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CONTINUED FRACTIONS AND RELATED TRANSFORMATIONS

Intr ion

In these lectures we describe the origin and some of the recent applications of the
transfer operator method in the theory of expanding dynamical systems. Originally
introduced by Sinai, Bowen and Ruelle in their work on ergodic properties of smooth
dynamical systems, this method has been found to be applicable to a much wider field of
problems in the theory of dynamical systems. Typical examples are the theory of zeta
functions as introduced by Ruelle [R2], which we will discuss in more detail, the closely
related problem of the distribution of closed orbits in hyperbolic systems, where Parry
and Pollicott found an amusing analogon to the prime number theorem [PP], discussed
in Pollicotts lectures [P], or finally Ruelle’s recent work on resonances of Axiom A
systems [R3]. In all these applications analyticity properties of different functions play
an important role which are established by the transfer operator method. Another
promising application of the method is to Selberg’s theory of surfaces of constant
negative curvature. Through his trace formula respectively his zeta function there is
established a surprising connection between the spectra of the Laplacians and the length
spectra of the closed geodesics of such surfaces. The main step for applying the transfer
operator method in this case is Bowen’s and Series’ construction of a symbolic dynamics
for these flows, reducing this way the dynamics to special flows over analytic expanding
maps of the circle respectively the unit interval [S]. For the modular surface this map is
just Gauss’ continued fraction transformation which serves as the main example of this
class of expanding systems. The transfer operator method for this map will be the

central issue of our contribution. The above mentioned systems of 2—dimensional
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hyperbolic geometry, even if they are not really very exciting as physical systems, are
nevertheless rather interesting from another point of view: they are highly chaotic
systems where the connection between the systems quantum and classical behaviour is
fully understood through Selberg’s theory. Since the transfer operator method gives a
rather straightforward approach to this theory one could at least hope that this method
will shed new light also on the general problem of quantum chaos which treats the above
relation for general dynamical systems.

In the present lectures we restrict our discussion of the transfer operator method to
one dimensional expanding systems with rather smooth analytic dynamics. In this case
the method gives the strongest results.

By accident the Bowen—Series maps mentioned above belong to this class of
systems [S]. For a discussion of the method for systems with less smooth behaviour we
refer to Ruelle’s recent R. Bowen Lectures in Berkeley [R1].

These lectures have been prepared during a stay at the IFF of KFA Jiilich and at
the MPI for Mathematics at Bonn. I am iﬁdebted for financial support and the kind
hospitality extended to me at these institutions to their directors Prof. G. Eilenberger
and Prof. F. Hirzebruch.



I. The Tr T rator Meth

In this chapter we introduce the transfer operator for subshifts of finite type [K]
which play an important role as mathematical models for so called lattice spin systems.
It is in fact the physical theory of such systems namely classical equilibrium statistical

mechanics where the origins of the transfer operator method can be found.

1. Tranfer Matrices for Lattice Spin Systems

It was one of the real deep insights of the work of Sinai, Ruelle, Bowen, Lanford et
al. during the last twenty years that there is a surprising analogy in the mathematical
structure of hyperbolic dynamical systems and classical spiln systems on a lattice. These
spin systems and their ergodic properties under lattice translations are part of general
classical equilibrium statistical mechanics, one of the fundamental theories of classical
physics, closely connected to names like Maxwell, Boltzmann and Gibbs, to mention
only the most prominent ones. The main objects of study of this theory are systems
composed of a huge number of interacting subsystems whose macroscopic behaviour one
wants to understand from the underlying microscopic interactions. Since real systems
like a piece of a ferromagnet are much too complicated to be described by the methods
available presently to us, one has to approach the problem by discussing simple models
for these systems, hoping that essential features responsible for the observed phenomena
are described correctly by them. Classical lattice spin systems are among the simplest
models to describe ferromagnetism: there classical spin variables are located on the sites
of a lattice interacting with each other via some interaction. In the simplest case one
takes a one dimensional lattice, for instance the lattice Z of integers. Whereas for our
real world this case is not too interesting, objects in nature are in general 3 dimensional,

it nevertheless plays a fundamental role in the theory of dynamical systems: this is
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closely related to the fact that we are interested in general in evolutions with respect to
time which turns out to be 1-—dimensional in our world. As soon as one wants to study
the action of more general groups than Z or R on some phase space one had to
consider also more complicated lattices as for instance ke , k> 1. Spin systems on
such lattices are much more complicated to describe mathematically, a fact closely
related to the phenomenon of phase transitions in such systems [R2].

