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Introduction

Well-posedness, regularity and asymptotic results are obtained for the Dirichlet-
Neumann-Cauchy problem on an (n + 1)-dimensional C® manifold X with
boundary ¥. The boundary ¥ is time-like and divided into two open re-
gions X, and X; by an (n — 1)-dimensional C* time-like submanifold .
Dirichlet and Neumann boundary conditions are given on £; and X,, respec-
tively. Regularity and asymptotic results are also obtained for mixed initial
boundary-value problems for second-order hyperbolic operators for which
the boundary condition is discontinuous across an interface but satisfies the
uniform Lopatiski condition. These problems were considered in [5, Eskin].

The existence and uniqueness theorem (Theorem 1.1) for the Dirichlet—
Neumann—Cauchy problem is deduced from a priori estimates obtained by
combining energy estimates for second-order hyperbolic initial boundary-
value problems, and for elliptic mixed boundary-value problems. Existenceis
proved by a duality argument. This basic theorem includes already additional
regularity in the tangential directions to the interface ¥o. This regularity is
necessary in order to obtain the asymptotics of the solution near the interface,
and, unlike elliptic equations, tangential regularity must be included already
in the a priori estimates. Technically this is due to the loss of one derivative
in the estimate of a hyperbolic problem compared to an elliptic problem. The
existence proof for the class of problems considered in [5, Eskin] is reworked
80 as to include tangential regularity.

The Wiener-Hopf method for obtaining the asymptotics for mlxed elliptic
problems is also used for obtaining the asymptotics for the hyperbolic prob-
lems considered in this paper. If the hyperbolic operator P is elliptic on the
conormal bundle of Ly, the boundary operators b; and b; (2.4) are elliptic,
and conormal regularity (that is, the regularity given in Theorem 2.1) holds,

!This work was supported by the Max-Planck— Arbeitsgruppe “Partielle Differential-
gleichungen und Komplexe Analysis”, Potsdam University.



then the asymptotics near the interface can be derived by the Wiener-Hopf
method as in the case of mixed elliptic boundary—value problems studied by
M.I. Visik and G.I. Eskin [4, Eskin]. Conormal regularity combines both tan-
gential regularity and regularity in weighted function spaces. The problems
treated in this paper satisfy the above sufficient conditions. Note that the
asymptotics for the Dirichlet~Neumann-Cauchy problem is particularly sim-
ple (Theorem 2.2): given C™ data the solution is C™ outside of the interface
Yo, and it has (at worst) a square-root type singularity at L,. The general
case gives rise to a more complicated asymptotic expansion (Theorem 1.2} in
which the power of the logarithm undergoes a “jump” when the factorization
index x equals a non—negative integer.

In local coordinates z = (zo, ..., z,) the second order hyperbolic operator
P is given by
P(z,D) = 3 g™*(2)D; Dy + 3_ bi(2)D; + (=), (0.1)
k=0 3=0

where D = (D,,...,D,), D; = i8;, the coefficients are C*®, and ¥ ¢?*(z)&;¢x
is a real symmetric quadratic form having Lorentz signature, that is, (g’*)
has one positive and n negative eigenvalues.

To avoid considering compatability conditions we assume that the data
is initially zero. More precisely, let ¢ be a C'* function from X to R with
space-like level surfaces, and assume, moreover, that ¢ is a proper map.
Then the Dirichlet—-Neumann-Cauchy problem is given by

P(z,D)ju = f in X° (0.2)
u = ¢ onk (0.3)
B(z,D)u = ¢ on I, (0.4)
v = 0  when ¢ <0, (0.5)

where f, g1, and g; vanish for ¢ < 0 and X° is the interior of X. The
boundary operator B equals dy + d(z), where dn is the Neumann operator
with respect to the operator P. In local coordinates dy = ¥ ¢**(z)v;(z)8,
where v(z) is a C™ section of the conormal bundle of X.

The mixed Dirichlet~-Neumann-Cauchy problem models the sound radia-
tion field of an enclosed cavity in which sound is radiated into the cavity from
one part of the wall of the enclosure, and sound is reflected back from the
remainder of the wall. Assuming that the wall is not absorbent, sound ra-
diation and reflection correspond to a Dirichlet and homogeneous Neumann
condition, respectively, where the unknown function is the acoustic pressure.

This mixed problem can also be considered an idealized scalar model for
the dynamic problem of linear elasticity in which the displacement is known
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on one part of the boundary and the traction is known on the complement.
(The traction is analogous to the Neumann condition.) Existence and unique-
ness results for the elasticity problem were given in (3, Section III1.4], but
regularity of the solution was not treated.

The Dirichlet-Neumann—Cauchy problem is one in a class of mixed initial-
boundary value problems treated in [1] by reduction to a pseudo-differential
equation on the boundary, however the operators were assumed to be con-
stant coefficient. Moreover, the a priori estimate for the problems treated
in [5] were obtained by reduction to a pseudo-differential equation on the
boundary, and the existence proof was carried out by the method of ellip-
tic regularization. A duality argument, rather than elliptic regularization, is
used in the present treatment of the Dirichlet-Neumann-Cauchy problem,
due to the non-ellipticity of the boundary symbols. Nevertheless, it may be
possible to adapt the method of elliptic regularization to prove existence for
this problem. See Remark 1.3 for further explanation.

In Section 1 energy estimates are derived and existence and uniqueness
is proved. Section 2 contains the results on regularity in weighted function
spaces (the weights vanish on %,), and the asymptotic expansion of the
solution in a neighborhood of .

The author is indebted to Professor Gregory Eskin for suggesting this
problem as well as for reading a part of the manuscript and offering helpful
comments. This paper was completed in the academic year 1994-95 while
the author was a guest at the Max Planck Institute, and the author wishes to
take this opportunity to express his gratitude to the institute for its generous
support.

1 Existence and Uniqueness Theorem

Before defining Sobolev spaces on the manifold X we make the following
assumption:

(1) For some c sufficiently large there are coordinates (zo,. .., z,), Zo = ¢(z),
in which ¢ > ¢ has the form (¢,00) x G, where G is a compact C* n—
dimensional manifold with boundary, and £o = R x I where I" is an (n — 2)-
dimensional submanifold of the boundary of G. Moreover, P and B are
independent of zo for ¢ > ¢, ¢ = 1 and (gj“)j,k=1,_,,,n is negative definite.
Analogous assumptions are made for ¢ < —c.

Remark 1.1. The above assumption can of course be dropped if the finite
time problem is considered, i.e., the analogous problem in which X is replaced
by ¢7![S,T], S < 0 < T. This assumption might also be avoided by working
in local Sobolev spaces as in [6, Section 24.1].
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Choose a finite open covering {U;} of X and charts {«;}, 7 € I. By
making use of a Riemannian metric a neighborhood of ¥ can be identified
with ¥ x {0,3). Similarly a neighborhood of g can be identified with £y x
(=3,3) x [0,3). In local coordinates z¥) in U; the boundary £ is defined by
£Y) = 0 and the interface % is defined by z1), = 2z = 0. Put zo = ¢(z).
By assumption (i), we may assume that ¢°° = 1, and (¢7%);4=1,...» is negative
definite. Henceforth, we assume that these conditions are satisfied.

