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Abstract

We show that if V is a loeal-system for intersection homology on a
torie variety X, and K is its maximal eonstant sub system, then for any
perversity p, IHr(X, V) = {O} <:} H.(7";Yj = {O} <=> rank(K) =O.

We deseribe eonditions which are neeessary and sufficient for the
indusion i : K '--4 V to induee an isomorphism on the homology of
the torus 7" and, equivalently, on the intersection homology of X. We
show further that it is suffieient but not neeessary that V be defined by
a unitary representation of the fundamental group of 7". We give the
dimensional restrictions under whieh some isomorphism H.(7"; V) =:!

H.(7";K) exists for any V.

1 Introduction

Torie varieties were first defined in the early 70's ([M u], [De]) as complex
algebraie varieties. Ir they were seen at the time as anything more than
a teehnieal tool designed to help deal with a specifie problem (the desin
gularization of symmetrie varieties), than it was as a niee generalization of
projective space, in which same varieties embed more naturally than in po.

In the past deeade torie varieties have shown up in a broad variety of dis
ciplines such as Symplectie Geometry (in the study of the moment map of
a torus action) and Representation Theory (the torie varieties associated to
Weyl chamber decompositions of Rn), and their intersection homology with
twisted eoeffieients has been related by the work of Gel'fand Kapranov and
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Zelevinsky [GKZ] (and the Riemman-Hilbert correspondence) to the theory
of generalized hypergeometrie functions. Hut nowhere, it seems, have they
played so prominent a role as in Comhinatorics, hy means of fascinating
links between the topology of toric varieties and the combinatorial theory
of rational convex polytopes. We expand on this below.

In the early 80's R. MacPherson gave (hut unfortunately did not publish) a
topological description of the (compact) toric variety associated to a (com
plete) rational fan in Rn t (see the definitions below). Far reaching results
can be proved relying only on the topology and one quickly realizes that
the loss of the information contained in the algebraic structure is, for many
purposes, a sma.ll price to pay for the dramatic increase in accessibility for
the non-spccialist in Aigebraic Geometry.

Some important milestones in the history of the torie variety 
eonvex polytope conneetion: Any n-dimensional convex polytope ß C
Rn with 0 Eint ß and whose vertices have rational coordinates generates
a complete rational fan (to each proper face F E ß corresponds the cone
{txlt E [O,oo),x E F}) and hence gives rise to a (compact, projective) toric
variety X =X~, which is a rational homology manifold iffß is simplicial. In
his 1978 survey article [Da], Danilov calculates the cohomology ring (over
Q or C) of X~ for simplicial ß, and shows that the Betti numbers are
precisely the components of the h-vector h(ß), an important combinatorial
invariant of ß (the ring structure depends also on the specific embedding
in Rn). In this context, the weIl known Dehn-Somerville relations hi(ß) =
hn -i(6.) are none other than Poincare duality on XL\. Using these facts,
the hard Lefshetz theorem and his own newly introduced methods from
Commutative Algebra, Stanley ([StIl) succeeded to prove the necessity of
McMullen's conditions ([McM]) thus settling the almost century old problem
of classifying face vectors, for the case of simple (dually simplicial) convex
polytopes.

The combinatorial properties of a non simple/simplicial polytope are far
more complex, as are the the topological properties - and in particll1ar
the nature of the singularities - of the associated torie variety. In 1988
MeConneIl showed ([McC]) that if ß is not simplicial then the rational ho
mology betti numbers of X~ are not combinatorial invariants. However in

tMore recently, M. Davis and T. Januskiewiez ([OJ]) have generalized MacPherson's
definition by replacing the underlying fan by a "eharacteristie function". M. Audin ([Au])
gives a. description of nonsingular tone varieties whieh naturally exhibits the symplectic
strueture when one exists.
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the early 80's, shortly after the introduetion of intersection homolgy the
ory ([GM]), the middle perversity groups I H:(Xa, Q) for general Ll were
ealeulated on at least two independant oeeasions, onee by R. MacPherson
and onee by J. Bernstein and A. Khovanskii and indeed the ranks of these
groups were found to be eombinatorial invariants of 6,t whieh (neeessarily)
eoincide with Danilov's caleulation when Xis rationally nonsingular . These
calculations used very heavy eharaeteristie-p rnachinery. MacPherson's eal
culation was first published in 1987 by Stanley ([St2]) who used it to define
generalized h-vectors and generalized Dehn-Somerville relations for general
eonvex polytopes. As opposed to the simplicial ease, these results do not
suffice to cla.ssify face-vectors of general polytopes.

