Monodromy quasisemisimple D-modules over the arrangements of hyperplanes

Sergei Khoroshkin

Max-Planck-Institut für Mathematik
Gottried-Claren-Straße 26
D-5300 Bonn 3

Germany

Monodromy quasisemisimple D-modules over the arrangements of hyperplanes

Sergei Khoroshkin *

March 31, 1993

Abstract

Let \mathcal{A} be a collection of hyperplanes in complex affine space and \mathcal{D}_{X} be a sheaf of differential operators over corresponding stratified space X. We introduce categories of quasisemisimple \mathcal{D}_{X}-modules which are characterized by natural conditions on eigenvalues of monodromie operators for nearby and vanishing cycles functors Ψ and $\boldsymbol{\Phi}$. The main result of this paper is the description of this categories in terms of quivers with quadratic relations. We describe explicitely both functors establishing equivalence of categories. As a consequence we obtain a description of all quasisemisimple $\mathcal{D}_{\boldsymbol{X}}$-modules in terms of generators and relations. Application of this results to direct images of local systems over the complement to the arrangement of hyperplanes produces a natural complex which coincides with Orlik-Solomon complex in the case of trivial monodromies.

1 Arrangements of hyperplanes and quasisemisimple D-modules

Let us consider complex affine space $X=\mathrm{C}^{N}$ and a set of complex hyperplanes $X_{i}=\left\{f_{i}=0\right\}$ in \mathbf{C}^{N}. Following the tradition of [VS1] we call this set an arrangement \mathcal{A} of hyperplanes. One may attach to this arrangement a natural stratification of X.

[^0]The closed stratum $\bar{X}_{\alpha} \subset \mathbf{C}^{N}$ is an intersection of some hyperplanes

$$
\bar{X}_{\alpha}=\bigcap_{i \in I_{\alpha}}\left\{f_{i}=0\right\}
$$

and its interiour $X_{\alpha} \subset \bar{X}_{\alpha}$ consists of points $x \in \bar{X}_{\alpha}$ that do not belong to other hyperplanes: $x \notin X_{j}=\left\{f_{j}=0\right\}$, if $X_{j} \not \supset \bar{X}_{\alpha}$. Let us denote this statified space as $X_{\mathcal{A}}$ or $\mathbf{C}_{\boldsymbol{\Lambda}}^{N}$.

Let \mathcal{D}_{X} be a sheaf of differential operators over X. Consider holonomic \mathcal{D}_{X}-modules with regular singularities flat along this stratification. These $\mathcal{D}_{\boldsymbol{X}}$-modules form an abelian category $\mathcal{C}_{\boldsymbol{A}}$ which is equivalent to the category of constructible perverse sheaves (with respect to a middle perversity) over the stratified space $X_{\mathcal{A}}$ [BBD].

In this paper we study full subcategory $\mathcal{C}_{\Lambda}^{q s}$ of $\mathcal{C}_{\boldsymbol{A}}$ which we call category of monodromy quasisemisimple \mathcal{D}-modules. The definition of $\mathcal{C}_{A}^{q s}$ looks as follows.

Let $X_{\alpha} \subset \mathbb{C}^{N}$ be an arbitrary stratum of $X_{\Lambda}, U_{\alpha} \supset X_{\alpha}$ be a small neibourhood of X_{α} in C^{N} and $\left\{f_{\alpha}=0\right\}$ be a generic hyperplane going through $X_{\alpha}: X_{\alpha} \subset\left\{f_{\alpha}=0\right\}$ (it means in particular that $\left\{f_{\alpha}=0\right\}$ does not belong to an arrangement A , if $\operatorname{codim} X_{\alpha}>1$). To any \mathcal{D}_{X}-module $M \in \mathcal{C}_{\mathcal{A}}$ we may apply nearby and vanishing cycles functors $\boldsymbol{\Psi}_{f_{a}}$ and $\boldsymbol{\Phi}_{f_{a}}$ [BBD]. It is clear that \mathcal{D}_{X}-module $\Phi_{f_{\alpha}}(M)$ has a support on \bar{X}_{α} only and, as a consequence, the restriction of $\mathcal{D}_{\bar{X}_{\alpha}}$-module $\Phi_{f_{\alpha}}(M)$ to an open part $X_{\alpha} \subset \bar{X}_{\alpha}$ is equivalent to some local system.

Definition 1.1 \mathcal{D}_{X}-module M is called (monodromy) quasisemisimple along X_{α} if it can be decomposed into direct sum of \mathcal{D}_{X}-modules $M_{i}: M=\bigoplus_{i} M_{i}$ with M_{i} satisfying the following conditions for any stratum X_{α} of \mathbf{C}_{A}^{N} :
(i) The action of canonical monodromy operator T on $\mathbf{\Psi}_{f_{\alpha}}\left(M_{i}\right)$ restricted to U_{α} is singleeigen valued:

$$
\begin{equation*}
\left.\left(T-e^{2 \pi i \lambda}\right)^{n} \Psi_{f_{a}}\left(M_{i}\right)\right|_{U_{\alpha}}=0 \tag{1.1}
\end{equation*}
$$

for some $\lambda \in \mathrm{C}, 0 \leq \operatorname{Re} \lambda<1$ and and n sufficiently large;
(ii) The local system $\left.\Phi_{f_{a}}\left(M_{i}\right)\right|_{X_{a}}$ can be described as a flat connection θ_{i} with constant eigenvalued matrix coefficients:

$$
\begin{equation*}
\omega\left(\theta_{\mathrm{i}}\right)=\sum A_{\beta}^{i} \frac{d f_{\beta}}{f_{\beta}} \tag{1.2}
\end{equation*}
$$

where f_{β} are some linear functions on \bar{X}_{α} and A_{β}^{i} are some singleeigenvalued finite-dimensional linear operators (the eigenvalues may be different for different β and i).

One can easily prove that the conditions (i) and (ii) do not depend on the choise of generic linear functions $f_{\alpha},\left.f_{\alpha}\right|_{X_{\alpha}}=0$.

For the convenience of notations we call \mathcal{D}-module M_{i} from $\mathcal{C}_{A}^{q 9}$ to be singleeigenvalued if it satisfies (1.1) and (1.2) by itself with some fixed values of eigenvalues.

The category $\mathcal{C}_{A}^{q s}$ is rich enough; it contains at least two subcategories which are the most important in applications (and being defined a bit more naturally).

Definition 1.2 An abelian category $\mathcal{C}_{\mathcal{A}}^{0}$ consists of all \mathcal{D}_{X}-modules M from $\mathcal{C}_{\mathcal{A}}$ satisfying the condition (ii) of Definition 1.1 with nilpotent matrix coeffitients:

The local system $\left.\mathbf{\Phi}_{f_{\alpha}}(M)\right|_{X_{\alpha}}$ is presented by a flat connection θ :

$$
\begin{equation*}
\omega(\theta)=\sum A_{\beta}^{i} \frac{d f_{\beta}}{f_{\beta}} \tag{1.3}
\end{equation*}
$$

where A_{β}^{i} are nilpotent linear operators for all strata X_{α}.
The category $\mathcal{C}_{\mathcal{A}}^{0}$ may be viewed as the smallest abelian subcategory of $\mathcal{C}_{\boldsymbol{A}}$ containing all δ-functions over closed strata $\overline{X_{\alpha}}$.

Definition 1.3 (Nonabelian) category $\mathcal{C}_{\mathcal{A}}^{\text {ind }}$ of locally indecomposable modules consists of all \mathcal{D}_{X}-modules M from $\mathcal{C}_{\mathcal{A}}$ whose restriction to any open subset $U \subset \mathrm{C}^{N}$ is nonzero indecomposable module.

Remark 1.1 In the Definition 1.3, like everywhere throughout this paper we impose the condition of vanishing growth at infinity for \mathcal{D}_{X}-modules M; it can be expressed as a condition for all $\left.\boldsymbol{\Phi}_{f_{\alpha}}(M)\right|_{X_{\alpha}}$: they are flat connections θ with constant matrix coefficients, $\omega(\theta)=\sum A_{\beta} d \log f_{\beta}$.

It is clear that for any indecomposable local system Ω over the complement U to the arrangement of hyperplanes their direct images $j . \Omega$ and $j!\Omega$ belong to $\mathcal{C}_{\lambda}^{\text {ind }}$. Here $j: U \rightarrow \mathbf{C}^{N}$ is an inclusion.

Proposition 1.1 Both $\mathcal{C}_{\mathcal{A}}^{0}$ and $\mathcal{C}_{\mathcal{A}}^{\text {ind }}$ are subcategories of \mathcal{C}_{A}^{q}.

We describe here the category $\mathcal{C}_{\mathcal{A}}^{9}$ of all quasisemisimple $\mathcal{D}_{\boldsymbol{X}}$-modules in $\mathcal{C}_{\boldsymbol{A}}$ in terms of a quiver (which means that we establish an equivalence of $\mathcal{C}_{\mathcal{A}}^{q s}$ to a category of representations of some quiver). The corresponding inverse functor from quiver-category to \mathcal{C}_{A}^{98} is also described quite explicitely: we describe \mathcal{D}_{X}-modules attached to representations of a quiver in terms of generators and relations. Subcategories $\mathcal{C}_{\Lambda}^{0}$ and $\mathcal{C}_{\Lambda}^{\text {ind }}$ are initialized in a quiver language by some conditions on eigenvalues.

An inductive procedure of describing the category $\mathcal{C}_{\boldsymbol{A}}^{q s}$ include the description of localizations of modules from $\mathcal{C}_{A}^{q \boldsymbol{\theta}}$ to certain open subsets of \mathbf{C}^{N}. Namely, these open subsets $U_{n} \subset \mathrm{C}^{N}$ are the complements to the union of fixed generic hyperplanes $\left\{f_{\alpha}=0\right\}$, containing strata $X_{\alpha_{n}}$ of codimension n.

This circumstance enable us to describe direct images of one-dimensional local systems on the complement U_{1} to an arrangement A (or, more generally, direct images of quasisemisimple local systems). These calculations may be considered as a basic point for computing the cohomology of local systems [Scl 1$]$. The answers are presented in the next section.

2 Combinatorial description of qusisemisimple \mathcal{D}-modules

2.1 The quiver's descrition of $\mathcal{C}_{\mathcal{A}}^{q s}$

Let us introduce first some notations.
Let X_{α} and X_{β} be two strata of $X_{\mathcal{A}}$. We write

$$
\begin{equation*}
\alpha<\beta \quad \text { if } X_{\alpha} \subset \bar{X}_{\beta} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha \leftarrow \beta \quad \text { if } X_{\alpha} \subset \bar{X}_{\beta} \quad \text { and } \quad \operatorname{codim} X_{\alpha}-\operatorname{codim} X_{\beta}=1 \tag{2.2}
\end{equation*}
$$

For the open stratum of C^{N} we fix an index \emptyset (so $X_{\bullet} \subset \mathrm{C}^{N}$ is an open stratum). It is convenient to describe the partial order (2.2) on the strata of $X_{\mathcal{A}}$ in terms of the graph $\Gamma_{\mathcal{A}}$ of the stratification. Graph $\Gamma_{\mathcal{A}}$ is an oriented connected graph with vertices identified with the indices of possible strata, and an arrow $\alpha \leftarrow \beta$ exists iff $\alpha \leftarrow \beta$ in a sense of (2.2). Analogously, we may define graph Γ_{α}, where X_{α} is an arbitrary stratum of $X_{\mathcal{A}}$. Graph
Γ_{α} describes the topology of induced stratification on affine space \bar{X}_{α}. The vertices of Γ_{α} are those indices of strata X_{β}, for which $X_{\beta} \subset \bar{X}_{\alpha}$ and the arrows are the same.

One may equip a graph $\Gamma_{\mathcal{A}}$ with a colouring by complex numbers. Namely, C-coloured graph $\Gamma_{\Lambda}\left(a_{\beta_{i}}^{\beta_{j}}\right)$ is the graph Γ_{Λ} together with numbers $a_{\beta_{i}}^{\beta_{j}}$ attached to all arrows $\beta_{i} \rightarrow \beta_{j}$.

Definition 2.1 C -coloured graph $\Gamma_{\mathcal{A}}\left(a_{\beta_{i}}^{\beta_{j}}\right)$ is called to be (self) compatible (or, in other words, the C -colouring $a_{\beta_{i}}^{\beta_{j}}$ of $\Gamma_{\mathcal{A}}$ is compatible) if the following relation takes place for any link of two arrows

$$
\begin{equation*}
\lambda \leftarrow \beta \leftarrow \gamma \tag{2.3}
\end{equation*}
$$

in $\Gamma_{\mathcal{A}}$:

$$
\begin{equation*}
a_{\beta}^{\lambda}=\sum_{\delta} a_{\gamma}^{\delta} \tag{2.4}
\end{equation*}
$$

where the sum is taken for all δ such that

$$
\begin{equation*}
\lambda \leftarrow \delta \leftarrow \gamma, \quad \delta \neq \beta \tag{2.5}
\end{equation*}
$$

Let now $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}$ be arbitrary complex numbers (weights) putting in one-to-one correspondance with all codimension one strata $X_{1}, X_{2}, \ldots, X_{n}$ of affine space \mathbf{C}^{N}.
Proposition 2.1 There exists unique \mathbf{C}-compatible colouring $a_{\beta_{i}}^{\beta_{j}}=a_{\beta_{i}}^{\beta_{j}}\left(\zeta_{k}\right)$ of $\Gamma_{\mathcal{A}}$ such that $a_{\alpha}^{k}=\zeta_{k}$ for all codimension one strata $X_{1}, X_{2}, \ldots, X_{n}$ of \mathbb{C}^{N}.

We denote this compatible C-coloured graph by $\Gamma_{\mathcal{A}}(\bar{\zeta})=\Gamma_{\mathcal{A}}\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right)$
Proof of the Proposition 2.1. We prove the existence and uniqueness of compatible coefficients a_{β}^{λ} by induction on codimension of X_{β}. The uniqueness is evident from the defining relations

$$
\begin{equation*}
a_{\beta}^{\lambda}=\sum_{\substack{\delta: \lambda \ldots \delta \ldots \gamma \\ \delta \neq \beta}} a_{\gamma}^{\delta} \tag{2.6}
\end{equation*}
$$

We may use (2.6) also for definition of a_{β}^{λ} by induction on $\operatorname{codim} X_{\beta}$ provided the defining formula (2.6) for a_{β}^{λ} does not depend on a choise of γ. But we
may give an alternative expression for $a_{\beta}^{\lambda}, \operatorname{codim} X_{\beta}=n$, if we know that the relation (2.6) is already valid for all links $\delta: \lambda \leftarrow \delta \leftarrow \gamma, \operatorname{codim} X_{\delta}<n$. Indeed, let us fix some flag

$$
\lambda_{n+1} \leftarrow \beta_{n} \leftarrow \gamma_{n-1} \leftarrow \ldots \leftarrow \gamma_{1} \leftarrow \gamma_{0}=\emptyset
$$

where subindices remind of codimensions of strata. Then

$$
\begin{gathered}
a_{\beta_{n}}^{\lambda_{n+1}}=\sum_{\substack{\delta_{n}: \delta_{n} \neq \beta_{n} \\
\lambda_{n+1}+\delta_{n} \leftarrow \gamma_{n-1}}} a_{\gamma_{n-1}}^{\delta_{n}}=\sum_{\substack{\delta_{n}: \delta_{n} \neq \beta_{n} \\
\lambda_{n+1}+\delta_{n} \ldots \gamma_{n-1}}} \sum_{\substack{\delta_{n-1}: \delta_{n-1} \neq \gamma_{n-1}+\delta_{n}-\delta_{n-1} \ldots \gamma_{n-2}}} a_{\gamma_{n-2}}^{\delta_{n-1}}=\ldots \\
\ldots=\sum_{\delta_{1}, \delta_{2}, \ldots, \delta_{n}} a_{\oint}^{\delta_{1}}
\end{gathered}
$$

where the last sum is taken over all the flags

$$
\lambda_{n+1} \leftarrow \delta_{n} \leftarrow \delta_{n-1} \leftarrow \ldots \leftarrow \delta_{1} \leftarrow \alpha
$$

such that $\delta_{n} \neq \beta_{n}, \delta_{n-1} \neq \gamma_{n-1}, \ldots \delta_{1} \neq \gamma_{1}$ and $\delta_{n} \leftarrow \gamma_{n-1}, \delta_{n-1} \leftarrow \gamma_{n-2}, \ldots$, $\delta_{2} \leftarrow \gamma_{1}$. It is not difficult to see that if δ_{1} is such that for hyperplane $\bar{X}_{\delta_{1}}$ we have

$$
\bar{X}_{\delta_{1}} \supset X_{\lambda_{n+1}}, \quad \text { but } \quad \bar{X}_{\delta_{1}} \not \supset X_{\rho_{n}}
$$

then there is unique flag satisfying the above conditions: $\bar{X}_{\delta_{k}}=\bar{X}_{\gamma_{k}} \cap \bar{X}_{\delta_{1}}$ and there is no otherwise. So we have

$$
\begin{equation*}
a_{\beta_{n}}^{\lambda_{n+1}}=\sum_{\substack{\delta_{1}>\lambda_{n+1}, \delta_{1} \not \beta_{1} \\ \text { codim } X_{\delta_{1}}=1}} a_{\theta_{1}}^{\delta_{1}} \tag{2.7}
\end{equation*}
$$

The rhs of (2.7) depends only on λ_{n+1} and β_{n}, which proves the proposition.
Remark 2.1 The relation (2.7) gives us direct geometrical description of the colouring of $\Gamma_{A}\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right)$.

