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Introduction

The purpose of this paper is to elescribe a new dass of POiSSOll brackets on sitnple Lie
algebras anel syrnplectic structures on sorne solvable Lie algebras. This gives a new dass
of solutions of the classical Yang-Baxter equation.

Let us first recall son1e basic facts on the classical Yang-Baxter eqllation, referring
thc reader for 1110rc details to thc wcll-known paper by Bclavin and Drinfel'd [BD 1982].

Thc classical Yang-Baxter equation (CYBE) is the fUIlctional cquation

["Y12(Al' "\2), X 13 (Al' "\3)] + [X I2 (Al' A2), X 23 (A2, A3)] + [X13 (Al, A3), X 23 (A2, A3)] = 0
(0.1)

for the function X (A, fL) taking thc values in 9 ® 9, where 9 is thc Lic algebra. 111 order to
clcfinc the quantity X 12 (Al, A2)1 following [BD 1982], we fix an associativc algebra A with
unit, which contains 9 and thc linear 111aps 4'121 <P23 anel <P13, so that

(0.2)

anel analogously for rnaps <P23 and <P13.

Note that if X(A 1 fL) is a solution of eq. (0.1) and <p('lL) is a function with values in 9,
then X(A, IL) = (4'(A) 0 <P(fL)) X(A, 11,) is also a solution of (0.1) anel wc will consider the
solutions X anel X as equivalent. Let us introduce the following definition.

Definition 0.1. The function X(A1/L) is invariant relative to 9 E Aut 9, ij

(g 0 g) X (A, fL) = X(A, fL)·

Thc set of all such 9 fonus thc group that is called the invariance group of ..'«(A, IL).
Thc fllllction X(A,/J,) is said to be invariant with respect to h E 9 if

[h 0 1 + 1 0 h, X (A, IL)] = 0,

1.8. if it is invariant relative to exp{ ad h} for any t.
Note that if X(A,/J,) is a solution of (0.1), which is invariant relative to the subalgebra

11. c Q, anel if a tensor l' frorn 11. 0 11. satisfics thc following Yang-Baxter cquation

(0.3)

(0.4)

then thc function "'Y(A,IL) = ,.,\'"(A, tL) + r is also a solution of (0.1). Note also that if thc
algebra 11. is Abelian, then (0.3) is satisficd automatically.

1t is usually supposed that the Lie algebra 9 is a finite-dimensional sin1plc Lie algebra
over <C. In [BD 1982] thc solutions of (0.1) havc beeil studied in details, such that:
(i) X(A, fL) is a n1er0I110rphie function; A, JL C 'D, 'D is a domain in C;

(ii) thc detcl'rninant of thc Ilultrix forIl1cd by the coordinates of the tensor X(A, J1,) is not
identically zero;

(iii) X(A, fL) depends only on the elifference (A - fL).
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In fact, as was shown in [BD 1983], the condition (iii) indecd follows frOlll (i) anel (ii).
In thc paper [BD 1982] it was shown that solutions of (0.1) are of three types:

a) Elliptic solutions,
b) Trigonolllctric solutions,
c) Rational solutions,

and all elliptic and trigonolnetrie solutions were found. As for -rational solutions, only fcw
of thCln wcre fonnd, and the Inain pnrpose of this paper is to extend this class.

The paper is organized as follows. In section 1 we recall sonle standard definitions
and facts about Poisson strnctnres. In the section 2 a decolnposition of a Lie algebra 9
into sunl of two subalgebras is consiclered and rela.tions between Poisson and sYlnpleetic
structures on 9 anel its subalgebras are studied.

These results are used in thc section 3 to describe explicitely closed 2-fornls aud
Poisson strllctllres on thc elclnentary Lie algebra En +1 which is the Iwasawa subalgcbra
of su(2, n). The nuLin rcsult of this seetion is Theorcrn 3.7. It recluces the descriptioll
of Poisson and synlplectic strllctures of a Lie algebra 9 , which is scnü-direct sunl of a
subalgebra :F and the ideal En +1 to the description of such structures on F. This gives
an algorithlll for deseription of all closed 2-fonns and of sYlnplectic structures on any Lic
a.lgebra which is decolnposed into scnü-direct SUffi of elelllentary subalgcbras. In the section
4 we construct canonical dccornposition of thc Borel subalgebra B(9) of a selnisitnplc Lic
algebra 9 into semi-derect Sllln of clelnentary subalgebras (plus, Inay be, a C0l111nutative
snbalgebra of the Cartall subalgebra) . Applying the results of the section 3, we obtain a
deseription of closecl 2-fonns anel sYluplectic forills (if they exist) on the Borel subalgebra
B(9) of a senüsilnple Lic algebra 9. As a biproduct, wc gct dcscription of thc second
COhOlllOlogy group H 2 (B (9)).
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thc work has been began, D.A. thanks Max-Planck-Institute für Mathenlatik, Bonn ancl
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support.
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1. POISSON BRACKETS ON ALlE ALGEBRA

1.1. The Schouten bracket in the space of polyvectors and Poisson bivectors

Let 9 be a Lie algebra anel /\g = L /\ig be thc extcrior algebra over g. Thc Lie
bracket on 9 detcnnincs naturally the bracket on /\g :

YI /\ ... A Yq] =

This bracket is called the Schauten bracket and it turns thc space /\g into a graded
Lie superalgebra.

