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Abstract

Let A be a collection of hyperplanes in complex affine space and
Dx be a sheaf of differential operators over corresponding stratified
space X. We introduce categories of quasisemisimple Dx-modules
which are characterized by natural conditions on eigenvalues of mon-
odromie operators for nearby and vanishing cycles functors ¥ and
®. The main result of this paper is the description of this categories
in terms of quivers with quadratic relations. We describe explicitely
both functors establishing equivalence of categories. As a consequence
we obtain a description of all quasisemisimple D x-modules in terms of
generators and relations. Application of this results to direct images of
local systems over the complement to the arrangement of hyperplanes
produces a natural complex which coincides with Orlik-Solomon com-
plex in the case of trivial monodromies.

1 Arrangements of hyperplanes and quasi-
semisimple D-modules

Let us consider complex affine space X = C" and a set of complex hyper-
planes X; = {f; = 0} in CV. Following the tradition of [VS1] we call this
set an arrangement A of hyperplanes. One may attach to this arrangement
a natural stratification of X.
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The closed stratum X, C CV is an intersection of some hyperplanes

7a= n{f1=0}

€la

and its interiour X, C X, consists of points £ € X, that do not belong to
other hyperplanes: = ¢ X; = {f; = 0}, if X; 7 X, Let us denote this
statified space as X 4 or C.

Let Dx be a sheaf of differential operators over X. Consider holonomic
Dx-modules with regular singularities flat along this stratification. These
D x-modules form an abelian category C4 which is equivalent to the category
of constructible perverse sheaves (with respect to a middle perversity) over
the stratified space X4 [BBD].

In this paper we study full subcategory C¥ of C4 which we call category
of monodromy quasisemisimple D-modules. The definition of C¥ looks as
follows.

Let X, C CV™ be an arbitrary stratum of X4, U, D X, be a small
neibourhood of X, in CVand {f, = 0} be a generic hyperplane going through
Xot Xo C {fa = 0} (it means in particular that {f, = 0} does not belong
to an arrangement A, if codimX, > 1). To any Dx-module M € C4 we may
apply nearby and vanishing cycles functors ¥, and &, [BBD]. It is clear
that Dy-module ®; (M) has a support on X, only and, as a consequence,
the restriction of Dx_-module ®;_ (M) to an open part X, C X, is equivalent
to some local system.

Definition 1.1 Dx-module M is called (monodromy) quasisemisimple along
Xo if it can be decomposed into direct sum of Dy - modules M;: M = @; M;
with M; satisfying the following conditions for any stratum X, of CN 4:

(1) The action of canonical monodromy operator T on W, (M;) restricted
to U, is singleeigenvalued:

(T — )"0, (M) |y, =0 (1.1)

for some A € C, 0 < Re X < 1 and and n sufficiently large;
(i) The local system &, (M;) |x, can be described as a flat connection 6;
with constant eigenvalued matriz coefficients:

w(0:) = ZA;}%’ (1.2)

3



where fg are some linear functions on X and Aj'é are some singleeigenval-
ued finite-dimensional linear operators (the eigenvalues may be different for

different 8 and i).

One can easily prove that the conditions (i) and (ii) do not depend on the
choise of generic linear functions f,, f, |x.= 0.

For the convenience of notations we call D-module M; from C¥ to be
singleeigenvalued if it satisfies (1.1) and (1.2) by itself with some fixed values
of eigenvalues.

The category C¥ is rich enough; it contains at least two subcategories
which are the most important in applications (and being defined a bit more
naturally).

Definition 1.2 An abelian category C consists of all Dx-modules M from
Ca satisfying the condition (i) of Definition 1.1 with nilpotent matriz coef-
fitients:

The local system ®; (M) |x, is presented by a flat connection 0:

. d
w(0) = ¥ 432 (13)
s
where A}, are nilpotent linear operators for all strata X,,.

The category C% may be viewed as the smallest abelian subcategory of C 4
containing all é-functions over closed strata X,.

Definition 1.3 (Nonabelian) category C59 of locally indecomposable mod-
ules consists of all Dx-modules M from C4 whose restriction to any open
subset U C CV is nonzero indecomposable module.

Remark 1.1 In the Definition 1.3, like everywhere throughout this paper we
impose the condition of vanishing growth at infinity for Dx-modules M; it
can be ezpressed as a condition for all @5, (M) |x,: they are flat connections
0 with constant matriz coefficients, w(0) = 3 Agdlog f5.

It is clear that for any indecomposable local system {2 over the complement
U to the arrangement of hyperplanes their direct images 7.§! and 72 belong
to C34. Here j : U = CY is an inclusion.

Proposition 1.1 Both C% and C'? are subcategories of C% .

4



We describe here the category C% of all quasisemisimple D x-modules in C4
in terms of a quiver (which means that we establish an equivalence of C¥ to
a category of representations of some quiver). The corresponding inverse
functor from quiver-category to C¥'is also described quite explicitely: we
describe Dx-modules attached to representations of a quiver in terms of
generators and relations. Subcategories C§ and C'}¢ are initialized in a quiver
language by some conditions on eigenvalues.

An inductive procedure of describing the category C¥ include the de-
scription of localizations of modules from C% to certain open subsets of CV.
Namely, these open subsets U, C CV are the complements to the union of
fixed generic hyperplanes {f, = 0}, containing strata X,_ of codimension n.

This circumstance enable us to describe direct images of one-dimensional
local systems on the complement U; to an arrangement A (or, more generally,
direct images of quasisemisimple local systems). These calculations may be
considered as a basic point for computing the cohomology of local systems
[Scl]. The answers are presented in the next section.

2 Combinatorial description of qusisemisim-
ple D-modules

2.1 The quiver’s descrition of C¥

Let us introduce first some notations.
Let X, and Xz be two strata of X 4. We write

a<f if XoCXp (2.1)
and
a«p if XaCXp and codimX, —codimXy =1 (2.2)

For the open stratum of C¥we fix an index ® (so Xy C CV is an open
stratum). It is convenient to describe the partial order ( 2.2) on the strata
of X 4 in terms of the graph I' 4 of the stratification. Graph I' 4is an oriented
connected graph with vertices identified with the indices of possible strata,
and an arrow a « f exists iff @ — F in a sense of ( 2.2). Analogously,
we may define graph T, , where X, is an arbitrary stratum of X 4. Graph
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T, describes the topology of induced stratification on affine space X,. The
vertices of T, are those indices of strata Xj, for which X; C X, and the
arrows are the same.

One may equip a gra.gh I" 4 with a colouring by complex numbers. Namely,
C-coloured graph I'4 (aj] ) is the graph 'y together with numbers aﬁ atta-
ched to all arrows §; — ﬁ,

Definition 2.1 C -coloured graph I‘A( Ja’) is called to be (self) compatible

(or, in other words, the C -colouring aﬁ._ of T 4 ts compatible) if the following
relation takes place for any link of two arrows

A= B —n (2.3)
in FA N

= q (2.4)

where the sum is taken for all 6 such that

Ae—be—7, §#£ 8 (2.5)

Let now (3,(3,...,(, be arbitrary complex numbers (weights) putting in
one-to-one correspondance with all codimension one strata X;, X3,..., X, of
affine space CV.

Proposition 2. 1 There ezists unique C-compatible colouring aﬁ = aﬂ ' (Ck)
of T 4 such that a* = (; for all codimension one strata X, Xa,..., X ofCN.

We denote this compatible C-coloured graph by T4 (¢) = T'x (¢1, (2 -+ -5 Cn)

Proof of the Proposition 2.1. We prove the existence and unique-
ness of compatible coefficients ag by induction on codimension of Xz. The
uniqueness is evident from the defining relations

ay= Y, a (2.6)
S:hewbe—y

548

We may use (2.6) also for deﬁmtlon of a3 by induction on codimXp provided
the defining formula ( 2.6) for a} does not depend on a choise of 4. But we
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may give an alternative expression for as, codimXy = n, if we know that the
relation ( 2.6) is already valid for all links 6 : A «— 6 « «, codimX; < n.
Indeed, let us fix some flag

/\n+1‘—ﬂn‘—’7’n~1‘—---‘—"¥1 ‘—‘70=0

where subindices remind of codimensions of strata. Then

apt= Y &= X Y ahn=.