Let us again consider (uncoloured) graph $\Gamma_{\mathcal{A}}$ describing the stratification of C^{N}. We attach to this graph a quiver Q_{Λ} as follows.
Definition 2.2 A quiver Q_{A} consists of a collection of finite-dimensional complex vectorspaces V_{β}, where β are vertices of $\Gamma_{\mathcal{A}}$, and of linear maps

$$
A_{\lambda \beta}^{-}: V_{\beta} \rightarrow V_{\lambda}, \quad A_{\beta \lambda}^{+}: V_{\lambda} \rightarrow V_{\beta}
$$

attached to all the arrows $\beta \rightarrow \lambda$ of $\Gamma_{\boldsymbol{\lambda}}$. These linear maps should satisfy the following relations:

$$
\begin{equation*}
\sum_{\beta: \lambda \leftarrow \beta \multimap \gamma} A_{\lambda \beta}^{-} A_{\bar{\beta} \gamma}^{-}=0 \tag{2.8}
\end{equation*}
$$

for any two vertices $\lambda, \gamma,: \lambda<\gamma, \operatorname{codim} X_{\lambda}=\operatorname{codim} X_{\gamma}+2$,

$$
\begin{equation*}
\sum_{\beta: \gamma \rightarrow \beta \rightarrow \lambda} A_{\gamma \beta}^{+} A_{\beta \lambda}^{+}=0 \tag{2.9}
\end{equation*}
$$

for any two vertices $\lambda, \gamma,: \lambda<\gamma, \operatorname{codim} X_{\lambda}=\operatorname{codim} X_{\gamma}+2$,

$$
\begin{equation*}
A_{\beta \lambda}^{+} A_{\lambda \mu}^{-}+A_{\beta \gamma}^{-} A_{\gamma \mu}^{+}=0 \tag{2.10}
\end{equation*}
$$

for any quadruple $\beta\rangle_{\lambda^{\ell}}^{\gamma} \mu$,

$$
\begin{equation*}
A_{\beta \lambda}^{+} A_{\lambda \mu}^{-}=0 \tag{2.11}
\end{equation*}
$$

for any triple $\beta_{\searrow_{\lambda}} \mu^{\mu}$, with no γ such that $\beta^{\swarrow^{\gamma}}{ }_{\lambda}$.
In other words, quiver $Q_{\boldsymbol{A}}$ is finite-dimensional representation of unital associative algebra $\overline{Q_{\mathcal{A}}}$ with a set of idempotents e_{β}, β being the vertices of $\Gamma_{\mathcal{A}}$, $\sum_{\beta} e_{\beta}=1$, (degree one) generators $A_{\lambda \beta}^{-}$and $A_{\beta \lambda}^{+}$for any arrow $\beta \rightarrow \lambda$ with natural commutation relations with idempotents e_{γ} :

$$
A_{\lambda \beta}^{ \pm} e_{\gamma}=\delta_{\beta, \gamma} A_{\lambda \beta}^{ \pm} \quad e_{\gamma} A_{\lambda \beta}^{ \pm}=\delta_{\gamma, \lambda} A_{\lambda \beta}^{ \pm}
$$

and quadratic relations (2.8)-(2.11).
We denote by $B_{\mathcal{A}}$ the category of all quivers $Q_{\mathcal{A}}$. In other words $B_{\mathcal{A}}$ is a category of all finite-dimensional representations of algebra $\overline{Q_{\mathcal{A}}}$.

Let now $\Gamma_{\boldsymbol{A}}\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right)$ be a compatible C -coloured graph with weights $\zeta_{1}, \ldots, \zeta_{n}$ and $a_{\beta_{i}}^{\beta_{j}}$ be its coloures. We define the full subcategory $B_{\mathcal{A}}(\bar{\zeta})=B_{\mathcal{A}}\left(\zeta_{1}, \ldots, \zeta_{n}\right)$ of B_{α} in the following way.
Definition 2.3 The category $B_{\mathcal{A}}(\bar{\zeta})$ consists of all quivers $Q_{\mathcal{A}}$ with a condition
the single eigenvalue of $A_{\beta \lambda}^{+} A_{\lambda \beta}^{-}$and of $A_{\lambda \beta}^{-} A_{\beta \lambda}^{+}$is equal to a_{β}^{λ}
for all arrows $\beta \rightarrow \lambda$ in $\Gamma_{\mathcal{A}}$.

Let now Q_{A} be a quiver from Definition 2.2. We may define a support of $Q_{\mathcal{A}}$ as a set of all vertices β of $\Gamma_{\mathcal{A}}$ such that $V_{\beta} \neq\{0\}$:

$$
\operatorname{supp} Q_{\mathcal{A}}=\left\{\beta: V_{\beta} \neq\{0\}\right\}
$$

The vertice $\beta \in \operatorname{supp} Q_{\mathcal{A}}$ is called a source of $Q_{\mathcal{A}}$ if there is no $\alpha \in \operatorname{supp} Q_{\mathcal{A}}$ such that $\alpha>\beta$.

We say also that a depth of a vertice $\beta \in \Gamma_{\Lambda}$ is equal to $m, d(\beta)=m$, if there is a source α of $Q_{\mathcal{A}}, \alpha>\beta$ such that $\operatorname{codim}_{\bar{X}_{\alpha}} X_{\beta}=m$ and there is no source γ of $Q_{A}, \gamma>\beta$ with $\operatorname{codim}_{\bar{X}_{\gamma}} X_{\beta}>m$.

In these notations the category $B_{\Lambda}^{\text {quasi }}$ of quasisemisimple quivers is defined as follows.

Definition 2.4 Quasisemisimple quiver is a direct sum of quivers Q from $B_{\mathcal{A}}$ satisfying the following conditions:
(i) The composition

$$
\begin{equation*}
A_{\beta \lambda}^{+} A_{\lambda \beta}^{-} \tag{2.13}
\end{equation*}
$$

has only one eigenvalue $a_{\beta}^{\lambda}=$ eig.v. $\left(A_{\beta \lambda}^{+} A_{\lambda \beta}^{-}\right)$for any arrow $\beta \rightarrow \lambda$ in $\Gamma_{\mathcal{A}}$;
(ii) An inequality

$$
\begin{equation*}
0<\operatorname{Re} a_{\beta}^{\lambda}<1 \tag{2.14}
\end{equation*}
$$

takes place for any source β of Q and for any arrow $\beta \rightarrow \lambda$;
(iii) If β is a vertice of depth one then

$$
\begin{equation*}
a_{\beta}^{\gamma}=a_{\beta}^{\gamma \prime} \tag{2.15}
\end{equation*}
$$

for any two arrows $\gamma \rightarrow \beta, \gamma^{\prime} \rightarrow \beta$ with γ and γ^{\prime} being sources of Q;
(iv) An operator

$$
\begin{equation*}
\bigoplus_{\substack{\alpha, \alpha \prime \prime \\ \alpha \rightarrow \beta, \alpha \prime \rightarrow \beta}} A_{\alpha \beta}^{+} A_{\beta \alpha \prime}^{-} \tag{2.16}
\end{equation*}
$$

is nilpotent in $\bigoplus_{\alpha: \alpha \rightarrow \beta} V_{\alpha}$ for any vertice β of depth more than one in Q.
Now we are able to present a combinatorial description of the category $\mathcal{C}_{A}^{q a}$ of quasisemisimple \mathcal{D}-modules over the arrangement of hyperplanes.

Theorem 2.1 The category $\mathcal{C}_{A}^{q s}$ is equivalent to the category $B_{\mathcal{A}}^{q}$.

The functor establishing an equivalence of categories looks as follows. Let M be a singleeigenvalued \mathcal{D}-module from $\mathcal{C}_{A}^{q s}$ and X_{α} be a stratum. Then the space V_{α} of a quiver is the space of flat sections of $\left.\Psi_{f_{\alpha}}(M)\right|_{X_{\alpha}}$ where the corresponding flat connection has a form $w=\sum_{\beta: \alpha \rightarrow \beta} A_{\alpha}^{\beta} d \log f_{\beta}, A_{\alpha}^{\beta} \in$ End $\left(V_{\alpha}\right)$.

The operators $A_{\alpha \beta}^{+}$and $A_{\beta \alpha}^{-}$are built from the canonical maps

Their explicit expressions are given by formulas (3.2), (3.3), (5.21)-(5.24).
The most important in applications are the following two theorems. The first of them describes an extension closure of all δ-functions of strata \bar{X}_{α}. The second describes locally indecomposable modules.

Theorem 2.2 The category \mathcal{C}_{A}^{0} is equivalent to $B_{\theta}(0, \cdots, 0)$.
Let $\mathcal{C}_{A}^{\text {ind }}(\bar{\zeta})=\mathcal{C}_{A}^{\text {ind }}\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right)$ consists of those locally indecomposable modules from $\mathcal{C}_{\mathcal{A}}^{\text {ind }}$, whose restrictions to the open stratum X_{0} are described by flat connections $\omega=\sum_{i} A_{i} d \log f_{i}$ with eig.v. $\left(A_{i}\right)=\zeta_{i}, i=1, \ldots, n$, acting in nonzero space V_{θ} of flat sections.

Theorem 2.3 The category $\mathcal{C}_{A}^{\text {ind }}(\bar{\zeta})$ is equivalent to the category of indecomposable objects of $B_{\theta}(\bar{\zeta})$ with nonzero space V_{θ}.

In the same way we can describe locally indecomposable modules with a support on some stratum X_{α}. The only thing to do is to exchange graph $\Gamma_{\mathcal{A}}$ by $\Gamma_{\mathcal{A}}$.

In the next subsection we show how to restore the \mathcal{D}-modules from their quiver data.

2.2 Restoring \mathcal{D}-modules from quiver's data

Let us remind once more that throughout this paper we are in agreement that for each stratum X_{α} we fix once forever a generic hyperplane $f_{\alpha}=0$ such that $\left.f_{\alpha}\right|_{X_{\alpha}}=0$. Moreover, for codimension n stratum X_{α} we need sometimes a generic flag $\vec{f}_{\alpha}=f_{\alpha}^{1}, \ldots, f_{\alpha}^{n}, f_{\alpha}^{1}=f_{\alpha}$ of functions being equal zero on X_{α} and generating a basis of $\left(\mathrm{C}^{N} / \bar{X}_{\alpha}\right)^{*}$.

We also fix nondegenerated complex skewsymmetric form

$$
<,>: \oplus \wedge^{k}\left(\left(\mathbf{C}^{N}\right)^{*}\right) \rightarrow \mathbf{C}
$$

which we use inambiguesly for all flag manifolds implicitely appearing in the calculations. One may think of a fixed generic coordinate system x_{1}, \ldots, x_{N} in C^{N} and put

$$
<f_{\alpha_{1}}, \ldots, f_{\alpha_{k}}>=\operatorname{det}\left(\frac{\partial f_{\alpha_{i}}}{\partial x_{j}}\right), \quad 1 \leq i, j \leq k
$$

We often simplify the notations writing $\left\langle\alpha, \beta>\right.$ instead of $\left\langle f_{\alpha}, f_{\beta}\right\rangle$, $\langle\vec{\alpha}\rangle$ instead of $\left\langle\vec{f}_{\alpha}\right\rangle$ and so on. The vector fields which we use here are always linear, that is, have a form

$$
L=\sum_{i=1}^{N} a_{i} \frac{\partial}{\partial x_{i}}, \quad a_{i} \in \mathrm{C}
$$

If we use the notation L_{α} for a vectorfield with an index of some stratum X_{α}, it means as a rule that this vector field goes along stratum X_{α}, in particular $L_{\alpha}\left(f_{\alpha}\right)=0$.

Now let Q_{α} be a quiver with vectorspaces V_{β} attached to vertices β and linear operators $A_{\lambda \beta}^{-}: V_{\beta} \rightarrow V_{\lambda}, A_{\beta \lambda}^{+}: V_{\lambda} \rightarrow V_{\beta}$ attached to the arrows $\beta \rightarrow \lambda$ (see Definition 2.2). We associate to this quiver \mathcal{D}_{X}-module $M\left(Q_{a}\right)$ in the following way: $M\left(Q_{\alpha}\right)$ is a free \mathcal{D}_{X}-module generated by the space $\oplus_{\beta} V_{\beta}, \beta$ being the vertices of $\Gamma_{\mathcal{A}}$ modulo the following relations:

$$
\begin{align*}
& L_{\beta}\left(v_{\beta}\right)=\sum_{\lambda: \beta \rightarrow \lambda} \frac{\left.<\vec{f}_{\beta}\right\rangle}{\left\langle f_{l} \vec{f}_{\beta}\right\rangle} L_{\beta}\left(f_{\lambda}\right) A_{\lambda \beta}^{-}\left(v_{\beta}\right)= \\
= & \sum_{\lambda: \beta \rightarrow \lambda} \frac{\left\langle\vec{f}_{\beta}>\right.}{\left\langle\vec{f}_{\lambda}\right\rangle} \frac{L_{\beta}\left(\vec{f}_{\lambda}\right)}{\vec{f}_{\beta}} A_{\lambda \beta}^{-}\left(v_{\beta}\right), \quad v_{\beta} \in V_{\beta} \tag{2.17}
\end{align*}
$$

if L_{β} is a linear vector field along stratum X_{β} and

$$
\begin{equation*}
f \cdot v_{\beta}=\sum_{\gamma: \gamma \rightarrow \beta} \frac{\left\langle f, \vec{f}_{\gamma}\right\rangle}{\left\langle\vec{f}_{\gamma}\right\rangle} A_{\gamma \beta}^{+}\left(v_{\beta}\right), \quad v_{\beta} \in V_{\beta} \tag{2.18}
\end{equation*}
$$

if f is a linear function, $\left.f\right|_{X_{\beta}}=0$.

Theorem 2.4 The functor $Q_{\alpha} \rightarrow M\left(Q_{\alpha}\right)$ establishes an equivalence of categories stated in the Theorems 2.1-2.3.

Note also that the relations (2.18) give possibility to describe $M\left(Q_{\alpha}\right)$ as a sheaf of \mathcal{O}_{X}-modules. For the basic open sets

$$
Y_{n}^{\lambda}=\left(\mathrm{C}^{N} \backslash \bigcup_{\gamma: \operatorname{codim} X_{\gamma}=n}\left\{f_{\gamma}=0\right\}\right) \cup\left\{f_{\lambda}=0\right\}
$$

where codim $X_{\lambda}=n$, the space of sections $\Gamma\left(M\left(Q_{\alpha}\right), Y_{n}^{\lambda}\right)$ is free $\mathcal{O}_{Y_{n}^{\lambda}}$-module generated by the spaces $V_{\beta}, \alpha \rightarrow \beta, \operatorname{codim} X_{\beta}<n$ and V_{λ} modulo the relations (2.18).

2.3 An example: Direct images of local systems

Let $\Omega\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ be a local system over the complement U_{1} to the arrangement of hyperplanes $\left\{f_{i}=0\right\}$ defined by a flat connection

$$
\omega=\sum A_{i} d \log f_{i}
$$

Let eig.v. $\left(A_{i}\right)=\zeta_{i}$. Then we can find direct images $j_{*} \Omega$ and $j!\Omega$, where $j: U_{\theta} \hookrightarrow \mathbb{C}^{N}$ is an inclusion, as universal object in $\mathcal{C}_{A}^{\text {ind }}\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right)$ representing the functors $F_{\Omega}^{*}: F_{\Omega}^{*}(M)=\operatorname{Hom}_{\mathcal{D}(U)}\left(j^{*} M, \Omega\right)$ and $F_{\Omega}^{!}: F_{\Omega}^{!}(M)=$ $\operatorname{Hom}_{\mathcal{D}(U)}\left(\Omega, j^{\dagger} M\right)$. Due to the equivalence of categories one can make these calculations inside $B_{\vartheta}(\vec{\zeta})$ by means of usual linear algebra.

Let us describe an answer for $j_{*} \Omega$, where Ω is one-dimensional local system

$$
\begin{equation*}
\omega=\sum a_{i} d \log f_{i} \quad a_{i} \in \mathbf{C} \tag{2.19}
\end{equation*}
$$

Denote by W_{m} a vector space over Cwith a basis $\left\langle e_{\beta}\right\rangle$, $\operatorname{codim} e_{\beta}=m$. Let X_{α} be a stratum of codimension n. Denote by $\overline{V_{\alpha}}$ the following subspace of $W_{0} \otimes W_{1} \otimes \cdots \otimes W_{n}:$

$$
\begin{equation*}
\overline{V_{\alpha}}=\bigoplus_{\substack{\text { Nll flags } \\ \alpha_{0}=\varnothing, \alpha_{n}=\alpha \rightarrow \alpha_{n}}} C e_{\alpha_{0}} \otimes e_{\alpha_{1}} \otimes \cdots \otimes e_{\alpha_{n}} \tag{2.20}
\end{equation*}
$$

and let $V_{\alpha} \subset \overline{V_{\alpha}}$ consists of all the elements

$$
\begin{equation*}
v_{\alpha}=\sum x_{\alpha_{0}, \ldots, \alpha_{n}} e_{\alpha_{0}} \otimes e_{\alpha_{1}} \otimes \cdots \otimes e_{\alpha_{n}}, \quad v_{a} \in \overline{V_{\alpha}} \tag{2.21}
\end{equation*}
$$

satisfying the equations

$$
\begin{equation*}
\sum_{\beta: \alpha_{i-1} \rightarrow \beta \rightarrow \alpha_{i+1}} x_{\alpha_{0}, \ldots \alpha_{i-1} \beta \alpha_{i+1} \ldots \alpha_{n}} e_{\alpha_{0}} \cdots \otimes e_{\alpha_{i-1}} \otimes e_{\beta} \otimes e_{\alpha_{i+1}} \cdots \otimes e_{\alpha_{n}}=0 \tag{2.22}
\end{equation*}
$$

for any fixed degenerated flag

$$
\theta=\alpha_{0} \rightarrow \alpha_{1} \rightarrow \cdots \rightarrow \alpha_{i-1}>\alpha_{i+1} \rightarrow \cdots \rightarrow \alpha_{n}=\alpha
$$

Let us fix some arrow $\alpha \rightarrow \beta$ in graph $\Gamma_{A}, \operatorname{codim} X_{\alpha}=n$. Then we can define operators $\overline{A_{\alpha \beta}^{+}}: \overline{V_{\beta}} \rightarrow \overline{V_{\alpha}}$ and $\overline{A_{\beta \alpha}}: \overline{V_{\alpha}} \rightarrow \overline{V_{\beta}}$ as follows:

$$
\begin{equation*}
\overline{A_{\alpha \beta}^{+}}\left(e_{\alpha_{0}} \otimes \cdots \otimes e_{\alpha_{n}} \otimes e_{\alpha_{n+1}=\beta}\right)=\delta_{\alpha, \alpha_{n}} \cdot e_{\alpha_{0}} \otimes \cdots \otimes e_{\alpha_{n}} \tag{2.23}
\end{equation*}
$$

and

$$
\begin{gather*}
\overline{A_{\beta \alpha}^{-}}\left(e_{\alpha_{0}} \otimes \cdots \otimes e_{\alpha_{n}=\alpha}\right)=\sum_{\substack{j: \operatorname{codim} X_{j=1}, j>\beta, j \ngtr \alpha}} a_{j} e_{\alpha_{0}} \otimes\left(e_{\alpha_{1}}-e_{j n \alpha_{0}}\right) \otimes \\
\otimes\left(e_{\alpha_{2}}-e_{j \cap \alpha_{1}}\right) \otimes \cdots \otimes\left(e_{\alpha_{n}}-e_{j n \alpha_{n-1}}\right) \otimes e_{\beta} \tag{2.24}
\end{gather*}
$$

where $j \cap \alpha_{i}$ is an index of a stratum $X_{j} \cap X_{\alpha_{i}}: X_{j \cap \alpha_{i}}=X_{j} \cap X_{\alpha_{i}}$.
One can check that operators $\overline{A_{\alpha \beta}^{+}}$and $\overline{A_{\beta_{\alpha}}^{-}}$correctly define by restriction the operators

$$
\begin{equation*}
A_{\alpha \beta}^{+}: V_{\beta} \rightarrow V_{\alpha} \quad \text { and } \quad A_{\beta_{\alpha}}^{-}: V_{\alpha} \rightarrow V_{\beta} \tag{2.25}
\end{equation*}
$$

Proposition 2.2 The quiver $Q\left(a_{1}, \ldots, a_{n}\right)$ defined in (2.20)-(2.25) describes direct image of local system (2.19) via the equivalence of categories of Theorem 2.3.