Definition 1.1.
1. A bivector A E /\2g is called (L Poisson bivector (or a Poisson bracket in a Lie algebnL

g) if it cornrnutes with itself
[A, A] = 0

(this is equivalent to the classical Yang-Baxter equation 0.3.).
2. Two Poisson bivectoT.5 Al, A2 are called compatible if they cornrnute:

(1.1)

(1.2)

Note that this is cquivalcnt to thc fact that any linear cornbination AAl + tLA2 is a.
Poisson bivector.
If {Ci} is a basis in g, then A Inay be written as

and

where the bracket of two sirnple bivectors is given by

[x /\ y, u /\ v] = [x 1 u] A Y /\ v + x /\ [y 1 u] /\ v + Y A [x, v] A u + x /\ u /\ [y, 'u].
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1.2. Poisson bracket induced by a Poisson bivector on a Q-manifold

Let M be a 9-111anifold, Le. a 111anifold with fixed h0I1101110rphisrn

cP; 9 -t X(M)

of a Lie algebra 9 into the Lie algebra X(M) of vector fields on M.
The horllornorphisrll cP rnay be cxtcndcd to a hOrllOl1l0rphisIIl

cP : I\(] -7 I\(M)

of thc Lie superalgebra of polyveetors on 9 into thc Lie superalgebra of polyvector fields
on lvI (relative to the Schouten bracket).

In partieular, the Poisson bivcctor A = Aijei, 1\ Cj E 1\ 29 detcnnines the biveetor
9(A) = Aijcp(Ci) I\CP(Cj) on the Illanifold, such that [cp(A), cp(A)] = O. This bivcctor defines
a Poisson bracket in thc spaee of fUl1ctions on the rllanifold aecording to thc fOfIl1ula

III particular, bccause thc Lic a.lgebra 9 acts naturally in 9* aud also in 9, the Poisson
bivector A detennines Poisson brackct.s in the spaces of functions on (]* and 9. These
Poisson brackets are defined by

(1.3)

where {Cj} is a basis of the space 9, which is considered as the space of linear fUllctions
on Q* and rcspectively by

Note that bivector fields, corrcsponding to brackets, havc thc fonn

Ar. = Aije~ 1\ c
J
". A - Aijca eh xk .te* 1\ e*~ -. '\, 9 - ik jl 3, a 1\ b'

where e~ is the basis of (]* dual to the basis Ci of (], anel Cik are structure constants of g.
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1.3. Support of a Poisson bracket and symplectic structures on Lie algebras

Let A be a bivectar on a Lie algebra Q. Then A detcnnines thc linear Inapping

A : g* -t Q, e-t A . € = ie A.

Definition 1.2. The subspace suppA = A(g*), which 1,S the ~mage of this linear
rnapping, is called the support of the bi7Jector A E 1\2QA.

Lemma 1.3. The support suppA 0/ the Poisson bivector A 0/ the Lie algeb1'a Q is the
Lie subalgebra 0/ g.

R.ccall that a symplectic fann (or a sYlnplectic structure) on a Lic algebra 9 is a clOHCcl
non-clegenerate two-fonn w E 1\2g*.

Thc cl08cness condition rneans that

o= dw(x, y, z) = O"x,y,zw([x, V], z), :C, y, z E g,

where O"x,y,z denotcs the sunl of cyclic penulltations of :/;, y, z. If w is a sYlnplectic [onn,
then thc tensor A = w- 1 is a Poisson bivector. More generally, we have

Proposition 1.4. Let A be a subalgebra 0/ a Lie algebra Q and w be a syrnplectic
form on A. Then the inverse tensor

is a Poisson bivector with support A, and any Poisson bivector rnay be obtained using this
coustnLction.

Hence thc classification problern for Poisson bivcctors Oll a Lic algebra 9 rcclllces to
thc classification of Lic sllbalgcbras A c 9 with a sYlnplectic fonn.
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2. DECOMPOSITIONS OF ALlE ALGEBRA WITH
A POISSON BIVECTOR OR A CLOSED 2-FORM

Proposition 2.1. Let 9 be (L Lie algebra with a non-degenerate Poi..,8on bivectoT A
aTl-d w = A -1 the associated syrnplectic form.

Let A = Al + A2 be a decomposition 0/ A into a s'IJ.'1n 0/ hvo bivectors f\-i and Ai =
suppA i . AS.5ume that Al n A 2 = O. This means that () = Al + A 2 is a decomposition 0/

() into a surT/, of w-non-degenerate subspaces and Ai = (WIAJ- l
.

Then
i) Al is a subalgebra H Al is a Pois.5on bivector,

ii) Al, A 2 are subalgebr'as H Al und A2 are comrnuting Poisson bivectors,
iii) a.5sertion (ii) hofds if [Al, A 2J = 0 01' Al i.5 an ideal.

Proof. lt follows ilnnlediately froI11 the reI11arks that Ai E /\2Ai and

[/\
2Ai, /\ 2AiJ C 1\

2 Ai /\ [Ai, Ai],

[/\2 A I ,/\2A 2 ] C Al /\ A 2 /\ [Al, A 2J.

The assertion (iii) iInplies thc following
Corollary 2.2. Let () be a Lie algebra with a syrn]Jlectic fOT"Tn wand A is a non­

degenerate ideal 0/ A. Then w-orthogonal cornplernent Al. to A in 9 is a subalgebra.
Proposition 2.3. Let 9 = Al + A 2 , Al n A 2 = 0 be a decornposition of a Lie algcbTa

9 into a direct surn 0/ two ideals, and A = Al +A2 +A' be the corresponding decornposition
of a Poisson bivector A, Ai E /\2 Ai, A' E Al /\ A 2 • Then Ab A2 are comrnuting PoisBon
bivectors.

Proof. This follows froln relations

[ /\
2Ai, /\ 2Ai] C /\3 Ai

[/\
2Ab Al /\ A 2 ] C /\2 Al /\ A 2 ,

[Al /\ A2, A l /\ A 2] C A l /\ (/\2 A 2 ) + /\2 Al /\ A 2 .

Proposition 2.4. Let Q = A + V be a scrni-dü'ect sum of a Lie subalgebra A and a
comrnutative ideal V.