Upon multiplying the equations (0.2)-(0.4) by e~7%° we get in local coor-
dinates that

P(z,D+irN)u, = f, inX° (1.1)

U, = gir on ¥, (1.2)

B(z,D+1irN)u, = g2, on I, (1.3)

where u.(z) = e ™u(z), and f,, etc., are defined similarly, and N =
(1,0,...,0) is conormal to the level surfaces of ¢(z).

The equations (1.1)-(1.3) motivate the introduction of Sobolev spaces
which depend on a parameter 7. Let H, (R"*') denote the normed space
which consists of the distributions u(-, ) for which

u(-, n)II2 = /1‘\2‘|1‘1(,5,1-)|2 d¢ (1.4)
is finite, where
A& T) = (B + T+ G+ + [l 2

This defines the norm in the aforementioned space. Here v represents the

Fourier transform: .
3(¢) = j e ty(z) dz.

The normed quotient space H,,(R}*') consists of all distributions in
R}t = {2z : 2, > 0} having an extension lu(-,7) in H,,(R"™"). The
quotient norm is given by

[l = inf [full,

where the infimum is taken over all extensions lu in H,,(R"*').

Put £ = (z,_1,2,). Choose a finite partition of unity {¢;} of X, j € I,
subordinate to the coordinate neighborhoods Uj; such that ¢; is independent
of z¢ for |z¢| large. The index set I is the disjoint union of I; and I,
where ; € I, if and only if U; intersects the interface £,. Moreover, the
coordinate neighborhoods Uj;, j € I}, are contained in the “collar” || < 2 of



Eo. The Sobolev space H,,:.(X°), for real numbers s, o, and t, consists of
distributions u(-,7), 7 > 0, in X° with finite norm

lullooe = D IASAD k55ullT + D 1AGK il sto, (1.5)

jeh jenh

where Af, = (Do + it)?, and the symbol of the pseudo—differential operator
(A¥)? is given by

Af;(&o, g_;"a T) = (Eg + 72 + |£;',|2)l/2; 6;' = (69): R ES:J—)Q) (16)

Here «;, is the push—forward under the diffeomorphism &; from U; to R}
where R**! = {z € R™' : z, > 0}, z = (%0,...,%x). The main theorem
below uses the spaces

Ha.o.-r(xo) = Hs.a,o.‘r(Xo)-

The norm in this space is denoted by || ||5.-

N.B. Another atlas of charts and a subordinated partition of unity in
the definition (1.6) leads typically to a norm which is not equivalent to the
original one. We will employ in the following theorem and lemmas such norms
which are defined with different partitions of unity. Indeed, one could use
instead of (Uj, ¢;) the system (U}, ;) where ¢; > 0 is in Cg°(U}) and 3 4;
never vanishes. In particular, the Sobolev spaces occuring on the right-hand
side of estimates will typically employ functions v; satisfying 1;¢; = ¢;,
where ¢; are the functions used in the definition of the norm on the left-side
of the inequality. No distinction in notation will be used. For a specific norm
which appears either in an estimate or the statement of a proof the coordinate
systems U and functions ¥; are fixed, in particular, they are independent of
the parameter 7.

The spaces H,,(X), H,.(L), and H,,(%;), H,-(%;), i = 1,2, are de-
fined analogously. The norm of v in H, -(R") is given by

[o(, T2 = [ A5 déode,
where the symbol of A’ is
N(&o, &, m) = B+ +IEPY? & =(&,..., )

The norm of v in H,..(X) is given by
s = 2 [Aokjegjuls,



where ¢’ is the restriction of ¢ to ¥, and the sum is taken over those j
for which the support of ¢; intersects £. The norms in H,,;.(¥X) and in
the quotient spaces H,;.(Z;), ¢t = 1,2, are denoted by [ 1., {],, and [];,,
respectively. We set H,.(X¥) := H,o.(X), etc., with corresponding norms
[ ]s, etc. The space H,.(R") is defined to be H,o.(R"), etc.

We give next the well-posedness result for the Dirichlet-Neumann-Cauchy

problem and present its proof after some preliminary lemmas.

Theorem 1.1 Assume that P is hyperbolic with respect to the level surfaces
of ¢, ¢ is proper, £ and Lo are time-like, and assumption (i) holds. Let f,
g1 and g3 be data which vanish for ¢ < 0 and which satisfy f. € Ho,.(X°),
Gir € Hyjgyo.(E1) and g2r € Hipagor(E2) for ¢ > 0 and 7 large. Then
there is a unique solution u of the mized problem (0.2)-(0.5) for which u, €
Hyo(X°) if 7 is sufficiently large.

Remark 1.2. The above result could be somewhat stregthened by using
more involved Sobolev spaces. The result then is roughly that compared to
the analogous mixed elliptic problem there is a loss of one derivative, and
near Yo this loss occurs just along the interface £p. Note that there is an
additional loss of one-half derivative in the Dirichlet data ¢,, compared to
the result for the Dirichlet-Cauchy problem given in {6, Section 24.1].

We now define auxillary Sobolev spaces which are used in the proof of the
main result. Decompose I; into a disjoint union of I3 and Iy where j € I3 if
and only if U; has non-trivial intersection with £. Moreover, the partition
of unity is sufficiently refined so that U; is contained in z, < 2if j € I3. The
norm in H,ps¢.(X°), T > 0, is given by

[ulapod = D NAGAP(A]) ksudjulld + D IAG(A )P+ kjdjullf
jeh €L
+ Z ||A:)K.it¢ju||a+p+o- (1.7)
JEL
The other type of auxillary Sobolev space is defined by
Hp,o,‘r(xo) = HO.p.a.O,f(Xo)

with norm | |p,0-

In the following four lemmas basic energy estimates for the Dirichlet—
Neumann-Cauchy problem are derived. In all instances in Section 1 the
constant C denotes a constant independent of 7. This is repeated in the
statement of the theorems and lemmas for emphasis.

Lemma 1.1 Assume u(-,7) is a solution of the boundary-value problem

(1.1)-(1.8) belonging to H,441,-(X°), and that f, € Hop:+(X°), g1+ €
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HI/Q.H_]‘.,.(El), and Gar € H_llg_g.‘.l..r(zg), t € R. Then u satisﬁes the a
priort estimate

VT lullios < Cllfrll-10041 + Clgielijzen + Claaslyjz a1 (1.8)

for T sufficiently large, and C independent of T.

N.B. Lemma 1.1 with ¢t = —1 implies the uniqueness assertion of Theo-
rem 1.1.