We take the next step in this sequenee of generalisations by introducing an
arbitrary loeal eoefficient system V for intersection homology on X (whieh
ean be thought of as a loeal system V on the n-torus 7 n ). It is reasonable
to expeet that the resulting Betti numbers - at least for cleverly chosen loeal
systems - will be new combinatorial invariants of eonvex polytopes, and sinee
aversion of Poincare duality holds for interseetion homology with twisted
eoefficients, this will yield new restrictions on face-vectors/flag-vectors.

Using purely topological definitions and teehniques, we study the intersee
tion homology I H.(X; V) and tbe ordinary homology H.(7n ; V). We show
that the two are related and express relations between them in terms of the
maximal constant subsystem K S; V, whose fiber is the fixed point set of
the action of the fundamental group of 7 n on the fiber of V. We first prove
that if either of these two homologies vanishes in all degrees then the other
does a.s weIl. This oeeurs in particular for all rank 1 loeal systems except
the trivial one. We then list neeessary and sufficient eonditions for either
(equivalently both) of these homologies to reduee naturally to homology with
eoefficients in K, and show that it is sufficient but not necessary that V be
defined by a unitary representation of 11"1 7 n

• We show further that each of
these theorems reduees to simple Linear Algebra. All of our results eon
eerning intersection homology hold for any perversity. The aforementioned
eharacteristic-p methods do not apply to other than middle perversity.

The main theorems are stated in section 3 and proved in section 5 after
we describe in section 4, the E 2 term of a collapsing spectral sequence for
the product with a torus. In section 6 we take another look at the torus,

tIn this case the Betti numhers depend on more intricate combinatoria.l properties of
~, not just on the number of faces in each dimension, and can be conveniently expressed
in terms of the "flag vector" ([BK]).
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and give precise dimensional restrietions under whieh H.(Tn; V) is always
isomorphie to H*(Tn; K) although the isomorphism may not be indueed
by the inclusion K '---+ V. In the last section we diseuss, with examples,
the non-existence of a eertain long exact sequence for interseetion homology
whieh arises in one of the main theorems.

2 Definitions and Notation

Let E ~ Rn be a eomplete rational fan, i.e a deeomposition of Rn as a finite
eomplex of closed, eonvex, polyhedral eones, eaeh with apex 0, and eaeh
generated by lattiee ponts V1,' •• , Vk E zn. Take as the dual complex P, the
polyhedral eeU deeomposition of the unit ball in Rn which has one unique
n-eell, and which, when restrieted to S"-1, is dual to the eell deeomposition
obtained by interseeting S"-1 with the eones of E. We denote by u the
cell in P dual to the eone (f E E. Eaeh eodimension k cone (f E E spans
a codimension k subspace of R" whieh (since it has a rational basis) maps
uuder the projeetion Rn -+ R" /Z" = T" to a eodimension k subtorus Tu ~

T".

Definition 2.1 The topologieal torie variety X = XE is obtained from
P X Tn by modding ou t iJ \ {JiJ X T" by the action of Tu on T", for eaeh
(f E E. (For more details, see [FYJ).