Let A be a Poisson bivector and A = AA + Av + A' be its decomposition.
Then

i) AA, Av arc Poisson bivectors,
ii) [AA, A'] = [A v , A'] = 0,

iii) [A', A'] + 2[AA, Av ] = O.
In particular, AA, A v are comrnuting bivectors iff A' is a Poisson bivector.
Corollary 2.5. Under the notation 0/ Proposition 2.4, assurne moreover thai the

surn is direct, i. e. V is a central subalgebra. Then a bivector A with the decornpo.9itünl­
A = AA + Av + A' is a Poisson bivector if and only if

i) AA is a Poisson bivector,
ii) A' E CA(AA) /\ V, where
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is the stab'ility subalgebra of AA, and
iii) sllppA' n A is a cO'rnmutative Lie algebra. In this ease AA, Av , A' are rr1.7dually eom.­
muting Poisson biveetors.

Proof. Calculating thc bracket, wc obtain

[A, A] = [AAl AA,] + [AA, A'] + [A', A'J.

Bince thc sUlllIllallels belong to the different hornogerlCous conlponcnts, tbe left-hanel siele
vanishes iff all sunullanels of the right-hand side are equal to zero. It is easy to check that
the condition [AA, A'J = 0 is cquivalent to the condition (ii) anel the condition [A', A'] = 0
gives (iii).

Proposition 2.6. Let A = Al +A2, A 1nA2 = 0 be a deeornposition of a Lie algebra 9
into a SU1ft of two subalgebras and Wi be a sY7npleetic form on Ai, i = 1,2. Then W = Wl +W2
is a syrnplee tie fOT"m, 0 n 9 iJJ the natural representation adA i 0 f Ai (i = 1, 2) i.,-äo the
space 9/Ai ;::::: Ai" {i, i'} = {I, 2} is sympleetie, i. e. it preserves the syrnpleetie f017n Wi' .

Corollary 2.7. Let (Ai 1 Wi), i = 1,2 be two Lie algebra.s with .9yrnpleetie fonns and
r.p : Al ---+ Der(A2 ) a re]Jresentation of Al by means 0/ derivaiions 0/ the Lie algebra A 2.
[/ the linear Lie algeb1'a r.p(Ad is symplectic, i.e. ij it preserves W2J then the semi-(lirect
o5U1n 9 = 91 + 92 luL.'; the o5Y'fnpleetie form W = Wl + W2.

Proof of Proposition 2.6. Let ai, bi , Ci E Ai, i = 1,2. Then we have

dw(al' bt, C2) = w([a1' b1], C2) + w([b1 , C2], ad + W([C2, al], bl ) =

w(adc2 a1' bd + w(all adc2 bl ) = (adc;wl)(aI 1 bl ),

dw(a2l b2,cd = (ad:! w2)(a2, b2).

Hence, dw = 0 {::> aelAl W2 = aelA2w1 = o.
The following LelnIna gives a elescription of closecl two-forrns on a senli-dircct Sllill of

two Lie algebras.
Lemma 2.8. Let 9 = A + B be (I, serni-direct decornTJosition 0/ a Lie algebra 'irdo (l

.5um of a 8ubalgebra A und an ideal B. Then
i) the /\ 2A-component AA 0/ any Poio5son bivector A on 9 i.5 a Poi.,;son bivector,

ii) any cloo5ed 2-/orm W on 9 has the eanonieal decorn]Josition

,
W = wA +wß + w 1 (2.1)

where wA = w I A, WB = w I Bare dosed fonno5 on A and B (eonsidered in the natural
way a.5 f01ms on 9) and w' E A * /\ B* C 1\29* io5 a 2-form that satisjies conditions:

w' (a, [b, b'D = (acl:wB)(b, b') = wB([a, b], b') + wB(b, [a, b'D, (2.2)

w'((a, a'], b) + w'({a', b], a) + w'([b, a], a') = 0

for a, (L' E A, b, b' E B.

9

(2.3)



Conversely, for any closed 2-loT1ns WA, WB on A and Band a 2-lorrn w' E A* /\ B*
which sutisfies {2.2} und {2.3}, for7nula {2.1} defines a closed 2-lonn on 9.

The proof is straightforward.
We shall denote by zi(A) thc space of closed i-forIns on a Lie algebra A.
Corollary 2.9. Let 9 = A + B be the direct surn 01 two ideal8. Then

In parlicularJ if [A, A] = Athen

As another corollary of Lenuna, we have
Proposition 2.10. Let 9 = A + B be a serni-diTect decomposition 01 a Lie algebra 9

as in Lernrna 2.8.
i} ASS7L1ne that [B, B] = O. Then the space z2(Q) of the cl08ed 2-forrns on 9 is given by

z2(9) = z2(A) + z2(B)A + Z~Bl

where z2 (ß)A i.9 the 8]Jace of adA-invariant 2-foT1ns on ß and z~B is the spacc of
2-fonns frorn A* f\ ß* that satisfy {2.3}.

ii) Ass1J,rne that [A, A] = A, [A, ß] c [8, ß] und let W be a closed 2-forrn with the canon­
i cal decompositi on (2.1). If WB is ad A -invariant fo'f71~, then w' = 0 and the decornposi/,i on
Q = A + ß is w-orlhogonal: w(A, 8) = O.

Applying this proposition to thc Levi-Malcev deconlposition 9 = S + n of a Lie al­
gebra 9, we obtain

Theorem 2.11. Let 9 = s + n be the Levi-Malcev decomposition of a Lie algebra
g, where S is a serni-simple subalgebra and R is the radical. Let w be a closed 2-fonn
on 9. A ssurne that its restri ction 0 f Wn toR is ad S -invariant. Th en w (S, R) = 0 und
w = Ws + W'R, J whe,e Ws in the restricti 0 n 01 w to S. In panicular, thc fOT7n w is degencrnt e.