Proof. We start with the half-space problem z, > 0 and assume for now
that t = 0 and P(D) is given by ¥ ¢’*D; Dy, ¢°* are constants, B = dy and
that £, (Z,) is given by z, = 0 and z,_; > 0 (z,—1 < 0). Multiplying the
equation P(D + itN)u(-,7) = f; by 2(0 + 7)u, taking the real part, and
integrating by parts we get

o (|(ao +ruf’ = 3 gﬂ‘a,-ubk_u) dz = (1.9)

FE21

R fdot+r)ade-R [ Bu(%+r)uds;
zp>0

zp=0

where v is the exterior normal (0,...,0,—1), B is the Neumann operator
(0.4), and where we have used the identities:

2R((Bo + 7)T(Bo + 7)*u) = 8o (|(Bo + 7)uf*) + 271(8o + 7)ul*;

2% i (8o + 7)Eg"* 0;0ku = 2R Zn: O (gjkaju(ao + T)ﬁ)

Jk=1 i k=1

-8 Y (gjkajum) -2r Y ¢*0,udu,

Jk=1 Jk=1

2R ((30 + 7)ag® (8o + T)aku) = 3 (g% (8o + Tul?), for k > 0.

We obtain a bound for the surface integral that appears in (1.9) assuming
Dirichlet-Neumann boundary conditions: u = ¢, on £, and Bu = ¢; on Z,.

Let
(v,w) = j VT dS.
2n=0
Choose extensions lg; of ¢i, 2 = 1,2, such that

[Aolgir]ijz < 2[Aogirlijes  [Aolgar]-1/2 < 2[Acgs-]”, 2



In the identity
(Bu,Aou) = —(lg2r, Aolgrs) + (Bu — lgar, Ao(u ~ lg1,))
+ (1927, Aou) + (Bu, Aolgyr)
the second integral on the right-hand side vanishes. Thus, we get

|(Bu, Agu)| < € {[Aolgrr]1s2 + [Aolgar] sz + Il } (1.10)

By virtue of the inequality

[ 0o+ mmdsl =1 [ (= ) da] <G =) Sellallul

and the negative definiteness of (¢7*); k=1,..n, we get by (1.9) and (1.10) that
for 7 sufficiently large

V7llully £ CllAofrll-1 + ClAogir)i /2 + ClAoga-lZ e (1.11)

If the original operators P(z, D + it N) (see (0.1)) and B are used we get an
identity which is the same as (1.9) aside from an additional term which is a
sesquilinear form in (u,u’). The absolute value of this term is bounded by
C|lu||,- Hence, for 7 large, the estimate (1.11) still holds.

Now assume that A§t'u is in Hy.(R}™), t € R. Putting v = Adu, we
get

Pv = Alf. — Aj[P, A5y, in z, >0,
v = Abgir, onz, =0, z,.,>0
Bv = A}gsr — AG[B,A;"]v, onz,=0, z,4 <0.
Applying estimate (1.11) to v we get the estimate
VTlIAGulls € ClIAGT f2ll-1 + ClAGT 9111 j + ClAG 9241 2 (1.12)

for 7 large, since the term involving the commutator can then be absorbed
by the left-hand side.

Estimates analogous to (1.12) hold for the Dirichlet problem, Neumann
problem and the problem without boundary (interior estimate). Thus we get
for any j

VTlAbridsulli < ClIAGT Prjudiull o1 +CIAGH ke djult o+ ClAGT Brjudjul”,

< CIAGH kjudi frll -1+ CIAGH Kubigrsl1 2+ CIAGT ke 5927171 2+ CllAG 1.

Here o; € C§°(U;) with v;¢; = ¢;. Summing over j and taking 7 large, we
get the global estimate (1.8).



Lemma 1.2 [fu(-,7) € C§°(X®), then for o 2 0 the a priori estimate
lulie £ ClPul-1,041 (1.13)

holds for all T sufficiently large. The constant C is independent of the pa-
rameter T.

Proof. 1f Cy is sufficiently large then
E(z,D+irN)= P(z,D + itN) — Co(Do + it)? (1.14)
is an elliptic operator. The elliptic estimate for the Dirichlet problem gives
ufz,-1,00 < C|Eulo,-1,00 + Clufi,-1,00- (1.15)

The definition of the norms which appear on the right~hand side is modified
from the one given in (1.7) in that the functions 3; are used instead of ¢;,
with 1;¢; = ¢;. Consequently the last norm on the right side in the above
inequality cannot be absorbed by the left-hand side even for 7 large.
Put
AT; = 650 ¥i(r5 (2))Ag;K5. 85,

where Ag; equals AT if j € Iy, A} if j € I, and A if j € I4. Here p; € Cg°(Uj;)
with ¢;¢; = ¢;. Applying this pseudodifferential operator to the elliptic
equation gives

E(Af;u) = AJ;Eu + [E, A{}]u.
The above elliptic estimate gives (after summing over all j € I)
|t]z,-1,00 € C|Etfo,~1,00+ Clulz,—1,0-10 (1.16)

< C|Pulo~1,00 + Cltt|o,~1,02 + Clte|2,-1,0-1,0
< C|Pulo-100 + Clul2,-10-55,

for 0 < § < 1. (This estimate holds for all real ¢.) For ¢ > 0 we get by
induction
[ulz,-1,00 £ C{Pulo,~1,60+ Clulz,-1,00-

By a straightforward analogue of [6, Theorem B.2.9] (partial hypoellipticity)
we get
t]2,-100 < C|Pufo-1,00+ Cllul100-

The last two inequalities and estimate (1.8) now give
|tl2,-1,60 £ ClPulo,-1,0+10-

This implies estimate (1.13).



Lemma 13 Ifu€ Hip,, 0 € R, Pu=0in X°, u=0o0n%,, Bu=0 on
2, T > 79 for 19 sufficiently large (independent of u), then u =0 on X°.

Proof. Without loss of generality we assume that o < 0. It suffices, by
estimate (1.8), to show that u € H) g,4,-(X°). A regularity argument is used
to show that u belongs to this smoother space.

By partial hypoellipticity, u € M3 _1,,0,,. We obtain the a priori estimate

|u|2|—lla!‘ S ClEuIO‘_l'a't + Clulﬂ.—l.a—l,t, J’ t e R’

for the solution u to the elliptic mixed—-boundary value problem Eu = —CpA2u
in X°, u=00nX,, Bu=0o0n Z;, where E is defined by (1.14). Indeed, the
solution u satisfies the elliptic estimate (1.15) essentially by [4]Example 13.1
and [4]Thm. 22.1. The case ¢ = 0 then follows as in the proof of (1.16).
For general ¢t this can be proved as in the proof of Lemma 1.1. That is, the
operator A} is applied locally, and the commutator term can then (in the
global estimate) be absorbed by the left side.
Put

ALje = 850 05(55 1 (2)) AL ek b5
where the symbol o(Aj;,), € > 0, of the operator Ay, is given by

a(A3)/ (1 + ea(Ay;)) .

The operator Aj; is defined as in the previous lemma. The functions ¢; €
C§°(U;) form a partition of unity, and o; € Cg°(U;) satisfies ¢;¢; = ¢;.
Applying A, for 0 < r < 1, to the mixed boundary-value problem Eu =
—CoAlu, etc., gives

E(Af;u) = Al;

1je 17¢

Adu+[E, A% Ju,

1j¢
Al;;u = 0 on I, and B(AJ;u) = 0 on I, since, without loss of generality,
the coefficient of D, in the operator B is constant. By the previous a priori
estimate applied to this mixed problem we get .
|A;j(ulgv—laav_r 5 CIA;jeAgulo-_lﬂ."‘f + CI[E’ A,l-jg]ul(),—l,a,—-r
+ ClAjeul2-10-1,-r < Clulz,-1,00.

