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Introduction

The purpose of this paper is to describe a new class of Poisson brackets on simple Lie
algebras and symplectic structures on some solvable Lie algebras. This gives a new class
of solutions of the classical Yang—-Baxter equation.

Let, us first recall some basic facts on the classical Yang-Baxter equation, referring
the reader for more details to the well-known paper by Belavin and Drinfel’d [BD 1982).

The classical Yang-Baxter equation (CYBE) is the functional equation

[X12(A1, A2), X13(A1, As)] + [X12(A1, Az), Xaa(Az, As)] + [Xua(A1, As), Xaza(Az, A3)] =0
(0.1)
for the function X (A, p) taking the values in G ® G, where G is the Lic algebra. In order to
define the quantity X;2(A1, A2), following [BD 1982], we fix an associative algebra A with
unit, which contains G and the linear maps @12, @23 and 3, so that

0122600 > AQRAR A, 912(a®b)=a®b®1 (0.2)

and analogously for maps @23 and ¢13.

Note that if X (A, ) is a solution of eq. (0.1) and ¢(u) is a function with values in G,
then X (A, 1) = (@(A) ® o)) X (A, 1) is also a solution of (0.1) and we will consider the
solutions X and X as equivalent. Let us introduce the following definition.

Definition 0.1. The function X (), 1) is invariant relative to g € Aut G, if

(9®9) X(A 1) = X (A, ).

The set of all such g forms the group that is called the invariance group of X (A, p).
The function X (A, i) is said to be invariant with respect to h € G if

(h®@1+1®h, X(A, pn)]=0,

i.c. if it is invariant relative to exp{ad i} for any t.
Note that if X (A, ) is a solution of (0.1), which is invariant relative to the subalgebra
H C G, and if a tensor r from H ® H satisfies the following Yang-Baxter equation

[r12,713] + [r12,723] 4 [r13,723] = 0, (0.3)

T21 = —Ti2, (04)

then the function X (X, ) = X (A, ) + 7 is also a solution of (0.1). Note also that if the
algebra H is Abelian, then (0.3) is satisfied automatically.
It is usually supposed that the Lie algebra G is a finite-dimensional simple Lie algebra
over C. In [BD 1982] the solutions of (0.1) have been studied in details, such that:
(i) X(A, ) is a meromorphic function; A, x C D, D is a domain in C;
(i) the determinant of the matrix formed by the coordinates of the tensor X (A, p) is not
identically zero;
(iif) X (A, p) depends only on the difference (A — p).
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In fact, as was shown in [BD 1983], the condition (iii) indeed follows from (i} and (ii).
In the paper [BD 1982] it was shown that solutions of (0.1) are of three types:
a) Elliptic solutions,
b) Trigonometric solutions,
¢) Rational solutions,
and all elliptic and trigonometric solutions were found. As for rational solutions, only few
of them were found, and the main purpose of this paper is to extend this class.

The paper is organized as follows. In section 1 we recall some standard definitions
and facts about Poisson structures. In the section 2 a decomposition of a Lie algebra G
into sum of two subalgebras is considered and relations between Poisson and symplectic
structures on G and its subalgebras are studied.

These results are used in the section 3 to cescribe explicitely closed 2-forms and
Poisson structures on the elementary Lie algebra £, which is the Iwasawa subalgebra
of su(2,n). The main result of this section is Theorem 3.7. It reduces the description
of Poisson and symplectic structures of a Lie algebra G , which is semi-direct stum of a
subalgebra F and the ideal &,,41 to the description of such structures on F. This gives
an algorithm for description of all closed 2-forms and of symplectic structures on any Lic
algebra which is decomposed into semi-direct sum of elementary subalgebras. In the section
4 we construct canonical decomposition of the Borel subalgebra B(G) of a semisimple Lie
algebra G into semi-derect sumn of elementary subalgebras (plus, may be, a commutative
subalgebra of the Cartan subalgebra). Applying the results of the section 3, we obtain a
description of closed 2-forms and symplectic forms (if they exist) on the Borel subalgebra
B(G) of a semisimple Lie algebra G. As a biproduct, we get description of the second
cohomology group H%(B(G)).
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1. POISSON BRACKETS ON A LIE ALGEBRA

1.1. The Schouten bracket in the space of polyvectors and Poisson bivectors
Let G be a Lie algebra and AG = E/\ig be the exterior algebra over G. The Lie
bracket on G determines naturally the bracket on AG :

[€1 Ao A zp, YIA .. Ay =

=S(=1)P7 7 A i AT A [T Y AT A T A g
L1y, Tpy 1, ey Uy S g

This bracket is called the Schouten bracket and it turns the space AG mnto a graded
Lie superalgebra.

Definition 1.1.
1. A bivector A € A%G is called @ Poisson bivector {or a Poisson bracket in a Lie algebra
G ) if it commutes with itself

[A,A] =0 (1.1)

(this is equivalent to the classical Yang-Bazter equation 0.3.).
2. Two Poisson bivectors Ay, As are called compatible if they commute:

[A1, Ag] = 0. (1.2)
Note that this is equivalent to the fact that any linear combination AA; + pAg is a

Poisson bivector.
If {e;} is a basis in G, then A may be written as

A= ZAijBi A Cy

and
[A,A] = Z AT AR e; A ejyer A,

where the bracket of two simple bivectors is given by

Ay, uAv]=[z, ] AyAv+z Ay, ] Av+yAz,v] Aut+zAuAly,v].



