exponentially generic if it is generic and the convergence is ex-
ponentially fast,

• negligible if this limit equals 0,
• exponentially negligible if it is negligible and the convergence is

exponentially fast.

Evidently, S is (exponentially) generic if and only if the complement
R \ S is (exponentially) negligible.

Recall that the abelianization homomorphism Fd → Zd is defined
by taking a fixed basis of Fd to a fixed basis of Zd. Denote by Cd the
kernel of this homomorphism. Define R := {w : w /∈ C2}. The class R
includes many natural classes of words (say, positive words, words of
odd length, etc.). Further, define R′ as the set of words in R of prime
complexity.

Proposition 5.2. The set of words w ∈ R′, such that the correspond-
ing word morphism w : SL2,Z× SL2,Z → SL2,Z is p-equidistributed for
all but finitely many primes p, is exponentially generic in R.

Proof. Let w ∈ R′. As w ∈ R, it satisfies the hypotheses of Proposi-
tion 4.3. Suppose that w does not satisfy the assumption of our propo-
sition, i.e., there exist infinitely many primes p such that the trace
morphism fw,p is not p-equidistributed. Then by Propositions 4.3 and
4.6, taking into account Remark 4.8, we conclude that w = (xayb)r.
It remains to refer to [AO] where it is proven that the property of a
word to be a proper power of another word is exponentially negligible.
Hence the set of words satisfying the hypotheses of the proposition is
exponentially generic in R′. �

Remark 5.3. We believe that with some more effort, one can signifi-
cantly strengthen Proposition 5.2 by dropping the primality restriction
on r, and maybe even by extending R to the class of all reduced words.
We leave this to experts in word combinatorics.

6. Concluding remarks

It is tempting to generalize our results in the following directions:

(i) extend them from words in two letters to words in d letters,
d > 2;

(ii) keep d = 2 but consider arbitrary finite Chevalley groups;
(iii) combine (i) and (ii).

Whereas in case (i) one can still hope to use trace polynomials, which
exist for any d, to produce criteria for equidistribution, cases (ii) and
(iii) require some new terms for formulating such criteria and new tools
for proving them.

One can try yet another direction: consider equidistribution prob-
lems for matrix algebras and for polynomials more general than word
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polynomials (see Introduction). Even the case of 2 × 2-matrices is
completely open.

Acknowledgements. We thank S. Garion, I. Kapovich, M. Larsen,
and A. Shalev for useful discussions.
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