Remark $2.2 \mathcal{D}_{X}$-module $j_{*} \Omega$ can be realized in the space

$$
\mathrm{C}[X]\left[f_{1}^{-1}, \ldots, f_{n}^{-1}\right] \cdot f^{a}
$$

where $f^{a}=f_{1}^{a_{1}} \cdots f_{n}^{a_{n}}$ should be treated as a formal symbol defining an action of first order differential operator by Leibnitz rule. Then the space $V_{\alpha}, \operatorname{codim} X_{\alpha}=m$ (see (2.20)-(2.22)) is isomorphic to linear envelop of $f_{i_{1}}^{-1} \cdots f_{i_{\mathrm{m}}}^{-1} \cdot f^{\vec{a}}$ with $\left\{f_{i_{1}}=0\right\} \cap \cdots \cap\left\{f_{i_{\mathrm{m}}}=0\right\}=X_{\alpha}$. The equations (2.22) are equivalent to well known Orlik-Solomon relations for the products of $d \log f_{i}$.

We can attach to a quiver $Q\left(a_{1}, \ldots, a_{n}\right)$ a natural complex $\mathcal{C}\left(a_{1}, \ldots, a_{n}\right)$:

$$
\mathcal{C}^{i}\left(a_{1}, \ldots, a_{n}\right)=\bigoplus_{a: \operatorname{codim} X_{\alpha}=i} V_{\alpha}
$$

and differential $d: \mathcal{C}^{i} \rightarrow \mathcal{C}^{i+1}$ being equal to $\oplus A_{\beta_{\alpha}}^{-}, \operatorname{codim} X_{\alpha}=i\left(d^{2}=0\right.$ due to (2.8)).

In the case of zero weights complex $\mathcal{C}(0, \ldots, 0)$ coincides with OrlikSolomon algebra [OS], $[\mathrm{Br}]$ and its homology are equal to $H^{*}(U)$. Moreover, as it was proved in [VS1], the homologies of $\mathcal{C}\left(a_{1}, \ldots, a_{n}\right)$ are isomorphic to $H^{*}\left(U, \Omega\left(a_{1}, \ldots, a_{n}\right)\right.$ for $\left(a_{1}, \ldots, a_{n}\right)$ being close enough to zero.

3 Beilinson's glueing theorem

3.1 Glueing of perversed sheaves

Let X be a smooth algebraic variety over $\mathrm{C}, \mathcal{M}(X)$ be a category of perversed constructible sheaves with respect to a middle perversity [BBD]. Let $f \rightarrow \mathrm{C}$ be an algebraic function, $Y=f^{-1}(0), U=f^{-1}(\mathrm{C} \backslash\{0\}), j: U \rightarrow X, i: \rightarrow X$ be corresponding imbeddings. Let

$$
\boldsymbol{\Psi}_{f}^{\mathrm{grom}}: \mathcal{M}(U) \rightarrow \mathcal{M}(Y)
$$

and

$$
\boldsymbol{\Phi}_{f}^{\text {seom }}: \mathcal{M}(X) \rightarrow \mathcal{M}(Y)
$$

denote functors of neaby and vanishing cycles (in the notations of [D] $\Psi_{f}^{\text {grom }}$ $\left.=\boldsymbol{\Psi}_{\eta, f} j^{*}\right)$. The functors $\boldsymbol{\Psi}_{f}^{\text {geom }}$ and $\boldsymbol{\Phi}_{f}^{\text {geom }}$ come up with a canonical automorphism $T: \boldsymbol{\Psi}_{f}^{\text {geom }} \rightarrow \boldsymbol{\Psi}_{f}^{\text {geom }}$ (monodromy) and with natural transformations

$$
u: \boldsymbol{\Psi}_{f}^{\text {geom }} \rightarrow \boldsymbol{\Phi}_{f}^{\text {geom }}, \quad v: \boldsymbol{\Phi}_{f}^{\text {geom }} \rightarrow \boldsymbol{\Psi}_{f}^{\text {seom }}
$$

such that $v u=T-1$.
Let us denote by $\mathcal{M}_{f}(U, Y)$ the category whose objects are quadruples $\left(M_{U}, M_{Y} ; u, v\right)$ where $M_{Y} \in \mathcal{M}(U), M_{Y} \in \mathcal{M}(Y)$ and $u: \boldsymbol{\Psi}_{\eta, f}\left(M_{U}\right) \rightarrow M_{Y}$, $v: M_{Y} \rightarrow \boldsymbol{\Psi}_{\eta, f}\left(M_{U}\right)$ are such that $v u=T-1$.

The assignment

$$
M \rightarrow\left(j^{*} M, \boldsymbol{\Phi}_{f}^{\mathrm{geom}}(M) ; u, v\right)
$$

defines a functor

$$
G: \mathcal{M}(X) \rightarrow \mathcal{M}_{f}(U, Y)
$$

Theorem 3.1 [B] (see also [Ver]). G is an equivalence of categories.
Let λ be a complex number, $0 \leq \operatorname{Re} \lambda<1$. We may define a full subcategory $\mathcal{M}_{f, \lambda}(U, Y)$ of $\mathcal{M}_{f}(U, Y)$ consisting of the quadruples ($M_{U}, M_{Y} ; u, v$) with a condition that endomorphisms $1+u v$ and $1+v u$ have $e^{2 \pi i \lambda}$ as a single eigenvalue. We put also

$$
\mathcal{M}_{f, \lambda}(X)=G^{-1}\left(\mathcal{M}_{f, \lambda}(U, Y)\right), \quad \mathcal{M}_{f, \lambda}(U)=j^{*}\left(\mathcal{M}_{f, \lambda}(X)\right)
$$

We call the perverse sheaves from $\mathcal{M}_{f, \lambda}(X)$ and $\mathcal{M}_{f, \lambda}(U) \lambda$-monodromic with respect to f. Standard arguments from linear algebra show that for $\lambda \notin \mathbf{Z}$ any perverse sheave from $\mathcal{M}_{f, \lambda}(X)$ is uniquely determined by its restriction to U, in other words,

$$
j^{*}: \mathcal{M}_{f, \lambda}(X) \rightarrow \mathcal{M}_{f, \lambda}(U)
$$

is an equivalence of categories for $\lambda \notin \mathbf{Z}$ and there is a decomposition

$$
\mathcal{M}(X) \simeq \bigoplus_{\lambda: 0 \leq \operatorname{Re} \lambda<1} \mathcal{M}_{f, \lambda}(X)
$$

3.2 Glueing in terms of \mathcal{D}-modules

Let us keep the previous notation. Let $\mathcal{D}(X)$ be a category of holonomic $\mathcal{D}_{X^{-}}$ modules with regular singularities. Due to the comparison theorem [BBD] de Rham functor $D R: \mathcal{D}(X) \rightarrow \mathcal{M}(X)$ establishes an equivalence of categories. In particular we are able to introduce via this equivalence the categories $\mathcal{D}_{\lambda, f}(X)$ and $\mathcal{D}_{\lambda, f}(U)$ of λ-monodromic with respect to $f \mathcal{D}$-modules. Following [B] we may describe functor $\boldsymbol{\Psi}$ and glueing theorem 3.1 more explicitely.

Let N be a holonomic $\mathcal{D}(U)$-module. We define $\boldsymbol{\Psi}^{\lambda}(N)$ to be maximal $\mathcal{D}_{X}[[s+\lambda]]$ factormodule of $j_{*}\left(N \cdot f^{s}\right)[[s+\lambda]]$ with a support on Y. Here s is a formal variable, λ is a complex number, $0 \leq \operatorname{Re} \lambda<1 . \mathcal{D}_{X}[[s+\lambda]]$ module $j_{*}\left(N \cdot f^{s}\right)[[s+\lambda]]$ consists of expressions $\sum_{i} g_{i} n_{i} f^{k_{i}} P_{i}(s) \cdot f^{s}$ where $g_{i} \in \mathcal{O}(X), n_{i}$ are the elements of $N, k_{i} \in \mathbf{Z}, P_{i}(s)$ are Taylor series on $s+\lambda$, f^{4} is a formal symbol, defining an action of vector fields L on X :

$$
L\left(n \cdot f^{s}\right)=\left(L(n)+s n L(f) f^{-1}\right) \cdot f^{\prime}
$$

Then, if $N \in \mathcal{D}_{\lambda, f}(U), \boldsymbol{\Phi}_{f}^{\text {geam }}(D R(M)) \simeq D R\left(\boldsymbol{\Psi}^{\lambda}(N)\right)$ and the multiplication by $-s$ defines the action of logariphm of monodromy $S=\log T$ on $\boldsymbol{\Psi}^{\lambda}(N)$ with eig.value $(S)=\lambda$.

Moreover, it is not difficult to see that if $\lambda \notin \mathbf{Z}$ then $\boldsymbol{\Psi}^{\lambda}(N) \simeq \boldsymbol{\Psi}^{0}(N \otimes$ $f^{-\lambda}$), where $f^{-\lambda}$ is irreducible \mathcal{D}_{U}-module which corresponds to one-dimensional local system on U with a flat connection

$$
\omega=-\lambda d \log f
$$

The Beilinson's glueing theorem can be read in \mathcal{D}-modules language as follows.

Theorem 3.2 The category $\mathcal{D}_{\lambda, f}(X)$ of λ-monodromic with respect to $f \mathcal{D}$ modules is equivalent to the category $\mathcal{D}_{\lambda, f}(U, Y)$ of quadruples $(M, N ; \alpha, \beta)$ where $M \in \mathcal{D}_{\lambda}(U), N \in \mathcal{D}(Y)$ and $\alpha: \boldsymbol{\Psi}^{\lambda}(M) \rightarrow N, \beta: N \rightarrow \boldsymbol{\Psi}^{\lambda}(M)$ are such that $S=\alpha \beta$ with a condition that eig.v. $(\beta \alpha)=$ eig.v. $(\alpha \beta)=\lambda$.

We need also an explicit form of an inverse functor

$$
\begin{equation*}
F_{\lambda, f}: \mathcal{D}_{\lambda, f}(U, Y) \rightarrow \mathcal{D}_{\lambda, f}(X) \tag{3.1}
\end{equation*}
$$

Consider first the case $\lambda=0$. For any $M \in \mathcal{D}(U)$ let $\Xi^{0}(M)$ be the maximal factormodule of $j_{*}\left(N \cdot f^{s}\right)[[s]$] coinciding with M on U. Let now $(M, N ; \alpha, \beta) \in \mathcal{D}_{0, f}(U, Y)$. We put $F_{0, f}(M, N ; \alpha, \beta)$ to be the homology of a complex

The functor $F_{0, f}$ establishes an equivalence of categories $\mathcal{D}_{0, f}(U, Y)$ and $\mathcal{D}_{0, f}(X)$. Note also that the canonical \mathcal{D}_{Y}-module $\boldsymbol{\Phi}_{f}^{0}(M), M \in \mathcal{D}_{0}(X)$ is defined in the case $\lambda=0$ also as homology of natural complex

$$
j_{!} j^{*} M \rightarrow \Xi^{0}\left(j^{*} M\right) \oplus M \rightarrow j_{*} j^{*} M
$$

For $\lambda \neq 0,0<\operatorname{Re} \lambda<1$ we know that thr categories $\mathcal{D}_{\lambda, f}(X)$ and $\mathcal{D}_{\lambda, f}(U, Y)$ are equivalent to the category $\mathcal{D}_{\lambda, f}(U)$. To make the construction to be consistent with the case $\lambda=0$ we define an equivalence $F_{\lambda, f}$: $\mathcal{D}_{\lambda, f}(U, Y) \rightarrow \mathcal{D}_{\lambda, f}(X)$ as (a bit nonnatural) the following composition:

$$
\begin{align*}
F_{\lambda, f}= & \left(j_{*} f^{\lambda} \otimes\right) \cdot F_{0, f} \cdot\left(f^{-\lambda} \otimes, \Psi^{\lambda}\right): \quad(M, N ; \alpha, \beta) \xrightarrow{\left(f^{-\lambda} \otimes, \boldsymbol{\Psi}^{\lambda}\right)} \\
\rightarrow\left(M \otimes f^{-\lambda},\right. & \left.\Psi^{\lambda}(M) ; \alpha \beta-\lambda, 1\right) \xrightarrow{F_{0, f}} F_{0, f}\left(M \otimes f^{-\lambda}, \mathbf{\Psi}^{\lambda}(M) ; \alpha \beta-\lambda, 1\right) \rightarrow \\
& \xrightarrow{j . f^{\lambda} \otimes} j_{*} f^{\lambda} \otimes F_{0, f}\left(M \otimes f^{-\lambda}, \boldsymbol{\Psi}^{\lambda}(M) ; \alpha \beta-\lambda, 1\right) \tag{3.3}
\end{align*}
$$

4 Inductive description of the category $\mathcal{C}_{\mathcal{A}}^{q s}$

4.1 Plan of the construction

We come back to the notation of the sections 1 and 2 . We describe the category $\mathcal{C}_{A}^{q s}$ by induction on codimension of strata.

Let us first consider an open set $U_{1}=X \backslash \bigcup_{i}\left\{f_{i}=0\right\}, X=C^{N}$ of complement to the arranged hyperplanes; $j_{1}: U_{1} \hookrightarrow X$ being the inclusion. Then, due to the Definition 1.2, the category $\mathcal{C}_{1}=j^{*} \mathcal{C}_{\Lambda}^{9 s}$ is defined as a category of local systems described by flat connections

$$
\begin{equation*}
\omega=\sum_{i} A_{i} d \log f_{i} \tag{4.1}
\end{equation*}
$$

with a condition (1.2), meaning that all A_{i} admit simultenious Jordan block decomposition. Category \mathcal{C}_{1} is equivalent to a full subcategory of finitedimensional representations of quadratic algebra with generators A_{i} and the relations which one can recover rewriting the flatness condition of (4.1).

Next we look to the complement U_{2} to the union of fixed generic hyperplanes going through codimension 2 strata:

$$
U_{2}=X \backslash \bigcup_{\alpha: \operatorname{codim} X_{\alpha}=2}\left\{f_{\alpha}=0\right\}
$$

$j_{2}: U_{2} \hookrightarrow X$ being corresponding inclusion and describe the category $\mathcal{C}_{2}=$ $j_{2}^{*} \mathcal{C}_{A}^{q s}$. This description comes into steps. First we choose some codimension
one stratum $X_{i}=\left\{f_{i}=0\right\}$ and apply the glueing construction in order to glue X_{i} with U_{1}. It means that we consider a triple $Y^{i} \hookrightarrow X_{2}^{i} \hookleftarrow U_{1,2}$, where

$$
\begin{gather*}
U_{1,2}=X \backslash \bigcup_{\alpha: \operatorname{codim} X_{a}=1,2}\left\{f_{\alpha}=0\right\}, \tag{4.2}\\
X_{2}^{i}=\left\{f_{i}=0\right\} \bigcup U_{1,2}, \quad Y^{i}=\left\{f_{i}=0\right\} \cap X_{2}^{i} \tag{4.3}
\end{gather*}
$$

and apply Beilinson's construction to this triple. Now the spaces X_{2}^{i} are open sets in $U_{2}, j_{2}^{i}: X_{2}^{i} \hookrightarrow U_{2}$ being the inclusions and $U_{2}=U_{i} X_{2}^{i}$. Using the axioms of a sheaf for any $M \in \mathcal{C}_{2}$ we recover M by its restrictions $j_{2}^{i * *}$ to all the X_{2}^{i}.