1.2. Poisson bracket induced by a Poisson bivector on a G-manifold

Let M be a G-manifold, i.e. a manifold with fixed homomorphism
w:G = X (M)

of a Lie algebra G into the Lie algebra A'(M) of vector fields on M.
The homomorphism ¢ may be extended to a homomorphism

w: NG — A(M)

of the Lie superalgebra of polyvectors on G into the Lie superalgebra of polyvector fields
on M (relative to the Schouten bracket).

In particular, the Poisson bivector A = A¥e¢; A e; € A?G determines the bivector
G(A) = AYp(e;) Ap(e;) on the manifold, such that [¢(A), @(A)] = 0. This bivector defines
a Poisson bracket in the space of functions on the manifold according to the formula

{f,9} = @(A)(df,dg) = A9 (X;- f) (X;-9), Xi= ples).

In particular, because the Lie algebra G acts naturally in G* and also in G, the Poisson
bivector A determines Poisson brackets in the spaces of functions on G* and G. These
Poisson brackets are defined by

{Gi,ej} = Aij, (1.3)

where {e;} is a basis of the space G, which is considered as the space of linear functions
on G* and respectively by

{57 T)}A = Z Ai](ad;,g)(a’d;_, T’)'l é.‘l "7 E g*’
Note that bivector fields, corresponding to brackets, have the form
Ag- =A9e; Nej, Ag = AICECYhaFalel ne,

where e} is the basis of G* dual to the basis e; of G, and C§, are structure constants of G.



1.3. Support of a Poisson bracket and symplectic structures on Lie algebras
Let A be a bivector on a Lie algebra §. Then A determines the linear mapping
A:G" =G, £ AN-€E=1iA

Definition 1.2. The subspace suppA = A(G*), which s the image of this linear
mapping, is called the support of the bivector A € A?Gy.

Lemma 1.3. The support suppA of the Poisson bivector A of the Lie algebra G is the
Lie subalgebra of G.

Recall that a symplectic form (or a symplectic structure) on a Lie algebra G is a closed
non-degenerate two-form w € A2G*.
The closeness condition means that

0=dw(z,y,2) = 0sy.w(zyl,2), ©,y,2z€G,

where o, , , denotes the sum of cyclic permutations of x,y, 2. If w is a symplectic form,
then the tensor A = w™! is a Poisson bivector. More generally, we have

Proposition 1.4. Let A be a subalgebra of a Lie algebra G and w be a symplectic
form on A. Then the inverse tensor

A=w"te A4 C NG

is a Poisson bivector with support A, and any Poisson bivector may be obtained using this
construction.

Hence the classification problem for Poisson bivectors on a Lie algebra G reduces to
the classification of Lie subalgebras A C ¢ with a symplectic form.



2. DECOMPOSITIONS OF A LIE ALGEBRA WITH
A POISSON BIVECTOR OR A CLOSED 2-FORM

Proposition 2.1. Let G be o Lie algebra with a non-degenerate Poisson bivector A
and w = A~ the associated symplectic form.

Let A = Ay 4+ Aq be a decomposition of A into a sum of two bivectors A; and A; =
suppA;. Assume that A N Ay = 0. This means that G = Ay + Ay is a decomposition of
G into a sum of w-non-degenerate subspaces and A; = (w|4,)7 1.

Then

i) Ay ts a subalgebra < A, is a Poisson bivector,
i1) Ay, Az are subalgebras &> Ay and Ay are commuting Poisson bivectors,
iii) assertion (ii) holds if [A1,Az] = 0 or Ay is an ideal.
Proof. It follows immmediately from the remarks that A; € A%2A; and

[A2A;, A2A] C ATA; A [A; A,
[/\2./11, /\2.42] C A1 AN Az A [.A1, Az].

The assertion (iii) implies the following

Corollary 2.2. Let G be a Lie algebra with a symplectic form w and A is a non-
degenerate ideal of A. Then w-orthogonal complement AL to A in G is a subalgebra.

Proposition 2.3. Let G = Ay + Ay, A1 N Az = 0 be a decomposition of a Lie algebra
G into a direct sum of two ideals, and A = Ay + As+ A’ be the corresponding decomposition
of a Poisson bivector A, A; € N2A;, A’ € Ay A Ay. Then Ay, Ay are commuting Poisson
bivectors.