This shows that |Aj; |2 -10,-- is bounded independently of ¢ > 0, and im-
plies that there is a sequence Aj;, u converging weakly in Hz _1 5,—rr With
€, — 0. Hence u € H3 _y o4r,—r-. By induction u € Hz _; 0,0,-, which implies
that u € Hyp,,. Lemma 1.3 is proved.

We introduce a positive density on X (which is independent of z, for

|zo| large) and a corresponding scalar product (+,-)o on L?(X). This scalar
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product for u, v € C§°(X) extends uniquely to a non-degenerate sesqui-
linear pairing
(o (Hpor(X°®))" X Hpor(X°).

Let |ul(p0), for v € C(X), represent its norm as an element in the dual
space (H_p,-0-(X°))" with respect to this sesquilinear form, that is,

|u|(p.a) = sup {I(u:v)ol; |Ul—p.—a = 1}-

Lemma 1.4 The dual space of H_, _,.(X°) has a continuous imbedding
into M, -(X°) for appropriately chosen partitions of unity used in the defi-
nition (1.7). In particular, if p, 0 > 0, then the partitions of unity {U;, ¢;},
j €1, and {U,Sl) ¢(k1)}, k € 1M, are appropriate choices for the first and
second spaces, respectively, provided that the coverings satisfy U,El) NU;j is
empty whenever (i) k € IV andj € LU, or (ii) k € I§1) and j € I,. Here
Im, I, m = 1,3,4, are the subsets of the inder sets I and I\Y), respectively,
used in the definilion (1.7).

The converse also holds, that is, H,,,(X°) has a continuous imbedding
into the dual space of H_, _, .(X°) for (other) appropriately chosen partitions
of unity.

Proof. We prove the first assertion for the case p, ¢ > 0. The converse and
the other cases are proved similarly.

Let k € 1}‘). For simplicity of notation we do not write the push—forwards
and pullbacks of the diffeomorphisms in the local coordinate systems. We
have for © € C*(X):

(45 ulp+o = sup { (84w, v)ol : [v]-p-s = 1}.

But (¢£1)u,v)o = (qf)(kl)u, £I)U)o and |¢£l)v|_p_, < Clvl—p—s, where t,b,(gl) €
Cg"(Uﬁ”), t,b,(,l)cﬁf,l) = E), and the constant C' depends only on the function
1,[),9). Hence

168 lpso < Csup { (¢ u, ${0)ol : 11 0]-p-0 = 1}.
Furthermore, by the hypothesis on the partitions of unity, we get that
|¢'1(=l}v|—p,—a = I‘ubl(cl)"'-r—a-
Thus,

Csup { [(8"w, v)ol : [o]-p—o = 1}
Clt ulp.0).

|¢(kl)ulp+cr

IA A
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However, it can easily be shown that multiplication by a compact C'*® func-
tion is a continuous operator on the dual space. Thus we get

16140 < Clulpey, ke 1.

The proof of analogous estimates for the other values of & is proved similarly.
By summing over k € IV we obtain the assertion.

Lemma 1.5 Ifu € C°(X), u =0 on L;, Bu=10 on X,, then foro < —1
and 7 sufficiently large the following a priori estimate holds:

lul(.0) < C|Pul_1 041 (1.17)

Proof. Let P* be the formal adjoint of P with respect to the above scalar
product, that is,

(v, P*w)o = (Pu, w)o, u, w € C3°(X°).
By Lemmas 1.2 and 1.4 we get the inequality
|(u, P*w)o| < |Pu|_1041|wl1,~o-1) £ C|Pu|_1041|P w|_1 0.
We consider the Hilbert space given by the direct sum

(Hot=0,7 (X)) & Hor o #(X°),

and a closed subspace S given by all 2-tuples of the form (u, Pu) withu =0
on L, and Bu = 0 on X;. (Note that by the condition on Pu the trace
of Bu exists.) The set of all linear functionals on S of the form (u, P*w)o,
w € C§°(X?), is dense in the dual space of S. Indeed, if the 2-tuple (u, Pu)
annihilates all linear functionals of this form then Pu = 0 on X°, u = 0 on
¥, and Bu = 0 on ¥,, hence, by Lemmas 1.3 and 1.4 u vanishes on X°. The
estimate (1.17) follows from the above inequality.

Proof of Theorem 1.1.  Uniqueness is an immediate consequence of
Lemma 1.1 (set t = —1). We prove existence using first a duality argument
which resembles the proof of [6, Lemma 24.1.6].

Let (u,v)o represent the sesquilinear form introduced prior to the proof of
Lemma 1.4. Near the boundary ¥ we use coordinates in which X is defined
by z, = 0 and z, is invariant. Then the restriction of the density to the
boundary is also a positive density, and we let (g, h) be the sesquilinear form
on the boundary with respect to this density.

If P* is the formal adjoint with respect to the given density, we get for
u € H\(X°) and v € C§°(X) the identity '

(P*v,u)o = (v, Pu)o — t{v, Bu) — i(Byv,u),
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where B, = B + d(z) for a function d € C°(X) which is independent of z,
for |zo| large. By assumption f, € Hoo(X°), hence f belongs to H_y s41,r.
If v € CP(X), v="0o0n Xy, and Byv =0 on E,, we assert that

I(vaf'r)o - i(va£g2f> - i(Blv:eglf)I S C|P‘v|—l,—o—1)

where £g;, are extensions of g;r, ¢ = 1,2, in the appropriate function spaces.
Indeed, by Lemma 1.5,

|(U,f1-)o[ < |v|(1,—o—1) | frl-1041
S C|P‘u|_1'_,.

The other terms are estimated as follows:

(v, €92-)| + |(B1v, £g15)| Clvl-1/2-0
Cllvlli~o=1 £ Clv|1,~0-1 + C|P*v|-1,—01
C|U|(1.-a—1) + C|P‘U|—1,—o—1 < C|P‘v|-1,—a

IA A A

In this estimate partial hypoellipticity (an analogue of [6, Theorem B.2.9]),
Lemma 1.4 and Lemma 1.5 were used.

By the Hahn-Banach theorem there is a linear form L on C§°(X) such
that

|L(w)] < |wl-1-,,  we CP(X),
L(P*v) = (v,fr)o—1{v,€g2,) — i(Byv, g1, ),

for v € C§°(X°), v = 0 on %4, and Byv = 0. Thus, there is a function u
in the dual of H_; _,.(X°) such that L(w) = (w,u)o. By Lemma 1.5 the
function u is in H;,.(X°). We have Pu = f, in X°, u = ¢;, in I; and
Bu = g3, in ;. By partial hypoellipticity (an analogue of [6, Theorem
B.2.9]) u € Hy,.(X°).

