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Introduction

Well-posedness, regularity and asymptotic results are obtained for the Dirichlet­
Neumann-Cauchy problem on an (n + 1)-dimensional Cco manifold X with
boundary E. The boundary E is time-like and divided into two open re­
gions EI and E2 by an (n - 1)-dimensional Cco time-like submanifold Eo•

Dirichlet and Neumann boundary conditions are given on EI and E:l, respec­
tively. Regularity and asymptotic results are also obtained for mixed initial
boundary-value problems for second-order hyperbolic operators for which
the boundary condition is diseontinuous aeross an interface but satisfies the
uniform Lopatiski eondition. These problems were considered in [5, Eskin].

The existence and uniqueness theorem (Theorem 1.1) for the Dirichlet­
Neumann-Cauchy problem is deduced from apriori estimates obtained by
combining energy estimates for second-order hyperbolic initial boundary­
value problems, and for elliptic mixed boundary-value problems. Existence is
proved by a duality argument. This basic theorem indudes already additional
regularity in the tangential directions to the interface Eo• This regularity is
necessary in order to obtain the asymptotics of the solution near the interface,
and, unlike elliptic equations, tangential regularity must be included already
in the apriori estimates. Technically this is due to the loss of Olle derivative
in the estimate of a hyperbolie problem eompared to an elliptic problem. The
existence proof for the dass of problems considered in [5, Eskin] is reworked
so as to indude tangential regularity.

The Wiener-Hopf method for obtaining the asymptotics for mixed elliptic
problems is also used for obtaining the asymptotics for the hyperbolic prob­
lems considered in this paper. If the hyperbolic operator P is elliptie on the
eonormal bundle of Eo, the boundary operators bl and ~ (2.4) are elliptie,
and conormal regularity (that is, the regularity given in Theorem 2.1) holds,

IThis work was supported by tbe Max-Planck- Arbeitsgruppe "Partielle Differential­
gleichungen und Komplexe Analysis", Potsdam University.
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then the asymptotics near the interface can be derived by the Wiener-Hopf
method as in the case of mixed elliptic boundary-value problems studied by
M.l. Visik and G.I. Eskin [4, Eskin]. Conormal regularity combines both tan­
gential regularity and regularity in weighted function spaces. The problems
treated in this paper satisfy the above sufficient conditions. Note that the
asymptotics for the Dirichlet-Neumann-Cauchy problem is partieularly sim­
ple (Theorem 2.2): given Coo data the solution is Coo outside of the interface
Eo, and it has (at worst) a square-root type singularity at Eo. The general
case gives rise to a more complicated asymptotic expansion (Theorem 1.2) in
which the power of the logarithm undergoes a "jump" when the factorization
index" equals a non-negative integer.

In local coordinates x = (xo, ... ,xn ) the second order hyperbolic operator
P is given by

n n

P(x, D) = L gjk(x)DjDk +L bj(x)Dj +c(x), (0.1)
j,k;O j;O

where D = (Do, .. . , Dn ), Dj = i8j , the coefficients are coo, and l: gjk(x )~j~k

is a real symmetrie quadratic form having Lorentz signature, that is, (gjk)
has one positive and n negative eigenvalues.

To avoid considering compatability conditions we assume that the data
is initially zero. More precisely, let 4> be a Coo function from X to R with
space-like level surfaces, and assume, moreover, that ifJ is a proper map.
Then the Dirichlet-Neumann-Cauchy problem is given by

P(x, D)u = / in X O (0.2)

u = gl on EI (0.3)
B(x, D)u = 9'J on E2 (OA)

u = 0 when 4> < 0, (0.5)

where /, 91, and g'J vanish for 4> < 0 and XO is the interior of X. The
boundary operator B equals aN +d(x), where aN is the Neumann operator
with respect to the operator P. In local coordinates aN = l:9 jk (X)Vj(x)8k,
where v(x) is a Goo section of the conormal bundle of b.

The mixed Dirichlet-Neumann-Cauchy problem models the sound radia­
tion field of an enclosed cavity in which sound is radiated ioto the cavity from
one part of the wall of the enclosure, and sound is reflected back !rom the
remainder of the wall. Assuming that the wall is not absorbent, sound ra­
diation and reflection correspond to a Dirichlet and homogeneous Neumann
condition, respectively, where the unknown funetion is the acoustic pressure.

This mixed problem ean also be considered an idealized scalar model for
the dynamic problem of linear elasticity in wbich the displacement is known

2



on one part of the boundary and the traction is known on the complement.
(The tractioD is analogous to the Neumann condition.) Existence and unique­
ness results for the elasticity problem were given in (3, Section lIlA], but
regularity of the solution was not treated.

The Dirichlet-Neumann-Cauchy problem is one in a dass of mixed initial­
boundary value problems treated in (1] by reduction to a pseudo-differential
equation on the boundary, however the operators were assumed to be con­
stant coefficient. Moreover, the apriori estimate for the problems treated
in (5] were obtained by reduction to a pseudo-differential equation on the
boundary, and the existence proof was carried out by the method of ellip­
tic regularization. A duality argument, rather than elliptic regularization, is
used in the present treatment of the Dirichlet-Neumann-Cauchy problem,
due to the non-ellipticity of the boundary symbols. Nevertheless, it may be
possible to adapt the method of elliptic regularization to prove existence for
this problem. See Remark 1.3 for further explanation.

In Section 1 energy estimates are derived and existence and uniqueness
is proved. Section 2 contains the results on regularity in weighted function
spaces (the weights vanish on Eo), and the asymptotic expansion of the
solution in a neighborhood of Eo.

The author is indebted to Professor Gregory Eskin for suggesting this
problem as weIl as for reading apart of the manuscript and offering helpful
comments. This paper was completed in the academic year 1994-95 while
the author was a guest at the Max Planck Institute, and the author wishes to
take this opportunity to express his gratitude to the institute for its generous
support.

1 Existence and U niqueness Theorem

Before defining Sobolev spaces on tbe manifold X we make the following
assumption:

(i) For some c sufficiently large there are coordinates (xo, . .. ,xn ), Xo = cjJ(x),
in which 4> > c has the form (c,oo) x G, where G is a compact Cco n­
dimensional manifold with boundary, and Eo = R x r where r is an (n - 2)­
dimensional submanifold of the boundary of G. Moreover, P and Bare
independent of Xo for 4> > c, goo = 1 and (gi k

)j,k=l,...,n is negative definite.
Analogous assumptions are made for 4> < -co

Remark 1.1. The above assumption can of course be dropped if the finite
time problem is considered, Le., the analogous problem in which X is replaced
by <jJ-l(S, Tl, S < 0 < T. This assumption might also be avoided by working
in Iocal Sobolev spaces as in (6, Section 24.1].
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Choose a finite open covering {Uj} of X and charts {Kj}, j E 1. By
making use of a Riemannian metric a neighborhood of E can be identified
with E X [0,3). Similarly a neighborhood of Eo can be identified with Eo X

(-3,3) x [0,3). In loeal coordinates x(j) in Uj the boundary E is defined by

xW) = 0 and the interface Eo is defined by X~21 = xW) = O. Put Xo = t/l(x).
By assumption (i), we may assume that 900 = 1, and (9jk

)j,k=I •... ,fl is negative
definite. Heneeforth, we assume that these conditions are satisfied.