Denote by 11'" : X -+ P the natural projection. X has a natural stratifieation

x = X 2" ~ X 2n- 2 ~ ••• :> X 2 ~ Xo

where for eaeh 1 :::; i :::; n, X2i = 1I'"-1(U{u E P!dimo- :5 i}). For any
k-eell iJ E P, 1r -1 (u\ Ba-) ~ (C*)k. We identify the "non-singular" open
stratum X\X2"-2 = 1r-

1 (intp) with (C*)" so that the maximal eompact
torus Tn c (C*)" is equal to 1r-1 (O).

lt is a consequenee of the allowability eonditions ([GM],[MaeD that a loeal
system for intersection homology on an rn-dimensional stratified pseudoman
ifold Y need only be defined on the non-singular open stratum Y\Ym-2'

Denote by V a loeal system of finite rank on (C·)". We may assume without
lass of generality, that V is thc trivial extension to (C*)" of a loeal system
on T", whieh we also denote by V. In our setting, the fiber V t over any
point t E T" is a (finite dimensional) vector spaee over a field Fand as
usual, is endowed with the diserete topology.
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Throughout the paper we will use the same notation for a local system on a
space and for its restrietion to a subspace. The meaning will be dear from
the context.

Fix a. base point to E Tn and write V =V to ' Corresponding to any basis of
zn = 11"1 (Tn , to) there are n commuting rnonodromies Tl, ... ,Tn E GL(V).
Let K ~ V be the (maximal constant) subsystem whose fiber K t is the
fixed point set of the 71'"1 ('T", t)-action on V t and denote by K the fiber
K to =ni=l ker(Ti - I).

We call V unitary if each Ti is unitary.

We will supress the perversity pfrom any discussion of intersection homology
which is independent of the perversity.

3 Statement of results

Theorem 3.1

I H.(X; V) ={a} {:} H.(T"; V) ={a} {:} K ={al.

Note: There are natural isomorphisrns K ~ Hn(Tn; K) ~ Hn(rn; V).

Theorem 3.2 Let i : K ~ V be the indusion. The following are equiva
lent:
(i) i induces an isornorphism i.: IH.(X;K) -+ IH.(X;V).
(ii) i induces an isomorphism i. : H.(Tn; K) -+ H.(Tn; V).
(iii) i induces an isomorphism i. : I Ho(X; K) -+ I Ho(X; Y.).
(iv) i induces an isornorphism i. : Ho(Tn; K) -+ Ho(Tn; V).
(v) V splits as a direct surn of su b local systems : V = K EB M.
(vi) The short exact sequence of local systems

(1)

induces a long exact sequence of intersection homology :

Theorem 3.3 If V is a unitary local system, then it splits as a direct surn
V = K EB M and hence all of the equivalent conditions in theorem 3.2 hold.
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We prove these results in section 5.

Remarks
(i) K = n~1 ker(Ti - I) and Ho(T"j V) = V I''LJ=1 (Ti - I)(V), whenee
both theorem 3.1 and theorem 3.2 (part (iv)) reduee to elementary Linear
Algebra.
(ii) We show in section 6 that it is not neeessary that V be unitary in order
for the eonditions of theorem 3.2 to hold.
(iii) It follows from thereom 3.2 that if V is a non-trivial irreducible loeal
system then the maps i .. are not isomorphisms.
(iv) It follows from the note following theorem 3.1 that if the inclusion
i' : K' ~ V induees an isomorphism i~ : H.(T"j K') -+ H.. (T"j V) then
K~K'.

(v) The ranks of the intersection homology groups (with field eoefficients)
of a general torie variety X are known (see for example (St2]), and sinee
K is a direet sum of trivial, I-dimensional loeal systems, rank I Hi(Xj K) =
rank I Hi(X; F) rank(K) Vi.
(vi) 1fl (X, to) = 0 ([Da]) whenee there are no non-trivial loeal systems for
ordinary homology on X.

4 On the product with a torus

Let Y be a topologieal spaee and let V be a loeal system on Y X T".
We assurne given a deeomposition of the torus as T" = SI X T"-I, and a
eommon base point so that the inclusions Y ~ Y X SI ~ Y x T" make
sense.

For any q, there is an indueed loeal system Hq(Yj Y) on T", whose fiber
over any point t' E T" is Hq (Y x {t'} jV Iy x{t'} ), and similarly defined loeal
systems over other relevant subspaces of Y x T".