Proof. This follows from relations

[/\2.Ai, /\2.,4;'] - /\S.Ai
[A2AL, AL A Al C AZAL A A,

[A1L A Az, Al A Az} C AL A (A2A) + ATAL A A,

Proposition 2.4. Let G = A+ V be a semi-direct sum of a Lie subalgebra A and a
commutative ideal V.
Let A be a Poisson bivector and A = A4 + Ay + A be its decomposition.
Then
1) A4, Ay are Poisson bivectors,
i) [Aq, Al = [Ay,A'] =0,
wi) [A',A] - 2[A4,Av] = 0.
In particular, A 4, Ay are commuting bivectors iff A’ is a Poisson bivector.
Corollary 2.5. Under the notation of Proposition 2.4, assume moreover that the
sum is direct, i.e. 'V is a central subalgebra. Then a bwector A with the decomposition
A=A4+ Ay + A’ is a Poisson bivector if and only if
i} A4 is a Poisson bivector,
i) A" € Ca(Aa) AV, where

Ca(Ag)={a€ AadaAy =0}

8



1s the stability subalgebra of A4, and
it1) suppA’ N A is a commutative Lie algebra. In this case A4, Ay, A" are mutually com-
mauting Poisson bivectors.

Proof. Calculating the bracket, we obtain

[A, A] = [AA, AA,] + [AA,A’] + [A’,A’].

Since the summands belong to the different homogenecous components, the left-hand side
vanishes iff all summands of the right-hand side are equal to zero. It is easy to check that
the condition [A 4, A’} = 0 is equivalent to the condition (ii) and the condition [A’,A’] =0
gives (iii).

Proposition 2.6. Let A = A;-+ Az, AiN A3 = 0 be a decomposition of a Lie algebra G
mnto a sum of two subalgebras and w; be a symplectic form on A;,1=1,2. Thenw = w1 +w,
is a symplectic form on G iff the natural representation adA; of A; (i = 1,2) into the
space GJA; = A,  {i,7'} = {1,2} ts symplectic, i.e. it preserves the symplectic form wy .

Corollary 2.7. Let (A;,w;), 1= 1,2 betwo Lie algebras with symplectic forms and
w : Ay = Der(As) a representation of Ay by means of derivations of the Lie algebra As.
If the linear Lie algebra ¢(Ay) is symplectic, i.e. if it preserves wq, then the semi-direct
sum G = G1 + Go has the symplectic form w = wy + wa.

Proof of Proposition 2.6. Let a;,b;,¢; € A;, 1 =1,2. Then we have

dw(al: b1, Cl) = dwl(ah b1, Cl) =0,

dw(ay, by, c2) = w(lag, b1, c2) + w(lb1, e2], a1) + w([ez, a4], 1) =
w(ade,ay,b1) +w(ar, ade,by) = (adcjwi ) (aq, b1),
dw(az, by, 1) = (ady, wa)(ag, ba).

Hence, dw =0 & ad:\lwg = acl;gwl =0.
The following Lemma gives a description of closed two-forms on a semi-direct sum of
two Lie algebras.
Lemma 2.8. Let G = A+ B be a semi-direct deconposition of a Lie algebra into «
sum of a subalgebra A and an ideal B. Then
i) the A A-component A4 of any Poisson bivector A on G is a Poisson bivector,
it) any closed 2-form w on G has the canonical decomposition

w=wys+wp+w, (2.1)

where wqa = w | A,wp = w | B are closed forms on A and B (considered in the natural
way as forms on G) and W' € A* A B* C A2G* is a 2-form that satisfies conditions:

W (a, [b,6]) = (ad?wa) (b, 1) = wa((a, b], ) + ws(b, [a, b)), (2.2)

w'([a,a'], b)) + ' ([, 8], @) + &' ([b,a],a’) = 0 (2.3)
fora,a’ € A, bV €B.



Conversely, for any closed 2-forms wa,wp on A and B and a 2-form ' € A* A B*
which satisfies (2.2) and (2.8), formula (2.1) defines a closed 2-formn on G.

The proof is straightforward.

We shall denote by 2*(A) the space of closed i-forms on a Lie algebra A.

Corollary 2.9. Let G = A+ B be the direct sum of two ideals . Then

2%(G) = 2% (A) + 22(B) + 2*(A) A 2H(B).
In particular, if [A, A] = A then
22(G) = 22 (A) + 22(B).

As another corollary of Lemima, we have
Proposition 2.10. Let G = A+ B be a semi-direct decomposition of a Lie algebra G
as in Lemma 2.8.
i) Assume that [B,B] = 0. Then the space 22(G) of the closed 2-forms on G is given by

22(G) = 22(A) + 22(B)* + 24,

where 2%(B)* is the space of adA-invariant 2-forms on B and 2% is the space of

2-forms from A* A B* that satisfy (2.3).

i) Assume that [A, A= A, [A,B] C [B,B] and let w be a closed 2-form with the canon-
ical decomposition (2.1). If wg is ad A-invariant form, then w' = 0 and the decomposition
G = A+ B is w-orthogonal: w(A, B) =0.

Applying this proposition to the Levi-Malcev decomposition G = § + R of a Lic¢ al-
gebra G, we obtain

Theorem 2.11. Let G = S + R be the Levi-Malcev decomposition of a Lie algebra
G, where § is a semi-simple subalgebra and R is the radical. Let w be a closed 2-formn
on G. Assume that its restriction of wgr to R is ad S-invarient. Then w(S,R) = 0 and
w = ws+wgr, where ws in the restriction of w to §. In particular, the formn w is degenerate.