The best known of all classical lattice spin models are the Ising type models where
the spin variable ¢ takes values in some finite or countable set F . We call such a
system free if there is besides a possible exclusion rule for spins on neighbouring lattice
sites no interaction between different spins. Depending on whether the lattice is Z or
I, = {ieZ:i>0} and whether card F <o or card F = ® the mathematical model
for such a free spin system is the one — or two—sided subshift of finite respectively
infinite type with alphabet F and transition matrix A describing the nearest
neighbour exclusion rule. As discussed in Keane’s lectures [K] A is indexed by the set
F x F and its entries are either 0 or 1. We will always assume that A" > 0 for some
n ¢ N . Since many properties of the two—sided shift can be reduced to the shift over
I + [Bo], we restrict our discussion to this case. Anyhow, we are mainly interested in
noninvertible dynamical systems and their symbolic dynamics leads to one-sided
subshifts [K], [M], [S]. In the following we introduce some notations which are
frequently used in the literature and which have their origin in classical statistical
mechanics, 80 that to many people they appear rather strange. We hope to remedy this
situation a little bit.

A sequence ¢ = (fi)ieﬂ_i_ with £i e F is called a configuration of the spin

[/
system on the lattice Z + and we denote the space of all such configuratious by F +

I
which is configuration space. A configuration ¢ € F * is called allowed if



—-5—

A, 1 (1)

ifis1
forall iel 4 This means spin fi on lattice site i can have the spins fi—l and
Ei 41 28 its left resp. right neighbour for all i > 1 . Let us denote by £ A the space of
all allowed configurations. On this space acts in a natural way the lattice translation —

or shift operator 7: 8, — Q, through

(7€), = &1 - (2)

In [K] it is shown how the space £ A can be made a compact metric space such that 7
becomes a continuous map on 2, . Then the pair (2 A,'r) defines a topological
dynamical system.

Part of classical statistical mechanics of lattice spin systems is just ergodic theory
of the dynamical system (Q A,T) , that is the theory of measures on Q, invariant under
the shift = [K]. Of special interest for equilibrium statistical mechanics are the so
called equilibrium states, translation invariant Gibbs states, associated to the interaction
of the spins with each other; such an interaction can be described by a continuous
function A e 4(Q,) , also called observable in the following, whose value at 2
configuration ¢ just describes the interaction energy between the spin 60 on lattice
site i =0 and the remaining spins {i on sites i > 1 plus a possible selfinteraction of

3 0 with itself. From this it is more or less obvious that the quantity

n—1

H ()= Y A(™) (3)
k=0

can be written as [R2]



H (€)= B(€ - £yq) + WEqy - pg lpnpr ) (4)

where H(fo, 'fn—l) describes the energy content of the finite configuration
(EO, o i€pq) and W(fo, o bpq €n’£n+1’ ...) i8 the interaction energy between the
spins (50, ’fn—l) and the spins (in'£n+1’ ...) . Of fundamental importance in
equilibrium statistical mechanics are the Gibbs states. They are the infinite volume

limits a8 n — o of the following finite volume probability measures By

A (Egr - &) = Zo(A) Texp H_(¢(™) ()

with H_defined in (3) and §(n) any allowed configuration such that ¢ gn) = ¢ for
0<i<n-1. The choice of f(n) corregsponds to the selection of certain boundary
conditions for the spin system. The normalization factor Zn(A) is called the finite
volume partition function and depends obviously on the boundary conditions. It has the

explicit form

z(A)= Y exp H_(¢(V)). (6)
§0, ,{n_leF

The measures in (5) are the so called Gibb’s ensembles, more precisely the canonical
ensemble.

Of special interest in connexion with dynamical systems are what are called
periodic boundary conditions. In this case the configuration f(n) in (5) resp. (6) is

chosen as

f](nrili=fi for i=0,1,..,n~1 andall kelN. (7)



Then the partition function Z _(A) can be rewritien as

n—1
z(A)= Y exp J A(KE) (8)
' EeFix‘r‘n k=0

where Fix 7" = {{ € O A 7% = ¢} denotes the set of all periodic configurations with
period n.