Theorem 4.1 For any 0 :$ k :$ Tl,

Hk(Y X Tn;v) ~ EB Hp(T"jHq(YiY)).
p+q=k

Proof: : by induction on n.
For n = 1, the filtration Y C Y X SI gives rise to a speetral sequenee in
whieh E;,q = Hp(S1i Hq(Y i Y)). This spect ral sequenee 0 bviously eollapses

at E 2 •
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Assume the theorem holds for all m < n.

Hk(Y X Tnjv) =
ind. hl/P.
~

=

ind. hlfP.
~

Hk((Y X SI) X Tn-1 j V)

EB Hp(r-1 jHq (Y X Sljy'))
p+q=k

EB H p(P-1 j E9 Hi(S\Hj(YjY)))
p+q=k i+j=q

EB EB H p(P-1 j Hi(Slj Hj(Y; Y)))
p+q=k i+j=q .
dimY

EB E9 Hp(r- 1
j Hi(Sl jHj(YjY)))

j=O p+i=k-j
dimY

EB Hk_j(rjHj(YiY))
j=O

EB Hp(TnjHq(YjY)).
p+q=k

o

Remark: In [Ba] (proposition 2.1) it is shown that for any stratified pseu
domanifold Y, the "suspension" map ~ .-+- ~ X R induees an isomorphism

t:lIi

I H..(Y) ~ I H:':i(Y X R), where the latter denotes intersection homology
with closed (as opposed to eompaet) supports. There is a natural isomor
phism I n:M(y X R) ~ I H ..(Y X SI, Y x {t}) (with t E SI), and aue readily
verifies (sinee Sl\{ t} ~ R) that the existenee of these isomorphisms ia not af
fected by the introduction of a Ioeal system. Thus, the proof of theorem 4.1
earries over for intersection homology, and in fact we ean state the slightly
more general relative ease :

Theorem 4.2 Let Y be a stratified pseudomanifold, Y' C Y a PL-subspaee
and V a loeal system for intcrseetion homology on Y X Tn. Then for any
0::; k::; n,

1Hk((Y,Y') X P;V) ~ EB Hp(P;IHq(Y,Y'jy')).
p+q=k

o
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5 Proofs of the main theorems

In the proofs we will make use oi the following two lemmas.

Lemma 5.1 For any perversity p

Proof: Let qbe the perversity dual to p (Le, for 2 :::; k :::; 2n, Pk+qk = k-2).
Then

I Hfn(X; V) ~ (lllg(X; V*))*
~ (Ho((c·)n j V*))*
~ (Ho(Tn; V*))*
~ Hn(Tn;v)

(Here _* denotes the vector space dual). The first isomorprusm follows from
Poincare duality for intersection homology. The second follows from the
fact that 0 and 1 dimensional chains linst be supported on the non-singular
stratum. The last isomorphism follows from ordinary Poincare duality. 0

Lemma 5.2 If either ]Io(Tn; V) = 0 or Hn(Tn j V) = 0, then Hk(Tn; V) =
o for all k.

Proof: The implication Ho(Tn; V) = 0 =} 11.(Tn; V) = {O} is a special
case of a theorem of Dwyer ((Dw]). The same theorem, and two applications
of Poincare duality show that the vanishing of the homology in top degree
implies the vanishing in an degrees. 0

Proof of theorem 3.1: The equivalence on the right and the implication
"=}" on the left follow from lemmas 5.1 and 5.2.

For any (1 E E, set X u = 1T'-l(er nP) and X8u = axu = U Xl"'
'TC8u

If dim (1 = n - m ( 0 ::; m ::; n) then there exists an m-torus T;, com
plementary to 1;, in Tn so that Tn = 1;, X T; and so that (Xu , X8u) =
(X~, X au)X T;, for same (any) (n - m)-dimensional toric variety X' asso
ciated to a fan E' ~ span (1 ~ Rn-rn which contains (1. Furthermore, X~
is the topological cone cXau' stratified by the cones on the strata of X au
along with the apex of the cone as a (unique) O-stratum.