Upon multiplying the equations (0.2)-(0.4) by e--rxo we get in local coor­
dinates that

P(x, D + iTN)u-r - f-r

U-r = 91-r
B(x, D + iTN)u-r = 92-r

(1.1 )

(1.2)

(1.3)

where u-r(x) = e--rxou(x), and Ir, etc., are defined similarly, and N =
(1, 0, ... , 0) is conormal to the level surfaces of t/l( x).

The equations (1.1)-(1.3) motivate the introduetion of Sobolev spaees
which depend on a parameter T. Let H6 ,r(Rn+1

) denote the normed spaee
which consists of the distributions u(·, T) for which

(1.4)

is finite, where

This defines the norm in the aforementioned space. Here v represents the
Fourier transform:

The normed quotient space H$,-r(R~+l) consists of all distributions in
R~+l = {x : X n > O} having an extension Lu(., T) in H6 •T (Rn+1

). The
quotient norm is given by

llulI~ = inf 11 Lu I!.,

where the infimum is taken over all extensions lu in H.,r(Rn+1
).

Put X = (X n -l'Xn ). Choose a finite partition of unity {t/lj} of X, j E I,
subordinate to the coordinate neighborhoods Uj such that t/lj is independent
of Xo for IxoI large. The index set 1 is the disjoint union of 11 and 12 ,

where j E I. if and only if Uj intersects the interface Eo• Moreover, the
coordinate neighborhoods Uj , j E I., are contained in the "collar" Ixl < 2 of
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Eo• The Sobolev,space Ha,t7,t,T(XO), for real numbers s, u, and t, consists of
distributions u(., T), T > 0, in XO with finite norm

IIUll a ,t7,t = L IIA~(Aj)t7 ~j.<pjull~ + L IIA~Kj.4>jUIl.+(T) (1.5)
jeh jEl1

where A~ = (Do+ iT)t, and the symbol of the pseudo-differential operator
(AJ)t7 is giYen by

t',' = (dj ) ... dj) )
~] \'1, '\'n-2· (1.6)

Here Kj. is the push-forward under the diffeomorphism Kj from Uj to R~+1

where R n +1 = {x E R n+1
: X n ~ O}, x = (xo, ... , x n ). The main theorem

below uses the spaces

The norm in this space is denoted by 11 118,17.

N.B. Another atlas of charts and a subordinated partition of unity in
the definition (1.6) leads typically to a norm which is not equivalent to the
originalone. We will employ in the following theorem and lemmas such norms
which are defined with different partitions of unity. Indeed, one could use
instead of (Vj , <Pj) the system (Vj, VJj) where VJj ~ 0 is in Cgo(Uj) and L 1/;j
never vanishes. In particular, the Sobolev spaces occuring on the right-hand
side of estimates will typically employ functions VJj satisfying VJj4>j = 4>j,
where <Pi are the functions used in the definition of the norm on the left-side
of the inequality. No distinction in notation will be used. For a specific norm
which appears either in an estimate or the statement of a proof the coordinate
systems Vj and functions 1/;j are fixed, in particular, they are independent of
the parameter T.

The spaces H.,t,T(E), Ha,TeE), and H.,t,T(E i ), H8 ,,.(Ed, i = 1,2, are de­
fined analogously. The norm of v in H.,T(Rn

) is given by

where the symbol of A' is

The norm of v in Ha,t,T(E) is given by
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where <Pj is the restrietion of ifJ to E, and the surn is taken over those j
for whicb the support of tPj intersects E. Tbe norms in H",t,'T(~) and in
the quotient spaees H",t,'T(~i), i = 1,2, are denoted by [].,t, []:,t and []~,t,

respeetively. We set H.,'T(~) := H.,o,'T(E), ete., with eorresponding norms
[ ]., ete. The space H",'T(Rn

) is defined to be H.,o,'T(Rn
), ete.

We give next the well-posedness result for the Diriehlet-Neumann-Cauehy
problem and present its proof after same preliminary lemmas.

Theorem 1.1 Assume that P is hyperbolic with respect to the level sur/aces
0/ 4>, <P is proper, E and Eo are time-like, and assumption (i) holds. Let f,
91 and 92 be data which vanish for 4> < 0 and which satisfy f'T E Ho,l7,'T(XO),
gl.,. E H3/2+l7,.,.(~d and g2.,. E Hl/2+l7,.,.(~'J) tor t7 ~ 0 and T large. Then
there is a unique solution U0/ the mixed problem (O.f)-(O.5) tor which u.,. E
H1,l7,.,.(XO) if T is sufficiently large.

Remark 1.2. The above result could be somewhat stregthened by using
more involved Sobolev spaces. The result then is roughly that compared to
the analogous mixed elliptic problem there is a loss of one derivative, and
near Eo this loss occurs just along the interface Eo. Note that there is an
additional loss of one-half derivative in the Dirichlet data 91". compared to
the result for the Diriehlet-Cauchy problem given in [6, Section 24.1].

We now define auxillary Sobolev spaees which are used in the proof of the
main result. Decompose 12 into a disjoint union of 13 and 14 where j E 13 if
and only if Uj has non-trivial interseetion with~. Moreover, the partition
of unity is sufficiently refined so that Uj is contained in X n < 2 if j E 13 • The
norm in 1i",p,u,t,.,.(XO), T > 0, is given by

lul",p,l7,t = E IIA~AJP(Aj)U"j-<pjullt + E IIA~(A')P+l7Kj_<pjulI:-
JEI1 jE I3

+ E IIA~Kj_tPjull,,+p+u'
jE l 4

The other type of auxillary Sobolev space is defined by

1i (XO) .- 1i (XO)P,l7,'" .- O,p,U,O,'T

(1.7)

with norm I Ip,u'
In the following four lemmas basie energy estimates for the Dirichlet­

Neumann-Cauchy problem are derived. In all instances in Seetion 1 the
constant C denotes a constant independent of T. This is repeated in the
statement of the theorems and lemmas for emphasis.

Lemma 1.1 Assume u(', T) is a solution 0/ the boundary-value problem
(1.1)-(1.9) belonging to H1,o,t+l,,,.(XO), and thal f.,. E Ho,o,t,.,.(XO), 91'T E
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H1/2,t+l,TCEd, and g'lT E H- 1/2,t+l,T(E2), t E R. Then u satisfies the a
priori estimate

for T sufficiently large, and C independent of T.

N.B. Lemma 1.1 with t = -1 implies the uniqueness assertion of Theo­
rem 1.1.