Note that if the semi-simple part S is compact, then any closed 2-fori on G is coho-
mologic to a closed ad S-invariant 2-form.

Proposition 2.12. Let A C gl(V) be a linear Lie algebra and G = A+ V the
assoctated inhomogeneous Lie algebra, which is the semi-direct sum of the subalgebra A
and the vector ideal V.

Then the space 2z%(G) of closed 2-forms on G is the direct sum of three subspaces:

22(G) = 22(A) @ AH(V)A @ 21 (A, V),
where A2(V*)A is the space of ad* A-invariant 9-forms on V and
2 (A, V) = {we A AV w([4,B),z) = w(A, Bx) — w(B, Az); A,B € A,z € V}.

We note that we may consider z' (A4, V*) as the space of closed V*-valued 1-forms on
A, where the differential dw of a 1-form w: G — V* is given by

dw(A, B) = w([A, B]) - w(B)A + w(A)B.
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(Here we denote by € — €A the action of A € A on the 1-form { € V*, (£A)(z) =
E(Az) forz € V)

Remark that any 1-form € € V* may be considered as a 0-form on A with values in
V* and, hence, it defines the exact 1-form w® = d¢ € dz0(A,V*) C 21 (A, V*):

wt(A, ) = £(Az).
Corollary 2.13. Assume that H(A,V*) =0. Then
22(G) = 22(A) @ AH (V) @ d2 (A4, V™).

Corollary 2.14. Assume that the action of A on V' preserves no non-zero 2-form on
V,ie A2(V*)* =0 and dimA < dimV. Then any closed 2-form w on G is degenerate.
In particular A does not admit a symplectic form.

Proof. Since A2(V*)A = 0, any closed 2-form may be written as w = wy + o/,

where w4 € 22(A),w’ € 2!(A,V*). Since dimw’ A < dimV*, there exists v € V such that
w'(A,v) = 0. It belongs to the kernel of w.

11



3. CLASSIFICATION OF POISSON BIVECTORS
ON SOME LIE ALGEBRAS

Let A be a commutative subalgebra of a Lie algebra G. Then any bivector A € A2A C
A2G is a Poisson bivector. It has commutative subalgebra suppA C A as the support.

The following simple proposition gives the complete description of all Poisson bivectors
in a compact Lie algebra.

Proposition 3.1. Any Poisson bivector A on a compact Lie algebra G has a comnmu-
tative support.

Proof. Since any subalgebra of a compact Lie algebra is a compact Lie algebra, i.e.
the Lie algebra of a compact Lie group, the support A = supp A of a Poisson bivector A
is a compact Lie algebra with a non-degenerate Poisson bracket A.

A compact Lie algebra A is the direct sum of a compact semi-simple Lie algebra A’
and a commutative subalgebra B. By Corollary 2.9 the symplectic form w = A= on A is
the sum of symplectic form w’ of A’ and a symplectic form wg of A’. To finish the Proof,
we must show that A’ = 0. This follows from the well-known

Lemma 3.2. Any closed 2-form w on a semi-simple Lie algebra G is exact, i.e. i
has the form

w=dé

for some 1-form £ € G*.

Its kernel Kerw # 0 and it coincides with the centralizer in G of the vector X =
B~1¢ € G associated with & by means of the Killing—Cartan form B of G. In particular,
there is no symplectic form on G. This shows that A’ = 0 and proves Proposition 3.1.

Now we associate with a symplectic vector space (V,a) over field & = R,C some
(2n + 2)-dimensional Lie algebra &, with the canonical symplectic form weq, and the

canonical Poisson bivector Acan = w,. It is defined as follows:

Entr = keg + key + V2 = kh+ kr -+ k{p;, ax },
le1, V'] =0, [&,y]=o0(s,y)er, =z,yeV"

[eo, e1] = 2e1, adeg|V™ = 1.

1
Acan = 560 Aey + Z(pt A Qi):
Wean = de] = 2eq Ael + 0.
Here {p;,qx} denotes a standard symplectic base of V™
w(pi, p;) = w(@i, ;) =0, w(pi,qx) = bj.-

The basis {h = eg,r = e1,pi, ¢;} will be called a standard basis of &,,41. The dual basis of
the dual space is denoted by {eg = h*, e} =7*, pf, qj}.
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Following [PS 1962] we will call £, an elementary Kahler algebra. It is the Lie
algebra of the Iwasawa subgroup AN of the Lie group G = SU(1,n+ 1) = KAN. The
proof of the following lemma is straightforward.

Lemma 3.3. Any closed 2-form p on En41 18 exact and is a linear combination of
the form weun and a form of the type

dv* = ey AV, vt e (V). (3.1)

The form p s degenerate if and only if it is given by (8.1).
Corollary 3.4. Any non-degenerate Poisson bivector on £,41 may be written as

A=Xcon+e1Av, veV? 0#Ae€k.
Lemma 3.5. The stalilizer
Ceop(A)={z € &,41, (adz)A =0}
of any non-degenerate Poisson bivector A = Acan +e1 Av s equal to
Ce, .. (A) = ke;.
We say that a bivector A is homogeneous of weight k if
(adeg)A = kA.