Note that if the scnü-sirnple part S is conlpact, then any closcd 2-fonn on 9 is coho­
11101ogic to a closed ael S-invariant 2-fofln.

Proposition 2.12. Let A c gl(V) be a linear Lie algebra and Q = A + V the
associated inho7nogeneo'/ts Lie algehra, which i" the selni-direct .'iurn 01 the suhalgebra A
and the vector ideal V.

Then the space z2 (9) of closed 2-fonlls on Q is the direct surrt of three sub.9]Jaces:

where f\2(V*)A is the space 01 ad* A-invariant 2-foT7ns on V and

zl(A, V*) = {w E A* f\ V* Iw([A, B], 2;) = w(A, Ex) - w(B, Ax); A, B E A,:r; E V}.

We note that we rnay consider zl (A, V*) as the space of closed V*-valued I-fonns on
A, where the differential dw of al-farIn w : 9 --+ V* is given by

dw(A, B) = w([A, B]) - w(B)A + w(A)B.
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(Here we denote by ~ H ~A thc action of A E A on the I-fonn ~ E V*, (~A)(x) =
~(Ax) for x E V.)

RClnark that any I-fonn EE V* Inay bc considered as a. O-fonn on A with values itl
V* anel, hence, it defines the exact I-fonn w~ = dE E dzO(A, V*) c Zl (A, 17 *) :

W~(A, x) = E(Ax).

Corollary 2.13. Assurne that H1(A, V*) = O. Then

Corollary 2.14. Assul1~e that the action 0/ A on V preSC71JeS UD non-zero 2-107'(11, on
V, i.C. A2 (V*)A = 0 and ditnA < ditnV. Then any closed 2-fom1, w on Q is degencrate.
In partiC'l.Llar A does not admit a symplectic forrn.

Proof. Billce ;\2(V*)A = 0, any closed 2-forl11 Il1ay be written as w = WA + w',
where WA E z2 (A) 1 w' E Zl (A, V*). Billce dirn w'A < dilnV*, there exists 'lJ E V such that
w' (A, v) = O. It belangs to the kernel of w.
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3. CLASSIFICATION OF POISSON BIVECTORS
ON SOME LIE ALGEBRAS

Let A be a COIlul1utativc subalgebra of a Lie algebra g. Then any bivcctor A E A 2A C

A 2g is a Poisson bivector. It has COlllll1utativc subalgebra suppA c A a..,; thc support.
Thc following sinlplc proposition gives the completc description of a11 Poisson bivectors

in a cOlnpact Lie algebra.
Proposition 3.1 .. Any Poisson bivector A on (L cornpact Lie algebra Q has a corn:tnu­

tative support.
Proof. Since any subalgebra of a cOlupact Lie algebra is a cornpact Lie algebra, Le.

the Lie algebra of a cOlupact Lie grOllp, the support A = supp A of a Poisson bivector A
is a corupact Lic algebra with a non-dcgencrate Poisson bracket A.

A cOlupact Lie algebra A is thc dircct S11r11 of a. cOlllpact sellü-sirnple Lie algebra A'
and a COlllmutativc subalgebra ß. By Corollary 2.9 thc symplcctic fonn w = A-Ion A is
thc SUIU of sYluplcctic fonTI w' of A' and a syllipiectic fonn Wß of A'. To finish thc Proof,
we 1l1USt show that A' = O. This fo11ows frOlll the wcll-known

Lemma 3.2. Any closcd 2-]07",n W on a serni-sirnple Lie algebra Q is exact, i.c. it
has the form

w = d~

for same l-form ~ E Q*.
Its kernel Ker w i= 0 and it coincidcs with thc centralizer in 9 of thc vector X =

B-I~ E 9 a..'3sociatcd with ~ by lueans of the Killing-Cartan fOrIn B of 9. In particular:
there is no sYluplcctic fornl on 9. This shows that A' = 0 and proves Proposition 3.1.

Now we H...<;sociatc with a sYluplcctic vector space (V, a) over field k = lR, C HOIne
(271, + 2)-elitnensional Lic algebra &n+1 with thc canonical sYluplectic fornl We(~n anel thc
canonical Poisson bivcctor Aean = W~L;~' It is dcfined as follows:

[Cl, vn] = 0, [:c, y] = a(x, y)el, x, y E Vn
,

[eo, el] = 2CIl ad eO IVn = 1.

1
Aean = "2eo A el + L(Pi A (ji),

Wean = dei = 2c~ A ei + a.

Here {Pj, qk} denotes a standard synlplectic base of v n :

Thc basis {h = eo, 7' = Cl,Pi, qj} will be callcd a standard basis of &n+1' Thc dual basis of
the dual space is clenotccl by {e~ = h*, ei = 7'* , pi, q;}.
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Following [PS 1962] we will call tn+l an elerllentary Kähler algebra. It is the Lie
algebra of the Iwasawa subgroup AN of thc Lie b'TOUP G = SU(l, n + 1) = K AN. The
proof of thc Jollowing IClllnUt is straightforward.

Lemma 3.3. Any closed 2-/01'111, p on tn+l is exact (lud is a linear c01nbination 0/
the form Wcnn and a form 0/ the type

d
,., ,., 1\ ,.,

V = eo " v , (3.1 )

The form p is degenerate if and only i/ it is given by (3.1).
Corollary 3.4. Any non-degenerate Poisson bivector on &n+l may be written as

Lemma 3.5. The stabilizer

0/ any non-degenerate Poisson bivector A = Acan + el Avis equal to

We say that a bivector A is horrlOgcncous of weight k if

(acl eo)A = kA.