Proof. We start with the half-space problem X n > 0 and assume for now
that t = 0 and P(D) is given by L,gik DjDk, gjk are constants, B = aN and
that EI (E2) is given by X n = 0 and X n-l > 0 (X n-l < 0). Multiplying the
equation P(D + iTN)u(.,i) = fT by 2(80 + i)U, taking the real part, and
integrating by parts we get

rL>o (1(80 + r)ul
2

- j~l gik8jU~) dx = (1.9)

lR1.>/'(80 + r)udx -lR1.;0 Eu (80 + r)udS;

where v is the exterior normal (0, ... ,0, -1), B is the Neumann operator
(DA), and where we have used the identities:

n n

2~ E (80 + i)fig jk8j8ku = 2~ E 8k (gjkaju(ao + i)U)
j,k;1 i,k=1

n n

- fJo L (g jk8ju8kU ) - 2T L gik8ju8ku,
j,k;1 j,k;1

for k > O.

(v,w) = 1.;ovwdS.

Choose extensions 1gi of gi, i = 1, 2, such that

We obtain abound for the surface integral that appears in (1.9) assuming
Dirichlet-Neumann boundary conditions: u = 91 on EI and Bu = g2 on E 2 •

Let
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In the identity

(Eu, Aou) = -(1g2"., Aolg lT ) + (Eu -lg2"., Ao(u -lg lT ))

+ (1g2"., Aou) + (Eu, Aolg1".)

the second integral on the right-hand side vanishes. Thus, we get

I(Bu, Aou)l ~ C {[Aolg1".h/2 + [Aolg2"']-1/2 + lI ullt} .
By virtue of the inequality

(1.10)

and the negative definiteness of (gi4:)i.4:=l •....n' we get by (1.9) and (1.10) that
for T sufficiently large

(1.11)

If the original operators P(x, D +iTN) (see (0.1)) and Bare used we get an
identity which is the same as (1.9) aside from an additional term which is a
sesquilinear form in (u, u'). The absolute value of this term is bounded by
Cllulh. Hence, for T large, the estimate (1.11) still holds.

Now assurne that A~+lU is in Hl,,,.(R~+l), t E R. Putting v = A~u, we
get

Pv - A~f". - A~[P, Aüt]v, in X n > 0,

V = A~gl"" on X n = 0, Xn-l > 0

Bv = A~g21" - A~[B, A;t]v, on X n = 0, Xn-l < O.

Applying estimate (1.11) to v we get the estimate

v'TIIA~ulh ~ CIIA~+l/1"11-1 + C[A~+lglT]~/2 + C[A~+lg21"]~1/2' (1.12)

for T large, since the term involving the commutator can then be absorbed
by the left-hand side.

Estimates analogous to (1.12) hold for the Dirichlet problem, Neumann
problem and the problem without boundary (interior estimate). Thus we get
for any j

JTIIA~Kj.q,julh ~ CIlA~+lPKj.q,jUII_l +C[A~+l Kj.cPjU]~/2+C[A~+1 BKj.cPjU]~1/2

~ CIIA~+lKj.q,j!".II-l +C[A~+l Kj.q,jgl1"]~/2+C[A~+l Kj.q,jg21"]~1/2+CIIA~1jJjulh.

Here tPj E Co(Uj) with 1/Jjq.,j == q.,j. Summing over j and taking T large, we
get the global estimate (1.8).
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Lemma 1.2 If u(·, r) E Cgo(XO), then /or u ~ 0 the apriori estimate

lult,O' ::; CIPul-l,O'+1 {1.19}

holds /or all r sufficiently large. The constant Cisindependent 0/ the pa­
rameter r.

Proof. If Co is sufficiently large then

E(x, D + irN) = P(x, D + irN) - Co(Do+ ir)2 (1.14)

is an elliptic operator. The elliptic estimate for the Dirichlet problem gives

IU]2,-1,0,0 ::; CIEulo,-I,O,O + Cluh,-I,O,O. (1.15)

(1.16)

The definition of the norms which appear on the right-hand side is modified
from the one given in (1.7) in that the functions t/;j are used instead of <Pj,
with .,pj<Pj = <Pj. Consequently the last norm on the right side in the above
inequality cannot be absorbed by the left-hand side even for r large.

Put
Arj = Kj.lt/;j(Kjl(x))A;jKj.<Pj,

where A2j equals A'J if j E I], Aj if j E 13 , and A if j E 14 • Here.,pj E C~(Uj)

with t/;j<Pj = cPj. Applying this pseudodifferential operator to the elliptic
equation gives

E(Arju) = ArjEu + [E, Arj]u.

The above elliptic estimate gives (after summing over all j E I)

luI2,-l,O',0 ::; Cl Eu 10,-1,0',0 + Club,-l,O'-I,o
::; CI Pu 10,-1,0',0 + C[u 10,-1,0',2 + CluI2,-I,O'-l,o

::; C1Pulo,-l,O',0 + Clu12,-1,0'-6,6,

for 0 < 8 ::; 1. (This estimate holds for all real u.) For u ~ 0 we get by
induction

luI2,-l,O',o ::; CIPulo,-l,O',O +Cluh,-I,O,O'.

By a straightforward analogue of [6, Theorem B.2.9] (partial hypoellipticity)
we get

luh,-I,O,O' ::; C IPu 10,-1,0',0 +C Ilu Ih,o,O'.

The last two inequalities and estimate (1.8) now give

luI2,-l,O',0 ::; CIPulo,-l,O'+l,O.

This implies estimate (1.13).
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Lemma 1.3 Ifu E 1-l1,u,T' U E R, Pu = 0 in xo, u = 0 on EI, Eu = 0 on
E2 , T > TO for TO sufficiently [arge (independent of u), then u = 0 on XO.

Proof. Without loss of generality we assume that u < O. It suffices, by
estimate (1.8), to show that u E H1,o,u,.,.(XO). A regularity argument is used
to show that u belongs to this smoother space.

By partial hypoellipticity, u E 1-l'J,-I,u,O,T' We obtain the apriori estimate

luI2,-I,u,t ~ CIEulo,-I,u,t +CluI2,-I,u-I,,, 0', t E R,

for the solution u to the elliptic mixed-boundary value problem Eu = -CoA~u

in XO, u = 0 on Eh Eu = 0 on E'J' where E is defined by (1.14). Indeed, the
solu tion u satisfies the elliptic estimate (1.15) essentially by [4] ExampIe 13.1
and [4]Thm. 22.1. The case t = 0 then follows as in the proof of (1.16).
For general t this can be proved as in the proof of Lemma 1.1. That is, the
operator A~ is applied locally, and the commutator term can then (in the
global estimate) be absorbed by the left side.

Put
A~jt = K.j}1/Jj(K.jl(x))A;jtK.j.t/lh

where the symbol u(A;jJ, f > 0, of the operator A;jt is given by

The operator A~j is defined as in tbe previous lemma. The functions cPj E
C~(Uj) form a partition of unity, and tPj E Cgo(Uj) satisfies tPj4>j = 4>j.
Applying A~jt' for 0 < r < 1, to the mixed boundary-value problem Eu =
-CoA~u, etc., gives

Aijtu = 0 on EI and B(Aijtu) = 0 on E2 , since, without loss of generality,
the coefficient of Dn in the operator B is constant. By the previous apriori
estimate applied to this mixed problem we get .