Note that any symplectic subspace U?™ of the dimension 2m of the symplectic space V2"
defines a subalgebra
gm-{-l = keO + U2m + kel

of £,41. It will be called a standard subalgebra of £, 1.

Lemma 3.6. Let A be a homogeneous Poisson bivector on £, of weight 2. Then
either A = supp (A) is a standard subalgebra of £,41 and A = A isproportional to the
canonical Poisson bivector of the elementary algebra A, or A is a commutative subalgebra.

Proof. We may write A as

A= )\egx‘\el ‘I'Av,
where Ay € A2V,
If A =0, then C = supp A is a commutative subalgebra of V.
Assume now that A # 0. Then
C =suppA =k{ep, e1} + W,

where W is a subspace of V. We can write C as a semi-direct sum C = A+ B, where B is
the kernel of the canonical symplectic form o on W and A = C{ey, €} + U is a standard
subalgebra. Since B is a commutative ideal, we can apply Proposition 2.10.

13



Note that
ade, | A2 B* = -2 -id.

Hence z%(B)# = 0. We claim that 2%, = e} A B*.
Indeed, for w' € 2%5,b € B we have

0 = duw'(ev, e1,b) = w'([eo, 1], b) + w'([e1, 8], e0) + w'([b, co], €1)

= 2uw'(e),b) + w'(e1,b) = 0.

Hence,
w’(el, B) = 0,

moreover, the equations
dw'(ey,a,b) = dw'(a,a’,b) =0

for a,a’ € U, b € B are satisfied automatically. The equation
0 = dw'(eg, a,b) = w'([eo, al, b) + w'([a, b], e0) + ' ([b, €0], a) = 2w’ (a, b)

means that w'(U, B) = 0. Hence ' € e} A B* and 2%, = e A B*. Applying Proposition
2.10, we have z2(C) = 2?(A+ B) = 2%(A) + e A B*. Lemma 3.3. shows that any closed
form on € has the form

AMcan + €5 AV", v* €U + B*,

where wegqy, is the canonical symplectic form on A. It is degenerate if B # 0. On the other
hand, the bivector A defines a non-degenerate closed 2-form A~! on C = supp A. Hence,
B =0 and Lemma is proved.

The following theorem describes all closed 2-forms on Lie algebra which admits an
ideal isomorphic to the elementary algebra.

Theorem 3.7. Let G be a Lie algebra with semi-direct decomposition

G=F+E,

where the ideal £ = key + key + V' is isomorphic to the elementary Lie algebra and the
sublagebra F commutes with eg and has semi-direct decomposition

F=A+F, F'=[F,F], [A, A] = 0.
Then any closed 2-form w on G can be written as
W= wF + Mean + du” + ey Aa”,
where A € k; wr, wean are the trivial extension to G of the restriction w | F and the canon-

ical form of £, u* € V*; a* € A*. The form w depends on 1 + dim A parameteres.
The form w s non degenerate iff A # 0 and the system of equations

w}_(fa fl) = 1/)\0-([.]%,“]’ [fau'])a

14



where f; is a basis of F and w = o~ 'u* has only trivial solution.

Proof. Changing the commutative subalgebra A if necessary, we may assume that
it commutes also with e;.

By Lemmas 2.8 and 3.3, a closed form w on G can be written as

w=wr+we+uw,

where wr, wg = Awean + €5 Au” are closed forms on F, £ respectively, considered as forms
on G and W' € F* A £* satisfies the cquations (2.2), (2.3). Direct calculations show that
these equations are equivalent to the following relations '

W'(F, e1) =0, ' (f,0) = u([f,0]), W' (F',e0) = 0

forall fe F,veV.
We can rewrite w in the following form:

W= wr + Awean + du* + wn’
where W' € £% A F* satisfies the relations
W' (Fker +V)=0,w"(F' ep) = 0.

Hence, w” = e} A a* for some a* € A*. It remains to study when w is non degencrate.
We may assume that A # 0, because in the opposite case e; belongs to the kernel of
w. Assume that a vector z = f + aeg + fe; + v belongs to the kernel of w. Then

0 =w(z) =wr(f) + A(fej — ae] +ov)+

+ad}u’ — ou” 4 ady u* + a*(f)ey — aa”.

Projecting this vector equation onto F*, ef, e7, V we obtain the following system:
wrf +ad)u* — aa” =0,

AB+a*(f)=0,
Aa =0,
Aov + ad} wt —aut =0.

Hence, a =0, 8= —1/Aa*(f) - v =0""! ad} ou = adyu and the kernel is determined by
solutions f of the equation
L:)j?f = 1/)\ aJaU o ad[f_“].