Note that any sYlnplectic subspace u2m of thc dirncnsion 2rn of thc syrnplectic space V 2u

defines a snbalgebra

of &n+ 1. It will be callecl a standard snbalgebra of &n+1.

Lemma 3.6. Let A be a h0111,ogeneous Poisson bivect07' on En +1 of weight 2. Then
eüher A = supp (A) is a standard subalgebra 0/ En +l and A = A ispTopo1tionai to the
canonical Poisson bivector 0/ the elementary algebra A, 01' A is a C01nmutative subalgebnL.

Proof. Wc rnay write A as

where Av E A 2V.
If ,,\ = 0, then C = supp A is a conunutative subalgebra of V.
ASSUlllC now that ,\ =I- 0. Thcn

C = suppA = k {eo, el} + W,

where W is a subspace of V. We can write C as a senü-direct SUlll C = A + ß, where B is
the kernel of the canonical sYlnplectic fonn a on W anel A = C {co 1 el} + U is a standard
subalgcbra. Since B is a COllllllutative ideal, we can apply Proposition 2.10.
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Note that
ad eo I 1\2 B* =:: -2 . id.

Hence Z2 (B)A = O. We claiIll that Z1B = eo1\ B*.
Indeed, for w' E z3tB' bEB wc have

= 2w' (e1, b) + w' (el , b) = O.

Hence,
W'(Cl, ß) = 0,

l11oreover, the equations
dW'(Cl 1 a, b) = dw'(a, a', b) = 0

for a, a' E U, bEB are satisficd auto111atically. Thc equation

o= dw'(eo, a, b) = w'((eo 1 a], b) +w'((a, b], co) + w'((b, eo], a) = 2w'(a, b)

lneans that w'(U, B) = O. Hence w' E eo 1\ B* allel Z3tB = Co A ß*. Applying Proposition
2.10, we have z2(C) = z2(A + B) = z2(A) + Cö 1\ B*. Lenllua 3.3. shows that any c10sed
fOrIU on C has the form

\ + "'". v· E U* + B*,/\Wcan eo f\ v ,

whcrc W can is thc canonical synlplcctic [onn on A. It is degcnerate if B =1= O. On thc other
hand, thc bivector Adefines a non-degcneratc c10sed 2-forIn A-Ion C = supp A. Hence,
ß = 0 and Lenlllla is proved.

Thc following theorcnl dcscribes all closed 2-forIllS on Lic algebra which (lChllits an
ideal isonlorphic to the elcmentary algebra.

Theorem 3.7. Let 9 be (L Lie algehra with serni-direct decorn]Josition

9=:F+&,

where the ideal E = keo + kCl + V is isornorphic to the elernenlary Lie algebr'fl and the
sublagebra:F cornmutes with Co aud has serni-dircct decomposition

:F = A + :F', :F' = (:F,:F], (A,A] =0.

Then any closed 2-forrn w on 9 can be written as

W = W:F + AWcan + du· + e~ 1\ a*,

where A E k j W:F 1 WCaIl are the trivial extension to 9 0 f the restrietion W I:F und th e cauon­
ical form of E, n* E V*; a* E A*. The forrn W depcnds on 1 + dirn A pararneteres.

The form W is non degenerate ijj A i= 0 und the system of equations
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wheTe fi is a basis of :F and u = a-1u· has only trivial solution.
Proof. Changing the conllllutative subalgebra A if neecssary, wc rnay asSlllne that

it COllullutes also with el'

By Lenunas 2.8 and 3.3, a closed fonn W on 9 ean be written as

,
W = W:F + WE + W ,

where W:F, WE = AWcfin + Co 1\ u· are closed fonTIs on F, C respectively, considered as fonns
Oll 9 and w' E :F. 1\ c· satisfies the cquations (2.2), (2.3). Direct ealculations show that
these equations are equivalent to the following relations

W'(:F, er) = 0, w'(f,v) = u*((j,v]), w'(:F',eo) = 0

far all f E :F, v E V.
We ean rewrite w in thc fallowing fonn:

W= W:F + AWcan + du· + w",

where w" E c* I\:F* satisfics thc relations

w" (:F, kel + V) = 0, w" (:F', eo) = 0.

Henee, w" = e~ 1\ a* for SOllle a* E A*. It relnains to study when w i8 non dcgencratc.
We Inay assullle that A =j:. 0, because in thc opposite ca..'5e Cl belongs to thc kernel of

w. Asslune that a vcetor z = f + aeo + ße1 + v belangs to the kernel of w. Thcn

o= w(z) = w:F(f) + A (ße~ - aei + av)+

+ }* * * + }* * + * (f) * *ac f U - a'/1, ac v U a eo - aa .

Projecting this veetor eqllation onto :F*, e~, ei, V we obtain the following systmn:

W:F! + ad~ u* - aa* = 0,

Aß + a*(j) = 0,

Aa = 0,

Al7V + adj u* - au* = O.

Hencc, a = 0, ß = -1/Aa* (f) - AV = (1-1 aelj au = aelfu anel thc kernel i8 eletennined by
solutions f of the equation

W:F f = 1/Aau 0 adU,uj'

This proves Thcormll.
Corollary 3.8. FOT a closed 2-form. w the Jollowing conditions are equivalent :

1) WIE = AWcan ,

2) u* = 0,
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3) W is the S11,111, of eigenvectors of the operator acl co with the eigenvalnes 0 und -2.
If [F, &] = V, these conditions are eqnivalent to

4) w(F, &') = w(F, kel + V) = O.
Corollary 3.9. Assurne that [F, &) = V. Then any closed form w on Q with

w(F, &) = 0 is given by
w = W:F + AWcan1

where W:F is a clo.~ed forin on F. It is non-degenende iff A i= 0 and W:F 'l.r; a non-degcnc1ute
closed form on F trivially extended to Q.