In quite a similar manner we perform a general induction step. Assuming the knowledge of the category $\mathcal{C}_{n}=j_{n}^{*}\left(\mathcal{C}_{A}^{q 8}\right)$ on an open set U_{n} we obtain the description of $\mathcal{C}_{n+1}=j_{n+1}^{*}\left(\mathcal{C}_{A}^{q *}\right)$ on an open set U_{n+1}. Here $U_{k}=X \backslash$ $\mathrm{U}_{\text {a:codirn } X_{\alpha}=k}\left\{f_{\alpha}=0\right\}, j_{k}: U_{k} \hookrightarrow X$ being the corresponding inclusion. This is done by application of glueing construction to a triple $Y^{\beta} \hookrightarrow X_{n}^{\beta} \hookleftarrow U_{n, n+1}$, $\operatorname{codim} X_{\beta}=n$, where

$$
\begin{gather*}
U_{n, n+1}=X \backslash \bigcup_{\alpha: \text { codim } X_{\alpha}=n, n+1}\left\{f_{\alpha}=0\right\}, \\
X_{n}^{\beta}=\left\{f_{\beta}=0\right\} \bigcup U_{n, n+1}, \quad Y^{\beta}=\left\{f_{\beta}=0\right\} \bigcap X_{n}^{\beta} \tag{4.4}
\end{gather*}
$$

and then by recovering the sheaf of $\mathcal{D}_{U_{n}}$-modules by restrictions to X_{n}^{β}, $U_{\beta} X_{n}^{\beta}=U_{n+1}$.

It is important to emphazise that we have to use the glueing procedure for (4.4) twice, in two different ways. First we are to obtain the combinatorial data and calculate all new relations appearing in the glueing. Here we use directly Beilinson's Theorem 3.2. Then we need to realize explicitely \mathcal{D}-module given by these combinatorial data using functor $F_{\lambda, f}$ (see (3.1)(3.3)). Following these calculations we discover also that for each inductive step we have a splitting of the corresponding category \mathcal{C}_{n} described by the consistency conditions on the eigenvalues of monodromies (2.4). The new splitted terms should be supported on subglued stratum and do not appear in the description of locally indecomposable modules (Theorem 2.3).

The rest of this section is devoted to explicit inductive description of \mathcal{D} modules from $\mathcal{C}_{A}^{q s}$. In order to make exposition readible we first demonstrate the technique on more simple examples of codimension one and two strata and then pass to general induction step.

4.2 The flatness condition

Let us first make simple exercise and compute the relations on matrices A_{i} coming from the flatness of the connection (4.1). These relations should be well known (see, for instance [Ko] for Knizhnik-Zamolodchikov configuration) but we prefer to repeat them in our terms.

It is more convenient for us to admit poles along hyperplanes $f_{\alpha}=0$, $\operatorname{codim} X_{\alpha}=2$, in other words, to work in the space

$$
U_{2}=\mathbf{C}^{N} \backslash \bigcup_{\alpha: \operatorname{codim} X_{\alpha}=2}\left\{f_{\alpha}=0\right\}
$$

Let us fix some stratum X_{α} of codimension two. We can choose a pair of commuting linear vector fields L_{α} and M_{α} as follows: L_{α} be a generic vectorfield along $X_{\alpha}: L_{\alpha}\left(f_{\alpha}\right)=0, L_{\alpha}\left(f_{i}\right) \neq 0$ for all $i: i \rightarrow \alpha$ and M_{α} be transversal to f_{α} (like a gradient): $M_{\alpha}\left(f_{\alpha}\right) \neq 0$.

Let $X_{i} \cup X_{j}=\bar{X}_{\alpha}$. Then the functions f_{i}, f_{j} and f_{α} are linear dependent:

$$
\begin{equation*}
f_{j} \cdot\langle\alpha, i\rangle=f_{\alpha} \cdot\langle j, i\rangle+f_{i} \cdot\langle\alpha, j\rangle \tag{4.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\langle\alpha, i\rangle}{f_{\alpha} f_{i}}=\frac{\langle j, i\rangle}{f_{i} f_{j}}+\frac{\langle\alpha, j\rangle}{f_{j} f_{\alpha}} \tag{4.6}
\end{equation*}
$$

We know that for any linear vector field L

$$
\begin{equation*}
L(w)=\sum_{j} \frac{L\left(f_{j}\right)}{f_{j}} A_{j}(w), \quad w \in W \tag{4.7}
\end{equation*}
$$

where W is a basic space of sections of a vector bundle over U_{1}.
Substitutung L_{α} and M_{α} into (4.7) we see that

$$
\begin{gather*}
{\left[L_{\alpha}, M_{\alpha}\right](w)=\sum_{\substack{i, j: i \neq j \\
i \rightarrow \alpha, j \rightarrow \alpha}} \frac{L_{\alpha}\left(f_{i}\right) M_{\alpha}\left(f_{j}\right)-L_{\alpha}\left(f_{j}\right) M_{\alpha}\left(f_{i}\right)}{f_{i} f_{j}} A_{i} A_{j}(w)+} \\
 \tag{4.8}\\
\quad \text { +other terms }
\end{gather*}
$$

where "other terms" have in denominator functions f_{k} and f_{l} such that $\bar{X}_{\alpha} \not \subset$ $\left\{f_{k}=0\right\} \cap\left\{f_{l}=0\right\}$. Using linear dependance conditions (4.5) and (4.6) we
rewrite the first sum in rhs of (4.8) as

$$
\sum_{\alpha, i: i \rightarrow \alpha} \frac{L_{\alpha}\left(f_{i}\right) M_{\alpha}\left(f_{\alpha}\right)}{f_{\alpha} f_{i}}\left(\sum_{\substack{j: j \neq \alpha \\ j \neq i}}\left[A_{i}, A_{j}\right](w)\right)
$$

The functions $\frac{1}{f_{a} f_{i}}$ are linear independent now so we have the following relation which takes place for any flag $\theta \rightarrow i \rightarrow \alpha$:

$$
\begin{equation*}
\sum_{\substack{j: j \rightarrow \alpha \\ j \neq i}}\left[A_{i}, A_{j}\right]=0 \tag{4.9}
\end{equation*}
$$

We conclude that the category \mathcal{C}_{0} of flat connections (4.1) is equivalent to the category of finite dimensional representations of quadratic algebra with generators A_{i} and relations (4.9). This algebra may be viewed as infinitesimal version of fundamental group $\pi_{1}\left(\mathrm{C}^{N} \backslash \bigcup_{i}\left\{f_{i}=0\right\}\right)$.

4.3 Glueing of codimension 1 strata

For the simplisity of notations we reserve symbol X in this subsection for an open subset U_{2}

$$
U_{2}=\mathbf{C}^{N} \backslash \bigcup_{\alpha: \operatorname{codim} X_{\alpha}=2}\left\{f_{\alpha}=0\right\}
$$

All the games of this subsection will be inside $X=\tilde{U}_{2}$.
Just as before we start from $\mathcal{D}_{X_{t}}$-module M on an open stratum X_{*} which is generated by finite-dimensional vectorspace W, free over the ring of functions $\mathcal{O}\left(X_{\mathfrak{\theta}}\right)$ with the following action of linear vector fields L on $X_{\mathfrak{g}}$:

$$
\begin{equation*}
L(w)=\sum_{j: j \leftarrow b} \frac{L\left(f_{j}\right)}{f_{j}} A_{j}(w), \quad w \in W \tag{4.10}
\end{equation*}
$$

where A_{j} are some linear operators $A_{j}: W \rightarrow W$ with fixed eigenvalues a_{j}, $0 \leq \operatorname{Re} a_{j}<1$ subjected to relations (4.9).

Let us fix some codimension one stratum X_{i}. We may assume that $\mathcal{D}_{X^{-}}$ module N from $\mathcal{C}_{A}^{q s}$ with a support incide X_{i} is generated by some finitedimensional vectorspace V_{i} and is described by the relations

$$
\begin{equation*}
f_{i} v_{i}=0, \quad L_{i}\left(v_{i}\right)=\sum_{\alpha: \alpha \leftarrow i} \frac{L_{i}\left(f_{\alpha}\right)}{f_{\alpha}} A_{i}^{\alpha}\left(v_{i}\right), \quad v_{i} \in V_{i} \tag{4.11}
\end{equation*}
$$

where $L_{i}\left(f_{i}\right)=0, A_{i}^{\alpha}: V_{i} \rightarrow V_{i}$, with eig.v. $\left(A_{i}^{\alpha}\right)=a_{i}^{\alpha}$. Let us compute $\Psi_{i}(M)$, where $\Psi_{i}=\boldsymbol{\Psi}_{f_{i}}^{a_{i}}$. Applying some vectorfield L to $w f_{i}^{++k} \stackrel{d f n}{=} f_{i}^{k} w \cdot f_{i}^{s}$:

$$
\begin{equation*}
L\left(w f_{i}^{s+k}\right)=L\left(f_{i}\right)\left(s+k+A_{i}\right) w f_{i}^{s+k-1}+\sum_{j: j \neq i} \frac{L\left(f_{j}\right)}{f_{j}} A_{j}(w) f_{i}^{s+k} \tag{4.12}
\end{equation*}
$$

we see that one can invert this operator inside $\mathcal{D}_{X}\left[\left[s+a_{i}\right]\right]$ every time except $k=0$. So $\Psi_{i}(M)$ is generated by the elements $w f_{i}^{s-1}, w \in W$ and all the expressions $w f_{i}^{s}$ should be treated as zero. The relation (4.12) gives us also the action of monodromie:

$$
\begin{equation*}
S\left(w f_{i}^{s-1}\right)=-s w f_{i}^{s-1}=A_{i} w f_{i}^{s-1} \tag{4.13}
\end{equation*}
$$

From (4.12) we deduce also the action of vector fields $L_{i}, L_{i}\left(f_{i}\right)=0$ on $w f_{i}^{s-1}$:

$$
\begin{equation*}
L_{i}\left(w f_{i}^{s-1}\right)=\sum_{j: j \neq i} \frac{L_{i}\left(f_{j}\right)}{f_{j}} A_{j}(w) f_{i}^{s-1} \tag{4.14}
\end{equation*}
$$

In order to find morphisms between $\Psi(M)$ and N, we have to rewrite (4.14) in a form (4.11), in other words, to replace all the $f_{i}, \operatorname{codim} X_{i}=1$, in denominator of rhs of (4.14) by $f_{\alpha}, \operatorname{codim} X_{\alpha}=2$. This may be done by substituting (4.5) and (4.6) into (4.14). Finally we have

$$
\begin{equation*}
L_{i}\left(w f_{i}^{s-1}\right)=\sum_{\alpha: \alpha-i} \frac{L_{i}\left(f_{\alpha}\right)}{f_{\alpha}} \sum_{\substack{j ; j \rightarrow \alpha \\ j \neq i}} A_{j}(w) f_{i}^{s-1} \tag{4.15}
\end{equation*}
$$

We can interpret morphisms $\Psi_{i}(M) \underset{\boldsymbol{j}}{\mathfrak{a}} N$ from Theorem 3.2 in our case as commutative diagramm

with the relations

$$
\begin{align*}
& A_{\boldsymbol{9} \cdot}^{+} A_{i 9}^{-}=A_{i}, \tag{4.17}\\
& A_{i \theta}^{-}\left(\sum_{\substack{j: j \rightarrow \alpha \\
j \neq i}} A_{j}\right)=A_{i}^{\alpha} A_{i \theta}^{-}, \tag{4.18}\\
& \left(\sum_{\substack{j: j=\alpha \\
j \neq i}} A_{j}\right) A_{\oplus i}^{+}=A_{\emptyset i}^{+} A_{i}^{\alpha} \tag{4.19}
\end{align*}
$$

Let us look now to the eigenvalues of operators from (4.16)
Lemma 4.1 Linear operator

$$
\sum_{\substack{j ; j \rightarrow \alpha \\ j \neq i}} A_{j}
$$

has a single eigenvalue equal to $\sum_{\substack{j ; j \rightarrow \alpha \\ j \neq i}} a_{j}$.
Proof of the Lemma. We use standard linear algebra arguments and the basic relation (4.9). We see from (4.9) that an element $C_{\alpha}=\sum_{j: \alpha \curvearrowleft j} A_{j}$ commutes with all the $A_{i}, \alpha \leftarrow i$. The Jordan block decomposition of W to generalized eigenspaces of C_{α} is thus consistent with the action of all the A_{i}, $\alpha \leftarrow i$, because this decomposition can be performed by the action of some analytical functions of C_{α}. So we can restrict ourselves to a single eigenvalue of C_{α} and, applying trace arguments, observe that this eigenvalue is equal to $\sum_{j: \alpha \curvearrowleft j} a_{j}$. The statement of the Lemma now follows from the equality

$$
\sum_{\substack{j ; j \rightarrow \alpha \\ j \neq i}} A_{j}=C_{\alpha}-A_{i}, \quad\left[C_{\alpha}, A_{i}\right]=0
$$

Let us remind that we can freely change the matrices A_{j} in (4.10) or A_{i}^{α} in (4.11) by adding identiy matrices: it is equivalent to choosing another basis of sections in a vector bundle: $A_{j} \rightarrow A_{j}+k \Leftrightarrow w \rightarrow w f_{j}^{k}, k \in \mathbf{Z}$ and this is the only gauge freedom we have for the connections with constant coeffitients and singleeigenvalued matrices.

Comparing (4.11) and (4.17) we conclude via Lemma 4.1 that nontrivial morphisms between $\Psi_{i}(M)$ and N could exist only if the following relation on eigenvalues is valid:

$$
\begin{equation*}
a_{i}^{\alpha}=\sum_{\substack{j: j \rightarrow \alpha \\ j \neq i}} a_{j}(\bmod \mathbf{Z}) \tag{4.20}
\end{equation*}
$$

Supposing the validness of (4.20) we can normalize the realization of N in such a way that (4.20) takes place on the level of complex numbers:

$$
\begin{equation*}
a_{i}^{\alpha}=\sum_{\substack{j: j \rightarrow \alpha \\ j \neq i}} a_{j} \tag{4.21}
\end{equation*}
$$

If the relation (4.20) is not satisfied then both $A_{i 9}^{-}$and $A_{i i}^{+}$are equal to zero and the glued \mathcal{D}-module is a direct sum of \mathcal{D}-module without singularities along X_{i} and of \mathcal{D}-module, concentrated on X_{i} a

Let us now realize corresponding \mathcal{D}-module in terms of generators and relations. Assume first that $a_{i}=$ eig.v. $\left(A_{i}\right)=0$. Then on the level of generators monada (3.2) looks as follows:
so the homology of (4.22) are generated by the elements $\bar{w}=w f_{i}^{\prime}, w \in W$ and $\bar{v}_{i}=-v_{i}+\left(A_{0 i}^{+} v_{i}\right) f_{i}^{s-1}$.

Let us compute the action of vector fields L on \bar{w}, L_{i} on \bar{v}_{i} and the result of multiplication of \bar{v}_{i} by f_{i}. We have

$$
\begin{equation*}
L(\bar{w})=L\left(f_{i}\right)\left(A_{9 i}^{+} A_{i \Theta}^{-}+s\right) w f_{i}^{s-1}+\sum_{j: j \neq i} \frac{L\left(f_{j}\right)}{f_{j}} A_{j}(w) f_{i}^{\prime} \tag{4.23}
\end{equation*}
$$

because of (4.10). From (4.22) we see that elements $s w f_{i}^{s-1} \oplus A_{i \theta}^{-}(w)$ are boundaries and (4.23) may be rewritten as

$$
L(\bar{w})=L\left(f_{i}\right)\left(A_{\dot{9} i}^{+} A_{i \overline{9}}^{-} w f_{i}^{s-1}-A_{i \mathfrak{j}}^{-} w\right)+\sum_{j: j \neq i} \frac{L\left(f_{j}\right)}{f_{j}} A_{j}(w) f_{i}^{\prime}
$$

or

$$
\begin{equation*}
L(\bar{w})=L\left(f_{i}\right) \overline{A_{i \theta}^{-} w}+\sum_{j: j \neq i} \frac{L\left(f_{j}\right)}{f_{j}} \overline{A_{j} w} \tag{4.24}
\end{equation*}
$$

Next,

$$
\begin{equation*}
f_{i} \bar{v}_{i}=f_{i}\left(-v_{i}+\left(A_{\theta_{i}}^{+} v_{i}\right) f_{i}^{\prime-1}=A_{\oplus i}^{+}\left(v_{i}\right) f_{i}^{\prime}=\overline{A_{\theta i}^{+} v_{i}},\right. \tag{4.25}
\end{equation*}
$$

and, finally, the most difficult calculation:

$$
\begin{equation*}
L\left(\overline{v_{i}}\right)=-\sum_{\alpha: \alpha \leftarrow i} \frac{L_{i}\left(f_{\alpha}\right)}{f_{\alpha}} A_{i}^{\alpha} v_{i}+\sum_{\alpha: \alpha \leftarrow i} \sum_{\substack{j: j \rightarrow \alpha \\ j \neq i}} \frac{L\left(f_{j}\right)}{f_{j}} A_{j} A_{b i}^{+} v_{i} f_{i}^{s-1} \tag{4.26}
\end{equation*}
$$

Using linear dependance condition (4.6) we rewrite (4.26) as

$$
\begin{align*}
L\left(\overline{v_{i}}\right) & =\sum_{\alpha: \alpha \leftarrow i} \frac{L_{i}\left(f_{\alpha}\right)}{f_{\alpha}}\left(-A_{i}^{\alpha} v_{i}+\sum_{\substack{j: j \rightarrow \alpha \\
j \neq i}} A_{j} A_{\otimes i}^{+} v_{i} f_{i}^{\prime-1}\right)+ \\
& +\sum_{\alpha: \alpha \leftarrow i} \frac{L\left(f_{j}\right)}{f_{j}} \sum_{\substack{j: j \rightarrow \alpha \\
j \neq i}} \frac{\left\langle\alpha, j>A_{j} A_{j i}^{+}\left(v_{i}\right)\right.}{\langle i, \alpha\rangle} f_{j}^{s} \tag{4.27}
\end{align*}
$$

Then we substitute the relation (4.19) into (4.27):

$$
\begin{aligned}
L\left(\overline{v_{i}}\right) & =\sum_{\alpha: \alpha \leftarrow i} \frac{L_{i}\left(f_{\alpha}\right)}{f_{\alpha}}\left(-A_{i}^{\alpha} v_{i}+A_{\dot{\oplus i}}^{+} A_{i}^{\alpha} v_{i} f_{i}^{f-1}\right)+ \\
& +\sum_{\alpha: \alpha \leftarrow i} \frac{L\left(f_{j}\right)}{f_{j}} \sum_{\substack{j: j \rightarrow \alpha \\
j \neq i}} \frac{\langle\alpha, j>}{<i, \alpha>} \frac{A_{j} A_{\hat{f i}_{i}}^{+} v_{i}}{f_{j}}
\end{aligned}
$$

which means that

$$
\begin{equation*}
L\left(\overline{v_{i}}\right)=\sum_{\alpha: \alpha \leftarrow i} \frac{L_{i}\left(f_{\alpha}\right)}{f_{\alpha}}\left(\overline{A_{i}^{\alpha} v_{i}}+\sum_{\substack{j: j \neq \alpha \\ j \neq i}} \frac{\langle\alpha, j>}{\langle i, \alpha>} \frac{\overline{A_{j} A_{\phi_{i}}^{+} i_{i}}}{f_{j}}\right) \tag{4.28}
\end{equation*}
$$

We conclude that the glued \mathcal{D}-module corresponding to diagram (4.16) is generated by elements $\bar{w}, w \in W$ and $\overline{v_{i}}, v_{i} \in V_{i}$, and is defined by the relations (4.24), (4.25) and (4.28).