The proof that u(-,7) = exp(—7zo)u(z) and u vanishes for zo < 0 is
carried out as in {5, p. 544]. By estimate (1.8) we get that

(A7) (u(, 7+ AT) = u(-, 7)) [lL00-1 and [[(AT)™! (7087 — 1) u(-, 7)]

1,0,0-1

are bounded independent of Ar. Taking a subsequence which converges
weakly in Hy 5 -(X°), we conclude that du/dr and zou are both in Hy ,_; ,(X°)
for 7 > 15. Since Do + T and 9; + zo commute and the latter operator
annihilates the data, we have that (8, + zo)u satisfies the boundary-value
problem (1.1)—(1.3) with zero right-hand side. By estimate (1.8) we obtain
a distribution-valued ordinary differential equation:

du

— + xou =0,

dr

13



so that u(z, ) = e~"u(z) for some distribution u(z). Since ||e~" 0 u(z)||1,0-1 <
C for T > 79 where C is independent of T we conclude that u(z) = 0 for

Tangential regularity for a general class of hyperbolic mixed
problems. Tangential regularity also holds for the class of problems in-
vestigated in [5}: namely, mixed initial-boundary value problems for second
order hyperbolic equations in which the uniform Lopatinski condition is sat-
isfied by both boundary operators By on £i, k = 1,2, where the defining
equations (0.2)'—(0.5)" are obtained from equations (0.2)—(0.5) by replacing
the left-hand sides of (0.3) and (0.4) by B;(z, D)u and Bs(z, D)u, respec-
tively. Regularity in weighted function spaces and asymptotic behavior of
the solution near the interface ¥, will be given in Section 2.

The next theorem is a refinement of Theorem 1.1 in [5]. Coordinates are
chosen as before: ¥ is given by z, = 0 and £, is given by z,_; = z, = 0. In
local coordinates let A;(z,&o+i7,¢'), 7 = 1,2, be the roots of p(z,{+iTN), the
principal homogeneous symbol of P(z,£ + i7N), with respect to &,; SA; <0
for 7 > 0. Let B,(,o) be the principal part of the boundary operator By.
The uniform Lopatinski condition means that B,(co)(:c, bo+iT, €', A2) does not
vanish for z € ¢, 7 > 0, and (& + i7,&') # 0, k = 1,2. Let x(zo,z")
be the factorization index of the homogeneous elliptic symbol B, By '(z, & +
17, €', A2), £ € Lo, with respect to £,_y. Let my be the degree of By, k = 1,2.
The space H, . .(X°) for real numbers s, p, and o, is the quotient space of
distributions u(-,7), 7 > 0, in X° with finite norm

lellamae = 2 WAV (AY) kuiully + 3 Nkjudsttllarso- (1.18)

jeh JERL

The notation used in the last definition is defined as in (1.5). The spaces
H,,.(L;), 1 = 1,2, are defined analogously.

Theorem 1.2 Assume that P is hyperbolic with respect to the level surfaces
of ¢,  is proper, L and Ly are time-like, and assumption (i) holds. Let f,
g1 and g, be data which vanish for ¢ < 0, and which satisfy, for T large,
/- € Ha,r,o'.r(Xo); hi, € Ho+r+l—-m|,a,‘r(21) and hy, € Ha+r+l—mg,o‘,1‘(22)1
where 0 > 0 is an integer and s > 0. Assume s and r salisfy

[s+r4+1—my—Re(zo,2")] < 1/2,
s—me+1 > 0, k=1,2
Then there is a unique solution u of the mized problem (0.2)'—(0.5) for which

u, belongs to Hyjpyuro—1/2+(X°) for T sufficiently large, and such that the
trace of u, on T belongs to H,y 4y 4-(2).

14



N.B. By assumption the real part of the factorization index has oscillation
less than 1. This restriction on the oscillation can be dropped, but function
spaces of piecewise-constant (or variable) order of smoothness must then be

used. Cf. {5]Theorem 1.2.
Sketch of proof. We will obtain the a priori estimate

2
T”“’”E-}-l,r,a + [u]3+r+l.cr S C“f"'"f,r,cr + C z[hk‘r]f+r+l—mg.a (119)
k=1

for 7 sufficiently large, under the assumption that u(:, 7) belongs to the space
H,13/2.,0,-(X°). The constant C represents a constant independent of 7.
The existence of a solution u with v, in H,y, .., can be carried out as in
[5, Sect. 3]; the hyperbolic operator was regularized into an elliptic operator
depending on a parameter ¢ > 0. Arguing as in [5, pp. 542-544] it can be
shown that the solution actually belongs to the space H,i13/2r0-1/2,-(X°).

Near ¥ the operator P(z,D) can be expressed in local coordinates by
a(:r:(j),D((,’),DEj)) — D?, although z, is not necessarily given by ¢(z).

To obtain tangential regularity near ¥y we follow the same argument
given in {5, Section 3] but modify the symmetrizers by including additional
differentiation in the direction of a forward-directed time-like vector field v
tangent to the boundary in a “collar” of £, and constant for |¢(z)| large.
A first~order differential operator A(z, D) can be associated with v, whose
symbol h(z,£) is given locally by v- ¢, £ € T*(X). Local coordinates are
chosen so that a{y)(z(;), &,€(;) < 0 when h = 0 and (6,£') # 0. The
symbol a{® is the principal part of a.

Local estimates are first done in a collar of ¥. We take a sufficiently
refined finite covering of

{(z,&0,€',7): (&0,€',7)#0,7 >0, z, < 1}

contained in a collar of £, and a partition of unity {@;(z,&,¢’,7)} sub-
ordinate to it in which the functions ¢; are C*° and homogeneous of de-
gree 0 in the variables (4,¢’,7). In the jth coordinate neighborhood let

xgj)(ng), EJ-),T) represent the pseudodifferential operator with symbol

xo (87" h(z, &0, &)/ Ny (6o, €, 7)) ,

where xo is in C§°(—2,2) and equals one in [—1,1], § > 0 is small. For
simplicity of notation the dependence of the variables on the local coordinate
system 1s not always indicated.

For the case in which a®(z,& + i7,£') # 0 in the jth coordinate neigh-
borhood (this corresponds to containment of the coordinate neighborhood in
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1
the elliptic and hyperbolic regions), the symmetrizer in local coordinates is

given by (cf. [5](3.6))
S = ¢ L;AT (—(Da = A) + 6(Dn — AD)) AT Lj4;,

where L; = (1 — xgj)(D((,j),Dij),T))(A((,j))‘, t > 0 an integer. The symbol of
the differential operator Aq is given by h(z,€) + ¢7, whilst the symbol of the
operator A,(j) is (—1)‘+1\/a§°), t = 1,2, where, as before, Q‘A(z.j) <0forr>0.
The constant § > 0 is small.