Proof. ASSlune that w(F, &) = O. Thcll a* = O. Supposc that u* = O. Then therc
exist 1 E Fand v E V such that u* ([I: v]) i= O. Hence,

w(j,v) = du*(j,v) = u*([/, v]) i= o.

We COlne to a contradiction.
The Lie algebra Q is callecl Frobenius one if it achnits an exact synlplectic fonn w = d~.

In othcr words, this Illcans that thc coadjoint action of tbc corrcsponding group G has an

open orbit Ad*G€.
Corollary 3.10. Under the assumption of Theorern 3.7, the Lie algebra Q is Frobenius

one iff the Lie algebra F is Frobenius. M oreover, any exaet form on Q ean be written as

where W:F is an exaet form on Fand v* E V*. In particular, a closed fonn w is exnet ijj
w(F, &) = 0 und w IF is exact.

Proof. It follows frolll Thcorcrn 3.7 anel Leu1Illa 3.3.
Remark. This corollary rednccs thc problmll of description of open coadjoint orbits of

the grollp G with the Lie algebra 9 to tbe sanH~ problen1 far the subgroup F: corrcsponcling
to the subalgebra F.

Denote by z2(Q) (rcsp., dQ*) the space of closed, (resp., cxact) 2-forms on the Lic
algebra 9 anel by H 2(9) = z2(Q)/dQ* the corrcsponding cohonlology group. RClnark that
thc space A'" c F* is the space of closcd 1-fornlS on Fand sl1ch forms are ncver cxact.
Using this we derive froll1 Theorenl 3.7 and Corollary 3.10 the follawing

Corollary 3.11. Under the notation of Theorern 3.7, aSS1l1ne that the elementary
algebra & = &n+l has dimension 211. + 2. Then

1) dirn z2(Q) = dinl z2 (F) + dirn A + 2n + 1,
2) dirn dQ* = dirn dF'" + 212 + 1,
3) diIn H 2 (Q) = din1 H 2 (F) + dirn A = dirn II 2 (F) + dilll Hl (F).
4) If F ad1nits a symplectic struct1lre then syrnplectic strnctures on Q depend on din1 z2 (9)

parameters.
We say that a Poisson bivector A is consistent with a scnü-direct decollIposition Q =

F + & if it is a SUIn of two bivectors A:F 1 AE with support in F anel &, respcctivcly. Then
by Proposition 2.1 A:;=, AE are COIlul1uting Poisson bivectors. We have

Corollary 3.12. Undc1" the notat'lon of TheoTem 3.7, any Poisson bivector A on Q
which is consistent with the deeomposition 9 = F + & is given by

A = A:F + AE = A:F + AAcan + el /\ v, A E k,
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where /\;:: is (L Poisson bivector on :F: /\can = 1/2 eo 1\1 +:E Pi 1\ (ji and v E V is a vectoT
cornmuting with the subalgebra supp /\:;=.

Proof. By Corollary 3.4, allY Poisson bivcctor on E has thc fonn

/\E = /\:;= + ,,\/\can + e1 1\ 'U

for SOlllC V E V. Since (ad :F)Ac;an = 0, we have [A:;=, Ac<\n] = O. HCllce, thc bivcctors
A:;=, A-E'colnnlutc Hf [supp A:;=, v] = O. This proves Corollary.

4. DECOMPOSITION OF THE BOREL SUBALGEBRA ß INTO A SUM
OF ELEMENTARY ALGEBRAS AND CLOSED 2-FORMS AND SYM­
PLECTIC STRUCTURES ON B

Using thc induction, wc can apply thc results of Section 3 to any Lic algebra 9 which
is dccolnposecl into scnüdircct sunl

of clelncntary subalgebras such that for any i > 1, EI + ... + Ei is a subalgebra with thc
ideal Ei anel thc cOlllplelnentary subalgcbra EI + ... + Ei-I.

Now we prove that thc Borel subalgebra of the selnisilnple (complex or nornutl real)
Lic algebra adnüts such senüdirect decol11position (where, somctilnes, also a subalgebra of
thc Cartau subalgebra appears).

Let 9 bc a senüsirnple (coillplex) Lic algebra and R corresponding foot systcln with
respect to the Cartan subalgebra 'H. Rccall that a subsct Q c R is called to bc closed if

(Q+Q)nRcQ.

Such subset dcfines a rcgular subalgebra 9(Q) of 9, gcnel'ated by the root vcctors E CfJ Cl: E
Q.

Morc gencrally, two closed subsets P, Q of R define thc regular subalgebra B = 9(P) +
9(Q) with the ideal 9(P) iff

(P+Q) nR c P.

Denote by R+ a systcIn of positive fOOtS of 9 anel by p thc lüghest root of R+. We set

Rp = {Q' E R+ 1 P - Q' E 17.+ U {O} } = {Cl: E R+ I (fJ, Cl:) > O}

anel

Proposition 4.1.
1. Rp, Qp are closed subsets of roots anel (Qp + Rp) n R c Rp.
2. The Borel subalgebra B(9) = 'H + 9(R+) of 9 anel 9(R+)adlnits senli-clirect

dccolnposition
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where &p = kHp+ Q(Rp) is an ideal and F p = Hf + Q(Qp) is a subalgebra. Here Hp is thc
lüghest root vector and H' is thc orthogonal c0l11plelnent to Hp into H.

3. Thc ideal &p is isolllorphic to the elernentary Lie algebra &n+11 where IRpl = 212+ 1
and TL = hv - 2, hv is thc dual Coxctcr nlunber.