Snibn#tBn Snibn#Ln bn—18pn—1%Yn-1
l\n+1‘-5n‘-'7'n—l Ar;-{—l t=bpep1 Sne—bpnyn-2
— 30
v — Z a'
61,82,...,6n

where the last sum is taken over all the flags
Ag1 = bp =8y — ...~ b —a

such that &, ?1: /Bm 81 # Yo-1y -+ 61 ?"' i and 6, « Trn-1, b1 — Tn=2, 4
63 «— m. It is not difficult to see that if §; is such that for hyperplane X,
we have

751 D) X,\n“., but ygl z Xﬁn

then there is unique flag satisfying the above conditions: X, = X., N X5,
and there is no otherwise. So we have

An 5
agt = > g (2.7)
81> n41,61¥6n
codim X4, =1

The rhs of (2.7) depends only on A, and f3,, which proves the proposition.

Remark 2.1 The relation (2.7) gives us direct geometrical description of the
COIOUT‘iﬂ.g Of L4 (Cl? CTRN Cn) ’

Let us again consider (uncoloured) graph I 4 describing the stratification of
CN. We attach to this graph a quiver Q4 as follows.

Definition 2.2 A quiver Q4 consists of a collection of finite-dimensional
complez vectorspaces Vi, where 8 are vertices of 4, and of linear maps

Ay Vg = Wy, AL W— V)



attached to all the arrows B — X of I'y. These linear maps should satisfy
the following relations:

Bide—fery
for any two vertices A, v,: A < 4, codimX) = codimX,, + 2,
Z A:'f'ﬁA;‘\ =0 (2.9)
Biy—f—2
for any two vertices A,v,: A < v, codimX = codimX,, + 2,
A} AY, + Az AY =0 (2.10)
[AN
for any quedruple ﬁ'/ i,
N\ V4
AEAAL =0 (2.11)

™
for any triple B\ u, with no v such that ﬁ/ u.
v

In other words, quiver @ 4 is finite-dimensional representation of unital asso-
ciative algebra @ 4 with a set of idempotents e, 3 being the vertices of I'4,
Ypep = 1, (degree one) generators Ay, and A}, for any arrow 8 — A with
natural commutation relations with idempotents e.:

£, + £ +
Azpey = 8p4A%p ey Al = &y Axp

and quadratic relations (2.8)—(2.11).

We denote by B, the category of all quivers Q4. In other words B, is a
category of all finite-dimensional representations of algebra Q 4.

Let now I'4(¢1,¢2,...,(,) be a compatible C-coloured graph with wei-

ghts ¢, ..., (. and agf be its coloures. We define the full subcategory

B4(€) = Bu((y,--.,(p) of B, in the following way.

Definition 2.3 The category Ba(() consists of all quivers Q4 with a condi-
tion

the single eigenvalue of A§\Ayy and of A5g A}, is equal to ag (2.12)

for all arrows B — A inT 4.



Let now Q4 be a quiver from Definition 2.2. We may define a support of
Q4 as a set of all vertices 8 of ' 4 such that Vg # {0}:

suppQa = {B: V5 # {0}}.

The vertice S € supp Q) 4 is called a source of @4 if there is no o € supp Q4
such that o > .

We say also that a depth of a vertice § € T'4 is equal to m, d(8) = m, if
there is a source a of Q4, a > B such that codimy_Xs = m and there is no
source v of @4, v > B with codimf_rXp > m.

In these notations the category B3 of quasisemisimple quivers is defined
as follows.

Definition 2.4 Quasisemisimple quiver is a direct sum of quivers () from
B4 satisfying the following conditions:
(i) The composition
A} Asg (2.13)

has only one eigenvalue ajy = eig.v.(Af, Ayg) for any arrow § — X in Ty ;
(i1) An inequality
0<Reaj<1 (2.14)

takes place for any source f of @ and for any arrow f — A;
(iil) If B is a vertice of depth one then

ap = ag' (2.15)
for any two arrows v — B, 41 — B with 4 and 4/ being sources of Q;

(iv) An operator
B AtAg, (2.16)
a—»%'::;—vﬁ

is nilpotent in @,.,.p Va for any vertice B of depth more than one in Q.

Now we are able to present a combinatorial description of the category C of
quasisemisimple D-modules over the arrangement of hyperplanes.

Theorem 2.1 The category C% is equivalent to the category BY.



The functor establishing an equivalence of categories looks as follows. Let
M be a singleeigenvalued D-module from C{’ and X, be a stratum. Then
the space V, of a quiver is the space of flat sections of ¥y, (M) |x, where
the corresponding flat connection has a form w = Y5,,_.5 A5dlog f5, A5 €
End (V,).

The operators A}, and Az, are built from the canonical maps

‘I’fu(M) |Xu : Q.{a Ixa (M)'

v

Their explicit expressions are given by.formulas (3.2), (3.3), (5.21)-(5.24).

The most important in applications are the following two theorems. The
first of them describes an extension closure of all é-functions of strata X ,.
The second describes locally indecomposable modules.

Theorem 2.2 The category C% is equivalent to By(0,---,0) .

Let C39(0) = (_l’ij‘d((fl, 2,-..,(n) consists of those locally indecomposable
modules from €39, whose restrictions to the open stratum Xj are described
by flat connections w = ¥; A;dlog f; with eig.v.(A;) = (;,i = 1,...,n, acting
in nonzero space Vj of flat sections.

Theorem 2.3 The category C'33(C) is equivalent to the category of indecom-

posable objects of By({) with nonzero space Vj.

In the same way we can describe locally indecomposable modules with a
support on some stratum X,. The only thing to do is to exchange graph
CabyT4.

In the next subsection we show how to restore the D-modules from their
quiver data.

2.2 Restoring D-modules from quiver’s data

Let us remind once more that throughout this paper we are in agreement that
for each stratum X, we fix once forever a generic hyperplane f, = 0 such
that f, |x,= 0. Moreover, for codimension n stratum X, we need sometimes
a generic flag f; = fl, ..., f2, f1 = f, of functions being equal zero on X,
and generating a basis of (CV /X ,)*.
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We also fix nondegenerated complex skewsymmetric form
<> dAF((CV)Y) > C

which we use inambiguesly for all flag manifolds implicitely appearing in the
calculations. One may think of a fixed generic coordinate system z,, ..., zn
in CNand put

<n“”qnﬁ>=da(lﬁ) 1<i,j<k

We often simplify the notations writing < a,8 > instead of < f,, fz >,

< &> instead of < f, > and so on. The vector fields which we use here are
always linear, that is , have a form

N o9
L= ;a,a—mi, a; €C
If we use the notation L, for a vectorfield with an index of some stratum X,,
it means as a rule that this vector field goes along stratum X,, in particular
La(fa) = 0.

Now let @, be a quiver with vectorspaces V5 attached to vertices # and
linear operators Ay, : Vg — Vi, A}, : Vi — Vj attached to the arrows
B — X (see Definition 2.2). We associate to this quiver Dx-module M(Q,)
in the following way: M(Q,) is a free Dx-module generated by the space
s Vs, B being the vertices of I' 4 modulo the following relations:

< fp> _
L = —— v =
o(vs) A:E,\ < fifs >Lﬁ(f'\)Am( 5)
<h>%@hmm, vg € V; (2.17)

rpga< > fa
if Lg is a linear vector field along stratum Xz and

<ff>
frw= ¥ B2 a0, weVp  (218)
yiy—8 <f'v>

if fis a linear function, f Isz 0.
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Theorem 2.4 The functor Q, — M(Q,) establishes an equivalence of cat-
egories stated in the Theorems 2.1-2.5.