In the case of nonintegral eigenvalue of monodromie S (more precisely, $0<\operatorname{Re} a_{i}<1, a_{i}=$ eig.v. A_{i}) we should, due to prescription (3.3), put first in the diagram (4.16) W instead of V_{i}, identity operator instead of $A_{\oplus i}^{+}$, and $A_{i}-a_{i} \cdot$ Id instead of $A_{i 9}^{-}$and compute the \mathcal{D}-module coming from corresponding monada (4.22). Then we should tensor multiply the result by $j_{i}^{*}\left(f_{i}^{a_{i}}\right)$ where $j_{i}: X \backslash X_{i} \hookrightarrow X$ being the inclusion.

The generators of the resulting module are $\tilde{w}=\bar{w} \otimes f_{i}^{a_{i}}$ and $\tilde{v}_{i}=\overline{v_{i}} \otimes f_{i}^{a_{i}}$ where \bar{w} and $\overline{v_{i}}$ are generators of homology of monada; moreover from (4.25) we can treate \tilde{v}_{i} also as $\bar{w} \otimes f_{i}^{a_{i}-1}$. Then, for instance,

$$
\begin{gathered}
L(\tilde{w})=L(\bar{w}) \otimes f_{i}^{a_{i}}+a_{i} \bar{w} \otimes f_{i}^{a_{i}-1}= \\
L\left(f_{i}\right) \overline{\left(A_{i}-a_{i}\right) w} \otimes f_{i}^{a_{i}-1}+\sum_{j: j \neq i} \frac{L\left(f_{j}\right)}{f_{j}} \overline{A_{j} w} \otimes f_{i}^{a_{i}}+a_{i} \bar{w} \otimes f_{i}^{a_{i}-1}= \\
L\left(f_{i}\right) \overline{A_{i} w} \otimes f_{i}^{a_{i}-1}+\sum_{j: j \neq i} \frac{L\left(f_{j}\right)}{f_{j}} \overline{A_{j} w} \otimes f_{i}^{a_{i}}
\end{gathered}
$$

and if we denote $A_{\phi_{i}}^{+}=i d \otimes f: \bar{w} \otimes f_{i}^{a_{i}-1} \rightarrow \bar{w} \otimes f_{i}^{a_{i}}, A_{i \phi}^{-}=A_{i} \otimes f_{i}^{-1}:$ $\bar{w} \otimes f_{i}^{a_{i}} \rightarrow \bar{w} \otimes f_{i}^{a_{i}-1}, A_{i}^{\alpha}=\sum_{\substack{j: j \rightarrow \alpha \\ j \neq i}} A_{j} \otimes i d$ we observe that the relations (4.17)-(4.19) remain unchanged just as defining relations (4.24), (4.25) and (4.28) for the glued \mathcal{D}-module.

Moreover, we can decompose invertible operator A_{i} into some other product $A_{i}=A_{\oplus i}^{+} A_{i \theta}^{-}$of invertible operators and make a change of variables in the space $\widetilde{V_{i}}$, identifying $\widetilde{v_{i}}$ with $\overline{A_{\oplus i}^{+} v_{i}} \otimes f_{i}^{a_{i}-1}$. Then $A_{i}^{\alpha}=\left(A_{\emptyset_{i}}^{+}\right)^{-1}\left(\sum_{\substack{j: j \rightarrow \alpha \\ j \neq i}} A_{j}\right)$ $A_{\oplus i}^{+}$and the condition (4.18) follows from (4.9). The defining relations (4.24), (4.25) and (4.28) have the same form due to the rules of changes of variables.

Let M now be some \mathcal{D}_{X}-module (remind once more that X is still $X=$ $U_{2}=\mathrm{C}^{N} \backslash \bigcup_{\alpha: \text { codim } X_{\alpha}=2}\left\{f_{\alpha}=0\right\}$). The formulas (4.24), (4.25) and (4.28) define restriction of M to open sets $X_{2}^{i}=U_{2} \cap_{j: \operatorname{codim} X_{j}=1, j \neq i}\left\{f_{j} \neq 0\right\}$. We can restore M as a sheaf and define it by its global sections. These sections are, due to (4.25)

$$
w, \quad w \in W
$$

and

$$
v_{i}=\left\{\begin{array}{r}
v_{i} \text { over } X_{2}^{i} \\
f_{i}^{-1} A_{\oplus i}^{+} v_{i} \text { over } X_{2}^{j}, \quad j \neq i
\end{array} \quad v_{i} \in V_{i}\right.
$$

In terms of these global sections \mathcal{D}_{X}-module M is described after the renormalization $A_{i g}^{-} \rightarrow\left(<f_{i}>\right)^{-1} A_{i \theta}^{-}, A_{6 i}^{+} \rightarrow<f_{i}>A_{\theta_{i}}^{+}$by the following relations on its generators $w \in W$ and $v_{i} \in V_{i}$.

$$
\begin{gather*}
L(w)=\sum_{\substack{i ; \phi \rightarrow i}} \frac{L\left(f_{i}\right)}{\left\langle f_{i}\right\rangle} A_{i 9}^{-} w \tag{4.29}\\
L_{i}\left(v_{i}\right)=\sum_{\alpha: i \rightarrow \alpha} \frac{L_{i}\left(f_{\alpha}\right)}{f_{\alpha}}\left(A_{i}^{\alpha} v_{i}+\sum_{\substack{i ; j \rightarrow \alpha \\
j \neq i}} \frac{\langle\alpha j\rangle}{\langle j\rangle} \cdot \frac{\langle i\rangle}{\langle i \alpha\rangle} A_{j \phi}^{-} A_{\emptyset i}^{+} v_{i}\right) \tag{4.30}
\end{gather*}
$$

if $L_{i}\left(f_{i}\right)=0$ and

$$
\begin{equation*}
f_{i} v_{i}=<f_{i}>A_{d i}^{+} v_{i} \tag{4.31}
\end{equation*}
$$

with operators $A_{\oplus i}^{+}: W \rightarrow V_{i}, A_{i \oplus}^{-}: V_{i} \rightarrow W$ and $A_{i}^{\alpha}: V_{i} \rightarrow V_{i}$ subjected to the relations

$$
\begin{align*}
& A_{i \emptyset}^{-}\left(\sum_{\substack{j: j \rightarrow \alpha \\
j \neq i}} A_{\oplus j}^{+} A_{j \emptyset}^{-}\right)=A_{i}^{\alpha} A_{i \emptyset}^{-} \tag{4.32}\\
& \left(\sum_{\substack{j: j \rightarrow \alpha \\
j \neq i}} A_{\emptyset j}^{+} A_{j \emptyset}^{-}\right) A_{\emptyset i}^{+}=A_{ө i}^{+} A_{i}^{\alpha} \tag{4.33}
\end{align*}
$$

The results of this subsection may be resumed in the following proposition.

Proposition 4.1 Let $j_{2}: U_{2} \hookrightarrow \mathrm{C}^{N}$ be an inclusion. Then any $\mathcal{D}_{U_{2}}$-module M from $j_{2}^{*}\left(\mathcal{C}_{A}^{q 9}\right)$ can be defined by the formulas (4.29)-(4.91). Corresponding linear algebra data $W, V_{i}, A_{9 i}^{+}: W \rightarrow V_{i}, A_{i d}^{-}: V_{i} \rightarrow W$ and $A_{i}^{\alpha}: V_{i} \rightarrow V_{i}$ are subjected to the relations (4.32), (4.93).

Moreover, we have the following restriction on eigenvalues

$$
\begin{gathered}
a_{i}=\text { eig.v. }\left(A_{Ð i}^{+} A_{i \emptyset}^{-}\right), \quad a_{i}^{\prime}=\text { eig.v. }\left(A_{i \emptyset}^{-} A_{\oplus i}^{+}\right), \quad a_{i}^{\alpha}=\text { eig.v. } A_{i}^{\alpha}: \\
a_{i}^{\prime}=a_{i} \quad a_{i}^{\alpha}=\sum_{\substack{j: j \rightarrow \alpha \\
j \neq i}} a_{j}
\end{gathered}
$$

which are not valid only if M is a direct sum of a module without singularities on some strata $X_{i_{1}}, \ldots, X_{i_{k}}$ and of modules supported on these strata.

4.4 Glueing of codimension 2 strata

Let now

$$
X=U_{3}=\mathrm{C}^{N} \backslash \bigcup_{\alpha: \operatorname{codim} X_{\mathrm{a}}=3}\left\{f_{\alpha}=0\right\}
$$

We start from \mathcal{D}_{X}-module M, whose restriction to

$$
U_{2,3}=\mathrm{C}^{N} \backslash \bigcup_{\alpha: \operatorname{codim} X_{\alpha}=2,3}\left\{f_{\alpha}=0\right\}
$$

is given by the relations (4.29) and (4.30). Let X_{α} be a codimension two stratum. Following the Definition 1.1 we may assume that $\Phi_{\alpha}(M) \stackrel{d f n}{=} \Phi_{f_{\mathrm{a}}}(M)$ is generated by vectorspace V_{α} with the relations

$$
\begin{equation*}
L_{\alpha}\left(v_{\alpha}\right)=\sum_{\lambda: \alpha \rightarrow \lambda} \frac{L_{\alpha}\left(f_{\lambda}\right)}{f_{\lambda}} A_{\alpha}^{\lambda} v_{\alpha} \tag{4.34}
\end{equation*}
$$

for any vectorfield L_{α} along X_{α} and

$$
\begin{equation*}
f v_{\alpha}=0 \quad \text { if }\left.f\right|_{X_{\alpha}}=0 \tag{4.35}
\end{equation*}
$$

Let us compute $\Psi_{\alpha}(M) \stackrel{d f n}{=} \boldsymbol{\Psi}_{f_{\alpha}}\left(\left.M\right|_{U_{2,3}}\right)$. Applying arbitrary vector field $L, L\left(f_{\alpha}\right) \neq 0$ to $w f_{\alpha}^{\prime}:$

$$
L\left(w f_{\alpha}^{s}\right)=s L\left(f_{\alpha}\right) w f_{\alpha}^{s-1}+\sum_{i} \frac{L\left(f_{i}\right)}{\langle i\rangle} A_{i 9}^{-}(w) f_{\alpha}^{s}
$$

we see that the only possibility we have is to put $w f_{\alpha}^{s}$ to be equal zero in $\Psi_{\alpha}(M)$ and monodromie operator $S\left(w f_{\alpha}^{s}\right)=0$. Analogously, applying $L_{i}, L_{i}\left(f_{i}\right)=0$ to $v_{i} f_{\alpha}^{s}$ we see that

$$
\begin{equation*}
v_{i} f_{\alpha}^{\prime}=0 \tag{4.36}
\end{equation*}
$$

in $\Psi_{\alpha}(M)$ and

$$
\begin{gather*}
S\left(v_{i} f_{\alpha}^{s-1}\right)=-s v_{i} f_{\alpha}^{s-1}= \\
A_{i}^{\alpha} v_{i} f_{\alpha}^{s-1}+\sum_{\substack{j: j \rightarrow \alpha \\
j \neq i}} \frac{\langle\alpha j\rangle}{\langle j>} \cdot \frac{\langle i\rangle}{\langle i \alpha\rangle} A_{j \phi}^{-} A_{\hat{j} i}^{+} v_{i} f_{\alpha}^{\prime-1} \tag{4.37}
\end{gather*}
$$

The last two statements are based on the following Lemma, which is proved analogously to Lemma 4.1.

Lemma 4.2 An operator

$$
\bigoplus_{i: i \rightarrow \alpha}\left(A_{i}^{\alpha}+\sum_{\substack{j: j \neq \alpha \\ j \neq i}} \frac{\langle\alpha j\rangle}{\langle j\rangle} \cdot \frac{\langle i\rangle}{\langle i \alpha\rangle} A_{j \boxminus}^{-} A_{i i}^{+}\right)
$$

is nilpotent in $\oplus_{i: i \rightarrow \alpha} V_{i}$ provided the relations (4.32), (4.33) (4.21) are satisfied.
Note that for \mathcal{D}-modules supported on codimension one strata we also have a basic statement (4.36), because this case reduces to the previous subsection and if such a module is a direct summand of singleeigenvalued module $\left.M\right|_{U_{2,3}}$ then by Definition 1.1 zero monodromie eigenvalue and again the statements (4.36) and (4.37).

We are going now to compute $\mathcal{D}_{\left\{f_{a}=0\right\}}$-module structure of $\Psi_{a}(M)=$ $\Psi_{\alpha}^{0}(M)$ in terms of (4.29)-(4.30). Let $i \rightarrow \alpha$ and g_{α} be some linear function, $\left.g_{\alpha}\right|_{X_{\alpha}}=0, g_{\alpha}$ not proportional to f_{α}. Then f_{α}, g_{α} and f_{i} are linear dependant:

$$
\begin{equation*}
g_{\alpha}<f_{\alpha} f_{i}>=f_{i}<f_{\alpha} g_{\alpha}>+f_{\alpha}<g_{\alpha} f_{i}> \tag{4.38}
\end{equation*}
$$

and from (4.31) and (4.36) we have

$$
\begin{equation*}
g_{\alpha} \cdot v_{i} f_{\alpha}^{s-1}=\frac{\left.<f_{\alpha} g_{\alpha}><f_{i}\right\rangle}{\left\langle f_{\alpha} f_{i}\right\rangle} A_{\phi_{i}}^{+} v_{i} f_{\alpha}^{s-1} \tag{4.39}
\end{equation*}
$$

We have also

$$
\begin{equation*}
M_{\alpha}\left(w f_{\alpha}^{s-1}\right)=\sum_{i} \frac{M_{\alpha}\left(f_{i}\right)}{\left.<f_{i}\right\rangle} A_{i ब}^{-} w f_{\alpha}^{s-1} \tag{4.40}
\end{equation*}
$$

for any vectorfield M_{α} along $\left\{f_{\alpha}\right\}=0 ; M_{\alpha}\left(f_{\alpha}\right)=0$ and

$$
\begin{equation*}
L_{\alpha}\left(v_{i} f_{\alpha}^{s-1}\right)=\sum_{\substack{\beta: i \rightarrow \beta \\ \beta \neq \alpha}} \frac{L_{\alpha}\left(f_{\beta}\right)}{f_{\beta}}\left(A_{i}^{\beta} v_{i}+\sum_{\substack{j: j \rightarrow \beta \\ j \neq i}} \frac{\langle\beta j\rangle}{\langle j\rangle} \cdot \frac{\langle i \beta\rangle}{\langle i\rangle} A_{j \boxminus}^{-} A_{\emptyset i}^{+} v_{i}\right) f_{\alpha}^{\prime-1} \tag{4.41}
\end{equation*}
$$

In order to compare the expressions (4.34), (4.40) and (4.41) we have to put together all the terms with $i \rightarrow \alpha$ in rhs of (4.40), and for any given stratum X_{λ} of codimension 3 all the terms with $\beta \rightarrow \lambda$ in rhs of (4.41). Using (4.38) again, we obtain first

$$
\begin{equation*}
M_{\alpha}\left(w f_{\alpha}^{s-1}\right)=\sum_{i: i \rightarrow \alpha} \frac{\left.M_{\alpha}\left(g_{\alpha}\right)<f_{i} f_{\alpha}\right\rangle}{\left\langle g_{\alpha} f_{\alpha}\right\rangle\left\langle f_{i}\right\rangle} A_{i \phi}^{-} w f_{\alpha}^{s-1}+\sum_{j: j \neq \alpha} \frac{M_{\alpha}\left(f_{j}\right)}{\left\langle f_{j}\right\rangle} A_{j \theta}^{-} w f_{\alpha}^{s-1} \tag{4.42}
\end{equation*}
$$

We now turn to the relation (4.41). Fix some $i: i \rightarrow \alpha$ and $\lambda: \alpha \rightarrow \alpha$. let X_{β} be codimension two stratum with $i \rightarrow \beta \rightarrow \lambda$ and X_{j} be codimension one stratum with $j \rightarrow \beta$. Then $f_{i}, f_{\beta}, f_{\lambda}$ and f_{α} are linear dependant and

$$
\begin{equation*}
f_{i}<\beta \lambda \alpha>-f_{\beta}<i \lambda \alpha>+f_{\lambda}<i \beta \alpha>-f_{\alpha}<i \beta \lambda>=0 \tag{4.43}
\end{equation*}
$$