Define a filtration of X :

T n = X O C Xl C ... C X n = X, with
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Xi = U XO" Vi
dim 0';;;:i

and note that if u -:I u' are rn-cones in l;, then XO' n XO" ~ xm-I and
XO' n X m - 1 = XaO" In the speetral sequenee eorresponding to this filtration
we have

E~,q = I Hq(XP, XP-1i V)
~ (fJdimu;;;:p I Hq(XO', X u n Xp-Ij V)
= (fJdimO';;;:p I Hq(Xu, XaO'j V)
~ (fJdimu;;;:p I Hq((X~, X~u) X 1";i V).

We show that E~,. = {O} by induction on p.
For p = 0, IH.(XO,0iYJ = H.(Tnjv) = {O} is our hypothesis.
Assume the theorem holds for all p < n - m and let u E l;, dim u = n - m.
By the inductive hypothesis, for any T C U, T -:I u, I H.(X'T' Xa'T; V) ={O}.
Thus, when the filtration and the spectral sequenee are restricted to Xau,
the EI term vanishes, and henee

(3)

We must show that I H.( (cXaO" XaO') X T;j V) = {O}. By theorem 4.2

I Hk(X'au X ?;; V) ~ EB Hi(T;j IHj(Xau;y')), and (4)
i+j=k

I Hk+ 1((cXaO" XaO') x T; j V) ~ ffi Hi(T;; IHj+l (cXaO" X au ;y)). (5)
i+j;;;:k

By (3), all of the terms on the right hand side of (4) vanish.

It follows from [Bo) (proposition 3.1) that for any stratified pseudomanifold
Y,

k?r
k < r

(6)

where the "cutoff point" r depends on the perversity and on the dimension of
Y, and the isomorphism for ea.ch k ? r is indueed by the coning map { ...... c{.
Sinee the non-singular open stratum of Y is a strong deformation retra.ct
of the non-singular open stratum of cY, auy loeal system for intersection
homology on cY is equivalent to the trivial extension of one on Y, and henee
(6) continues to hold when a loeal system is introduced. Moreover, for the
same reason, the isomorph ism I Hj+1 ( cXaO" XaO'; V) ~ I Hj{X'au j V) (for
j ? T) eommutes with the action of the fundamental group of T; whereby
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the loeal systems IHj+l (cXao-' XaO"j Y) and IHj(Xao-j Y.) are isomorphie for

all j ~ T. It follows that Hi(n;IHj+l(CXao-,XaO"jY)) = {O} for all j ~ T.

For j < r, the vanishing follows from the vanishing of I Hi+1 ( cXao-' XaO"; V).

o

Proof of theorem 3.2: The following implications are immediate:
(i) =? (iii)
(ii) =? (iv)
(v)=? (vi).

U( iv) {=} (i ii)": It follo~s from the allowability requirements in the def
inition of intersection homology, that 0 and 1 dimensional chains are not
a.llowed to meet the positive-codimensiona.l strata. Therefore I Ho(Xj V) ~
Ho((C"')n jV) ~ Ho(Tn jV). The naturailty of these isomorphisms implies
the equiva.lence of (iv) and (iii).

"(v) => (i), (i i)": Denote by j the inclusion M <......+ V.

v = K ffi M => { i. EB j. : H.(Tn jK) ffi H.(Tn jM) -7 II... (Tn jV)
- - - i. ffi j ... : IH... (Xj K) ffi IH.(XjM) ~ I H.(Xi V).

K ~ Hn(Tn jV) ~ Hn(Tn i K) $ Hn(Tn jM) => Hn(Tn j M) = 0
=> H.(Tn; M) ={O}

and by theorem 3.1, I H.(Xj M) ={O} as weIl.