Note also that the relations (2.18) give possibility to describe M(Q,) as a
sheaf of Ox-modules. For the basic open sets

Y3=(C”\ U {f1=0})u{fA=0}

y:codimXy=n

where codim X = n, the space of sections I'(M(Q.), Y;}) is free Oyx-module
generated by the spaces V3, a — f, codimXs < n and V), modulo the
relations (2.18).

2.3 An example: Direct images of local systems

Let Q(A;, A;, ..., A,) be a local system over the complement Uy to the ar-
rangement of hyperplanes {f; = 0} defined by a flat connection

w= ZA.-d]og fi

Let eig.v.(A;) = (;- Then we can find direct images j.f2 and 72, where
j : Us = CV is an inclusion, as universal object in C34((y,(a, - - -, Ca) Tep-
resenting the functors Fy : F§(M) = Homp)(5*M, Q) and F§ : Fo(M) =
Homp)(£2, 7'M). Due to the equivalence of categories one can make these

calculations inside Bg((-. ) by means of usual linear algebra.
Let us describe an answer for 7,{}, where {2 is one-dimensional local system

w= Za;dlog fi a; €C (2.19)

Denote by W,,, a vector space over Cwith a basis < eg >,codimeg = m. Let
X, be a stratum of codimension n. Denote by V,, the following subspace of

Wo@W, Q@ @ W,
V. = &P Ceny®€a, @+ Q e, (2.20)

all flags co— oy —++-—ran:
ap=8, an=a

and let V, C V, consists of all the elements

Vo = z Zag,..an€ao & €ay ® + Q €q,, v, € Vo (2.21)
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satisfying the equations

Z Lag,..a; jBaip1..anCag * " ®ea,-_1 ®eﬁ®ca;+l e ®ea,. = (222)

Biaicy—P—aita
for any fixed degenerated flag
b=ap—m s> 1> oo =

Let us fix some arrow a — 3 in graph & ,coﬂm X, = n. Then we can
define operators A7, : Vs =V, and Ap, : Vo — Vj as follows:

A_:;ﬁ(eao @ Beu, ® ean+1=ﬁ) = 6&,&., *Cag @ - ® Capn (2.23)
and
A_Ea(eﬂo ® " ®eap=a) = E aj ay ® (€a; — €jnag)®
j:codim X;=1,
I>B.gta
® (€az — €jnay) © - ® (€an — €jnan-.) O €p (2.24)

where j N a, is an index of a stratum X; N X,;: Xjna = X; N X,
One can check that operators Atﬂ and Ajp, correctly define by restriction
the operators

Al V=V, and Agy: Va0 Vj (2.25)

Proposition 2.2 The quiver Q(ay,...,a,) defined in (2.20)-(2.25) descri-
bes direct image of local system (2.19) via the equivalence of categories of
Theorem 2.3.

Remark 2.2 Dx-module 7.} can be realized in the space

CIXIFY . 7 2

where f& = fi'... fo should be treated as a formal symbol defining an
action of first order differential operator by Leibnitz rule. Then the space
Vo, codim X, = m (see (2.20)-(2.22)) is isomorphic to linear envelop of
Sl b R with {fiy, = 0} NN {fi, =0} = X,. The equations
(2.22) are equivalent to well known Orlik-Solomon relations for the products
of dlog f;.
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We can attach to a quiver Q(ay,...,a,) a natural complex C(ay,...,a,):

Ci(ay,...,a,) = @ Va
a:codim Xa=i
and differential d : C' — C**! being equal to ®Az,, codimX, =1 (2 =0
due to (2.8)).

In the case of zero weights complex C'(0,...,0) coincides with Orlik-
Solomon algebra [0S], [Br] and its homology are equal to H*(U). Moreover,
as it was proved in [VS1], the homologies of C'(a,,...,a,) are isomorphic to
H*(U,Yay,...,a,) for (a;,...,a,) being close enough to zero.

3 Beilinson’s glueing theorem

3.1 Glueing of perversed sheaves

Let X be a smooth algebraic variety over C, M(X) be a category of perversed
constructible sheaves with respect to a middle perversity [BBD]. Let f — C
be an algebraic function, Y = f~1(0), U = f~}(C\{0}),;:U = X,i: = X
be corresponding imbeddings. Let

wEET: M(U) — M(Y)
and

B M(X) - M(Y)
denote functors of neaby and vanishing cycles (in the notations of [D} ¥§°™
= W, ;j*). The functors ¥§™™ and 5™ come up with a canonical automor-
phism T : 5" — W&°™ (monodromy) and with natural transformations

such that vu =T — 1.

Let us denote by M;(U,Y) the category whose objects are quadruples
(My, My; u,v) where My € M(U), My € M(Y) and v : ¥, ,(My) — My,
v: My = ¥, (My) are such that vu =T — 1.

The assignment

M = (5°M, ®7°"(M);u,v)
defines a functor

G: M(X) = M,;(U,Y).

14



Theorem 3.1 [B] (see also [Ver]). G is an equivalence of categories.

Let A be a complex number, 0 < ReA < 1. We may define a full subcategory
M \(U,Y) of My(U,Y) consisting of the quadruples (My, My;u,v) with

a condition that endomorphisms 1 + uv and 1 + vu have e*** as a single
eigenvalue. We put also
M (X) = GTH{ MU, YY), Ma(U) = 5 (Mya(X)).

We call the perverse sheaves from M/ ,(X) and M ,(U) A-monodromic with
respect to f. Standard arguments from linear algebra show that for A & Z
any perverse sheave from My \(X) is uniquely determined by its restriction
to U, in other words,

37 Mpa(X) = Mpa(U)
is an equivalence of categories for A € Z and there is a decomposition

MX)~ P  Mu(X).

A:0€Rel<1

3.2 Glueing in terms of D-modules

Let us keep the previous notation. Let D(X) be a category of holonomic Dx-
modules with regular singularities. Due to the comparison theorem [BBD]
de Rham functor DR : D(X) — M(X) establishes an equivalence of cate-
gories. In particular we are able to introduce via this equivalence the cate-
gories D) ¢(X) and Dy {U) of A-monodromic with respect to f D-modules.
Following [B] we may describe functor ¥ and glueing theorem 3.1 more
explicitely.

Let N be a holonomic D(U)-module. We define ¥*(N) to be maximal
Dx{[s + A}]] factormodule of j.(N - f*)[[s + A]] with a support on Y. Here
s is a formal variable, A is a complex number, 0 < ReA < 1. Dx|[s + A]]
module j.(N - f*)[[s + A]] consists of expressions ¥; g;n; f* Pi(s) - f* where
g; € O(X), n; are the elements of N, k; € Z, P;(s) are Taylor series on s+ A,
f? is a formal symbol, defining an action of vector fields L on X:

L(n- f7) = (L(r) + snL(f)f ) - f*
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Then, if N € Dy 4(U), 85" (DR(M)) ~ DR(¥*(N)) and the multiplication
by —s defines the action of logariphm of monodromy S = log 7' on W*(N)
with eig.value(S) = A

Moreover, it is not difficult to see that if A ¢ Z then ¥*(N) ~ ¥O(N ®
), where f~* is irreducible Dy-module which corresponds to one-dimensi-
onal local system on U with a flat connection

w=—MXdlog f

The Beilinson’s glueing theorem can be read in D-modules language as
follows.

Theorem 3.2 The category D) ((X) of A-monodromic with respect to f D-
modules is equivalent to the category D) s(U,Y) of quadruples (M, N;a, )
where M € Dy(U), N € D(Y) and a : ¥*(M) = N, B: N — ¥*(M) are
such that S = aff with a condition that eig.v.(Ba) = eig.v.(af) = A.