This proves Theorem:.
Corollary 3.8. For a closed 2-form w the following conditions are equivalent :
1) W[E = AWcan,
2) u* =0,

15



3) w s the sum of eigenvectors of the operator ad., with the eigenvalues 0 and -2.
If [F, E] =V, these conditions are equivalent to
4) w(F,ENY=w(F, ke +V)=0. ‘
Corollary 3.9. Assume that [F,&] = V. Then any closed form w on G with
w(F, &) =0 is given by
W= wr + ’\wc&n;

where wx 15 a closed form on F. It is non-degenerate iff A # 0 and wx ts a non-degenerate
closed form on F trivially extended to G.

Proof. Assume that w(F,€) = 0. Then e* = 0. Supposc that «* = 0. Then there
exist f € F and v € V such that u* ([f,v]) # 0. Hence,

w(f,v) = duw’(f,v) = v ([f,v]) # 0.

We come to a contradiction.

The Lie algebra G is called Frobenius one if it admits an exact symplectic form w = d€.
In other words, this means that the coadjoint action of the corresponding group G has an
open orbit Ad*GE.

Corollary 3.10. Under the assumption of Theorem 3.7, the Lic algebra G is Frobenius
one iff the Lie algebra F is Frobenius. Moreover, any exact form on G can be written as

w=wr +wg = wr + d(e] +v*),

where wr is an exact form on F and v* € V*. In particular, a closed form w s exact iff
w(F,E)=0 and w| F is ezact.

Proof. It follows from Theorem 3.7 and Lemma 3.3.

Remark. This corollary reduces the problem of description of open coadjoint orbits of
the group G with the Lic algebra G to the same problem for the subgroup F, corresponding
to the subalgebra F.

Denote by z2(G) (resp., dG*) the space of closed, (resp., exact) 2-forms on the Lie
algebra G and by H?(G) = 22(G)/dG* the corresponding cohomology group. Remark that
the space A* C F~* is the space of closed 1-forms on F and such forms are never exact.
Using this we derive from Theorem 3.7 and Corollary 3.10 the following

Corollary 3.11. Under the notation of Theorem 3.7, assume that the elementary
algebra € = £,,41 has dimension 2n + 2. Then

1) dim2%4(G) = dim 2?(F) + dim A + 2n + 1,

2) dimdG* = dimdF* + 2n + 1,

3) dim H%(G) = dim H*(F) + dim A = dim H?(F) 4+ dim H(F).

4) If F admits a symplectic structure then symplectic structures on G depend on dim 2%(G)
parameters.

We say that a Poisson bivector A is consistent with a semi-direct decomposition ¢ =
F + & if it is a sum of two bivectors Ax, Ag with support in F and £, respectively. Then
by Proposition 2.1 Az, Ag are commuting Poisson bivectors. We have

Corollary 3.12. Under the notation of Theorem 3.7, any Poisson bwector A on G
which is consistent with the decomposition G = F + & is given by

A=Ar+As=Ar+Acan+e1 Av, AEE,
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where Ax is a Poisson bivector on F, Acan = 1/2e0 Ay +Epi A q; and v € V is a vector
commuting with the subalgebra supp Ar.
Proof. By Corollary 3.4, any Poisson bivector on £ has the form

A£ = A}- +AAcan + 61 /\rU

for some v € V. Since (ad F)Acan = 0, we have [Ax, Acan] = 0. Hence, the bivectors
Az, Ag-commute iff [supp Az, v] = 0. This proves Corollary.

4. DECOMPOSITION OF THE BOREL SUBALGEBRA B INTO A SUM
OF ELEMENTARY ALGEBRAS AND CLOSED 2-FORMS AND SYM-
PLECTIC STRUCTURES ON B

Using the induction, we can apply the results of Section 3 to any Lie algebra G which
is decomposed into semidirect sum

G=E1+... +&F

of clementary subalgebras such that for any 7 > 1, £1 4+ ... + £ is a subalgebra with the
ideal £* and the complementary subalgebra £ 4 ... + £-1.

Now we prove that the Borel subalgebra of the semisimple {complex or normal real)
Lie algebra admits such semidirect decomposition (where, sometimes, also a subalgebra of
the Cartan subalgebra appears).

Let G be a semisimple (complex) Lie algebra and R corresponding root system with
respect to the Cartan subalgebra H. Recall that a subset ¢ C R is called to be closed if

(@+Q)NRCQ.
Such subset defines a regular subalgebra G(Q) of G, generated by the root vectors E,, « €

Q.
More generally, two closed subsets P, @ of It define the regular subalgebra B = G(PP) +
G(Q) with the ideal G(P) iff
(P+Q)NnRCP

Denote by R a system of positive roots of G and by p the highest root of R*. We set
R,={ceRt|p—ae R"U{0}}={aec RT|(p,a)> 0}

and
Q= R* - R, = {a € R*|(p,a) = 0}.

Proposition 4.1.

1. R, Q, are closed subsets of roots and (Q, + R,) N R C R,.

2. The Borel subalgebra B(G) = H + G(RT) of ¢ and G(R1)admits semi-direct
decomposition

g(R+) = £P + "F.Pa
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where £, = kH, + G(R,) is an ideal and F, = H' 4+ G(Q,) is a subalgebra. Here H,, is the
highest root vector and H' is the orthogonal complement to H, into H.