IA~jtub,-I,u,-r ~ CIA~jtA~ulo,-I,U,-T + CHE, A~jt]ulo,-l,O',-r

+ CIAijtuI2,-l,u-l,-r $ Club,-l,u,O'

This shows that IA~jtuI2,-l,u,-T is bounded independently of f > 0, and im­
plies that there is a sequence Aijt

n
u converging weakly in 1-l2,-1,u,-r,T with

f n ~ O. Hence u E 1i2,-l,O'+T,-r,T' By induction u E 1i2,-1,0,u,T, which implies
that u E H1,o,O',T' Lemma 1.3 is proved.

We introduce a positive density on X (which is independent of Xo for
IXo I large) and a corresponding scalar product (',')0 on L'J (X). This scalar
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product for u, v E C;"(X) extends uniquely to a non-degenerate sesqui­
linear pairing

(., -)0: (l-lp,(1,-r(XO))* X l-lp,(1,-r(XO).

Let lul{p,(1)' for u E C~(X), represent its norm as an element in the dual
space (l-l_P,-(1,-r (XO))* with respect to this sesquilinear form, that is,

lul{p,o-) = sup {l(u, v)ol; Ivl-p,-o- = I}.

Lemma 1.4 The dual space o/11_p ,_(1,-r(XO) has a continuous imbedding
into 1tp ,(1,-r(XO) /or appropriately chosen partitions 0/ unity used in the defi­
nition (1. 7). In particular, i/ p, u ~ 0, then the partitions 0/ unity {Vj , ~j} ,
j E I, and {U~I), ~P)}, k E 1(1), are appropriate choices for the first and

second spaces, respectively, provided that the coverings satisfy U~I) n Uj is

empty whenever (i) k E I~I) and j E 11 U 13 , or (ii) k E I~I) and jE/I. Bere
/m, /~), m = 1,3,4, are the subsels 0/ the index sets / and /(1), respectively,
used in the definition (1.7)_

The converse also holds, that is, l-lp ,o-,r(XO) has a continuous imbedding
into the dual space o/1i_P,-(1,-r(XO) /or (other) appropriately chosen partitions
0/ unity.

Proof. We prove the first assertion for the ease p, U ~ O. The eonverse and
the other eases are proved similarly.

Let k E 1~1). For simplicity of notation we do not write the push-forwards
and pullbacks of the diffeomorphisms in the loeal eoordinate systems. We
have for u E C~(X):

l~tl)ulp+(1 = sup { I(~tl)U, v)ol: Ivl-p-(1 = I}.

Hut (~tl)u,v)o = (4)i1)u, tPk1)v)0 and l1/'k1)v l-p-(1 ~ Clvl-p-o-, where tPk1
) E

C;"(U~I», tPrl) ~tl) = ~tl), and the constant C depends only on the function
,plI). Hence

Furthermore, by the hypothesis on the partitions of unity, we get that

1
(1) I - I (1) ItPk v -p,-o- - 1/Jk v -p-(1-

Thus,

l4>t1)ulp+(1 < C sup { I( ~~I)U, v)ol: Iv l-p,-(1 = I}

< Cl4>i1)ul(p,o-).
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However, it can easily be shown tbat multiplication by a compact Coo func­
tion is a continuous operator on the dual space. Thus we get

14>~l)ulp+u ~ Clul(p,u), k E /~l).

The proof of analogous estimates for the other values of k is proved similarly.
By summing over k E /(l) we obtain tbe assertion.

Lemma 1.5 If u E Cr(X), u = 0 on EI, Bu = 0 on E 2 , then for u ~ -1
and T sufficiently [arge the Jollowing apriori estimate holds:

{1.17}

Proof. Let P* be the formal a.djoint of P with respect to the above scalar
product, tbat is,

By Lemmas 1.2 and 1.4 we get tbe inequality

We consider tbe Hilbert space given by tbe direct sum

(1-{-l,-u,-r(XO)r EB 1-{-l,u+l,-r(XO),

and a closed subspace S given by all 2-tuples of the form (u, Pu) with u = 0
on EI and Bu = 0 on L2. (Note that by the condition on Pu the trace
of Eu exists.) The set of all linear functionals on S of tbe form (u, P*w)o,
w E C<f(XO), is dense in the dual space of S. Indeed, if tbe 2-tuple (u, Pu)
annibilates all linear functionals of this form tben Pu = 0 on XO, u = 0 on
EI and Bu = 0 on E2, hence, by Lemmas 1.3 and 1.4 u vanishes on Xo. The
estimate (1.17) follows from tbe above inequality.

Proof 0/ Theorem 1.1. Uniqueness is an immediate consequence of
Lemma 1.1 (set t = -1). We prove existence using first a duality argument
wbicb resembles the proof of [6, Lemma 24.1.6].

Let (u, v)o represent the sesquilinear form introduced prior to the proof of
Lemma 1.4. Near the boundary E we use coordinates in whieh L is defined
by X n = 0 and X n is invariant. Then the restriction of the density to the
boundary is also a positive density, and we let (g, h) be the sesquilinear form
on tbe boundary with respect to this density.

If P* is the formal adjoint with respect to tbe given density, we get for
u E HI{XO) and v E Cr(X) the identity

(p·v, u}o = (v, Pu)o - i(v, Bu) - i(Btv, u),

12



where B 1 = B + d(x) for a function d E COO(X) which is independent of xo
for Ixollarge. By assumption f'T E Ho,u.'T(XO), hence f belongs to 1i-1•u +1,'T'

If v E C~(X), v = 0 on EI, and BIv = 0 on E2 , we assert that

where 19i'T are extensions of 9i'T' i = 1,2, in the appropriate function spaces.
Indeed, by Lemma 1.5,

I(v, f'T)ol < Ivl(l,-u-l) If'Tl-l,u+l

< CIP"'ul-1.-u o

The other terms are estimated a.s follows:

1(v,l92'T)1 + I(B1v,l91'T)1 < C[v]-t/2-u

< Cllvlh,-u-1 ~ Clvll,-u-l + CIP"'vl-l.-u-l
< Clv l(I,-U-l) + CIP"'vl-1.-u-l ~ CIP"'vl-1.-u

In this estimate partial hypoellipticity (an analogue of [6, Theorem B.2.9]),
Lemma 1.4 and Lemma 1.5 were used.

By the Hahn-Banach theorem there is a linear form L on C~(X) such
that

IL(w)1 < Iwl-l,-u, w E C~(X),

L( P"'v) = (v, f'T)o - i (v, 192'T) - i(BI v, 19l'T) ,

for v E Ccf(XO), v = 0 on EI, and BI v = O. Thus, there is a function u

in the dual of 1i-1,-u.'T(XO) such that L(w) = (w,u)o. By Lemma 1.5 the
function u is in 1i1,l1,'T(XO). We have Pu = f'T in XO, u = 91'T in EI and
Bu = 92'T in E2• By partial hypoellipticity (an analogue of [6, Theorem
B.2.9]) u E H1,l1.'T(XO).