We need also an explicit form of an inverse functor
F,\‘f : D,\J(U, Y) had D,\J(X) (3.1)

Consider first the case A = 0. For any M € D(U) let Z°(M) be the
maximal factormodule of j.(N - f*)[[s]] coinciding with M on U. Let now
(M,N;,B) € Do y(U,Y). We put Fp (M, N;a,f) to be the homology of a

complex

’ =°(M) )
/ N\
wO(M) @ wO(M) (32)
N e
N

The functor Fy s establishes an equivalence of categories Dy ;(U,Y) and
Do,;(X). Note also that the canonical Dy-module $%(M), M € Do(X) is
defined in the case A = 0 also as homology of natural complex

#iTM = E°GTM) @ M — "M
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For A # 0, 0 < Red < 1 we know that thr categories D, ;(X) and
D) s(U,Y) are equivalent to the category D, ;(U). To make the construc-
tion to be consistent with the case A = 0 we define an equivalence F); :
D, 4(U,Y) — D) 4(X) as (a bit nonnatural) the following composition:

) -2 Wt
Fop= (@) Foy- (78, %) : (M,N;a,p) V25"

S (M@ N M);aB — 2\,1) 24 Fy (M@ £, % (M);aff — A, 1) —

jﬁ? j:f'\ ® FO,f(M® f_’\,‘I"\(M);CYﬂ— ’\’ 1) (33)

4 Inductive description of the category C¥

4.1 Plan of the construction

We come back to the notation of the sections 1 and 2. We describe the
category C¥’ by induction on codimension of strata.

Let us first consider an open set U; = X \ U;{fi = 0}, X = CV of
complement to the arranged hyperplanes; 3, : U; — X being the inclusion.
Then, due to the Definition 1.2, the category C; = j*C} is defined as a
category of local systems described by flat connections

W= E A.—dlog f,‘ (4.1)

with a condition (1.2), meaning that all A; admit simultenious Jordan block
decomposition. Category C, is equivalent to a full subcategory of finite-
dimensional representations of quadratic algebra with generators A; and the
relations which one can recover rewriting the flatness condition of (4.1).

Next we look to the complement U, to the union of fixed generic hyper-
planes going through codimension 2 strata:

U2=X\ U {fa=0}a

a:codim Xq=2

J2 ¢ Uz — X being corresponding inclusion and describe the category C, =
73C% . This description comes into steps. First we choose some codimension
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one stratum X; = {f; = 0} and apply the glueing construction in order to
glue X; with U;. It means that we consider a triple Y* «<» X3 « U, ,, where

U2 = X\ U {fa= 0}1 (4.2)

a:codim X q=1,2

X; = {fi =0}{J U1, Y'={fi=0}X; (4.3)
and apply Beilinson’s construction to this triple. Now the spaces X} are open
sets in Uj, j3 : X3 < U, being the inclusions and U; = |J; Xj. Using the
axioms of a sheaf for any M € C, we recover M by its restrictions ji* to all
the Xj.

In quite a similar manner we perform a general induction step. Assuming
the knowledge of the category C, = j:(C% ) on an open set U, we obtain
the description of Cnyy = j5,,(CX ) on an open set U,y,. Here Up = X \
Ua: codirm Xo=k 1 fa = 0}, jk : Ux — X being the corresponding inclusion. This
is done by application of glueing construction to a triple Y? — X? — U, ...,
codim Xz = n, where

Un.n+l = X\ U {fa = 0}:

a:codim X g=n,n+1

X3 = {fo =0 UVUnnn, Y= {fp =0} X7 (4.4)
and then by recovering the sheaf of Dy, -modules by restrictions to X7,
Uﬂ Xf = Un41-

It is important to emphazise that we have to use the glueing procedure
for (4.4) twice, in two different ways. First we are to obtain the combina-
torial data and calculate all new relations appearing in the glueing. Here
we use directly Beilinson’s Theorem 3.2. Then we need to realize explicitely
D-module given by these combinatorial data using functor F) ; (see (3.1)-
(3.3)). Following these calculations we discover also that for each inductive
step we have a splitting of the corresponding category C, described by the
consistency conditions on the eigenvalues of monodromies (2.4). The new
splitted terms should be supported on subglued stratum and do not appear
in the description of locally indecomposable modules (Theorem 2.3).

The rest of this section is devoted to explicit inductive description of D-
modules from C% . In order to make exposition readible we first demonstrate
the technique on more simple examples of codimension one and two strata
and then pass to general induction step.
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4.2 The flatness condition

Let us first make simple exercise and compute the relations on matrices A;
coming from the flatness of the connection (4.1). These relations should be
well known (see, for instance [Ko] for Knizhnik-Zamolodchikov configuration
) but we prefer to repeat them in our terms.

It is more convenient for us to admit poles along hyperplanes f, = 0,
codim X, = 2, in other words, to work in the space

U2=CN\ U {fa=0}-

a:codim Xo=2

Let us fix some stratum X, of codimension two. We can choose a pair
of commuting linear vector fields L, and M, as follows: L, be a generic
vectorfield along X,: Lo(fa) = 0, Lo(fi) #0for all i : i - o and M, be
transversal to f, (like a gradient): M,(fa) # 0.

Let X;UX; = X,. Then the functions f;, f; and f, are linear dependent:

fir<ayi>= for <ji>+fi <a,7> (4.5)
or . .. .
<a,r> < )r> <a,)>
fafi' flf] f.‘ifa
We know that for any linear vector field L
L(f;)

L(w) =3 TAj(w), weWw (4.7)

where W is a basic space of sections of a vector bundle over U;.
Substitutung L, and M, into (4.7) we see that

[La,Ma](w) — E# La(fi)Ma(fJ')f:ija(fj)Mu(fl')AiAj

i—a, j—a

(4.6)

(w)+

+ other terms (4.8)

where "other terms” have in denominator functions fi and f; such that X, ¢
{fe =0} n {fi = 0}. Using linear dependance conditions (4.5) and (4.6) we
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rewrite the first sum in rhs of (4.8) as

Z La(f?A;a(fa) E [A;,A,-](w)
Ari—a aJi J:j);;a

The functions 71 are linear independent now so we have the following rela-

tion which takes place for any flagd — i — a:

¥ (4,44 =0 (49)
jij—a
J#i
We conclude that the category C of flat connections (4.1) is equivalent to
the category of finite dimensional representations of quadratic algebra with
generators A; and relations (4.9). This algebra may be viewed as infinitesimal

version of fundamental group = (CN \ U;{f; = 0}).

4.3 Glueing of codimension 1 strata

For the simplisity of notations we reserve symbol X in this subsection for an
open subset U,
=C"\ U {fa=0}.
atcodim Xa=2
All the games of this subsection will be inside X = U,.

Just as before we start from Dx,-module M on an open stratum X
which is generated by finite-dimensional vectorspace W, free over the ring
of functions O(Xy) with the following action of linear vector fields L on Xj:

Lw)= ) %A,-(w), weW (4.10)
jij—o 27
where A; are some linear operators A; : W — W with fixed eigenvalues q;,
0 < Rea; < 1 subjected to relations (4.9).