3. Theideal £, is isomorphic to the elementary Lie algebra &,, 11, where |R,| = 2n+1
and n = hY — 2, hY is the dual Coxeter number.

Proof 1. Note that the highest root p is always a long root and we normalize it as
(p, p) = 2. Then the set R, has the form R, = R1 U {p} where R1 = {«|{a, p) = 1} since
2{a,p)/(p,p) < 2. Let y=a+P€ Rt forae RT,f€ RT. Then

If o, f € Ry, then (v, p) = (e, p) + (B, p) = 2, and v = p.

If &, B € Qp then (v, p) = (v, p) + (B,p) =0-+0=0and vy € Q.

If « € Ry,0 € Qp then (v,p) = (o, p) +(B,p) =1, and v € R;.

This proves 1. The statement 2 follows from 1 and the remarks before Proposition
4.1.

3. From the proof of 1, it follows that (R; + R;) N RT = {p}. Hence we can write

RP = {ali "'7aﬂ':/81: ---:6::; f)}

where «; + G; = p,t = 1,...n are the only non trivial relations between the roots from
R,. This shows that G(R,) is the Heisenberg Lie algebra. Moreover, £, is the elementary
algebra , because

[Hp, Ea;} = (p, i) Ea; = Ea,.

One can check easily that 3; = —S,a; where S, is the reflection in the hyperplane orthog-
onal to the root p and that n = hY — 2 where A" is the dual Coxeter number. This proves
3.
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Now we describe a decomposition

B(G)=E&,+F,

of the Borel subalgebra of a semisimple Lie algebra G explicitly. It is suflicient to consider
only simple Lie algebras. Recall that there are four series and five exceptional Lie algebras
Ay, By, Ch, Dy, Eg, E7, Eg, Fy, Go. The basic characteristics of these algebras are given in
Table 1.

Table 1

Type of group Rank Coxeter number Number of
positive roots

Ap,n2>1 n n-+1 n(n+1)/2
B,,n>2 7 n n?
Cn,n>3 n 2n n?
Dyp,n>4 n 2(n—1) n{n — 1)
Es 6 12 36

Ey 7 18 63

Ey 8 30 120

Fy 4 12 24

Gy 2 6 6

The next Table 2 enumerates the root system of each simple Lie algebra , according
to the book {OV 1990], and describes the subsystem

R,={p}URy, Ri={w,f | o:+pi=p}

associated with the highest root p.
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Table 2

Type of G Roots Highest root p Decomposition of p,
p=a;+ 05
Ap,n2>21 e;—ej €1 — €nt1 a; =e1— €5, B =ej — eni1;
ji=2,...,n
B,l,nZQ :teizi:ej,:i:ej €1 + e O!j=61+ej,gj=82—6j,
&j=61—6j,ﬁj=62+e‘j,
Qan-3 = €1, Pan—3 = €2
i=3,...,n
Cp,n23 te; + e, £2¢; 2e 03—61-}-63:,,6]:81—6]
J=2,...,n
Dy, n>4 Ze; ey el +es a; = ey +ej, B =ep —ej
&j=81—6j,ﬂj=82+8j
j=3,...,n
Es e; —e;, £2e 2e ikt =€+ ¢; + e+ e,
6,'+6j+6k:l:6 ,Bjk;=6—6j—(:k—6(;
i kAI=1,...,6
E; € — €; —e7 + €eg Otj=—€7+€j,,3j=63—6j
ei+e;+ep+e Gkl = eg + ¢ + e + e,
Bjkt = —er —ej —ex — e
Lkl =1,...,6
Eg €i — €y €1 — €y O!j=€1—€j,,8j=6j—69
:f:((i,' +e;+ ek) Qjp = €1 + €5 + €k,
ﬁjkz—eg—ej—ek;j,k:2,...,8
Fy te; +e;, *ej; €1 + ez a=ey, f=e
1 .
5(:&61:1:62:]:(33:&64) aj=61+(3j,/@j=82'—6j,j=3,4
~'=61—€j,ﬂj=82+8j,j=3,4
0!57 1((1+82+63ﬂ:64)
1
5 (€1 +ex —e3 Feyq)
Gy e; — e;, te; er —e3 o =ey, i = —e3

&2-_—81—82,52:62‘-83

Recall that subsystem of roots S, = Rt
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the root p, and so S, is generated by simple roots orthogonal to p. Hence S, may be easily
constructed from the extended Dynkin diagram of the Lie algebra G which corresponds to
the set of simple roots and the minimal root (—p). The simple roots connected to the root
(—p) are not orthogonal to the root p. The rest roots form the extended Dynkin diagram,
which generate subsystem S, and the corresponding Borel subalgebra.

Note that the number of roots in R, is equal to 2hY — 3, where 1Y is the dual Coxeter
number.

Using these remarks, we obtain the decompositions of the Borel subalgebra indicated
into Table 3. Here H] is the element of the Cartan subalgebra # which corresponds
to (n — 1)}(ey + eny1) — 2(e2 + ... + ¢,) under the identification H = H*. Recall that
dim (£,) = 2n.