The proof that u(·, i) = exp (-iXo)u(x) and u vanishes for Xo < 0 is
carried out as in {5, p. 544]. By estimate (1.8) we get that

11 (ß i ) -1 (u (" i +ß T) - U ( " i)) Ih ,0,(1-1 and 11 (ß i ) -1 (e ixo
6'T - 1) u(" i) 111.0,l1-1

are bounded independent of ßi. Taking a subsequence which converges
weakly in H1•l1 - 1,'T(XO), we conclude that du/di and xou are both in Hl,l1-1.'T(XO)
for i ;::: TO' Since Do + iT and 8'T + Xo commute and the latter operator
annihilates the data, we have that (8'T + xo)u satisfies the boundary-value
problem (1.1)-(1.3) with zero right-hand side. By estimate (1.8) we obtain
a distribution-valued ordinary differential equation:

du
dT + xou = 0,

13



so that U(X, 7) = e-'XOu(X) for some distribution u{x). Since lIe-,xou(x)lh.q-l :S
C for 7 ~ 70 where C is independent of 7 we conc1ude that u{x) = 0 for
Xo :S o. Q.E.D.

Tangential regularity for a general class of hyperbolic mixed
problems. Tangential regularity also holds for the dass of problems in­
vestigated in [5]: namely, mixed initial-boundary value problems for second
order hyperbolic equations in which the uniform Lopatinski condition is sat­
isfied by both boundary operators Bk on Ek , k = 1,2, where the defining
equations (0.2)'-{0.5)' are obtained from equations (0.2)-{0.5) by replacing
the left-hand sides of (0.3) and (DA) by B1{x, D)u and B'l{x, D)u, respec­
tively. Regularity in weighted function spaces and asymptotic behavior of
the solution nea.r the interface Eo will be given in Section 2.

The next theorem is a refinement of Theorem 1.1 in [5]. Coordinates are
chosen as before: E is given by X n = 0 and Eo is given by Xn-l = X n = O. In
local coordinates let Ai(X, eo+i7, e'), i = 1,2, be the roots of p(x, e+i7N), the
principa.l homogeneous symbol of P(x, e+ iTN), with respect to en; SlA'l < 0
for 7 > O. Let B1°) be the principal part of the boundary operator Bk.
The uniform Lopatinski condition means that B1°)(x, eo + i7, e', A'l) does not
vanish for x E Ek , 7 ~ 0, and (eo + i7, ~') =F 0, k = 1,2. Let K{XO, x")
be the factorization index of the homogeneous elliptic symbol BlB;l (x, eo +
i7, e', A2), x E Eo, with respect to en-l. Let mk be the degree of Bk, k = 1,2.
The space H 6 •r ,q•• {XO) for real numbers 8, p, and (7, is the quotient space of
distributions u(·, 7), 7 > 0, in XO with finite norm

lIull.!,r.q,t = E II(A'Y(Aj)q Kj.4>jUII~ +E 11 Kj.</>jUII6+r+q .
je]! jeh

(1.18)

The notation used in the last definition is defined as in (1.5). The spaces
H.!.a•• (Ed, i = 1,2, are defined analogously.

Theorem 1.2 Assume that P is hyperbolic with respect to the level sur/aces
0/ </>, 4> is proper, E and Eo are time-like, and assumption (i) holds. Let /,
gl and g2 be data which vanish for 4> < 0, and which satis/y, for 7 large,

Ir E H.,r,q,.(XO), h1• E H.+r+1-m1,u,.{Ed and h'l. E H6+r+l-m2.u,.{E2),
where u ~ 0 is an integer and s ~ O. Assume sand r satis/y

Is + r + 1 - m2 - ~IC(XO' x") I < 1/2,

s - mk + 1 > 0, k = 1,2.

Then there is a unique solution U 0/ the mixed problem (0.2)' -(0.5)' fOT which
u. belongs to Ha/'l+•.r,u-l!2.•(XO) JOT T sufficiently large, and such that the
trace 0/ u. on ~ belongs to H.+r+l,q.•(~).
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N.B. By assumption the real part of the factorization index has oscillation
less than 1. This restrietion on the oscillation can be dropped, but function
spaces of piecewise-constant (or variable) order of smoothness must then be
used. Cf. [5]Theorem 1.2.

Sketch 01 proof. We will obtain the apriori estimate

2

illull~+t,r,(T + [U]~+r+t,(T :S CllfTII~,r,O" + C E[hkT]~+r+t-mkIO"
11:=1

(1.19)

for i sufliciently large, under the assumption that u(., i) belongs to the space
H.+3/2,r,O",T(XO). The constant C represents a constant independent of i.

The existence of a solution u with U T in H.+ 1,r,O",T can be carried out as in
[5, Sect. 3]; the hyperbolic operator was regularized ioto an elliptic operator
depending on a parameter l > O. Arguing as in [5, pp. 542-544] it can be
shown that the solution actually belongs to the space Ha+3/ 2,r,0"-t/2,T(XO).

Near ~ the operator P(x, D) can be expressed in local coordinates by

a(x(j), D~j), D(j)) - D~, although xo is not necessarily given by t/J(x).
To obtain tangential regularity near Eo we follow the same argument

given in [5, Section 3] but modify the symmetrizers by including additional
differentiation in the direction of a forward-directed time-like vector field v
tangent to the boundary in a "collar" of E, and constant for 1t/J(x)llarge.
A first-order differential operator h(x, D) can be associated with v, whose
symbol h(x, e) is given locally by v . e, e E T*(X). Loeal coordinates are

chosen so that a~~?(x(j),e~j), e(j)) < 0 when h = 0 and (eo, e') i= o. The
symbol a(O) is the principal part of a.

Loeal estimates are first done in a collar of E. We take a sufficiently
refined finite eovering of

eontained in a collar of E, and a partition of unity {4>j(X'~O,~/,i)} sub­
ordinate to it in which the functions 4>j are Coo and homogeneous of de­
gree 0 in the variables (eo, e', i). In the jth coordinate neighborhood let
X~j)(D~j),D(j)' i) represent the pseudodifferential operator with symbol

where Xo is in Cgo (-2,2) and equals one in [-1, 1], 8 > 0 is smalI. For
simplicity of notation the dependence of the variables on the local coordinate
system is not always indieated.

For the case in which a(O)( x, eo +i i, e') =1= 0 in the j th coordinate neigh­
borhood (this corresponds to containment of the coordinate neighborhood in
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the elliptic and hyperbolie regions), the symmetrizer in loeal coordinates is
given by (cf. [5](3.6))

S~j) = t/JjLjAi (-(Dn - A~») + 8(Dn - Aij »)) AiLj t/>j ,

where Lj = (1 - x~j)(D~j), D(j)' T))(A~j))t, t ~ 0 an integer. The symbol of
the differential operator 1\.0 is given by h(x, e) + iT, whilst the symbol of the

operator A~j) is (-1 )i+1Ja)O), i = 1, 2, where, as before, 9 A~) < 0 for T > O.
The constant 8 ~ 0 is smalI.