Let us fix some codimension one stratum X;. We may assume that Dx-
module N from C% with a support incide X; is generated by some finite-
dimensional vectorspace V; and is described by the relations

fivi =0, L.—(v;) = E Li—(ﬂllA?(v;), v, €V; (4.11)

oot fa
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where L;(f;) = 0, A? : Vi — V,, with eig.v.(A?) = af. Let us compute

W;(M), where ¥; = ¥§. Applying some vectorfield L to w ok i fEw - f2:

Lwfi*) = L(f)(s + k+ A)wfi* 1 + 37 MAj(w)fe'“ (4.12)
jig#i J3

we see that one can invert this operator inside Dx[[s + a;]] every time except

k = 0. So ¥;(M) is generated by the elements wf~!, w € W and all the

expressions w f? should be treated as zero. The relation (4.12) gives us also
the action of monodromie:

S(wfr™) = —swfrt = Awfi? (4.13)
From (4.12) we deduce also the action of vector fields L;, L;(f;}) = 0 on
wff:
_ L f; .
Liwf ) = 3 Bl g (4.14)
jagi i

In order to find morphisms between ¥(M) and N, we have to rewrite (4.14)
in a form (4.11), in other words, to replace all the f;, codimX; = 1, in
denominator of rhs of (4.14) by f,, codimX, = 2. This may be done by
substituting (4.5) and (4.6) into (4.14). Finally we have

Lws = 3 2 3 A (4.15)
ooy a o
J#

We can interpret morphisms ¥;(M) = N from Theorem 3.2 in our case
s

as commutative diagramm

X jija A;
i#

w —
A HASL.- A;,HA;,. (4.16)
V; — V;
Aa



with the relations

A'.".-' 3 = A;, (4.17)
B X A =ArAg, (4.18)
e
3S° A;l AL = ApAT (4.19)
Jii—a
i

Let us look now to the eigenvalues of operators from (4.16)

Lemma 4.1 Linear operator

2 A

Jijpe
i#i

has a single eigenvalue equal to Ej;j;a aj.
EE3)

Proof of the Lemma. We use standard linear algebra arguments and the
basic relation (4.9). We see from (4.9) that an element C, = ¥;.,.; A;
commutes with all the A;, « « ¢. The Jordan block decomposition of W to
generalized eigenspaces of C, is thus consistent with the action of all the A;,
a « 1, because this decomposition can be performed by the action of some
analytical functions of C,. So we can restrict ourselves to a single eigenvalue
of C, and, applying trace arguments, observe that this eigenvalue is equal to
Y ;:aw—j @j- The statement of the Lemma now follows from the equality

Z Aj=C,— A, [Ca, A]=0
nl—a
i#

Let us remind that we can freely change the matrices A4; in (4.10) or A in
(4.11) by adding identiy matrices: it is equivalent to choosing another basis
of sections in a vector bundle:A; = A; + k & w — wff, k € Z and this is
the only gauge freedom we have for the connections with constant coeffitients
and singleeigenvalued matrices.
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Comparing (4.11) and (4.17) we conclude via Lemma 4.1 that nontrivial
morphisms between W;(M) and N could exist only if the following relation
on eigenvalues is valid:

af= Y a; (modZ) (4.20)
g

Supposing the validness of (4.20) we can normalize the realization of N in

such a way that (4.20) takes place on the level of complex numbers:

Z: a;. (421)

Jii—a
i#i
If the relation (4.20) is not satisfied then both A3 and Aj; are equal to zero
and the glued D-module is a direct sum of D-module without singularities
along X; and of D-module, concentrated on X;a
Let us now realize corresponding D-module in terms of generators and
relations. Assume first that a; = eig.v.(4;) = 0. Then on the level of
generators monada (3.2) looks as follows:

wf}? — 0
a—1 =1
, o wi (4.22)
-1 /:4.- A+‘.\ ,-1
w f} T v; " w

so the homology of (4.22) are generated by the elements W = wf!, w € W
and T; = —v; + (Afvi) fi71 -1

Let us compute the action of vector fields L on @, L; on 7; and the result
of multiplication of T; by f;. We have

( ) (fl)(AOl |9+3) fa_ + Z

Jii# f-’

(w)fi (4.23)

because of (4.10). From (4.22) we see that elements swf™' @ Ay(w) are
boundaries and (4.23) may be rewritten as

L(@) = L(fi)(Af: Aguwfi™ — Agqw) + Z

Jii#i .f-’
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or

L(®@) = L(fi)Agw + 2 —L- (4.24)
s Ji
Next,
f,'ﬁ,' = f,-(—'u.- (A'.tv.)f"" = A (v‘) A.'v,, (425)

and, finally, the most difficult calculation:

L) =- Y Zle) ey v ) LU g agweprr (a.26)

et f“ ara—i jij—a f.T

¥

Using linear dependance condition (4.6) we rewrite (4.26) as

_)" E faa '+ Z AAo'v‘fc—l +
[ 34 4 ' "J"#‘a
L(fi) <a,j> A_,‘Aa"-(v;)
* - —f; 4.27
org«:—i j ,}Ea <ha> f (4.27)
J#I

Then we substitute the relation (4.19) into (4.27):

Lw) = 3 M(—A?v.-+zf1:.~x4:’v.-f.-"‘)+

a1 f"

< Cl,j > AjA:;U,'
+ ): E :
oo jij—a <a> fJ
I#
which means that
Li(fa) - < a,j > A,-A;'-v;
L@m)= ), —— | Al : ' 4.28
(v) ag;—l' f“ v +j:jz—oa <ya> fJ ( )
J#

We conclude that the glued D-module corresponding to diagram (4.16) is
generated by elements w, w € W and 7, v; € V;, and 1s defined by the
relations (4.24), (4.25) and (4.28).
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In the case of nonintegral eigenvalue of monodromie S (more precisely,
0 < Req; < 1, a; = eig.v. A;) we should, due to prescription (3.3), put
first in the diagram (4.16) W instead of V;, identity operator instead of Ag;,
and A; — a; - Id instead of A} and compute the D-module coming from
corresponding monada (4.22). Then we should tensor multiply the result by
JI(f¥) where j; : X \ X; — X being the inclusion.

The generators of the resulting module are & = wQ f and 4; =7; ®
where W and 7; are generators of homology of monada; moreover from (4.25)
we can treate 9; also as W® f*~'. Then, for instance,

L) =L@ ff+ewe fii7 =
WA —awe 2+ ¥ Mame v ame s =

gt Ji

S - L(f;)=— _ ,a
LAwe Y Milgge g
g Ji
and if we denote A}, = 1dQ f: T Q® AT S B [, Ay = Ai®
TR fH o [, A = Y jijoa Aj ® td we observe that the relations

(4.17)—(4.19) remain unchanged ]irst as defining relations (4.24), (4.25) and
(4.28) for the glued D-module.

Moreover, we can decompose invertible operator A; into some other prod-
uct A; = Af; A5 of invertible operators and make a change of variables in the

space V;, identifying &; with Afv; ® f"'. Then A? = (Af)™ (Ej:j_.a A,-)
J#

A and the condition (4.18) follows from (4.9). The defining relations (4.24),
(4.25) and (4.28) have the same form due to the rules of changes of variables.

Let M now be some Dx-module (remind once more that X is still X =
Uz = CV \ Ua: codim x.=2{f« = 0}). The formulas (4.24), (4.25) and (4.28)
define restriction of M to open sets Xi = U, Nj:codimx;=1,54i {fi # 0}. We
can restore M as a sheaf and define it by its global sections. These sections
are, due to (4.25)

w, weE w
and |
_ v; over X}
ue { f.'_lA:,-v; over X3, j#1 v €V,
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In terms of these global sections Dx-module M is described after the renor-
malization Ay — (< f; >)'45, Af =< fi > A} by the following relations
on its generators w € W and v; € V,.

Lwy= ) MA‘-_'w (4.29)

i < fi>

Liwy= 3 Lle) oy 3 S92 <> ey (4.30)

o i fa jij—ar < ] > < a> L
J#i
if L;(f;) =0 and
fovi =< fi > Ag,”; (431)
with operators A;‘- W=V, Ay Vi = W and AY : V; = V subjected to
the relations

p Z AT AL | = AT AL (4.32)
e

Z ABJ Jl AB: 1 (433)

gy

The results of this subsection may be resumed in the following proposi-
tion.

Proposition 4.1 Let j3: Uz — CN be an inclusion. Then any Dy,-module
M from §3(C% ) can be defined by the formulas (4.29)-(4.81). Corresponding
linear algebra data W, V,, Af, : W = V,, Ay : V; > Wand A7 : V. = V;
are subjected to the relations (.{ 32), (4.83).