As a consequence we have

$$
\begin{equation*}
L_{\alpha}\left(f_{\beta}\right)=L_{\alpha}\left(f_{\lambda}\right) \frac{\langle i \beta \alpha\rangle}{\langle i \lambda \alpha>} \tag{4.44}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{f_{\alpha} f_{\beta}}=\frac{\langle i \lambda \alpha\rangle}{\langle i \beta \alpha\rangle} \cdot \frac{1}{f_{\alpha} f_{\lambda}}+\frac{\langle i \beta \lambda\rangle}{\langle i \beta \alpha\rangle} \cdot \frac{1}{f_{\beta} f_{\lambda}}-\frac{\langle\beta \lambda \alpha\rangle}{\langle i \beta \alpha\rangle} \cdot \frac{f_{i}}{f_{\alpha} f_{\beta} f_{\lambda}} \tag{4.45}
\end{equation*}
$$

We have also linear dependance of $f_{j}, f_{\beta}, f_{\lambda}$ and f_{α} and thus the conditions (4.43)-(4.45) with index i replaced by j. Substituting (4.43)-(4.45) and their analogs for $f_{j}, f_{\beta}, f_{\lambda}$ and f_{α} into (4.41) and using linear dependance conditions for f_{i}, f_{j} and f_{β} we obtain after some calculations the following expression:

$$
\begin{gathered}
L_{\alpha}\left(v_{i} f_{\alpha}^{s-1}\right)= \\
=\sum_{\lambda_{i} \alpha \rightarrow \lambda} \sum_{\substack{\beta: i \rightarrow \beta \rightarrow \lambda \\
\beta \neq \alpha}} \frac{L_{\alpha}\left(f_{\lambda}\right)}{f_{\lambda}}\left(A_{i}^{\beta}-\sum_{\substack{j: j \rightarrow \beta \\
j \neq i}} \frac{\langle j \lambda \alpha><i>}{\langle i \lambda \alpha><j>} A_{j \theta}^{-} A_{\emptyset i}^{+}\right) v_{i} f_{\alpha}^{s-1}- \\
-\sum_{\lambda ; \alpha \rightarrow \lambda} \sum_{\substack{\beta: i \rightarrow \beta \rightarrow \lambda \\
\beta \neq \alpha}} \frac{L_{\alpha}\left(f_{\lambda}\right)<i>}{f_{\lambda} f_{\beta}}\left(A_{\boxminus i}^{+} A_{i}^{\beta}-\sum_{\substack{j: j \rightarrow \beta \\
j \neq i}} A_{\emptyset j}^{+} A_{j \theta}^{-} A_{\nless i}^{+}\right) v_{i} f_{\alpha}^{s-1}
\end{gathered}
$$

The last summand is equal to zero in accordance with (4.33). Finally we have the following identity in $\Psi_{\alpha}(M)$:

$$
\begin{gather*}
L_{\alpha}\left(v_{i} f_{\alpha}^{\prime-1}\right)= \\
=\sum_{\lambda_{i} \alpha \rightarrow \lambda} \sum_{\substack{\beta: i \rightarrow \beta \rightarrow \lambda \\
\beta \neq \alpha}} \frac{L_{\alpha}\left(f_{\lambda}\right)}{f_{\lambda}}\left(A_{i}^{\beta}+\sum_{\substack{j: j \rightarrow \beta \\
j \neq i}} \frac{<i><j \lambda \alpha>}{\langle j><\lambda i \alpha>} A_{j \boxminus}^{-} A_{\phi i}^{+}\right) v_{i} f_{\alpha}^{s-1} \tag{4.46}
\end{gather*}
$$

Now, using (4.39), (4.42) and (4.46) we can represent canonical morphisms $\Psi_{\alpha}(M) \underset{\beta}{\underset{\beta}{\alpha}} \Phi_{\alpha}(M)$ in terms of the following commutative diagram

$$
\begin{align*}
& \widehat{A_{\alpha i}^{-}} \mid\left\lceil\overline{A_{i \alpha}^{+}}\right. \\
& V_{a} \\
& \widehat{A_{\alpha i}^{-}} \mid\left\lceil\widehat{A_{i \alpha}^{+}}\right. \tag{4.47}\\
& V_{\alpha}
\end{align*}
$$

where $\widehat{A_{i \theta}^{-}}=\frac{\langle\alpha i\rangle}{\langle i\rangle\left\langle g_{\alpha} f_{a}\right\rangle} A_{i \theta}^{-}, \widehat{A_{\theta i}^{+}}=\frac{\langle i\rangle\left\langle g_{a} f_{o}\right\rangle}{\langle\alpha i\rangle}$ and $\widehat{A_{\alpha i}^{-}}=\frac{\langle i\rangle}{\langle\alpha i\rangle} A_{\alpha i}^{-}, \widehat{A_{i \alpha}^{+}}=$ ${ }_{\langle\mathrm{i}}^{\frac{\text { ai }}{}{ }_{i \alpha}} A_{i \alpha}^{+}$with monodromie operator S :

$$
S(w)=0, \quad S\left(v_{i}\right)=A_{i}^{\alpha} v_{i}+\sum_{\substack{j: j \rightarrow \alpha \\ j \neq i}} \frac{\langle\alpha j><i>}{\langle j><i \alpha\rangle} A_{j \boldsymbol{j}}^{-} A_{\mathfrak{e j}}^{+} v_{i}
$$

(just as in the case of codimension one we renormalize operators $A_{i \alpha}^{+}$and $A_{\alpha i}^{-}$ to avoid coefficients in quiver relations).

Thus we have the relations

$$
\begin{align*}
& A_{j \alpha}^{+} A_{\alpha i}^{-}+A_{j \theta}^{-} A_{ө i}^{+}=0 \quad i \neq j, \quad \overline{X_{i}} \cap \overline{X_{j}}=\overline{X_{\alpha}} \tag{4.48}\\
& \sum_{i: i \rightarrow \alpha} A_{\alpha i}^{-} A_{i 9}^{-}=0 \tag{4.49}\\
& \sum_{i: i \rightarrow \alpha} A_{ө i}^{+} A_{i \alpha}^{+}=0 \tag{4.50}\\
& A_{\alpha i}^{-}\left(\sum_{\substack{i \rightarrow \beta \rightarrow \rightarrow \lambda \\
\beta \neq \alpha}} A_{i}^{\beta}\right)=A_{\alpha}^{\lambda} A_{\alpha i}^{-} \tag{4.51}
\end{align*}
$$

for a fixed flag $i \rightarrow \alpha \rightarrow \lambda$,

$$
\begin{equation*}
\left(\sum_{\substack{\beta: i \rightarrow \beta \rightarrow \lambda \\ \beta \neq \alpha}} A_{i}^{\beta}\right) A_{i \alpha}^{+}=A_{i \alpha}^{+} A_{\alpha}^{\lambda} \tag{4.52}
\end{equation*}
$$

for the same flag $i \rightarrow \alpha \rightarrow \lambda$,

$$
\begin{equation*}
A_{i \alpha}^{+} A_{\alpha i}^{-}=A_{i}^{\alpha} \tag{4.53}
\end{equation*}
$$

if $i \rightarrow \alpha$.
Let us describe the glued \mathcal{D}-module in terms of generators and relations. The differential in the monada (3.2) is given by the formulas

$$
\begin{gathered}
d_{0}\left(w f_{\alpha}^{s-1}\right)=s w f_{\alpha}^{s-1} \quad d_{0}\left(v_{i} f_{\alpha}^{s-1}\right)=s v_{i} f_{\alpha}^{s-1} \oplus \frac{\langle i\rangle}{\langle\alpha i\rangle} A_{\alpha i}^{-}\left(v_{\alpha}\right) \\
d_{1}\left(w f_{\alpha}^{s-1}\right)=w f_{\alpha}^{s-1}, \quad d_{1}\left(v_{i} f_{\alpha}^{s-1}\right)=v_{i} f_{\alpha}^{s-1}
\end{gathered}
$$

and

$$
d_{1}\left(v_{\alpha}\right)=\frac{\langle\alpha i\rangle}{\langle i\rangle} A_{i \alpha}^{+}\left(v_{\alpha}\right) f_{\alpha}^{s-1}
$$

The homologies of monada (3.2) are generated by the elements

$$
\bar{w}=w f_{\alpha}^{s}, \quad \overline{v_{i}}=v_{i} f_{\alpha}^{s} \quad \text { and } \overline{v_{\alpha}}=-v_{\alpha}+\sum_{i: i \rightarrow \alpha} \frac{\langle\alpha i\rangle}{\langle i\rangle} A_{i \alpha}^{+} v_{\alpha} f_{a}^{s-1}
$$

We can easily see that just as in (4.29) and (4.31),

$$
\begin{equation*}
L(\bar{w})=\sum_{i ; \theta \rightarrow i} \frac{L\left(f_{i}\right)}{\left\langle f_{i}\right\rangle} \overline{A_{i \theta}^{-} w}, \quad w \in W \tag{4.54}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{i} \overline{v_{i}}=<f_{i}>\overline{A_{\dot{i}}^{+} v_{i}}, \quad v_{i} \in V_{i} \tag{4.55}
\end{equation*}
$$

Further,

$$
\begin{align*}
& L_{i}\left(\overline{v_{i}}\right)=L_{i}\left(f_{\alpha}\right)\left(A_{i}^{\alpha}+s+\sum_{\substack{j: j \rightarrow \alpha \\
j \neq i}} \frac{\langle\alpha j\rangle}{\langle j\rangle} \cdot \frac{\langle i\rangle}{\langle i \alpha\rangle} A_{j \beta}^{-} A_{\theta_{i}}^{+}\right) v_{i} f_{\alpha}^{s-1}+ \\
& +\sum_{\substack{\beta: i, \beta \beta \\
\beta \neq \alpha}} \frac{L_{i}\left(f_{\beta}\right)}{f_{\beta}}\left(A_{i}^{\beta}+\sum_{\substack{j: j \rightarrow \beta \\
j \neq i}} \frac{\langle\beta j\rangle}{\langle j\rangle} \cdot \frac{\langle i\rangle}{\langle i \beta>} A_{j \beta}^{-} A_{\phi_{i}}^{+}\right) v_{i} f_{\alpha}^{s} \tag{4.56}
\end{align*}
$$

We replace $s v_{i} f_{\alpha}^{\prime-1}$ in rhs of (4.56) by $-\frac{\langle i\rangle}{\langle\alpha i\rangle} A_{\alpha i}^{-}\left(v_{\alpha}\right)$ and using (4.48) and (4.52) we reduce (4.56) to

$$
\begin{gather*}
L_{i}\left(\overline{v_{i}}\right)=L_{i}\left(f_{\alpha}\right) \frac{\langle i\rangle}{\langle\alpha i\rangle} \overline{A_{\alpha i}^{-} v_{i}}+ \\
+\sum_{\substack{\beta: i \rightarrow \beta \\
\beta \neq \alpha}} \frac{L_{i}\left(f_{\beta}\right)}{f_{\beta}}\left(\overline{A_{i}^{\beta} v_{i}}+\sum_{\substack{j: j \rightarrow \beta \\
j \neq i}} \frac{\langle\beta j\rangle}{\langle j\rangle} \cdot \frac{\langle i\rangle}{\langle i \beta>} \overline{A_{j \beta}^{-} A_{\dot{a} i}^{+} v_{i}}\right) \tag{4.57}
\end{gather*}
$$

Let now linear function $g(x)$ is such that $\left.g\right|_{x_{\mathrm{a}}}=0$. Then, using linear dependance condition for g, f_{α} and f_{i}, if $i \rightarrow \alpha$, we have

$$
\begin{aligned}
& g\left(\overline{v_{\alpha}}\right)= g\left(-v_{\alpha}+\sum_{i: i \rightarrow \alpha} \frac{\langle\alpha i\rangle}{\langle i\rangle} A_{i \alpha}^{+} v_{\alpha} f_{a}^{\prime-1}\right)=\sum_{i: i \rightarrow \alpha} \frac{\langle\alpha i\rangle}{\langle i\rangle} g\left(A_{i \alpha}^{+} v_{\alpha}\right) f_{a}^{s-1}= \\
&=\sum_{i: i \rightarrow \alpha} \frac{\left\langle g f_{i}\right\rangle}{\langle i\rangle} A_{i \alpha}^{+} v_{\alpha} f_{a}^{s}+\left\langle g f_{\alpha}\right\rangle \sum_{i: i \rightarrow \alpha} A_{\emptyset i}^{+} A_{i \alpha}^{+} v_{\alpha} f_{a}^{s-1}
\end{aligned}
$$

The last sum is equal to zero, due to (4.50) so finally

$$
\begin{equation*}
g\left(\overline{v_{\alpha}}\right)=\sum_{i: i \rightarrow \alpha} \frac{\left\langle g f_{i}\right\rangle}{\langle i\rangle} \overline{A_{i \alpha}^{+} v_{\alpha}} \tag{4.58}
\end{equation*}
$$

The calculations of $L_{\alpha}\left(\overline{v_{\alpha}}\right)$ are the longest ones. The computations use linear dependance conditions (4.43)-(4.45), the defining relations (4.48)-(4.52) and simple identities for determinants. The answer is

$$
\begin{align*}
& L_{\alpha}\left(\overline{v_{\alpha}}\right)=\sum_{\lambda: \alpha \rightarrow \lambda} \frac{L_{\alpha}\left(f_{\lambda}\right)}{f_{\lambda}}\left(\overline{A_{\alpha}^{\lambda} v_{\alpha}}+\sum_{i: i \rightarrow \alpha} \sum_{\substack{\beta: i \rightarrow \beta \rightarrow \lambda \\
\beta \neq \alpha}} \frac{\langle i \beta \lambda\rangle}{\langle i \lambda \alpha\rangle}\left(\frac{\langle\alpha i\rangle}{\langle i\rangle} \overline{\overline{A_{i}^{\beta} A_{i \alpha}^{+} v_{\alpha}}} \frac{f_{\beta}}{\langle i n}\right.\right. \\
& \left.\left.+\sum_{j: j \rightarrow \beta}^{j \neq i}<\frac{\langle\beta j><\alpha i>}{\langle i \beta><j>} \overline{\overline{A_{j 母}^{-} A_{\emptyset i}^{+} A_{i \alpha}^{+} v_{\alpha}}} \frac{f_{\beta}}{\langle\beta}\right)\right) \tag{4.59}
\end{align*}
$$

The relations (4.54), (4.57), (4.58) and (4.59) define \mathcal{D}-module in the open set

$$
U_{3}^{\alpha}=\left(\mathrm{C}^{N} \backslash \bigcup_{\beta: \operatorname{codim} X_{\rho}=2,3}\left\{f_{\beta}=0\right\}\right) \cup\left\{f_{a}=0\right\}
$$

We can restore \mathcal{D}_{X}-module M as a sheaf by its restrictions to U_{3}^{α} and define it by the global sections (remind that now $X=U_{3}=\mathrm{C}^{N} \backslash \mathrm{U}_{\alpha: \operatorname{codim} X_{\alpha}=3}\left\{f_{\alpha}=\right.$ $0\}$). There are three types of sections: $w, v_{i}, \operatorname{codim} X_{i}=1$ and $v_{\alpha}, \operatorname{codim} X_{\alpha}=$ 2. the first two are identified with \bar{w} and $\overline{v_{i}}$ for all U_{3}^{α} and

$$
v_{\alpha}=\left\{\begin{array}{c}
\frac{\overline{v_{\alpha}} \text { over } U_{3}^{\alpha}}{\sum_{i: i \rightarrow \alpha} \frac{\langle\alpha i\rangle}{\langle i\rangle} \frac{\overline{A_{0}} v_{a}}{f_{a}}} \text { over } U_{3}^{\beta}, \beta \neq \alpha
\end{array}\right.
$$

The relation (4.59) can be tranformed in a form

$$
\begin{gathered}
L_{\alpha}\left(\overline{v_{\alpha}}\right)=\sum_{\lambda: \alpha \rightarrow \lambda} \frac{L_{\alpha}\left(f_{\lambda}\right)}{f_{\lambda}}\left(\overline{A_{\alpha}^{\lambda} v_{\alpha}}+\sum_{i: i \rightarrow \alpha} \sum_{\substack{\beta: i \rightarrow \beta \rightarrow \lambda \\
\beta \neq \alpha}} \frac{\langle i \beta \lambda><\alpha i\rangle}{\langle i \lambda \alpha><\beta i>}\right. \\
\left(\frac{<\beta i>A_{i \beta}^{+}}{\left\langle i>f_{\beta}\right.} \overline{A_{\beta i}^{-} A_{i \alpha}^{+} v_{\alpha}}+\sum_{\substack{j: j \rightarrow \beta \\
j \neq i}} \frac{\left\langle\beta j>A_{i \beta}^{+}\right.}{\left\langle j>f_{\beta}\right.} \overline{A_{\bar{\beta} i}^{-} A_{i \alpha}^{+} v_{\alpha}}\right)
\end{gathered}
$$

which means that

$$
\begin{equation*}
L_{\alpha}\left(v_{\alpha}\right)=\sum_{\lambda: \alpha \rightarrow \lambda} \frac{L_{\alpha}\left(f_{\lambda}\right)}{f_{\lambda}}\left(A_{\alpha}^{\lambda} v_{\alpha}+\sum_{\substack{\beta: \beta \rightarrow \lambda \\ \beta \neq \alpha}} \frac{\langle i \beta \lambda><\alpha i\rangle}{\langle i \lambda \alpha><\beta i>} A_{\bar{\beta} i}^{-} A_{i \alpha}^{+} v_{\alpha}\right) \tag{4.60}
\end{equation*}
$$

where i is an index of codimension one stratum X_{i} whose closure contains both X_{α} and X_{β}. There are two possibilities: there exists unique such X_{i} for given X_{α} and X_{β} and there are no. In the second case corresponding summand in (4.60) is treated as zero.