Ir the support of cPj contains zeros of a(O) (the glancing region case) we
use for the symmetrizer (cf. [5](3.25))

SU) = A.~ L~(A'.)P(-8s(j) - iTD-2s{j) - 2D )(A'.)PL .A..o '+'J J J 1 '1 n J J'+'J'

where s(j) = 8a(0)/8dj) and s(j) = 8'1a (0)/8 t2
1 J ~O, '1 J ~O'

Hy using these symmetrizers and applying the same arguments a.s in [5,
Section 3] we get for all integral t ~ 0 (cf. [5](3.41))

C61 T11 (1 - X~j») (A~j»)t tPjU I1 ~+I.r,O + [( 1 - X~j))(Ao)t (Dn - AO) tPjU]~+r.o

~ C81[(A~»)tt/ljU]~+r+l.0 + CII(A~»)tt/ljull~+llr.o + CII(A~j»)t1jJjf-rIl;.r.o, (1.20)

t/lj(x) is a Coo funetion supported in a coordinate neighborhood and satisfying
t/lj (x )t/>j = t/>j. The constant 81 is arbitrarily small. The symbol of AO is
L A2tPj!rn=0, the sum is taken only over those j for whieh the support of 4>j
does not intersect the glancing region. (The push-forward I(,j. of the Ioeal
ehart is not written.)

For x near Eo put

E(x, e, T) = (1 - X36)P(X, e+ i(T + A')N) + X36 P(X, e+ iTN).

(The dependence on the loeal coordinates is not indicated.) Then E(x, D, T)
is an elliptic operator whose symbol agrees with the symbol of P(x, D+iTN)
on the support of X6.

Since E satisfies the transmission property a boundary-value problem for
the operator E makes sense. Applying X6(A~j»)ttPj to the equation Pu = f,.
we get the elliptie equation

EvU) = g{j)+ T' in X n > 0
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R has order ~ 1, and tPj(x)cPj = <Pj. The theory of elliptic boundary value
problems for smooth pseudodifferential operators (see [4, Sect. 23]) gives the
following apriori estimate for the Dirichlet problem:

Furthermore

II[P, X5(A~j»)t]4>jull.-l,r,o ~ Cr-111c/>jull.+l,r,0,

and [(Dn - Ao)V+]~+r,o is bounded by the right-hand side of (1.20).

These estimates imply the analogue of (1.20) in which 1 - X~j) is replaced

by x1j
). Summing (1.20) and its analogue gives an estimate which is identical

to the estimate (1.20) except that 1 - x~j) ha.s been deleted. Finally, the
analogous interior estimate is obtainedj then by summing these estimates
over a11 j we get

C51 r 11 ( Ao)tu 11~+1,r,0+[(Dn - AO )(Ao)tu] ~+r,0 ~ C81 [ ( Ao)tu]~+r+1,0+C 11 ( Ao)tf T 1I ~ ,r,0 .

A proof very similar to the one of Lemma 1.2 shows that the above
estimate implies the fo11owing estimate involving tangential derivatives:

In the proof the elliptic differential operator with symbol

P(x,~ + i(r + h(x,~))N)

(1.21)

(1.22)

is used instead of the elliptic operator (1.14).
By regularity of elliptic pseudodifferential equations in a domain (see [4],

(2]) applied to the solution of the equation [5](3.52) we get (cf. [5](3.54))

:2

[U]~+r+l,u ~ C E[hkT]~+r+l-mk'O" + C[(Dn - AO)U]~+r,O" + C[u]~+r,u' (1.23)
k=l

By (1.21) and (1.23) we get the apriori estimate (1.19).

Remark 1.9. The reader may ask why the existence proof for the Dirichlet­
Neumann-Cauchy problem used a rather complicated duality argument, rather
than the simpler method for proving existence used, for instance, in the case
that the uniform Lopatinski condition is satisfied. The latter approach in­
volves perturhing the hyperholic operator P (which depends on the param­
eter r) into an operator Pe which is parameter-dependent e11iptic for f > 0
small. By constructing a parametrix similarly to [4]Theorem 22.1 hut using
Sobolev spaces dependent on the paramter r one obtains a remainder with
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small norm (less than 1) uniformly for T large and f small, which implies
the invertibility of the operator corresponding to the boundary value prob­
lem. Tbe uniform bound on the norm of the remainder is not satisfied in the
absence of tbe uniform Lopatinski condition.

2 Regularity and Asymptotics

1. Conormal regularity. In tbis section regularity in weigbted function
spaces for tbe solution to tbe Dirichlet-Neumann-Cauchy problem is given,
and the behavior of the solution near tbe interface Eo is described by an
asymptotic expansion. We first define the weighted function spaces W",N,O' (XO).

The space W~,N,O'(XO), (j ~ 0, consists of all functions u in XO with finite
norm

N

I[U]l",N,a = l: L lI AjO'x:_1x~4>jull~+k+1 + l: l14>jUIl~+O'+N
jelI k+l=O jeh

with notation as in (1.5). The space W",r,N,O'(XO) is defined analogously,
where r refers to the number of derivatives in A' near Eo and the additional
number of derivatives away from Eo (cf. (1.18)). Here Eo is given locally
by Xn-l = X n = 0, and E is given by X n = O. Note that for functions
in these spaces multiplying the function by X~_lX~, j + k ~ N, increases
the smoothness in all directions by order j + k. The spaces H",N(Ed and
H.,N(E2 ) are defined similarly with weights which are powers of X n-1.

Regularity results in the spaces W",N,O' , which combines regularity both
in the tangential direction and with weights in the normal direction, will be
referred to as conormal regulari ty.

Theorem 2.1 Ij, in addition to the hypothesis 0/ Theorem 1.1, Ir E WO,N,u(XO),
91'T E H3/2+u,NCEd, 92'T E H1/2 ,N,u CE2), (j ~ N, then the u nique solution Ur

0/ (1.1)-(1.3) with Ur E H1,u,r(XO) belongs to the weighted function space
W1-l,N,O'-N(XO), f > 0 arbitrarily small.

Proof. We apply the conormal regularity result [2]Theorem 2.5 for the
general mixed elliptic boundary value problem investigated in [4, Sect 24] to
the mixed elliptic boundary value problem given by Eu = h in XO, u = 91r
in E1 and Bu = 92r in E2 wbere tbe elliptic operator E is defined by (1.14).
By this result if u E W1,o,0' is a solution of this mixed elliptic problem witb
h E W-1-l,N,u, 91r E H1/2+u,N and 92.,. E H_ 1/'l+u,N, then u E W1-l,N,u, for
f > 0 arbitrarily small.
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The proof is inductive. Assume Ur is in W1-t:,k,tr-k, 0 ::; k < N. Then
A~UT is in W-1-t:,k+l,0'-k-l' Applying the elliptic regularity result to the
aforementioned mixed boundary value problem we get that U T belongs to
W1-t:,k+l,O'-k-l. Q.E.D.