Moreover, we have the following restriction on eigenvalues

a; = eig.v.(AfAy), o) =eig.v.(AzA), af =eig.v. A7 :

a: = a; = Y aj
j:j—ba
I#
which are not valid only if M is a direct sum of a module without singularities
on some strata X,,...,X;, and of modules supported on these strata.
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4.4 Glueing of codimension 2 strata

Let now
X=U;=C"\ |J {f.=0}

a:codim Xo=3
We start from Dx-module M, whose restriction to
Ua=C"\ U {fa=0}
a:codim X o=2,3
is given by the relations (4.29) and (4.30). Let X, be a codimension two stra-

tum. Following the Definition 1.1 we may assume that QQ(M) i &, (M)
is generated by vectorspace V, with the relations

L) = & Z2Blan, (4.34)

for any vectorfield L, along X, and
fro=0 if flx = 0. (4.35)

Let us compute ¥,(M) i ¥; (M |u,,). Applying arbitrary vector field
L, L(f.) 0 to wf2:

L(wfa) = sL(fo)wfa™ + Z Ag(w)fa

we see that the only possibility we have is to put wf? to be equal zero
in ¥,(M) and monodromie operator S(wf?) = 0. Analogously, applying
L, Li(f;) = 0 to v; f2 we see that

vifl=0 (4.36)

in ¥,(M) and
S(vifi) = —svifi! =
o ra—1 <aj > < 1 >
A“ U{fa +j:§a <.7 > <za> Jo '1
i#
The last two statements are based on the following Lemma, which is proved
analogously to Lemma 4.1.

o, f21, (4.37)
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Lemma 4.2 An operator

< aj > <t1>
A :
i:@a it ,-:,Z-:.a <j> <ia >A"A"
A
is nilpotent in @,,;_,, Vi provided the relations ({.82), (4.88) (4.21) are sat-
isfied.

Note that for D-modules supported on codimension one strata we also have a
basic statement (4.36), because this case reduces to the previous subsection
and if such a module is a direct summand of singleeigenvalued module M |y, ,
then by Definition 1.1 zero monodromie eigenvalue and again the statements
(4.36) and (4.37).

We are going now to compute D4, —g)-module structure of ¥,(M) =
Vo (M) in terms of (4.29)~(4.30). Let 1 — o and g, be some linear function,
Ja |x.= 0, ga not proportional to f,. Then f,, g, and f; are linear dependant:

9o < fofi >= fi < faga > +fa < gafi > (4.38)
and from (4.31) and (4.36) we have
o1 _ S Jaga >< fi > -
go - if? 222 gz (4.39)
We have also
Mafwfs ) = S 2o A (4.40)

for any vectorfield M, along {f,} = 0 M, (fs) = 0 and
Lﬂ(v.-f;'l) — Z: La(fﬁ)(A v; + E <ﬂ] > < LB > JGA )fa—l

piog I igos <I1>  <i>
Ba i#i

(4.41)
In order to compare the expressions (4.34), (4.40) and (4.41) we have to put
together all the terms with ¢ — « in rhs of (4.40), and for any given stratum
X of codimension 3 all the terms with 8 — X in rhs of (4.41). Using (4.38)
again, we obtain first

s—1y _ Ma(ga) < fifa > ,_ ., Ma(f;) = rom1
Ma(wfs™) = ,.Ea < dufus< fi> Wl l +j:§a <fi> wla
(4.42)
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We now turn to the relation (4.41). Fix somei: t 2 aand A: a — a.
let Xz be codimension two stratum with ¢ - § — X and X be codimension
one stratum with j — 8. Then f;, fg, fo and f, are linear dependant and

fi<Bra>—fg<ida>+fi<ifa> —fa <ifr>=0 (4.43)

As a consequence we have

<ifa>

La(fp) = La(fx)m (4.44)

and

1 <tda> 1 +<iﬁ,\> 1 _<ﬂ,\a>. fi
fafs — <iBa> fofs ' <iBa> fofs  <iBa> fafpf
We have also linear dependance of f;, fg, fi and f, and thus the conditions
(4.43)-(4.45) with index ¢ replaced by j. Substituting (4.43)-(4.45) and their

analogs for f;, fg, fr and f, into (4.41)and using linear dependance conditions
for f;, f; and fz we obtain after some calculations the following expression:

La(vt'f;-l) =

(4.45)

)

L, 3 ;
=2 2 Lol | 4o _ Y SIS Al |-
A;CX—M\ ﬂ:i—wﬂ—o) fl\ J-J—'.G < 1Aa ><] > J
P i /

\

La(fA) < i > B - -—
2> Rl AGAT = 2 AGARAG | wfa
Aja—) Brimsf—) AJB jij~B )
B#a J#

The last summand is equal to zero in accordance with (4.33). Finally we
have the following identity in ¥,(M):

La(vl'fq;..l) =

La . -
-y x L, o sizeder i @
A;Cl—n\ﬁ:it;;ﬁ—n\ fA JJ;‘ﬁ <7 >< At >
a J#
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Now, using

(4.39), (4.42) and (4.46) we can represent canonical mor-
phisms ¥, (M) =@,
)

(M) in terms of the following commutative diagram

AT Bi:ia 3_ B imef=d A?
W -';{ @i: t—or Va —e#a @'-: o Va
Al
el =T ¥ (4.47)
Aal’J’IAIr Am-lI Aj;
v, A, v
where A_ i <'><9°JG>A'°’ Aa‘ - S-%Iﬁ aﬂd A;i = (al)A;l’ A:l; =
SQ%ZA*' with monodromie operator S:
<ap><t>
S(w) =0, S(vi) = Af'vi — AL ALy,
(w) (vi) = Afv +,';5E-.a<1><‘a> ATy
J#i

(just as in the case of codimension one we renormalize operators AY and A7;
to avoid coefficients in quiver relations).
Thus we have the relations

2 ALA=0 (4.49)
E ALAL =0 (4.50)
A X A =44 (4.51)
B:i—f= A
Pio

for a fixed flag i = a — A,

Y. AP| AL = ALA) (4.52)
G:i—mf—-A
Bta
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for the same flag: — a — A,

ALAZ = A® (4.53)

"0~ Tan

ifi—a.
Let us describe the glued D-module in terms of generators and rela-
tions.The differential in the monada (3.2) is given by the formulas

-1y __ s—-1 L f5=1 — Fitat < i > -.
do(wfa )_ swfa dﬁ(vtfa ) i 'svtfa @ < at > ot vO‘)!
di(wfi) =wfi™, di(vifo™") = vif3!
and < >
ai
di(va) = <i > a)f'-l
The homologies of monada (3.2) are generated by the elements
< ai >
T=wf, v =vuify d 75 =—v, : vafs™!
U =wf], u=vf, and T v +.‘;.'z_.:a<‘> Ve fa
We can easily see that just as in (4.29) and (4.31),
L L{fi) — =
Lw)= ) —*=Azw, weWw (4.54)
1; 81 < f'
and
fiom=<f;> A:}v;, v, €V, (4.55)
Further,
L) = L) | AT 45+ & U2 S o an gy

<j> <ia> 4

Jii—a

J#

> fﬂ) s <Bi> <i> ,_
At 2 . - a4+ | . £ .
¥ Biip o jig—p < 1> <if >AJ'A0: v;fa (4.56)
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We replace sv;f2~! in rhs of (4.56) by —=> A7 (v,) and using (4.48) and

<ot
(4.52) we reduce (4.56) to
Li(®) = Li( fo)—2- '.> Azt
<

fﬁ) p <Bji> <t>——m—
+ Ajv A AT v 4.57
ﬁgﬁ “E—;p <j> <if> A (4.57)

pa i

Let now linear function g(z) is such that g |x,= 0. Then, using linear
dependance condition for g, f, and f;, if { — a, we have

< at > — <ai> o
g(vﬂ) _g( va+‘§° <t > Ata Va 1) =,‘:,‘E_,a < t > g(A;':va)fa ! =
< gJi . -
-y 2ehi> -"f Abpalit <9fa> ¥ AfALvafs
i1—a il-ﬁa