If the support of ¢; contains zeros of a(®) (the glancing region case) we
use for the symmetrizer {cf. [5](3.25))

S§) = 83 L3 (AP (=88 — ir672sf) — 2D, )(A))PL;45,

where s = Bago)/ 9 and s¥) = 62a§°’ JOE3.
By using these symmetrizers and applying the same arguments as in [5,
Section 3] we get for all integral £ > 0 (cf. [5)(3.41))

Co,7ll(1 = xP)ADY b5ul2,100 + [(1 = X§)(A0) (D = Xo)sul’,,

< CHIATYY;u, 10+ CIAD) Biull2 im0+ CIASY Wi £ 112,00 (1.20)

¥;(z) is a C* function supported in a coordinate neighborhood and satisfying
Y;j(z)¢; = ¢;. The constant & is arbitrarily small. The symbol of Ay is
> A260;|cn=0, the sum is taken only over those j for which the support of ¢;
does not intersect the glancing region. (The push—forward «;, of the local
chart is not written.)

For z near £y put

E(z,6,7) = (1 = xa5) P(z, € +i( + A')N) + xasP(z, €& + iTN).

(The dependence on the local coordinates is not indicated.) Then E(z, D, )
is an elliptic operator whose symbol agrees with the symbol of P(z, D+i7N)
on the support of xs.

Since E satisfies the transmission property a boundary-value problem for
the operator £ makes sense. Applying xg(Af)’))‘¢j to the equation Pu = f,
we get the elliptic equation

Ev.(,‘_ﬂ = gf,j), inz, >0
where v_(,f) = X&(A(()j))t¢ju if z, > 0 and vanishes if z,, < 0;
99 = xs(AD) & f + [P, xs(A§) 1851 + xs(AS) Rubju,
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R has order < 1, and ¢;(z)¢; = #;. The theory of elliptic boundary value
problems for smooth pseudodifferential operators (see [4, Sect. 23]) gives the
following a priori estimate for the Dirichlet problem:

||”+"f+1.r.o < C||gf||3-1.r.o + C[U+]3+r+1/2,o + C]|U+||3,r,o-

Furthermore

WP, xs(AS))51lls-1,r0 < C77H || 85ulls41,r00

and [(Dn — Xo)v4)2,, o is bounded by the right-hand side of (1.20).

These estimates imply the analogue of (1.20) in which 1— xgj ) is replaced

by x? ), Summing (1.20) and its analogue gives an estimate which is identical
to the estimate (1.20) except that 1 — xgj) has been deleted. Finally, the
analogous interior estimate is obtained; then by summing these estimates
over all ;7 we get

Cs,7l| (Ao)t“||3+1.r,o+[(Dn‘”’\ﬂ)(AO)t“]Zw.o <Cé, [(Ag)tu]3+f+l‘0+0”(Ao)tf.,. Hz,r,o-

A proof very similar to the one of Lemma 1.2 shows that the above
estimate implies the following estimate involving tangential derivatives:

051T||“”3+1.r.a + [(D" - /\0)14]3_'_,.'0 S 061 [u]3+r+l,a + C”f“'”ir.a' (121)

In the proof the elliptic differential operator with symbol
P(z,€ +i( + h(z,E))N) (1.22)

is used instead of the elliptic operator {1.14).
By regularity of elliptic pseudodifferential equations in a domain (see [4],
(2]) applied to the solution of the equation [5](3.52) we get (cf. [5](3.54))

2
[u]3+r+l.cr < C Z[h"’]3+r+l—mu.a + C[(D" - AO)“]iw,a + C[u]3+r,a‘ (1'23)
k=1

By (1.21) and (1.23) we get the a priori estimate (1.19).

Remark 1.8. The reader may ask why the existence proof for the Dirichlet-
Neumann-Cauchy problem used a rather complicated duality argument, rather
than the simpler method for proving existence used, for instance, in the case
that the uniform Lopatinski condition is satisfied. The latter approach in-
volves perturbing the hyperbolic operator P (which depends on the param-
eter 7) into an operator P, which is parameter-dependent elliptic for € > 0
small. By constructing a parametrix similarly to [4]Theorem 22.1 but using
Sobolev spaces dependent on the paramter 7 one obtains a remainder with
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small norm (less than 1) uniformly for 7 large and ¢ small, which implies
the invertibility of the operator corresponding to the boundary value prob-
lem. The uniform bound on the norm of the remainder is not satisfied in the
absence of the uniform Lopatinski condition.

2 Regularity and Asymptotics

1. Conormal regularity. In this section regularity in weighted function
spaces for the solution to the Dirichlet-Neumann-Cauchy problem is given,
and the behavior of the solution near the interface ¥o is described by an
asymptotic expansion. We first define the weighted function spaces W, n,(X°).

The space W, n(X?°), & > 0, consists of all functions u in X° with finite
norm

N .
[[u]lane = Z Z ||A?U$:—1$£.¢J’u”:+k+t + E ld5ullatosrn

J€n k4i=0 JEL

with notation as in (1.5). The space W,, n,(X°) is defined analogously,
where r refers to the number of derivatives in A’ near Xy and the additional
number of derivatives away from Lo (cf. (1.18)). Here Z, is given locally
by n_y = zn, = 0, and ¥ is given by z, = 0. Note that for functions
in these spaces multiplying the function by z)_,x%, 7 + k < N, increases
the smoothness in all directions by order j + k. The spaces H, n(E;) and
H, n(E,) are defined similarly with weights which are powers of z,_;.

Regularity results in the spaces W, y,, which combines regularity both
in the tangential direction and with weights in the normal direction, will be
referred to as conormal regularity.

Theorem 2.1 If, in addition to the hypothesis of Theorem 1.1, f, € Wy n -(X°),
g1r € Hyppyan(Zh), 92 € HyjaNo(82), 0 2 N, then the unique solution u,

of (1.1)-(1.8) with u, € Hy,.(X°) belongs to the weighted function space
Wiceno-N(X°), € > 0 arbitrarily small.

Proof. =~ We apply the conormal regularity result [2]Theorem 2.5 for the
general mixed elliptic boundary value problem investigated in [4, Sect 24] to
the mixed elliptic boundary value problem given by Fu = h in X°, u = ¢y,
in ¥; and Bu = g2, in 3 where the elliptic operator E is defined by (1.14).
By this result if ©« € W, o, is a solution of this mixed elliptic problem with
h € W_i—eNo, ir € Hijapon and gor € H_yj240n, then u € Wi_ N, for
€ > 0 arbitrarily small.
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The proof is inductive. Assume u, is in Wi_ xo—%, 0 < k < N. Then
Alu, is in W_i_ek410-k-1- Applying the elliptic regularity result to the
aforementioned mixed boundary value problem we get that u, belongs to
Wi_ek+1,0-k-1- Q-E.D.

Remark 1.8. For the sake of brevity these remarks are informal. The
analogue of Theorem 2.1 holds for the class of hyperbolic boundary-value
problems considered in Theorem 1.2. The following modifications need to be
made in the proof of Lemma 2.1. Instead of the elliptic operator E defined
by (1.14) the operator with symbol

P(z,€ +1i(r + 6h(z,E))N)

is used, where the positive number é is chosen sufficiently small so that the
Lopatinski condition is satisfied (cf. (1.22)). In general, an elliptic regularity
result in spaces with piecewise order of smoothness is needed. Such a result
involves spaces of the type H,, ,,) v with norm

Z: ||¢€u"u.r.‘,N:
1

where {¢;} is a partition of unity, the first index refers to differentiation in all
variables, the second index refers to differentiation only along the boundary
¥, and the last index represents the weight. If the indices vary only slightly
in overlapping coordinate neighborhoods, then the parametrix construction
as in [4, Section 25] leads to a compact remainder which has a gain of 1 — ¢,
€ > 0 small.