Proof 1. Note that the highest root p is always a long root and wc nonnalizc it as
(p, p) = 2. Then thc set Rp has the form Rp = R1 U {p} where R I = {a I (a, p) = I} sincc
2(0:, p)/(p, p) < 2. Let, = a + ß E R+ for 0: E R+,ß E R+. Then

If 0:, ß E R Il thcn (" p) = (a, p) + (ß, p) = 2, anel, = p.
If a , ß E Qp then (" p) = (0:, p) + (ß, p) = 0. + 0 = 0 and , E Qp.
If 0: E R I , ß E Qp then (" p) = (0:, p) + (ß, p) = 1, and , E R I .

This proves 1. The statenlent 2 follows fron1 1 and thc rernarks before Proposition
4.1.

3. Frorll the proof of 1, it follows that (R1 + Rd n R+ = {p}. Hencc wc can write

whcre D:i + ßi = P, i = 1, ... n are thc only non trivial rclations betwecn thc roots frolll
Rp . This shows that Q(Rp ) is the Hcisenbcrg Lie algebra. Moreovcr, &p is thc elelucntary
algebra, because

Olle can check easily that ßi = -SpD:i wherc Sp is the reflection in the hyperplane orthog­
onal to the root panel that n = hY - 2 where hV is thc dual Coxetcr nun1ber. This proves
3.

18



Now we describe a decoInpositioIl

of the Borcl subalgebra of a smnisiInple Lie algebra 9 explicitly. It is sufficient to consieler
only sirllple Lie algebras. Rccall that therc are fOllr serics anel five exceptiollal Lie algehras
An, E n, Cn, Dn , E 6 , E 7 : Es, F4 , G2 • The basic characteristics of these algebras are givell in
Table 1.

Table 1

Type of group Rank Coxeter Iuunber NUInber of

positive roots

An, 11, 2: 1 n 11,+1 n(11,+l)/2
E n , TI, 2: 2 11, 2n n 2

Cn,n 2: 3 11, 2n 11,2

Dn ,n2:4 n 2(12 - 1) n(n - 1)

E 6 6 12 36
E7 7 18 63
Es 8 30 120

F4 4 12 24

G2 2 6 6

Thc next Table 2 enUUlcrates the root systeIll of cach siulple Lie algebra 1 according
to the book (OV 1990], aud dcscribcs the subsystem

associated with the lüghest root p.
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Table 2

Type of 9 Roots Highest root p

E 6 ei - ej, ±2e 2c

Ci + ej + Ck ± C

E7 ei - ej -C7 + es

ei + Cj + ek + Cl

Es Ci - Cj el - eg

±(Ci + Cj + ek)

F4 ±Ci ± ej, ±ej Cl + e2

~ (±el ± C2 ± C3 ± e4)

DecolupositiOll of p,

P = Cij + ßj

aj = Cl - Cj 1 ßj = Cj - e n +I;

j = 2, . .. ,n

aj = el + Cj, ~j = C2 - Cj:

iij = el - Cj, ßj = e2 + ej,

a2n-3 = el, ß2n-3 = C2

j = 3, .. . ,U

aj = Cl + Cj, ßj = el - ej

j = 2, .. . ,n

aj = Cl + Cj, ßj = C2 - Cj

aj = Cl - Cj, ßj = e2 + Cj

j = 3, .. . ,n

ajkl = C + Cj + Ck + el,

ßjkl = e - Cj - Ck - Cl;

j,k,l=l,,,.,6

fIJ· - -C7 + C· ß· - Cs - e ........J - J, J - J

ajkl = es + Cj + Ck + Cl,

ßjkl = -C7 - Cj - ek - Cl

j,k,l=1, ... ,6

fIJ. - Cl - C· ß· - e' - eg.......J - J' J - J

ajk = Cl + Cj + ck,

ßjk = -Cg - Cj - Ck; j, k = 2, ... , 8

a = Cl, ß = e2

aj = Cl + Cj, ßj = C2 - ej, y" = 3,4

iij = Cl - ej, ßj = e2 + ej, y" = 3,4

0:6,7 = ~ (eI + C2 + e3 ± e4)

ß6,7 = ~ (eI + e2 - e3 =F e4)

al = Cl, ßl = -C3

(}:2 = el - C2, ß2 = e2 - e3

Recall that subSystClll of raots Sp = R+ - Rp consists of positive roots orthogonal to
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the root p, and so Sp is gcneratcd by siluple roots orthogonal to p. Hence Sp luay be easily
constructcd froln thc cxtended Dynkin diagram of the Lic algebra 9 which carresponds to
the set of sitnple roots anel the Ininirnal root (-p). The siluple roots connected to the root
(- p) are not orthogonal to the root p. The rest raots fanu thc extended Dynkin diagnuu,
which generate subsystenl Sp anel the corresponding Borel subalgebra.

Note that the nlunber of fOots inRp is equal to 2hv - 3, where h,v is thc dual Coxetcr
nnrnher.

Using these rernarks, we obtain thc decolupositions of thc Borel sllbalgebra inclicated
into Table 3. Herc H~ is the elenlcnt of the Cartan subalgebra 1-1.. which corresponds
to (n - 1)(el + en +l) - 2(e2 + ... + eH) under the identificatioll 1-1. = 1-1.*. R.ccall that
dinl (En ) = 2n.