The last sum is equal to zero, due to (4.50) so finally

g@mm) =3 <<gf'> AT, (4.58)

fii—o

The calculations of L,(7,) are the longest ones. The computations use linear
dependance conditions (4.43)-(4.45), the defining relations (4.48)-(4.52) and
simple identities for determinants. The answer is

Lo(fy) | —— <ifr> [<ai>APAty,
L.(v5) = —_— A":Ua + - - 1w
( ) ,\,;,A I ;:,-;a 3“-_2",_;_"\ < tda > <1 > f'g
B#a

> < Bj >< ai > AjA§ Al v,
<if><j> fs

(4.59)
ij—B
i#i

The relations (4.54), (4.57), (4.58) and (4.59) define D-module in the
open set

U3 = (C"\ U = 0}) U {fa =0}

f:codim X p=2,3
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We can restore Dx-module M as a sheaf by its restrictions to U§* and define
it by the global sections (remind that now X = Us = C¥\Uq: codim x.=3{fa =
0}). There are three types of sections: w, v;, codimX; = 1 and v,, codimX, =
2. the first two are identified with @ and 7; for all U and

v, over Uj
Vg = A¢ Al va g
Ei: i—a % f: over US ' ﬂ # o

The relation (4.59) can be tranformed in a form

L=y =Wz v g SifA><ai>

Mo A i pispy <tAa >< fi>
B#a
< Bi> At < pBy > A
lB 'ﬁAﬁ' * a + Z ﬂ] Aﬁ'A_l_
< 1 > f J J—bﬁ < J > fﬁ

i
which means that

Lo(fa) | . <ifA>< o>
Lo(va) = =LISLVY LI Az A ve | (4.60
(va) A:::_‘,A I v +ﬁ§d<u\a><ﬁz> pifliava | - (4.60)
fa

where 1 18 an index of codimension one stratum X; whose closure contains
both X, and Xpz. There are two possibilities: there exists unique such X;
for given X, and X and there are no. In the second case corresponding
summand in (4.60) is treated as zero.

Using an identities on polyvectors in CV /X, and in CN/Xj:

<fa>fahfi=<ai> f,, <fo>fahfi=<Bi>fy

(for the notations see section 2.2) we can rewrite (4.60) as

La(fA) A <t\ﬂ> <a>
La(va) = ¥ 222 [ Adv,— Az AL, | (4.6
(ve) saos N 8:— A<’\°’> <ﬂ . ( )
Ba
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The transformation of the formula (4.57) is evident (see relation (4.63)).

Summarizing the calculations we conclude that Dx-module M over X =
U, can be defined by generators w, w € W, v;, v; € V; (codimX; = 1) and
Va Vo € V, (codimX, = 2) with the relations

L(f) ,-
L(w)=..§:‘<ff—’:l_ v weW (4.62)
Lv)= 3 <<;>>L,-(fa,)A;-v.-, v € Vi (4.63)

if L; is a vector field along X,

f'-U'- = A;}U;, v; € 1/,', (4.64)
<gfi>

o) = 4 At - « €V, 4.65

soe) = 3 I AL va € (4.65)

for any linear function g(z) such that ¢ |x,= 0,

Lu(va) = z ——La(‘f'\) Adv, — Z < )\e > .= C:>AE‘AA:';UQ ,
Ara—A f'\ ﬁjﬁé—n\ <Aa> <ﬁ>
(4.66)

(va € V,) for any vector field L, along X, with 1 being an index of codimen-
sion one stratum X; whose closure contains both X, and Xpz.

The linear operators Af; : W = V;, Ay : V. - W, A7, : Vi — Vg,
At : V, = V. and A : V, - V, satisfy the following conditions:

ALAL+ AQJAL =0 i#£j, XinX;=X, (4.67)
Z AZ AR =0 (4.68)
3 AFAL =0 (4.69)
Azl Y ARAg | = AAL (4.70)
Bii—=f—A
Ao
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for a fixed flag t — a — A,

3. ALA; | AL = ALA, (4.71)
Bri—ff—A
f#a

for the same flag 1 —» a — A.

Remark 4.1 The relations (4.82), (4.33) and also (4.9) follow from (4.67)-
(4.68) if we remind that A¥ = ALAZ;, Ai = ALAG.

Let us look now to the eigenvalues of operators A}, A7;, A7;A} and A). Let

a¥ = eig.v.(ALAL), o = eig.v.(A;;AL), a) = eig.v.(A)). We can apply
Lemma 4.1 to a local system over hyperplane {f, = 0}. As a result we have

the following

Lemma 4.3 Linear operator

+ -
Y. AR
B:i— i A
pra

has a single eigenvalue equal to 3" p.i-p- a?.
B#a

Now we see that the morphisms in the diagramm (4.54) are nontrivial only
if for any flag + - o — A we have

ad= 3y a? (mod Z) (4.72)
B:i—8—o
B#a
again we can renormilize the local system on codimension two strata in such
a way that instead of (4.72) we have

B ¥ o (473
TN P S
B#a
on the level of complex numbers.

If the relation (4.73) is not satisfied then both A}, and A}; are equal to
zero and the glued D-module is a direct sum of D-module without singulari-
ties along X, and of D-module, concentrated on X,. We resume the results
of this subsection in the following proposition.
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Proposition 4.2 Let j3: Us — CVN be an inclusion. Then any Dy,-module
M from j3(C% ) can be defined by the formulas (4.62)-(4.66). Corresponding
linear algebra data W, Vi, Vo, Af. . W = V;, A5 Vi W, AL : Vo o V,
AL Vi - V, and A} : V, — V, are subjected to the relations (4.67)-
(4.71).

Moreover, we have the following restriction on eigenvalues

at

af = eig.v.(ALAZ), of =eigv.(AZAL), a; = eigv.(4])
for any flagi — a — A:

a'=a a= ¥ df
Brimf—A
B#a
which are not valid only if M is a direct sum of a module without singularities
on some codimension two strata Xo, ..., Xay, and of modules supported on
these strata.

5 General induction step

Here we give a precise formulation of general induction statement. We omit
the calculations supposing the reader can find enough of them in the previous
section. The only difference is that in general case one should more often use
identities with polyvectors f instead of identities with linear functions. The
main induction statement looks as follows.
Let ,
X=U,=CN\ U {fa =0}
a:codim Xa=n

and let the restriction of singleeigenvalued Dx-module M to an open subset

Un-l,n = CN\ U {fa = 0}

a:codim Xa=n—-1,n

can be described as a D-module generated by vector space @&sV3, codim Xz <
n with the relations

vg) = <f';> sglvg) =
Lp(vg) = Ai%_:d ZTE—;Lﬁ(fA)Am( 5)
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_ oy Sh2L) e ey, (5.1)

A B—A < fA > fﬂ
if Lg is a linear vector field along stratum Xg, codim Xz < n —1,

frvg= Eﬁ = f}fﬁf A3p(vs), vs € Vs (5.2)

if f is a linear function, f |Xp= 0, codim Xg < n and

Lo(f) | .a <Aﬁ> <a>
La(va) = Y, =222 | Adve — Az Al v, |, (5.3
ba

(vg € Va), codim X, = n ~ 1 for any vector field L, along X, with v being
an index of codimension n — 2 stratum X, whose closure contains both X,
a.nd Xﬁ.