2. Asymptotics of the solution near ¥,. We give a general result on
asymptotics which includes: (a) the Dirichlet—-Neumann-Cauchy problem;
(b) mixed initial boundary value problems for second-order hyperbolic oper-
ators satisfying the uniform Lopatinski condition; (c) mixed elliptic boundary
value problems for second—order strongly elliptic operators on a compact C'*
manifold with boundary. The method we discuss here is applicable so long as
conormal regularity has been established, the conormal bundle of £, lies in
the elliptic region of the differential operator, the boundary operators b, and
by (see (2.4)) are elliptic, and, with respect to the first index s, there is no loss
of differentiation compared to the elliptic case, that is, (2.8) holds. Conormal
regularity means regularity of the solution u in the space W, x.(X°).

All these three types of problems have the form

P(z,D)u = f, in X% (2.1)
Bk(I,D)u = gy, On Ek, k=1,2; (2.2)
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where P is a second—order differential operator with C* coefficients, By are
differential operators of order my, k = 1,2. As before, X is an (n + 1)-
dimensional manifold with boundary ¥, X° is the interior of X, and ¥ is
divided into two parts, ¥; and X3, by a smooth submanifold Xy of ¥ of
codimension 1. The non-compactness of X in cases (a) and (b) causes no
problems since by assumption (i) a finite partition of unity can be taken.

We take local coordinates near ¥, in which this submanifold is given by
Ta-1 = T, = 0, and X is given by z, > 0. Let P, be the principal symbol of
P. Put

c(iaé) = Po(zsf) icof

0£=0
where £ = (z9,2"), £ = (a-1,2n), and 2" = (z4,...,Zn—2). We are assuming
that the conormal bundle of ¥, is contained in the elliptic region of P, that
is,

e(£,6)#0, forze X, £#0. (2.3)

The roots Ae(Z,€,-1), k = 1,2, of e(Z, é) = 0 with respect to £, are not real
for én_y # 0, and we can take A, > 0 and IA; < 0 for €,_, # 0 (this holds
for problem (c) since the operator is strongly elliptic). We normalize e by
putting e(Z,0,1) = 1.

Let B,(:O) be the principal part of B, ¥ = 1,2. The boundary operators
bi given by

bk(E, bnz1) = Ch(Z, bty Ma(E b)) Cul(E, ) = BO(z,6)|

£=0,{=0
(2.4)
are assumed to be elliptic, that is,
be(Z,£1) #£0, VZe X, k=1,2. (2.5)

In problems (a) and (b) and in problem (c) for n > 3 the symbol b,5;' has
a factorization (see [4]Section 6). This factorization can be written

(b153")(F, €n-1) = (&) (€nor +i0) @ (guoy — i)™ E (26)

where the factorization index (%) is a C* function on the submanifold .
Let p1(Z) = A2(Z,1) and pa(Z) = —Xq(Z, —1). Put
2k = Taoy + p(T) 2, k=1,2.

Let ko(Z) = x(Z) + m,. Put

oo~k k

— p—imsf2p( » 2_ Z
H(z,s)=¢e¢ ['(—3)z +;k!3—k’

(2.7)
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where I' is the Gamma function. The function H can be extended to an
entire function of s with values in the space of distributions in the domain
Sz > 0. The space Qas consists of functions near £y which have the form
(in local coordinates)

p 2p-r

T3 5 @ H (-, mo(2) ~m+5)

p=0r=0m=0
d ~
+ 2 (8)e7 T Hz, mo(3) — m + )|

where cg‘.z,‘ € C®(Z,). We note that if s #0,1,2,... then d"H(z,3)/ds™ has
the expansion Y j_q ck2’ log" 21 where ¢; depends analytically on s. When
s=0,1,2,... there is a similar expansion but the upper limit of the sum is
then r + 1.

We now give the theorem on asymptotics. For simplicity we assume that
the oscillation of R« is less than 1, but this assumption can be dropped by
making use of Sobolev spaces of piecewise constant order of smoothness (see

[4]Section 25).

Theorem 2.2 Suppose that (2.8) and (2.5) hold, that ts, the conormal bun-
dle of o is contained in the elliptic region of P, and that the boundary
operators by(Z, D,_;) are elliptic. For data f € Hoo(X°), gr € Hw(Zk),
k = 1,2, suppose u is a solution of problem (2.1)-(2.2) in the function space
W, 00,00, Where s satisfies

s — 1/2 — Rro(F)] < 1/2, VE € Lo (2.8)

Then the solution has the asymptotic expansion u(z) = sp(z) + um(z), for
all M > 0, in a neighborhood of Lo, where sy € Qu, and

DZup = O(J3[Re@+MH1I=¢) Ve 50, |a| 2 0. (2.9)

This theorem applies to the three problems (a), (b) and (c). The conormal
regularity result for (2) was given in Theorem 2.1, and for problem (b) it was
discussed in Remark 1.3. Conormal regularity for mixed elliptic boundary-
value problems was given in [2]Theorem 2.5.

We first give a lemma.

Lemma 2.1 Let ¢(t) € CP(R') equal 1 for t < 1. Then the distribution in
the domain Sz > 0 given by

] T (1 — ¢(1))e° dt
0
differs from H(z,—a — 1) by a function which is entire in both a and z.
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Proof. The distribution x% = z%/I'(a + 1) is an entire function of a [6,
Sect. 3.2]. Its Fourier-Laplace transform, defined in Sz > 0, is computed in
[6, Sect. 7.1]:

/ eiﬂx?}-(t) dt = eiﬂ(a+l)/2z—a—1_
0
Hence

[ e - ) dt = N(a+1) (727" 4 £(a,2),

where f(a, z) is entire in both a and z. Since the left-hand side is an entire
distribution—valued function of s, the singularities on the right-hand side
must cancel. The gamma function is a meromorphic function having only
simple poles which are located at the integers k¥ < 0. The residue there is
(—1)*/k!.

Proof of Theorem 2.2. Let x be a cut—off function which equals one in a
small neighborhood of ¥¢, and let v = yu. By (2.1)-(2.2) we get (mod C*)

0)

e(Z,D)v = —(P—e)v, in X, x R (2.1
2.11)

Cu(Z,D)v = —(Br—Ci)v, onZoxRL, k=12 (

The asymptotics for this mixed boundary—value problem were obtained in
[4]Section 13 in the case in which the right-hand side is C*. Letting Was
represent the space W, 141 00,00, We shall prove inductively that v = spr+rps
with sy € Qar and ryy € Wy, for all M > —1. By the Sobolev imbedding
theorem ujpy will then satisfy (2.9), and the theorem will be proved.
Assume v € Qu + Why. First we reduce to the case in which the right-
hand side of (2.10) vanishes. By conormal regularity (P — e)rp is in Was_s.
The distribution E which is the inverse Fourier transform with respect to é
of e(Z,£)~! is a fundamental solution of e [6, Sect. 7.1]; convolution by E is
an operator of order —2 on the weighted function space C=(Zo, W, n(R?))