"(vi) => (i), (ii)": Assurne there is a long exaet sequence as in (2), and
eonsider its top end

Note that:
(a) i. is an isomorphism since it is an injection on isomorphie vector spaces
(lemma 5.1).
(b) The intersection homology with field coefficients of any torie variety
vanishes in odd degrces. Thus by remark (v) at the end of seetion 3,
I H2n - 1 (Xi K) = O.
It follows that I H 2n(Xj V /K) = 0 a.nd hence, by lemmas 5.1 and 5.2,
H.(Tnj V /K) = {O}. Thus by theorem 3.1, every third term in the se
quence is trivia.l, and (i) folIows. (ii) follows as weIl sinee the short exaet
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sequenee (1) always induees a long exact sequenee

"(iv) ::::? (v)": Set M = Im(Tl - I) + ... + Im(Tn - I) ~ V. M is invariant
under eaeh of the T/s, whenee there is a weIl defined sub loeal-system M ~

V. Now, Ho(Tn j V) = V IM. Thus if (iv) holds, then the inclusion i : K ~
V induees an isomorphism K .....,. V IM, henee V = K EB M and (v) follows.

o

Proof of theorem 3.3: Call a subspace U ~ V invariant if it is invari
ant under eaeh of the Ti'S, and if so denote !(iU = ker«Ti - I)lu) and
MiU = Im«Ti - !)Iu). Assume V is unitary, i.e. V is endowed with an
inner produet <, > such that for eaeh 1 :::; i ~ n and for all v, w E V,
< TiV, TiW >= < v, W >. We need to show that the subspace K ~ V has an
invariant eomplement M.

Remark : One easily verifies that for every 1 :5; i :::; n, KiV = ker(Ti - I)
is orthogonal (with respeet to <, » to MiV = Im(Ti - I), and that these
are eomplementary dimensional, invariant subspaees. Thus V deeomposes
naturally as a direct sum V = 1(iV EB MiV. Now write V = MIV EB K I V,
and repeatedly apply the same argument to the last direct summand eaeh
time, to obtain the following natural direct surn decomposition of V :

V = M 1V
EB M 2K 1V

EB Mn !(n-l .. ·1(1V
EB K n 1(n-l .. ·K1V

The last summand is equal to n~1 ker(Ti-1) = K, and the desired invariant
eomplement M is the direct sum of all the other summands. 0

6 More on the homology of the torus; examples
and counter examples

It is possible that H.(Tn j K) f:! H.(Tn j V), hut that the inclusion K '-+

V does not induee such an isornorphism, whereby conditions (i) - (vi) of
theorem 3.2 all faH. In this seetion we show that if n = 1 or rank(V) :::; 2,
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such an isomporphism always exists, whereas in all higher dimensions and
ranks there exist counter exarnples. We then show that there exist non
unitary loeal systems satisfying the conditions of theorem 3.2.

Proposition 6.1 Let V be a loeal system on Tn. If n = 1 or rank(V) ~ 2,
then H.(Tn j K) ~ H.. (Tn j V).

Proof:
Case 1: n = 1. Let Tl E GL(V) eorrespond to one of the two generators
Of1rl(St,t). Then Hl(SljV) = ker(TI-I) = K = Hl(SljK). HO(SljV) =
eok(Tl - I) whieh is isomorphie to ker(Tl - I) and hence to Ho(Sl; K) = K.
But this isomorphism is not, in general, induced by the inclusion i : K t......+ V.

Example 6.2 Suppose that rank(V) = 2, and that for a suitable basis of
V, Tl(x, y) = (x + y, y). Then dirn K = 1 but the map K -+ cok(Tl - I)
induced by the inclusion K t......+ V has rank O.

ease 2: rank(V)= 1. Each of the monodromies Ti E GL(V), 1 ~ i $ n, is
equal to multiplieation by a constant Ci E F. There are only two possibilities:
either Vi, Ci = 1, in which case K = V, or for same i, ker(Ti - I) = {O} ~
K = {O} ~ H.(Tn j V) = H.(Tn j K) = {O} (lemmas 5.1 anel 5.2).

Case 3: rank(V)= 2. We prove this case by induetion on n. The base
case was taken care of in case 1. We will need the following

Lemma 6.3 dirn Hn(Tn j V) = dirn Ho(Tn jV).

The proof is an exercise in linear algebra. It suffices to show that if Al, ... , An
are commuting 2 X 2 matrices then the 2 X 2n matrix (Al A 2 ••• An) and the
the 2n X 2 matrix with the Aj's vertically alligned, have the same rank. 0

Now denote ßi,n = dimz Hi(Tn j Z) and k = dirn K, and assurne that for all
m < n and for all 0 ~ i $ m, dirn Hi(Tm jV) = dirn Hi(Tm jK) = ßi,mk.