Remark 1.S. For the sake of brevity these remarks are informal. The
analogue of Theorem 2.1 holds for the dass of hyperbolic boundary-value
problems considered in Theorem 1.2. The following modifications need to be
made in the proof of Lemma 2.1. Instead of the elliptic operator E defined
by (1.14) the operator wi th symbol

P(x,~ + i(r + 8h(x,~))N)

is used, where the positive number 8 is chosen sufficiently small so that the
Lopatinski condition is satisfied (cf. (1.22)). In general, an elliptic regularity
result in spaces with piecewise order of smoothness is needed. Such a result
involves spaces of the type H(.;,Ti),N with norm

E ll4>iu ll.;,Ti,N,
~

where {4>i} is a partition of unity, the first index refers to differentiation in all
variables, tbe second index refers to differentiation only along the boundary
~, and the last index represents the weight. If the indices vary only slightly
in overlapping coordinate neighborhoods, then the parametrix construction
as in [4, Section 25] leads to a compact remainder which has a gain of 1 - f,

f > 0 small.

2. Asymptotics of the solution near ~o. We give a general result on
asymptotics which includes: (a) the Dirichlet-Neumann-Cauchy problem;
(b) mixed initial boundary value problems for second-order hyperbolic oper­
ators satisfying the uniform Lopatinski conditionj (c) mixed elliptic boundary
value problems for second-order strongly elliptic operators on a compact Coo
manifold with boundary. The method we discuss here is applicable so lang as
conormal regularity has been established, the conormal bundle of Eo lies in
the elliptic region of the differential operator, the boundary operators b1 and
~ (see (2.4)) are elliptic, and, with respect to the first index s, there is no 1055

of differentiation compared to the elliptic case, that is, (2.8) holds. Conormal
regularity means regularity of the solution U in the space Ws,N,O'(XO).

All these three types of problems have the form

P(x, D)u = /,

Bk(x, D)u = gk, k = 1,2;

(2.1 )

(2.2)
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where P is a second-order differential operator with Coo coefficients, Bk are
differential operators of order mk, k = 1,2. As berore, X is an (n + 1)­
dimensional manifold with boundary E, XO is the interior of X, and E is
divided into two parts, EI and E2 , by a smooth submanifold Eo of E of
codimension 1. The non-compa.ctness of X in cases (a) and (b) causes 00

problems sioce by assumption (i) a finite partition of unity can be taken.
We take local coordinates near Eo in which this submanifold is given by

X n -l = X n = 0, and X is given by Zn ~ O. Let Po be the principal symbol of
P. Put

where x= (xo, x"), X = (xn-I, xn), and x" = (Xl, .. . , Xn -2)' We are assuming
that the conormal bUDdle of Eo is contained in the elliptic region of P, that
IS,

e(x, t) f. 0, for x E Eo, t f. o. (2.3)

The roots Ak(X,~n-d, k = 1,2, of e(x,t) = 0 with respect to ~n are not real
for ~n-l f. 0, and we can take $SAI > 0 and $SA2 < 0 for en-l f. 0 (this holds
for problem (c) since the operator is strongly elliptic). We normalize e by
putting e(x, 0, 1) = 1.

Let ErO) be the principal part of Bk, k = 1,2. The boundary operators
bk given by

are assumed to be elliptic, that is,

(2.5)

In problems (a) and (b) aod in problem (c) for n ~ 3 the symbol b1b"i 1 has
a factorization (see [4]Section 6). This factorization can be written

where the factorization index K(X) is a Coo function on the submanifold Eo•

Let J11 (x) = A2(X, 1) and P2(X) = -A2(~' -1). Put

k = 1,2.

Let KO(X) = K(X) + m2' Put

oo'k k

H( ) - -i1r6/2r( ). '""" 1 Z
Z,8 - e -8 Z + L- -k'--:-k'° .8
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where r is the Gamma function. The function H can be extended to an
entire function of s with values in the space of distributions in the domain
~z > O. The space QM consists of functions near Eo which have the form
(in loeal coordinates)

M p 2p-r { tr
EE E c~~(x)z;ndsrH(-zt,Ko(x)-m+p)
p=Or=O m=O

+ c~~\,.(x)z;" :rH(z], Ko(X) - m + p)}

where c~~ E COO(Eo). We note that if s # 0,1,2, ... then cl" H(z, s )/ds r has
the expansion Lk=O ckz'logk Zl where Ck depends analytically on s. When
s = 0, 1, 2, ... there is a similar expansion but the upper limit of the sum is
then r + 1.

We now give the theorem on asymptotics. For simplicity we assurne that
the oscillation of ~K; is less than 1, but this assumption can be dropped by
making use of Sobolev spaces of piecewise eonstant order of smoothness (see
[4]Seetion 25).

Theorem 2.2 Suppose thal (2.9) and (2.5) hold, that is, the conormal bun­
dIe of Eo is contained in the elliplic region 01 P, and thal the boundary
operators bk(x, Dn-d are elliptic. For data f E Hoo(X°), gk E Hoo(E k),
k = 1, 2, suppose u is a solution 0f problem (2.1)- (2. 2) in the fu nction space
W.,oo,oo, where s satisfies

Is - 1/2 - ~K;o(x)1 < 1/2, Vx E Eo. (2.8)

Then the solution has the asymptotic expansion u(x) = SM(X) + UM(X)J for
all M ~ 0, in a neighborhood of Eo, where SM E QM, and

Vf > 0, 10'1 ~ O. {2.9}

This theorem applies to the three problems (a), (b) and (c). The canormal
regularity result for (a) was given in Theorem 2.1, and for problem (b) it was
discussed in Remark 1.3. Conormal regularity for mixed elliptic boundary­
value problems was given in [2]Theorem 2.5.

We first give a lemma.

Lemma 2.1 Let 4>(t) E Cgo(R1
) equal 1 for t < 1. Then the distribution in

the domain ~z > 0 given by

differs from H(z, -a - 1) by a function which is entire in both a and z.
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Proof. The distri bu tion X+ = x+ / r (a + 1) is an ent ire function of a [6,
Beet. 3.2]. Its Fourier-Laplaee transforin, defined in ~z > 0, is computed in
[6, Beet. 7.1]:

Henee

{X> e'Z'(l _ ,p(t))tG dt = r(a + 1) (e'''Ca+tl/2z-a-l +!(a,z») ,

where /(a, z) is entire in both a and z. Sinee the left-hand side is an entire
distribution-valued function of s, the singularities on the right-hand side
must cancel. The gamma function is a meromorphic function having only
simple poles which are located at the integers k ~ O. The residue there is
(-l)Jr/kL

Proof 0/ Theorem !J.2. Let X be a cut-off function which equals one in a
small neighborhood of Eo, and let v = xu. By (2.1 )-(2.2) we get (mod Coo)

e(x, D)v - -(P - e)v, in Eo X R 2
;

Ck(x, D)v - -(Bk - Ck)v, on bO x R1, k = 1,2;

(2.10)

(2.11 )

The asymptotics for this mixed boundary-value problem were obtained in
[4]Section 13 in the case in whieh the right-hand side is Coo. Letting WM
represent the space W,,+M+l,oo,oo, we shall prove inductively that v = SM +rM

with SM E QM and rM E WM , for all M 2:: -1. By the Sobolev imbedding
theorem UM will then satisfy (2.9), and the theorem will be proved.