(see [4, Lemma 24.2]). Thus there is a solution of ev = —(P —e)ras in War4a.
Next, we show that there is a solution of ev = —(P — e)sp in Qa1 +
Whs41. Note that
R ) 0?
: D) = _
C(I, ) (nu'l #2) 621622,

where the partial derivatives on the right-side are given by

0/0z21 = (p1 — p3)™" (On — p20a-1), 0/0z3 = (pz — 1) (O — $10n-1)-

It follows from this decompostion of ¢ and Lemma 2.1 that the equation

-

e(z,D)v = 27

d ~
ds™ H(—ZI,T(I)),
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for r in C*° and integral m > 0, has a solution which differs from

: - 2.mp T
i(m 4 1)7 (1 — ) P

H(=z,r(@)+1)

by a smooth function in z € R*!. The analogous statement holds if the
roles of z; and z; are reversed. A tangential derivative of the right-hand side
of the last equation is a sum of terms of the same form. Among these terms
the power of z; increases by at most 1, and for the term in which this increase
occurs the power of the logarithm (that is, the number of derivatives in s)
will remain unchanged. This indicates the effect of applying P — e to sy,
and substantiates the above claim.

Thus we can consider the problem (2.10)-(2.11) in which the right-hand
side of (2.10) vanishes. The solution of (2.10) has the form

U(.‘E) = (2”)_1 '/;o:o exp[_imﬂAg(E: fﬂ—l) - ixﬂ—IEﬂ—I]%(iagﬂ—l)d{n—la (212)

where vy is the restriction of v to X, and vy is the Fourier transform of g
with respect to £,_;. Substituting this into (2.11) we get (mod C)

bi(Z, Duy)vo = —(Br — Ci)v, on (—1)":1:,.-1 <0, z,=0, k=1,2
where b, and Cj were defined in (2.4). Let
v = —b(Z, Dno1)vo — (Bx — Ci)v, onz,=0, k=12 (2.13)

Then v, (v;) is supported in z,—; €0 (zp—y 2> 0). We get the pseudodiffer-
ential equation in the domain z,,_; > 0

(b]b;l)(i, Dn—l )Ug(zn_l) = (Bl - CI)U - blb;l(BQ - CQ)’U (214)

modulo a function in H,,. Here ;' is redefined near 0 so as to remove the
singularity. We will tacitly use this convention for other symbols as well.

The asymptotics for (2.14) have been worked out in [4, Sect. 26] by the
factorization method. Since v = sps + rps we see that the right—hand side of
(2.14) is a sum of a function of the form

M p
F {205 e sgm ot leua 0@ g e,
p=0r=0

and a function in H,4p_m, +3/2,00,00» Where ¢,, are C'* functions. Note that
this last function space is equivalent to C*°(2o, H,ypM—m,+3/2,00)- Here F{'Il_l
represents the inverse Fourier transform.
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Applying the factorization method we get (see (2.6)) that the solution v,
of (2.14) is given by the sum of a function of the form

M
Fa, {E 3 cupn (3)(nt + 10) P72 log 1 (6, + iO)} |

p=0r=0

and a function in C*(Z,, H:-]-M-mﬁa/z,oo)- The space HIN consists of all
functions in H, y(R') vanishing in RL.
By (2.13) ¥y is given as a sum of a function of the form

M p
3 e, 50 bnctlenca P2 log g0y ],  (215)

p=0r=0

where d,,(Z,+£1) is a C* function, and a function in Cw(Eo,ﬁ,+M+3/g,m).
By (2.12) we have

— -1 % —infaoip ° —~iz3€n—173-
oz) = @0 ([Tt 4 [ e, ), (216)

Substituting (2.15) into (2.16), we get by Lemma 2.1 that v € Qar41+Wai1.

In the case of the Dirichlet—-Neumann-Cauchy problem the asymptotics
for the solution are much simpler.

Theorem 2.3 Suppose the conditions of Theorem 1.1 hold, and that the data
is smooth, that is, f, € Hoo(X®), and gy, € Hoo(Zk), k = 1,2. Ifu, isa
solution of (1.1)-(1.3) in Hy.(X°), then there are local coordinates near o
in which

ur(z) = c1(z)(Zp-y + i..'t:,,)l/2 + ca(z)(zn-1 — ixa)V? + r(z), (2.17)
where ¢y, ¢; and r are C™ functions.

Proof. Some modifications to the proof of Theorem 2.2 involving the theory
of smooth pseudodifferential operators [4, Sect. 10] (smooth means satisfying
the transmission property) suffice. We take B; and B, in (2.2) to be the
Neumann and Dirichlet operators, respectively. First, since Py(Z,0,0, é) is a
negative definite quadratic form with respect to £ there are local coordinates
near ¥y in which e(Z, é) is given by —(&2_, + £2). Therefore z; = ) — iz,
29 = Tn_y + 1Zn, by = |[€n-a|, b2 =1, and ko = 1/2.

The symbol of bjb;' = |€,_1| equals the product of the “plus” symbol
(€a_1 + 10)1/2 (i.e., it extends analytically to the upper half-plane) and the
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symbol (£,-y — $0)~!/? which satisfies the transmission property. We can
rewrite (2.14) in the form

(Dpoy —i0)*w =g, on R}, (2.18)

where w = (Dn_; + i0)!/2v; and g represents the right-hand side of (2.14).
Let us show inductively that v = xu, is given by the sum sp + rpy,
where sps has the form of the right-hand side of (2.17), and ras is in Wy =
Wai2.00.00- It is clear that the theorem follows from this decomposition
of v. Assuming that v can be so expressed for a given value of M, then
g is a sum of the function d,(Z, :c,,_l):c:,’l_al‘+, d, € C®, and a function in
C*(Zo, HMHH.OO(RI)). By (2.18) w is the restriction of (D, —10)~/%¢ to
Zn-1 > 0, hence w is in C”(ZO,HM+2,°°(R£L)) where H,'N(R}P) consists of
all functions in R} which have extensions to H, n(R'). This implies that

M+l

w= Z ak(i)m:_l'.p’ mod Cm(zoa H‘:—l-t-?.oo)v
k=0
where a; € C®(Z,). Therefore,
vy = dy(Z, -'Bn—l)w,l.'l-zl,+v mod C%(Z,, HI.:-{-l-S/ﬂ,oo)’

where d; € C®. Substituting vy (which equals v;) into (2.16) we obtain the
desired result.

This result in which the asymptotics do not contain logarithms holds more
generally for all second-order mixed boundary value problems for which the
conditions of Theorem 2.2 are satisfied, the symbol b,b;' is the product
of a “plus” symbol and a smooth symbol, and the factorization index % is
constant. Indeed, in this case the solution of the analogue of (2.18) involves
no logarithms since the factors in the factorization of a smooth symbol are
themselves smooth. If, in addition, the coeflicients of ¢(Z, f) are real, then
the asymptotic expansion is given in (2.17) with the exponent 1/2 replaced
by xo.
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