Let Tn = SI X Tn-I. By theorem 4.1

dirn Hi(rnj V) = dirn lIi(Tn-l jHo(S\ Y)) + dim Hi-l (Tn- l
j HI(SI j Y)).

Note that dirn V = 2 implies that HO(SljY) and H1(Sljy') also have rank
~ 2. By the inductive hypothesis and lemma 6.3

=
theorem 4.1

lemma 6.3

12

ßi,n-l dirn Ho(Tn-l; Ho(Slj Y))

ßi,n-l dirn Ho(Tn;V)

ßi,n-l k .



(n-l) (n-l) (n)ßi,n-l +ßi-l,n-l = i + i-I = i =ßi,n' o

The following example shows that without additional restrietions on V, the
dimensional bounds given in proposition 6.1 are the best ones possible.

Example 6.4 Let V be a rank 3 loeal system on T'J such tha.t for 8uit
ably chosen bases of 7rl(~' to) and of V, the monodromies Tl and T'J a.re
representcd by the (commuting) matrices

Al = ( ~ ~ ~ )
001

and A2 = ( ~ ~ ~ )
001

The 3 x 6 matrix (Al - I A2 - I) has rank 1 whence dirn Ho('Jl; V) = 2,
whereas the 6x3 matrix obtained by vertically alligning AI-I and A2-1 has
rank 2, whence dirn H2('Jl; V) = dim K =1. An analogous counter example
can be construeted for any n > 2 by setting Ta =T4 = ... = Tn = land for
any rank> 2 by direet summing with a constant coefficient system.

We conelude this seetion by observing that if V satisfies the eonditions of
theorem 3.2, and V, is any non-unitary loeal system for whieh H.(Tn; V') =
{O} (eg when one of the momodromies aets as multiplieation by a. eonstant
c :f. 1), then V EB V' is non-unitary and satisfies the conditions of theorem
3.2.

7 On the non-exactness of the intersection ho
mology sequence

In the non-existence of an exact sequence (2), intersection homology differs
from ordinary homology. The intersection complex IC.(_; _) is a (covariant)
funetor of the second argument and henee the short exact sequence (1) does
induce an (exact) sequence

However, beca.use of the allowability requirements on the bounclaries of
chains, the last map in this sequence is not, in general, surjective. Given
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a chain ~ E IC.(Yj V /K) we may choose representatives in V for each of
the coefficients of ~, thus obtaining an allowable "preimage" chain e with
coefficients in V. However, a~ might eontain non-allowable summands with
eoefficients in K. Restated, this differenee between ordinary homology and
intersection homology lies in the faet that the natural map

IC.(YjV)/IC.(YjK) ~ IC.(Y;V/K)

is not an isomorphism (it is injective hut need not he surjective).

Example 7.1 Let X ~ 52 be the (unique) 2-dimensional torie variety, with
two antipodal points Pl, P2 a.s the O·stratum, and let V be the loeal system
of example 6.2 (note that V /K is a rank I constant coefficient system). A
sequence

o -+ IH2(XjID ~ I H'J(XjYJ -+ I112(Xj V /K) -+ IH1(Xj K)

cannot be exact at I H'J(Xj V /K), as it is easy to see that each of the
first 3 terms is I-dimensional whereas IH1(Xj K) = O. Indeed, let e E
IC1(X; V /K) be the chain with (constant) eoefficient (0,1) + K E V /K
whieh is supported on a great circle in X \ {Pb P2}, and let ~ = ce E
1C'J(Xj V /K) be the cone to PI' Since (0,1) f/. K = ker(T1 - I), any
preimage of e would necessarily have a boundary point with non-trivial
coefficient, and hence any proposed preimage of <will necessarily have a
non-trivial boundary component meeting the O-stratum, and this is not al
lowable since l-chains may not meet the singular set. Thus neither 1r nor 7r

are surjective.
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