The operators Ay, : V, = Vi, AY, : VA = V,, codimX, < n —1 and
AX: V, = V,, codim X, = n — 1 satisfy the following relations:

B:de=fe—y
for any two vertices A,v,: A < +,n > codimX), = codimX,, + 2,
E A:ﬁAEA =0 (5.5)
Biy—f— )
for any two vertices A,7,: A < v,n > codimX, = codimX, + 2,
ALAL, + A5 AL, =0 (5.6)

”
for any quadruple ﬁ< >,u, n > codimXy;

AhAL, =0 (5.7)
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]

~
for any triple ﬂ\ /p , n > codimX, with no v such that ﬁ-/ \'p ;
A

AL | Y AhAz | = AlAL, (5.8)
ﬁ:wﬁ—;i-n\

for any two vertices A,v,: A < 4,n = codimX), = codimX,, + 2;

- — A
2 AAg, | Al = ATAG (5.9)
)
fa

for any two vertices A,7y,: A < v,n = codimX), = codimX, + 2.
There is also the following eigenvalues restriction. Dy, _, ,-module
M ly,_, . can be decomposed into direct sum

M |Un—l,n= M(l) @ M(‘z)

For the first module M("} we have an equality

ay= Y as (5.10)

Biy—B—A
B#a
for any flag v - a — A: A <+, codimX, = n — 1, where

aj = eig.v. (A} A7) =eig.v.(ALAL), a} = eig.v.(A2)

Yol lay

The second module M) has a support on codimension n — 1 strata (and
thus is realized by (5.1)-(5.9) with all V4 equal zero for 8: codim Xg < n—1)
and

0 < Real <1 (5.11)
for any two o, A, @ = A, codim X, =n—1.

Proposition 5.1 In assumption of (5.1)-(5.11) Dx-module M is generated
by vector space ®sVp, codim X5 < n with the relations (5.1)-(5.8) and op-
erators Ay, : Vo = Vi, AX,: VA = V., codimX, < n and A): V, = V,,
codim X, = n subjected to (5.4)-(5.9).
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The spaces V, and operators Ay, : V, = V), A7, : V) = V,, codim X, <
n—1 are the same as for M |y,_,  and A ,\AM = A for all a, codim X, =
n—1.

Moreover, Dy -module M can be decomposed into direct sum M = MV @
M®) For the first module M) we have an equality

aa= Yy, ad (5.12)
Biy—=G—A
B#a

for any flagy — a — A: A < v, codimX, = n, where

a$ =eig.v. (AT A7) = eig.v. (AJ;AL), a} = eig.v.(A})

Yo tay at MHa
The second module M® has a support on codimension n strata.

The proof of the proposition is based on the calculation of the functor
¥;.(M u,_,.) for a stratum X, of codimension n.

Let us fix some codimension n stra.tum X For any Dx-module M we
denote for simplicity of notations ¥,(M ) = W, (M |y,_,.) for simplicity
of notations. The computation of ¥,(M) for M |y,_, . being supported
on codimension n — 1 strata reduces to the codimension one case and was
completely described in subsection 4.3. Let us consider the case when the
condition (5.10) is satisfied. Then we state that

(i) ¥, (M) is generated by elements vs 2!, vg € V3, codim X5 < n with
vgf2 being treated as zero elements;

(1) Canonical monodromie operator S = (—s)- is nilpotent on ¥,(M);

(iii) An action of S on ¥,(M) is described by the relations

Svafe™l =0 if codimXg <n —1 (5.13)

Svﬁf' l Svpf'-l

3 <a¢5> <,6>
P <é> <aﬂ>
646

= AJupf27' - Ag Atgug it (5.14)

if codim Xy =n — 1.
Note that the statement (ii) follows from the following counterpart of
Lemma 4.2:
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Lemma 5.1 An operator

@ e Z:<az6> <ﬁ>
8

A; AT 5.15
B:8—a §:6—a < 6> < ﬂ > e ( )
374

is nilpotent in @gp.p_., Vs provided the relations (5.4)-(5.10) are satisfied.

Now, considering ¥(M) as D{;,-o)-module we see that it can be described
in terms of relations (5.1)—(5.3) if we take vgf2~! as generators. The graph
structure of strata Xz N {f, = 0}, codim Xz < n remains unchanged ex-
cept the strata Xz, § — a. Instead of their intersection with hyperplane
{f« = 0} we should consider the only stratum X, and attach to this stratum
vectorspace @g. 5 V3. The formulas which we need for drawing a commu-

tative diagramm representing canonical fourtuple ¥,(M) = ®,(M) are as

follows.
Let us fix some new deneric linear function g,(z) which cut stratum X,
in hyperplane {f, = 0}: go |x.= 0, g # fa.. Then we have

. <F><afy> ,_ .
Mo (s fo ]) = E Ma,~(9a) = Aﬂ‘yv‘rfa '+

Biy—B—ra < BY >< fogafy >
< ? > - -1
+ ﬁ'z , ayy fﬁ) ,B":(’ >A,G"1rv"1fa (516)
=3
Bpa

for any stratum X, codim X, = n — 2, ¥ > a and for any linear vector field
M, along {f, =0} N Xy Ma.‘r(fcx) =0, Ma.‘r(f) =0if f |{fa=0}ﬂX-,= 0,

Z .< fagaf:r > < :f > fl—l (517)

s—1
X7 =
9o vafa <afi> < pi> Algvs

yy—f

for any stratum Xg, codim X, =n -1, § — a and

La(vafi) =

L, G >< Aa?
D g - 3 SE2<0T2 4 g Lust 518)
Mo 8:ips—r A yinat < ¥ >< Aaff >

s#a Y8
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also for a stratum Xz, codimX, = n — 1, f# — a with g being an index of
codimension (n —2) stratum X, whose closure contains both Xz and X,, and
L, being a vector field along X, .

Suppose now that ®,(M) is given as singleeigenvalued local system gen-
erated by vectorspace V, with the relations

Lo(vy) = ,\-ZA %ﬁﬁ/&zva (5.19)

for any linear vector field L, along X, and
fva=0 if flx,=0. (5.20)

Comparing the relations (5.16)—(5.18) with (5.19)-(5.20) we observe that the
diagram ¥,(M) = ®,(M) is completely defined by linear maps (which we

v
renormalize to avoid factors in commutation relations):

D A : D Vi—V,, (5.21)
Bif—a BiB—a
P A v.— P V; (5.22)
8 f-ax B; f—ra
with -
<af> ,_,
— = - 5.23
T < B> g (5:23)
and .
A= P2 g (5.24)
< af >

satisfying the relations (5.4), (5.5), (5.8) and (5.9). An equality S = vu
provides the relations A = A} A, for all 8; § — a and (5.6), (5.7). Just as
in sections 4.3 and 4.4 we observe also that the relation (5.10) on eigenvalues
is not satisfied only if the glued module is a direct sum of a module without
singularities along X, and of a module supported on X, for which one may
freely assume the conditions (5.11). Next, applying monada (3.2) technique
we describe the glued module in terms of generators and relations and finally
restore M as a sheaf by its restrictions to open sets

Un-l,n U {fa = 0}
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for all a: codim X, = n. The calculations analogous to that of sections 4.3
and 4.4 show that M is defined by the formulas (5.1)-(5.3).

We have described a scetch of proof of Proposition 5.1. Theorems 2.1
and 2.4 are direct consequences of Proposition 5.1. The only thing which we
want to explain is a simple remark that an operator

<ab> <f>
D |4- ¥ 2> =P pa,
B:B—a 5:5&—&& < é > < aﬂ >

from lemma 5.1 is conjugated to

b AtA (5.25)
a6
f—a,f—a

in Pp. 5o Va provided the relations (5.6) and (5.7) are satisfied. The nilpo-
tence of operator (5.25) for the vertices of depth more then one follows from
the nilpotence of monodromie operator S in the second step of glueing. The
decomposition of a restriction of D-module to some open set U, to a direct
sum of Dy,-modules if a condition (5.10) is not satisfied contradicts to the
definition of local indecomposability. But if these conditions are satisfied
we conclude from Lemma 5.1 that W, (M |y, _, ) coincides with its unipo-
tent part \I'(}a (M |y,_,,) for all a: codimX, > 1 and we have no need in
singleeigenvalued restriction (1.1) on ¥, (M). So we have the proof of the
second part of Proposition 1.1 and of the Theorem 2.3. We can also eas-
ily see by induction that for category C% the conditions of Lemma 5.1 are
automatically satisfied (all the eigenvalues remain being equal zero). So we
have no need in the condition (1.1) for C%, from where we deduce the rest of
Proposition 1.1 and can also prove an equivalence of categories in Theorem

2.2.
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