Table 3

B(An) = &+ (B(An-2) + kH})
B(Bn) = Ean—o+ (B(Bn—2) + B(A}))
B(C,) = &, + B(Cpn_y)

) = 521,_3 + (B(Dn-—2) + B(Al))
B(Es) = &11 + B(As)
B(E7) = &7+ B(Ds)
B(Eg) = &q9 + B(E7)
B(Fy) = &5+ B(Cs)
B(G2) = &3+ B(A)

Using this Table, it is easy to write the explicit formulae for the decomposition of
the Borel subalgebra of any semi-simple Lie algebra into the elementary subalgebras. We
present the results in Table 4.
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Table 4

)= EntEaat .. +E(00E) + Hm; m=[2]
B(Bn) = -2+ Ean—6t ...+ Ea(orE2) + méy, ="
B(Ch)= Ep+Eni+...+E+E
)
)

3

BD,)= &m_a+Eoprt+...+E+(m+1)E, n=2m
B(Dp,)= Eopn_g+Emr+...+E&+mE+Hy, n=2m+1
B(Eg) = En+E+E3+E+He

Y= &+ &+ E5+4E
B(Eg) = Eag+ Erp +Eg+ & + 486
B(F4) = &+ E&+E+E
B(Gz) = &3+ &

Here H,, is the subalgebra of the dimension m of the Cartan subalgebra.
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Using the results of section 3, we derive now some corollaries from these results.

By Corollary 3.10, any subalgebra B which admits a decomposition into a semi-direct
suin of the clementary subalgebra is a Frobentus Lie algebra. This means that the coadjoint
action of the corresponding Lie group has an open orbit or, in other words, 8 has an exact
symplectic form. Checking Table 4 and using Corollary 3.11, we get

Proposition 4.2.

1} The Borel subalgebra of a simple Lie algebra G 1s Frobenius iff G is different from
An, D27n+1 and EG.

2) The manimal dimension of the kernel of an exact 2-form (which is equal to the codi-
mension of a reqular coadjoint orbit) is equal to m = [n/2] for B(A,), 1 for B(Damq1)
and 2 for B(Eg).

3) The Borel subalgebra admits a symplectic form iff it has even dimension. In the
opposite case it admits a closed 2-form with one-dimensional kernel.

Recall that for the clementary Lie algebra £, the dimension of the space of closed
2-forms is equal to 2n — 1 and H?(£,) = 0, since any closed 2-form is exact (Lemma 3.3).
Now we calculate the cohomology H%(B(G)) for each simple Lie algebra G.

Proposition 4.3.

Let G be a sumple Lie algebra of rank n. Then

dim H?(B(G)) = n(n — 1)/2.

Proof. Let B = E'+...+&EP+H, be a decomposition of the Lie algebra B(G) of rank
n into semi-direct sum of elementary Lie algebras and the commutative ¢-dimensional Lie
algebra H,.

Then Corollary 3.11 implies the following formula for the dimension of the second
cohomology group:

dmH*B)y=n-D)+...+n-p)+ql¢g—1)/2=2n—p—1)p/2+ q(q — 1)/2.

For the Frobenius Borel algebra, ¢ = 0,p = n and we get the Proposition. Using this
formula we check Proposition also for the cases G = Agt1, Aom, Dom1 and Eyg.

Now the calculation of the dimension of the space of closed 2-forms reduces to the
calculation of the dimension of the space of exact 2-form. For the Lie algebra with a
semidirect decomposition B = £,, + F we have

dimdB* =2n -1+ dimd F*

by Theorem 3.7 and Corollary 3.11. More generally, for the Lie algebra with a semidirect
decomposition

B=E&, +...+&, +H,

we get formula
P

dimd B* = Z (2m; = 1),

i=1

i.e dimd B* is equal to
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the number of positive roots of algebra G. Using this formula we calculate the dimen-
sion of the space of exact 2-forms dB(G)* and the space 22 (B(G)) of closed 2-fors for all

simple Lie algebras G. The results are presented in Table 5.

Table 5

Type of group G dim 22(B(G))

dim H*(B(G)) dimdB(G)*

A,,n>1
B,,n>2
Cp,n>3
D,,n>4

n(3n—1)/2
n(3n—1)/2

In(n—1)/2
ol

84

148

30

7

n{n —1)/2
n(n—1)/2
n(n —1)/2
n(n—1)/2
15

21

28

6

1

n(n+1)/2

3

712

n(n —1)
6

63

120

24

6

o

Let

BG) =& +€n,+.. .+ En, +Hm

be the decomposition of the Borel subalgebra of the simple Lie algebra G into the sum of
elementary Lic algebras and, may be, the commutative Lie algebra, described in Table 3.
Denote by A; the canonical Poisson bivector on elementary subalgebra &; and by Ay any
bivector on the commutative subalgebra H,,. Then Corollary 3.12 implies the following

result.

Proposition 4.4. The Poisson bivectors A;,

the Poisson bivector

on the Borel subalgebra B(G).

A=A1+...+Ak+A0

24
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