Using an identities on polyvectors in $\mathrm{C}^{N} / \overline{X_{\alpha}}$ and in $\mathrm{C}^{N} / \overline{X_{\beta}}$:

$$
<\vec{f}_{\alpha}>f_{\alpha} \wedge f_{i}=<\alpha i>\vec{f}_{a}, \quad<\vec{f}_{\beta}>f_{\alpha} \wedge f_{i}=<\beta i>\vec{f}_{b}
$$

(for the notations see section 2.2) we can rewrite (4.60) as

$$
\begin{equation*}
L_{\alpha}\left(v_{\alpha}\right)=\sum_{\lambda: \alpha \rightarrow \lambda} \frac{L_{\alpha}\left(f_{\lambda}\right)}{f_{\lambda}}\left(A_{\alpha}^{\lambda} v_{\alpha}-\sum_{\substack{\beta: \beta \rightarrow \lambda \\ \beta \neq \alpha}} \frac{\langle\lambda \vec{\beta}\rangle}{\langle\lambda \vec{\alpha}\rangle} \cdot \frac{\langle\vec{\alpha}\rangle}{\langle\vec{\beta}\rangle} A_{\beta \boldsymbol{i}}^{-} A_{i \alpha}^{+} v_{\alpha}\right) \tag{4.61}
\end{equation*}
$$

The transformation of the formula (4.57) is evident (see relation (4.63)). Summarizing the calculations we conclude that \mathcal{D}_{X}-module M over $X=$ U_{2} can be defined by generators $w, w \in W, v_{i}, v_{i} \in V_{i}\left(\operatorname{codim} X_{i}=1\right)$ and $v_{\alpha} v_{\alpha} \in V_{\alpha}\left(\operatorname{codim} X_{\alpha}=2\right)$ with the relations

$$
\begin{gather*}
L(w)=\sum_{i ; \otimes \rightarrow i} \frac{L\left(f_{i}\right)}{\left\langle f_{i}\right\rangle} A_{i 1}^{-} w, \quad w \in W \tag{4.62}\\
L_{i}\left(v_{i}\right)=\sum_{\alpha: i \rightarrow \alpha} \frac{<i>}{\langle\alpha i>} L_{i}\left(f_{\alpha}\right) A_{\alpha i}^{-} v_{i}, \quad v_{i} \in V_{i} \tag{4.63}
\end{gather*}
$$

if L_{i} is a vector field along X_{i},

$$
\begin{gather*}
f_{i} v_{i}=A_{i j}^{+} v_{i}, \quad v_{i} \in V_{i}, \tag{4.64}\\
g\left(v_{\alpha}\right)=\sum_{i: i \rightarrow \alpha} \frac{\left\langle g f_{i}\right\rangle}{\langle i\rangle} A_{i \alpha}^{+} v_{\alpha}, \quad v_{\alpha} \in V_{\alpha} \tag{4.65}
\end{gather*}
$$

for any linear function $g(x)$ such that $\left.g\right|_{X_{a}}=0$,

$$
\begin{equation*}
L_{\alpha}\left(v_{\alpha}\right)=\sum_{\lambda: \alpha \rightarrow \lambda} \frac{L_{\alpha}\left(f_{\lambda}\right)}{f_{\lambda}}\left(A_{\alpha}^{\lambda} v_{\alpha}-\sum_{\substack{\beta: \beta \rightarrow \lambda \\ \beta \neq \alpha}} \frac{\langle\lambda \vec{\beta}\rangle}{\langle\lambda \vec{\alpha}\rangle} \cdot \frac{\langle\vec{\alpha}\rangle}{\langle\vec{\beta}\rangle} A_{\beta i}^{-} A_{i \alpha}^{+} v_{\alpha}\right) \tag{4.66}
\end{equation*}
$$

($v_{a} \in V_{\alpha}$) for any vector field L_{α} along X_{α} with i being an index of codimension one stratum X_{i} whose closure contains both X_{α} and X_{β}.

The linear operators $A_{\dot{\theta i}}^{+}: W \rightarrow V_{i}, A_{i \theta}^{-}: V_{i} \rightarrow W, A_{\alpha i}^{-}: V_{i} \rightarrow V_{\alpha}$, $A_{i \alpha}^{+}: V_{\alpha} \rightarrow V_{i}$ and $\mathcal{A}_{a}^{l}: V_{\alpha} \rightarrow V_{a}$ satisfy the following conditions:

$$
\begin{gather*}
A_{j \alpha}^{+} A_{\alpha i}^{-}+A_{j \beta}^{-} A_{\dot{\emptyset i}}^{+}=0 \quad i \neq j, \quad \overline{X_{i}} \cap \overline{X_{j}}=\overline{X_{\alpha}} \tag{4.67}\\
\sum_{i: i \rightarrow \alpha} A_{\alpha i}^{-} A_{i \theta}^{-}=0 \tag{4.68}\\
\sum_{i: i \rightarrow \alpha} A_{i i}^{+} A_{i \alpha}^{+}=0 \tag{4.69}\\
A_{\alpha i}^{-}\left(\sum_{\substack{\beta: i \rightarrow \beta \rightarrow \lambda \\
\beta \neq \alpha}} A_{i \beta}^{+} A_{\overline{\beta i}}^{-}\right)=A_{\alpha}^{\lambda} A_{\alpha i}^{-} \tag{4.70}
\end{gather*}
$$

for a fixed flag $i \rightarrow \alpha \rightarrow \lambda$,

$$
\begin{equation*}
\left(\sum_{\substack{\beta: i \rightarrow \beta \rightarrow \lambda \\ \beta \neq \alpha}} A_{i \beta}^{+} A_{\bar{\beta}}^{-}\right) A_{\mathrm{i} \alpha}^{+}=A_{i \alpha}^{+} A_{\alpha}^{\lambda} \tag{4.71}
\end{equation*}
$$

for the same flag $i \rightarrow \alpha \rightarrow \lambda$.
Remark 4.1 The relations (4.92), (4.33) and also (4.9) follow from (4.67)(4.68) if we remind that $A_{i}^{\alpha}=A_{i \alpha}^{+} A_{a i}^{-}, A_{i}=A_{i j}^{+} A_{i j}^{-}$.

Let us look now to the eigenvalues of operators $A_{i \alpha}^{+} A_{\alpha i}^{-}, A_{\alpha i}^{-} A_{i \alpha}^{+}$and A_{α}^{λ}. Let $a_{i}^{\alpha}=$ eig.v. $\left(A_{i \alpha}^{+} A_{\alpha i}^{-}\right), a_{i}^{\alpha \prime}=$ eig.v. $\left(A_{\alpha i}^{-} A_{i \alpha}^{+}\right), a_{\alpha}^{\lambda}=$ eig.v. $\left(A_{\alpha}^{\lambda}\right)$. We can apply Lemma 4.1 to a local system over hyperplane $\left\{f_{\alpha}=0\right\}$. As a result we have the following

Lemma 4.3 Linear operator
has a single eigen value equal to $\sum_{\substack{\beta: i \rightarrow \beta \rightarrow \lambda \\ \beta \neq \alpha}} a_{i}^{\beta}$.
Now we see that the morphisms in the diagramm (4.54) are nontrivial only if for any flag $i \rightarrow \alpha \rightarrow \lambda$ we have

$$
\begin{equation*}
a_{\alpha}^{\lambda}=\sum_{\substack{\beta: i \rightarrow \beta \rightarrow \lambda \\ \beta \neq \alpha}} a_{i}^{\beta}(\bmod \mathbf{Z}) \tag{4.72}
\end{equation*}
$$

again we can renormilize the local system on codimension two strata in such a way that instead of (4.72) we have

$$
\begin{equation*}
a_{\alpha}^{\lambda}=\sum_{\substack{\beta: i \rightarrow \beta \rightarrow \lambda \\ \beta \neq \alpha}} a_{i}^{\beta} \tag{4.73}
\end{equation*}
$$

on the level of complex numbers.
If the relation (4.73) is not satisfied then both $A_{i \alpha}^{+}$and $A_{\theta_{i}}^{+}$are equal to zero and the glued \mathcal{D}-module is a direct sum of \mathcal{D}-module without singularities along X_{α} and of \mathcal{D}-module, concentrated on X_{α}. We resume the results of this subsection in the following proposition.

Proposition 4.2 Let $j_{3}: U_{3} \hookrightarrow \mathrm{C}^{N}$ be an inclusion. Then any $\mathcal{D}_{U_{3}}$-module M from $j_{3}^{*}\left(\mathcal{C}_{A}^{q s}\right)$ can be defined by the formulas (4.62)-(4.66). Corresponding linear algebra data $W, V_{i}, V_{\alpha}, A_{\dot{\theta} i}^{+}: W \rightarrow V_{i}, A_{i 9}^{-}: V_{i} \rightarrow W, A_{\alpha i}^{-}: V_{\alpha} \rightarrow V_{i}$, $A_{i \alpha}^{+}: V_{i} \rightarrow V_{\alpha}$ and $A_{\alpha}^{\lambda}: V_{\alpha} \rightarrow V_{\alpha}$ are subjected to the relations (4.67)(4.71).

Moreover, we have the following restriction on eigenvalues

$$
a_{i}^{\alpha}=\text { eig.v. }\left(A_{i \alpha}^{+} A_{\alpha i}^{-}\right), \quad a_{i}^{\alpha \prime}=\text { eig.v. }\left(A_{\alpha i}^{-} A_{i \alpha}^{+}\right), \quad a_{\alpha}^{\lambda}=\text { eig.v. }\left(A_{\alpha}^{\lambda}\right)
$$

for any flag $i \rightarrow \alpha \rightarrow \lambda$:

$$
a_{i}^{\alpha \prime}=a_{i}^{\alpha} \quad a_{\alpha}^{\lambda}=\sum_{\substack{\beta: i \rightarrow \beta \rightarrow \lambda \\ \beta \neq \alpha}} a_{i}^{\beta}
$$

which are not valid only if M is a direct sum of a module without singularities on some codimension two strata $X_{\alpha_{i_{1}}}, \ldots, X_{\alpha_{i_{k}}}$ and of modules supported on these strata.

5 General induction step

Here we give a precise formulation of general induction statement. We omit the calculations supposing the reader can find enough of them in the previous section. The only difference is that in general case one should more often use identities with polyvectors \vec{f}_{α} instead of identities with linear functions. The main induction statement looks as follows.

Let

$$
X=U_{n}=\mathbf{C}^{N} \backslash \bigcup_{\alpha: \operatorname{codim} X_{\alpha}=n}\left\{f_{\alpha}=0\right\}
$$

and let the restriction of singleeigenvalued $\mathcal{D}_{\boldsymbol{X}}$-module M to an open subset

$$
U_{n-1, n}=\mathrm{C}^{N} \backslash \bigcup_{\alpha: \operatorname{codim} X_{\alpha}=n-1, n}\left\{f_{\alpha}=0\right\}
$$

can be described as a \mathcal{D}-module generated by vector space $\oplus_{\beta} V_{\beta}, \operatorname{codim} X_{\beta}<$ n with the relations

$$
L_{\beta}\left(v_{\beta}\right)=\sum_{\lambda: \beta \rightarrow \lambda} \frac{\left\langle\overrightarrow{f_{\beta}}\right\rangle}{\left\langle f_{1} \overrightarrow{f_{\beta}}\right\rangle} L_{\beta}\left(f_{\lambda}\right) A_{\lambda \beta}^{-}\left(v_{\beta}\right)=
$$

$$
\begin{equation*}
=\sum_{\lambda: \beta \rightarrow \lambda} \frac{<\vec{f}_{\beta}>}{\left\langle\vec{f}_{\lambda}>\right.} \frac{L_{\beta}\left(\vec{f}_{\lambda}\right)}{\vec{f}_{\beta}} A_{\lambda \beta}^{-}\left(v_{\beta}\right), \quad v_{\beta} \in V_{\beta} \tag{5.1}
\end{equation*}
$$

if L_{β} is a linear vector field along stratum $X_{\beta}, \operatorname{codim} X_{\beta}<n-1$,

$$
\begin{equation*}
f \cdot v_{\beta}=\sum_{\gamma: \gamma \rightarrow \beta} \frac{\left\langle f, \vec{f}_{\gamma}\right\rangle}{\left\langle\vec{f}_{\gamma}\right\rangle} A_{\gamma \beta}^{+}\left(v_{\beta}\right), \quad v_{\beta} \in V_{\beta} \tag{5.2}
\end{equation*}
$$

if f is a linear function, $\left.f\right|_{X_{\beta}}=0, \operatorname{codim} X_{\beta}<n$ and

$$
\begin{equation*}
L_{\alpha}\left(v_{\alpha}\right)=\sum_{\lambda: \alpha \rightarrow \lambda} \frac{L_{\alpha}\left(f_{\lambda}\right)}{f_{\lambda}}\left(A_{\alpha}^{\lambda} v_{\alpha}-\sum_{\substack{\beta: \beta \rightarrow \lambda \\ \beta \neq \alpha}} \frac{\langle\lambda \vec{\beta}\rangle}{\langle\lambda \vec{\alpha}\rangle} \cdot \frac{\langle\vec{\alpha}\rangle}{\langle\vec{\beta}\rangle} A_{\bar{\beta} \gamma}^{-} A_{\gamma \alpha}^{+} v_{\alpha}\right) \tag{5.3}
\end{equation*}
$$

($v_{a} \in V_{\alpha}$), codim $X_{\alpha}=n-1$ for any vector field L_{α} along X_{α} with γ being an index of codimension $n-2$ stratum X_{γ} whose closure contains both X_{α} and X_{β}.

The operators $A_{\lambda \alpha}^{-}: V_{\alpha} \rightarrow V_{\lambda}, A_{\alpha \lambda}^{+}: V_{\lambda} \rightarrow V_{\alpha}, \operatorname{codim} X_{\alpha}<n-1$ and $A_{\alpha}^{\lambda}: V_{\alpha} \rightarrow V_{\alpha}, \operatorname{codim} X_{\alpha}=n-1$ satisfy the following relations:

$$
\begin{equation*}
\sum_{\beta: \lambda \leftarrow \beta \nsim \gamma} A_{\lambda \beta}^{-} A_{\bar{\beta} \gamma}^{-}=0 \tag{5.4}
\end{equation*}
$$

for any two vertices $\lambda, \gamma,: \lambda<\gamma, n\rangle \operatorname{codim} X_{\lambda}=\operatorname{codim} X_{\gamma}+2$,

$$
\begin{equation*}
\sum_{\beta: \gamma \rightarrow \beta \rightarrow \lambda} A_{\gamma \beta}^{+} A_{\beta \lambda}^{+}=0 \tag{5.5}
\end{equation*}
$$

for any two vertices $\lambda, \gamma,: \lambda\langle\gamma, n\rangle \operatorname{codim} X_{\lambda}=\operatorname{codim} X_{\gamma}+2$,

$$
\begin{equation*}
A_{\beta \lambda}^{+} A_{\lambda \mu}^{-}+A_{\beta_{\gamma}}^{-} A_{\gamma \mu}^{+}=0 \tag{5.6}
\end{equation*}
$$

for any quadruple $\beta \searrow_{\lambda^{\prime}}^{\gamma}{ }_{\searrow}, n, n>\operatorname{codim} X_{\lambda}$;

$$
\begin{equation*}
A_{\beta \lambda}^{+} A_{\lambda \mu}^{-}=0 \tag{5.7}
\end{equation*}
$$

for any triple $\beta_{\searrow_{\lambda^{\prime}}} \mu, n>\operatorname{codim} X_{\lambda}$ with no γ such that $\beta^{\prime}{ }^{\gamma} \searrow_{\mu}$;

$$
\begin{equation*}
A_{\alpha \gamma}^{-}\left(\sum_{\substack{\beta: \gamma \rightarrow \beta \rightarrow \lambda \\ \beta \neq \alpha}} A_{\gamma \beta}^{+} A_{\beta \gamma}^{-}\right)=A_{\alpha}^{\lambda} A_{\alpha \gamma}^{-} \tag{5.8}
\end{equation*}
$$

for any two vertices $\lambda, \gamma,: \lambda<\gamma, n=\operatorname{codim} X_{\lambda}=\operatorname{codim} X_{\gamma}+2$;

$$
\begin{equation*}
\left(\sum_{\substack{\beta: \gamma \rightarrow \beta \rightarrow \lambda \\ \beta \neq \alpha}} A_{\gamma \beta}^{+} A_{\bar{\beta} \gamma}^{-}\right) A_{\gamma \alpha}^{+}=A_{\gamma \alpha}^{+} A_{\alpha}^{\lambda} \tag{5.9}
\end{equation*}
$$

for any two vertices $\lambda, \gamma,: \lambda<\gamma, n=\operatorname{codim} X_{\lambda}=\operatorname{codim} X_{\gamma}+2$.
There is also the following eigenvalues restriction. $\mathcal{D}_{U_{n-1, n}}$-module $\left.M\right|_{U_{n-1, n}}$ can be decomposed into direct sum

$$
\left.M\right|_{U_{n-1, n}}=M^{(1)} \oplus M^{(2)}
$$

For the first module $M^{(1)}$ we have an equality

$$
\begin{equation*}
a_{\alpha}^{\lambda}=\sum_{\substack{\beta: \gamma \rightarrow \beta \rightarrow \lambda \\ \beta \neq \alpha}} a_{\gamma}^{\beta} \tag{5.10}
\end{equation*}
$$

for any flag $\gamma \rightarrow \alpha \rightarrow \lambda: \lambda<\gamma, \operatorname{codim} X_{\alpha}=n-1$, where

$$
a_{\gamma}^{\alpha}=\text { eig.v. }\left(A_{\gamma \alpha}^{+} A_{\alpha \gamma}^{-}\right)=\text {eig.v. }\left(A_{\alpha i}^{-} A_{i \alpha}^{+}\right), \quad a_{\alpha}^{\lambda}=\text { eig.v. }\left(A_{\alpha}^{\lambda}\right)
$$

The second module $M^{(2)}$ has a support on codimension $n-1$ strata (and thus is realized by (5.1)-(5.9) with all V_{β} equal zero for β : $\operatorname{codim} X_{\beta}<n-1$) and

$$
\begin{equation*}
0 \leq \operatorname{Re} a_{\alpha}^{\lambda}<1 \tag{5.11}
\end{equation*}
$$

for any two $\alpha, \lambda, \alpha \rightarrow \lambda, \operatorname{codim} X_{\alpha}=n-1$.
Proposition 5.1 In assumption of (5.1)-(5.11) \mathcal{D}_{X}-module M is generated by vector space $\oplus_{\beta} V_{\beta}$, codim $X_{\beta} \leq n$ with the relations (5.1)-(5.3) and operators $A_{\lambda \alpha}^{-}: V_{\alpha} \rightarrow V_{\lambda}, A_{\alpha \lambda}^{+}: V_{\lambda} \rightarrow V_{\alpha}, \operatorname{codim} X_{\alpha}<n$ and $A_{\alpha}^{\lambda}: V_{\alpha} \rightarrow V_{\alpha}$, $\operatorname{codim} X_{\alpha}=n$ subjected to (5.4)-(5.9).