Assurne v E QM +WM . First we reduee to the ease in whieh the right­
hand side of (2.10) vanishes. By eonormal regularity (P - e)rM is in WM-l.
The distribution E whieh is the inverse Fourier transform with respect to t
of e(i, t)-l is a fundamental solution of e [6, Seet. 7.1]; eonvolution by E is
an operator of order -2 on the weighted funetion spaee cooCEo, W~.N(R2))

(see [4, Lemma 24.2]). Thus there is a solution of ev = -(P-e)rM in WM +I .

Next, we show that there is a solution of ev = -(P - e)sM in QM+I +
WM+l. Note that

.... " 2 82

e(x, D) = (PI - }l2) a 8 '
ZI Z2

where the partial derivatives on the right-side are given by

It follows from this deeompostion of e and Lemma 2.1 that the equation
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for r in Coo and integral m ;::: 0, has a solution which differs from

by a smooth function in x E R n+1
• The analogous statement holds if the

roles of Zl and Z2 are reversed. A tangential derivative of the right-hand side
of the last equation is a sum of terms of the same form. Among these terms
the power of Z2 increases by at most 1, and for the term in which this increase
occurs the power of the logarithm (that is, the number of derivatives in s)
will remain unchanged. This indicates the effect of applying P - e to SM,

and substantiates the above claim.
Thus we can consider the problem (2.10)-(2.11) in which the right-hand

side of (2.10) vanishes. The solution of (2.10) has the form

v(x) = (21r)-1 i: exp[-iXn'\2(X,~n-l) - iXn-l~n-tlVO(x,~n-dden-l, (2.12)

where Vo is the restrietion of v to l:, and va is the Fourier transfarm of Vo
with respect to Xn-l' Substituting this inta (2.11) we get (mod cool

bk(i, Dn-dvo = -(Bk - Ck)v, on (-~)kXn_1 < 0, Xn = 0, k = 1,2,

where bk and CI;: were defined in (2.4). Let

Vk = -bk(i, Dn-dvo - (Bk - CI;:)v, on X n = 0, k = 1,2. (2.13)

Then VI (V2) is supported in Xn-l ~ 0 (Xn-l ;::: 0). We get the pseudodiffer­
ential equation in the damain Xn-l > 0

(2.14)

modulo a function in Hoo • Here b~l is redefined near 0 so as to remove the
singularity. We will tacitly use this convention for other symbols as well.

The asyrnptotics for (2.14) have been worked out in [4, Sect. 26] by the
factorization method. Since V = SM + rM we see that the right-hand side of
(2.14) is a surn of a function of the form

and a function in Ha+M - ml +3/2,00,00' where Cpr are coo functions. Note that
this last function space is equivalent to COO(l:o, Ha+M- ml +3/2,00)' Here F{~:l
represents the inverse Fourier transform.
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Applying the factorization method we get (see (2.6)) that the solution V2

of (2.14) is given by the sum of a function of the form

and a function in COO(Eo, H:+M - m'J+3/ 2,oo)' The space H~N consists of all
functions in H.,N(RI

) vanishing in R:.
By (2.13) Vo is given as a sum of a function of the form

M p

E L d,n.(x, sgn en-l )len_ll- ICO c;)-p-2 Iogr+1 len-ll,
p=Or:O

(2.15)

(2.16)

where dpr(x, ±1) is a Coo function, and a function in COO(Eo, H.+M +3 / 2,oo).
By (2.12) we have

v(x) = (21l"t 1 (1'''' e-izlen-1VOd~n_l +10

00 e-;z,en-IVOd~n_l) ,

Substituting (2.15) into (2.16), we get by Lemma 2.1 that v E QM+l +WM+1.

In the case of the Dirichlet-Neumann-Cauchy problem the asymptoties
for the solution are much simpler.

Theorem 2.3 Suppose the conditions 01 Theorem 1.1 hold, and that the data
is smooth, that is, Ir E Hoo(XO), and 9kr E Hoo(E k ), k = 1,2. 11 Ur is a
solution 0/ (1.1)-{1.3) in Ht,o,r(XO), then there are IDeal coordinates near Eo
in which

(2.17)

where Ct, C2 and rare Coo lunctions.

Proof. Some modifications to the proof of Theorem 2.2 involving the theory
of smooth pseudodifferential operators [4, Seet. 10] (smooth means satisfying
the transmission property) suffice. We take B t and B 2 in (2.2) to be the
Neumann and Dirichlet operators, respectively. First, since Po(x, 0,0, f) is a
negative definite quadratic form with respeet to l there are loeal coordinates
near Eo in whieh e(x, t) is given by -('~-t + ~~). Therefore Zt = X n-l - ixn,
Z2 = Xn-l +ixn , bt = len-ll, ~ = 1, and "0 = 1/2.

The symbol of b1b21 = I~n-d equals the produet of the "plus" symbol
(en-l + iO)l/2 (i.e., it extends analytiea.lly to the upper half-plane) and the
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symbol (~n-l - iO)-1/2 which satisfies the transmission property. We can
rewrite (2.14) in the form

(Dn - 1 - iO)1/2w = 9, on R~, (2.18)

where w = (Dn- 1 + iO)1/2v2 and 9 represents the right-hand side of (2.14).
Let us show induetively that v = XUr is given by the sum SM + TM,

where SM has the form of the right-hand side of (2.17), and TM is in WM =
WM+2,co,co' It is clear that the theorem follows from this deeomposition
of v. Assuming that v ean be so expressed for a giyen value of M, then
9 ia a sum of the funetion d1(x, Xn-l)X~~l.+' d1 E cco, and a funetion in
CCO(Eo, HM +3 /2,co(R1

)). By (2.18) w ia the restrietion of (Dn - 1 - iO)-1/2g to
Xn-l > 0, henee w is in CCO(Eo, HM+2,co(R~)) where H.,N(R~) consists of
all functions in R~ whieh have extensions to Ha,N (R1

). This implies that

M+l

W = L ak(x)x:_1.+,
k=O

where ak E CCO(~o). Therefore,

V2 = d2(x, Xn-dX~t.:l,+, mod CCO(~o, H"tr+5/2,co)'

where d2 E Cco. Substituting Vo (whieh equals V2) into (2.16) we obtain the
desired result.

This result in which the asymptotics do not contain logarithms holds more
generally for all second-order mixed boundary value problems for which the
conditions of Theorem 2.2 are satisfied, the symbol b1b;l is the product
of a "plus" symbol and a smooth symbol, and the factorization index /\, is
constant. Indeed, in this case the solution of the analogue of (2.18) involves
no logarithms since the factors in the factorization of a smooth symbol are
themselves smooth. If, in addition, tbe coefficients of e(x, t) are real, then
the asymptotie expansion is given in (2.17) with the exponent 1/2 replaced
by /\'0.
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