Table 3

B(An ) =

B(Bn ) =
8(Cn ) =

B(Dn ) =

8(E6 ) =
B(E7 ) =
B(Es) =
B(F4 ) =
B(G2 ) =

En + (B(A n - 2 ) + kH~)

E2n - 2 + (ß(Bn - 2 ) + 8(A)))
EH + B(Cn-d
E2u - 3 + (ß(Dn - 2 ) + ß(At})
E11 + B(A 5 )

E17 + ß(D6 )

E29 + B(E7 )

E8 + B(C3 )

E3 + B(Ad

Using this Table, it is easy to write the explicit fonllulae for the dccornposition of
thc Borel subalgebra of any senli-sitnple Lie algebra into the elerncntary subalgebra...'3. We
present the results in Tablc 4.
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B(An ) =
B(Bn ) =

B(Cn ) =

B(Dn ) =
B(Dn ) =
B(E6 ) =

B(E7 ) =

B(Es) =

B(F4 ) =
B(G2 ) =

Table 4

Cn + [n-2 + ... + &2 (orEd + 1-lm ; rn = [il
&2n-2 + E271 - 6 + ... + E4 (o1'E2 ) + rnEl , m = [nt l

]

Eu + [n-l + ... + &2 + &1
E2n - 3 + C2n-7 + + [5 + (1n + l)El, 11, = 2rn
E2n - 3 + E211 - 7 + + E3 + rnE l + 1-l 11 n = 2rn + 1

E11 + E5 + [3 + EI + 1-l2
E17 + E9 + E5 + 4&1
E29 + E17 + [9 + E5 + 4E1

Es + E3 + E2 + EI
E3 + EI

Here 1-lm is the subalgebra of thc diIncnsion m of the Ca1'tan sllbalgeb1'a.
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Using the rcsults of section 3, wc clcrive now SOllle corollaries [rorn these rcsults.
By Corollary 3.10, any subalgebra. B which adnlits a clcconlposition into a scnli-dircct

SUHl of thc elementary subalgebra is a Frobcnills Lic a.lgebra. This rncans that thc coadjoint
action of thc corresponcling Lic group has an open orbit 01', in othcr words, B has an cxact
syrnplectic fornl. Checking Table 4 and using Corollary 3.11 , we gct

Proposition 4.2.
1) The Borel subalgebra of a simple Lie algebra 9 is Frobenius iff 9 is different frorn

A n ,D2m+1 and E 6 .

2) The rninirnal dimension of the kerne! 0/ an exact 2-fonn (which is equal to the codi­
mension 0f a regular coadjoint 0 rbit) is equal t 0 rn = [TI. / 2] for B(An), 1 for B(D2m+1 )

and 2 for B(E6 ).

3) The Borel subalgebra adlnits a symplectic /orrn iff it has even din~ension. In the
opposite case it adrnits a closed 2-lorm with one-dimensional kernet.
Recall that for the clcmentary Lie algebra En the cliInension of the space of closed

2-fonns is equal to 2n - 1 anel H 2 (En ) = 0, since any closccl 2-fonn is exact (Lclluua 3.3).
Now we calculate the cohornology H 2 (B(9)) for each sirrlplc Lic algebra g.

Proposition 4.3.
Let 9 be a sirnple Lie algebra 01 rank n. Then

dirnH2 (B(Q)) = n(n - 1)/2.

Proof. Let B = EI +... +EP +1iq be a decornposition of thc Lic algebra B(9) of rank
n into serni-direct sunl of elernentary Lie algcbras allel the COIlllllutative q-dilllensional Lie
algebra 1iq .

Thcn Corollary 3.11 ilnplics the followillg fonnula for the elilnension of thc second
COhOIllOlogy group:

eliIllH2 (B) = (11, - 1) + ... + (n - p) + q(q - 1)/2 = (211, - P - 1)p/2 + q(q - 1)/2.

For the Frobenius Borel algebra, q = 0, p = 11, anel we get thc Proposition. Using this
fonnula we check Proposition also for the cases Q = A 2m+11 A 2m , D 2m+I anel Eu.

Now the calculation of the dirneIlsion of the space of closeel 2-forrns reduces to the
calculatioll of the dirnension of the space of exact 2-fofln. For the Lic algebra with a
senlidirect decolnpositioll B = En + :F we have

d iIn d B* = 211. - 1 + dirn d :F*

by Theoreln 3.7 alld Corollary 3.11. More generally, for the Lie algebra with a senlidirect
decornposition

we get fonnula
]J

dinl r1 B* = L (2ni - 1),
i=l

i.e dirn d B* is equal to
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the nUlllber of positive roots of algebra Q. Using this fonllula we calculatc the dirncn­
sion of thc space of exact 2-fonus d8(Q)* and thc spacc z2 (8(9)) of closcd 2-fonns for al1
sirnple Lic algcbras 9. The results are prcsentcd in Tablc 5.

Table 5

Type of group 9 dilll z2 (8(9)) dilnH2 (8(9)) dinl d8(9)*

Anl n 2: 1 11,2 7'1.(11, - 1)/2 n(11 + 1)/2
Eu, 11, 2: 2 n(3n - 1)/2 n(n - 1)/2 112

Cn , rL 2: 3 11,(311, - 1)/2 1'1.(11, - 1)/2 112

Du, n 2: 4 3n(n - 1)/2 n(n - 1)/2 n(n - 1)
E 6 51 15 36

E 7 84 21 63
Es 148 28 120
F4 30 6 24

G2 7 1 6

Let
8(Q) = &rq + &U2 + ... + &Uk + tlm

be the deconlposition of thc Borel subalgcbra of the siInple Lie algebra 9 into the sunl of
elclnentary Lic algebras and, ruay be, thc comlllutativc Lie algebra, described in Tablc 3.
Dcnote by Ai thc canonical Poisson bivcctor on elerllcntary subalgebra &i and by Ao any
bivcctor on thc cornnlutativc subalgebra tlm . Then Corollary 3.12 implies thc following
rcsult.

Proposition 4.4. The Poisson bivectoTs Ai: i 2: 0 1nutually c01n1nute o;nd deft'ne
ihe Poi,r;son bivectoT

A = Al + ... + Ak + Ao

on the BOTel subalgeb1'CL 8(9).
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