The spaces V_{α} and operators $A_{\lambda \alpha}^{-}: V_{\alpha} \rightarrow V_{\lambda}, A_{\alpha \lambda}^{+}: V_{\lambda} \rightarrow V_{\alpha}$, codim $X_{\alpha}<$ $n-1$ are the same as for $\left.M\right|_{U_{n-1, n}}$ and $A_{\alpha \lambda}^{+} A_{\lambda \alpha}^{-}=A_{\alpha}^{l}$ for all α, codim $X_{\alpha}=$ $n-1$.

Moreover, \mathcal{D}_{X}-module M can be decomposed into direct sum $M=M^{(1)} \oplus$ $M^{(2)}$ For the first module $M^{(1)}$ we have an equality

$$
\begin{equation*}
a_{\alpha}^{\lambda}=\sum_{\substack{\beta: \gamma \rightarrow \beta \rightarrow \lambda \\ \beta \neq \alpha}} a_{\gamma}^{\beta} \tag{5.12}
\end{equation*}
$$

for any flag $\gamma \rightarrow \alpha \rightarrow \lambda: \lambda<\gamma, \operatorname{codim} X_{\alpha}=n$, where

$$
a_{\gamma}^{\alpha}=\text { eig.v. }\left(A_{\gamma \alpha}^{+} A_{\alpha \gamma}^{-}\right)=\text {eig.v. }\left(A_{\alpha i}^{-} A_{i \alpha}^{+}\right), \quad a_{\alpha}^{\lambda}=\text { eig.v. }\left(A_{\alpha}^{\lambda}\right)
$$

The second module $M^{(2)}$ has a support on codimension n strata.
The proof of the proposition is based on the calculation of the functor $\boldsymbol{\Psi}_{f_{a}}\left(\left.M\right|_{U_{n-1, n}}\right)$ for a stratum X_{α} of codimension n.

Let us fix some codimension n stratum X_{α}. For any \mathcal{D}_{X}-module M we denote for simplicity of notations $\Psi_{\alpha}(M) \stackrel{d / n}{=} \Psi_{f_{a}}\left(\left.M\right|_{U_{n-1, n}}\right)$ for simplicity of notations. The computation of $\Psi_{\alpha}(M)$ for $\left.M\right|_{U_{n-1, n}}$ being supported on codimension $n-1$ strata reduces to the codimension one case and was completely described in subsection 4.3. Let us consider the case when the condition (5.10) is satisfied. Then we state that
(i) $\Psi_{\alpha}(M)$ is generated by elements $v_{\beta} f_{\alpha}^{s-1}, v_{\beta} \in V_{\beta}$, $\operatorname{codim} X_{\beta}<n$ with $v_{\beta} f_{\alpha}^{s}$ being treated as zero elements;
(ii) Canonical monodromie operator $S=(-s)$. is nilpotent on $\Psi_{\alpha}(M)$;
(iii) An action of S on $\Psi_{\alpha}(M)$ is described by the relations

$$
\begin{gather*}
S v_{\beta} f_{\alpha}^{s-1}=0 \quad \text { if } \operatorname{codim} X_{\beta}<n-1 \tag{5.13}\\
S v_{\beta} f_{\alpha}^{\rho-1}=-s v_{\beta} f_{\alpha}^{s-1}= \\
=A_{\beta}^{\alpha} v_{\beta} f_{\alpha}^{s-1}-\sum_{\substack{\delta: \delta=\alpha \\
\delta \neq \beta}} \frac{\langle\alpha \vec{\delta}\rangle}{\langle\vec{\delta}\rangle} \cdot \frac{\langle\vec{\beta}\rangle}{\langle\alpha \vec{\beta}\rangle} A_{\delta \gamma}^{-} A_{\gamma \beta}^{+} v_{\beta} f_{\alpha}^{s-1} . \tag{5.14}
\end{gather*}
$$

if $\operatorname{codim} X_{\beta}=n-1$.
Note that the statement (ii) follows from the following counterpart of Lemma 4.2:

Lemma 5.1 An operator

$$
\begin{equation*}
\bigoplus_{\beta: \beta \rightarrow \alpha}\left(A_{\beta}^{\alpha}-\sum_{\substack{\delta: \delta \rightarrow \alpha \\ \delta \neq \beta}} \frac{\langle\alpha \vec{\delta}\rangle}{\langle\vec{\delta}\rangle} \cdot \frac{\langle\vec{\beta}\rangle}{\langle\alpha \vec{\beta}\rangle} A_{\delta \gamma}^{-} A_{\gamma \beta}^{+}\right) \tag{5.15}
\end{equation*}
$$

is nilpotent in $\oplus_{\beta: \beta \rightarrow \alpha} V_{\beta}$ provided the relations (5.4)-(5.10) are satisfied.
Now, considering $\Psi(M)$ as $\mathcal{D}_{\left\{f_{\alpha}=0\right\}}$-module we see that it can be described in terms of relations (5.1)-(5.3) if we take $v_{\rho} f_{\alpha}^{s-1}$ as generators. The graph structure of strata $X_{\beta} \cap\left\{f_{\alpha}=0\right\}$, codim $X_{\beta}<n$ remains unchanged except the strata $X_{\beta}, \beta \rightarrow \alpha$. Instead of their intersection with hyperplane $\left\{f_{\alpha}=0\right\}$ we should consider the only stratum X_{α} and attach to this stratum vectorspace $\oplus_{\beta: \beta \rightarrow \alpha} V_{\beta}$. The formulas which we need for drawing a commutative diagramm representing canonical fourtuple $\Psi_{\alpha}(M) \underset{v}{\stackrel{y}{\rightleftharpoons}} \Phi_{\alpha}(M)$ are as follows.

Let us fix some new deneric linear function $g_{\alpha}(x)$ which cut stratum X_{α} in hyperplane $\left\{f_{\alpha}=0\right\}:\left.g_{\alpha}\right|_{x_{\alpha}}=0, g \not \nsim f_{\alpha}$. Then we have

$$
\begin{align*}
M_{\alpha, \gamma}\left(v_{\gamma} f_{\alpha}^{s-1}\right) & =\sum_{\beta: \gamma \rightarrow \beta \rightarrow \alpha} M_{\alpha, \gamma}\left(g_{\alpha}\right) \frac{\langle\vec{\gamma}\rangle\langle\alpha \beta \gamma\rangle}{\langle\beta \vec{\gamma}\rangle\left\langle f_{\alpha} g_{\alpha} \vec{f}_{\gamma}\right\rangle} A_{\beta \gamma}^{-} v_{\gamma} f_{\alpha}^{\prime-1}+ \\
& +\sum_{\substack{\beta^{\prime}: \gamma \rightarrow \beta^{\prime} \\
\beta^{\prime} \neq \alpha}} M_{\alpha, \gamma}\left(f_{\beta^{\prime}}\right) \frac{\langle\vec{\gamma}\rangle}{\left\langle\beta^{\prime} \vec{\gamma}\right\rangle} A_{\beta^{\prime} \gamma}^{-} v_{\gamma} f_{\alpha}^{\prime-1} \tag{5.16}
\end{align*}
$$

for any stratum $X_{\gamma}, \operatorname{codim} X_{\gamma}=n-2, \gamma>\alpha$ and for any linear vector field $M_{\alpha, \gamma}$ along $\left\{f_{\alpha}=0\right\} \cap X_{\gamma}: M_{\alpha, \gamma}\left(f_{\alpha}\right)=0, M_{\alpha, \gamma}(f)=0$ if $\left.f\right|_{\left\{f_{\alpha}=0\right\} \cap X_{\gamma}}=0$,

$$
\begin{equation*}
g_{\alpha} \cdot v_{\beta} f_{\alpha}^{s-1}=\sum_{\gamma: \gamma \rightarrow \beta} \frac{\left\langle f_{\alpha} g_{\alpha} \vec{f}_{\gamma}>\right.}{\langle\alpha \beta \vec{\gamma}>} \frac{<\vec{\gamma}>}{<\beta \vec{\gamma}>} A_{\gamma \beta}^{+} v_{\beta} f_{\alpha}^{\prime-1} \tag{5.17}
\end{equation*}
$$

for any stratum $X_{\beta}, \operatorname{codim} X_{\gamma}=n-1, \beta \rightarrow \alpha$ and

$$
\begin{gather*}
L_{\alpha}\left(v_{\beta} f_{\alpha}^{s-1}\right)= \\
\sum_{\lambda: \alpha \rightarrow \lambda} \sum_{\substack{\delta: \beta \rightarrow \delta \rightarrow \lambda \\
\delta \neq \alpha}} \frac{L_{\alpha}\left(f_{\lambda}\right)}{f_{\lambda}}\left(A_{\beta}^{\delta}-\sum_{\substack{\gamma: \gamma \rightarrow \delta \\
\gamma \neq \beta}} \frac{\langle\vec{\beta}><\lambda \alpha \vec{\gamma}\rangle}{\langle\vec{\gamma}><\lambda \alpha \vec{\beta}>} A_{\gamma \mu}^{-} A_{\mu \beta}^{+}\right) v_{i} f_{\alpha}^{s-1} \tag{5.18}
\end{gather*}
$$

also for a stratum $X_{\beta}, \operatorname{codim} X_{\gamma}=n-1, \beta \rightarrow \alpha$ with μ being an index of codimension ($n-2$) stratum X_{μ} whose closure contains both X_{β} and X_{γ} and L_{α} being a vector field along X_{α}.

Suppose now that $\Phi_{\alpha}(M)$ is given as singleeigenvalued local system generated by vectorspace V_{α} with the relations

$$
\begin{equation*}
L_{\alpha}\left(v_{\alpha}\right)=\sum_{\lambda: \alpha \rightarrow \lambda} \frac{L_{\alpha}\left(f_{\lambda}\right)}{f_{\lambda}} A_{\alpha}^{\lambda} v_{\alpha} \tag{5.19}
\end{equation*}
$$

for any linear vector field L_{α} along X_{α} and

$$
\begin{equation*}
f v_{\alpha}=0 \quad \text { if }\left.\quad f\right|_{x_{\alpha}}=0 \tag{5.20}
\end{equation*}
$$

Comparing the relations (5.16)-(5.18) with (5.19)-(5.20) we observe that the diagram $\Psi_{\alpha}(M) \underset{\sim}{\underset{\sim}{*}} \Phi_{\alpha}(M)$ is completely defined by linear maps (which we renormalize to avoid factors in commutation relations):

$$
\begin{gather*}
\bigoplus_{\beta ; \beta \rightarrow \alpha} A_{\alpha \beta}^{-}{ }^{\prime}: \bigoplus_{\beta ; \beta \rightarrow \alpha} V_{\beta} \longrightarrow V_{\alpha} \tag{5.21}\\
\bigoplus_{\beta ; \beta \rightarrow \alpha} A_{\beta \alpha}^{+}: V_{\alpha} \longrightarrow \bigoplus_{\beta ; \beta \rightarrow \alpha} V_{\beta} \tag{5.22}
\end{gather*}
$$

with

$$
\begin{equation*}
A_{\alpha \beta}^{-}=\frac{\langle\alpha \vec{\beta}\rangle}{\langle\vec{\beta}\rangle} A_{\alpha \beta}^{-\prime} \tag{5.23}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{\beta \alpha}^{+}=\frac{\langle\vec{\beta}\rangle}{\langle\alpha \vec{\beta}\rangle} A_{\beta \alpha}^{+} \tag{5.24}
\end{equation*}
$$

satisfying the relations (5.4), (5.5), (5.8) and (5.9). An equality $S=v u$ provides the relations $A_{\beta}^{\alpha}=A_{\beta \alpha}^{+} A_{\alpha \beta}^{-}$for all $\beta ; \beta \rightarrow \alpha$ and (5.6), (5.7). Just as in sections 4.3 and 4.4 we observe also that the relation (5.10) on eigenvalues is not satisfied only if the glued module is a direct sum of a module without singularities along X_{α} and of a module supported on X_{α} for which one may freely assume the conditions (5.11). Next, applying monada (3.2) technique we describe the glued module in terms of generators and relations and finally restore M as a sheaf by its restrictions to open sets

$$
U_{n-1, n} \cup\left\{f_{\alpha}=0\right\}
$$

for all $\alpha: \operatorname{codim} X_{\alpha}=n$. The calculations analogous to that of sections 4.3 and 4.4 show that M is defined by the formulas (5.1)-(5.3).

We have described a scetch of proof of Proposition 5.1. Theorems 2.1 and 2.4 are direct consequences of Proposition 5.1. The only thing which we want to explain is a simple remark that an operator

$$
\bigoplus_{\beta: \beta \rightarrow \alpha}\left(A_{\beta}^{\alpha}-\sum_{\substack{\delta: \delta \rightarrow \alpha \\ \delta \neq \beta}} \frac{\langle\alpha \vec{\delta}\rangle}{\langle\vec{\delta}\rangle} \cdot \frac{\langle\vec{\beta}\rangle}{\langle\alpha \vec{\beta}\rangle} A_{\overline{\delta \gamma}}^{-} A_{\gamma \beta}^{+}\right)
$$

from lemma 5.1 is conjugated to

$$
\begin{equation*}
\bigoplus_{\substack{\beta, \delta: \\ \delta \rightarrow \alpha, \beta \rightarrow \alpha}} A_{\delta \alpha}^{+} A_{\alpha \beta}^{-} \tag{5.25}
\end{equation*}
$$

in $\oplus_{\beta: \beta \rightarrow \alpha} V_{\alpha}$ provided the relations (5.6) and (5.7) are satisfied. The nilpotence of operator (5.25) for the vertices of depth more then one follows from the nilpotence of monodromie operator S in the second step of glueing. The decomposition of a restriction of \mathcal{D}-module to some open set U_{n} to a direct sum of $\mathcal{D}_{U_{n}}$-modules if a condition (5.10) is not satisfied contradicts to the definition of local indecomposability. But if these conditions are satisfied we conclude from Lemma 5.1 that $\boldsymbol{\Psi}_{f_{\alpha}}\left(\left.M\right|_{U_{n-1, n}}\right)$ coincides with its unipotent part $\Psi_{f_{\alpha}}^{0}\left(\left.M\right|_{U_{n-1, n}}\right)$ for all α : codim $X_{\alpha}>1$ and we have no need in singleeigenvalued restriction (1.1) on $\boldsymbol{\Psi}_{f_{a}}(M)$. So we have the proof of the second part of Proposition 1.1 and of the Theorem 2.3. We can also easily see by induction that for category \mathcal{C}_{\wedge}^{0} the conditions of Lemma 5.1 are automatically satisfied (all the eigenvalues remain being equal zero). So we have no need in the condition (1.1) for \mathcal{C}_{A}^{0}, from where we deduce the rest of Proposition 1.1 and can also prove an equivalence of categories in Theorem 2.2 .

Acknowledgements

This text was written when the author was a visitor in Max-Planck Institut für Mathematik and he uses an opportunity to express his best regards to the Institute. The author is sincerely grateful to Vadim Schechtman for numerous fruitful and stimulating discussions.

References

[B] A.Beilinson, How to glue perverse sheaves, in: Yu.I.Manin (ed.), K theory, Arithmetics and Geometry, Lecture Notes in Math., 1289, Springer (1987), 42-51.
[BBD] A.Beilinson, J.Bernstein, P.Deligne, Faiseau pervers, Asterisque 100 (1987).
[Br] E.Brieskorn, Sur les groupes des tresses, in: Lecture Notes in Math., 317 (1983).
[D] P.Deligne, La formalisme des cycles évanescents, in: Groupe de monodromie en Géometrie Algébrique (SGA7 II), Lecture Notes in Math. 340, Springer (1973), 82-116.
[GKh] S.Gelfand, S.Khoroshkin, An algebraic description of some categories of \mathcal{D}_{X}-modules, Funk. Anal. Appl. 19 (1985), 208-209.
[Ko] T.Kohno, Monodromy representations of braid groups and YangBaxter equations, Ann. Inst. Fourier de Grenoble, 37:4 (1987), 139160.
[OS] P.Orlik, L.Solomon, Combinatorics and topology of complements of hyperplanes, Inv. Math., 56 (1980), 167-189.
[VS1] V.Schechtman, A.Varchenko, Arrangements of hyperplanes and Lie algebra homology, Inv. Math. 106 (1991), 134-194.
[VS2] V.Schechtman, A.Varchenko, Quantum groups and homologies of logal systems, in: Algebraic Geometry and Analytic Geometry, ICM90 Sattelite Conference Proceedings, Tokyo, 1990, Springer (1991), 210-217.
[Ver] J.L.Verdier, Extension of a perverse sheaf over a closed subspace, Asterisque 130 (1985), 210-217.
[Scl] V.Schechtman, Vanishing cycles and quantum groups I, Int. Math. Res. Notes 11 (1992), 207-215.

[^0]: ${ }^{0}$ adress after 31.12.92: Ostrovityanova 15-1-45 117437 Moscow Russia