Through (5) respectively its infinite volume limit n— o , also called
thermodynamic limit, to every observable A e #(Q,) there are associated one or
several 7—invariant probability measures on configuration space 2 A which
completely determine the physics or more precisely the thermodynamic behaviour of the
infinitely extended spin system. The above Gibbs states are special cases of Keane’s
g—measures for subshifts of finite type where g = exp A . What now is the relation
between the above Gibbs ensembles and physi@ properties of the spin system, and how
can the latter be extracted from them? This is exactly what the so called
thermodynamic formalism is dealing with. A central role in this formalism is played by
the above partition functions Z (A) and their asymptotic behaviour in the
thermodynamic limit n — @ . More precisely, the following quantity P(A) is of

special interest

P(A) = lim 1 log Z,(A), (9)

n—=w

which is called the topological pressure of the observable A . In the physics literature
this quantity, up to a sign and some factor involving the temperature, is called the free

energy of the spin system. It is considered in general as a function of the temperature
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respectively some exterior magnetic field for a fixed given interaction. In (9) P is more
generally considered a functional over the space #({} A) , that means a function of the
observable A and hence of the interaction. -

The main problem now is the calculation of the pressure P for a given observable
A , respectively more generally the behaviour of P as a function of A .Completely
understood is the case, where the function A depends on the configuration
£ = (fi)iell_l_ only through finitely many variables §,.¢,... £, . One speaks in this

case also of a finite range interaction. In this case physicists found many years ago a very
elegant method for solving (9): it became known in the literature as the transfer matrix
method. Indeed, already Ising used this method in 1925 in his Ph.D. thesis when
discussing what is nowadays called the 1-dim. Ising model: in our notation this model
corresponds to a subshift of finite type with alphabet F = {+ 1,—1} transition matrix
Aa,a’ =1 for al 0,0’ € F and the following choice of the observable A :
A(f) = F¢ 051 corresponding obviously to a nearest neighbour interaction. The simplest
case however where the method can be applied are the free models, the subshifts of finite

type with transition matrix A . In this case A=0 and Z (0) in (8) counts just the

number of allowed periodic configurations with period n:

Z,(0)=#{£:¢cFix7"}. (10)

A little thinking then shows that Z (0) can be expressed in this case through the

transition matrix A as

Z_(0) = trace A" . (11)
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Something similar happens in the case of the 1—dim. Ising model with A(¢) = FEoé 1
If we introduce the matrix L=L_ _/, 0,0’ ¢ F={+ 1,-1} with

_ ’
E‘a,a’ = exp Foo (12)

we find again
Z (A) = trace L . (13)

This raises the question if a representation like (13) can be found also for more general
observables A . It is well known in the physics literature, that for functions A
depending only on finitely many variables {0, v r corresponding to finite range

interactions one can find indeed such a matrix IL = L(A) with
Z_(A) = trace L(A)". (14)

Furthermore this matrix can be chosen to have only nonnegative entries as was the case
in (11) and (13). An explicit construction for such an L follows from our discussion of
more general transfer operators below. A positive matrix L = L(A) fulfilling relation
(14) is called a transfer matrix for the spin system with observable A . What have we
achieved in this case? Quite a lot! Existence of such a transfer matrix allows a more or
less complete solution of problem (9)! By the Perron—Frobenius Theorem the pressure

P(A) can be written simply as

P(A) = log A (L) (15)
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where A,(L) denotes the leading positive eigenvalue of L (assuming that at least some
po.wer of L is strictly positive for the strong version of the P-F Theorem to be
applicable, which in fact can be shown for finite range A’s) .

By (15) the problem to determine P is reduced to a purely algebraic one, namely
to find the leading eigenvalue of the positive .matrix L.

For general observables A e #(,) it is not known how to construct such a
transfer matrix L(A) respectively more general a trace class operator .= %, such
that relation (14) holds for all n . Since the size of L(A) increases rapidly with the
range of the finite range observables A , for infinite range observables A the transfer
"matrix" L(A) cannot be anymore finite dimensional. In a certain sense a relation like
(14) gives much more information about such a spin system than one in general wants to
have: it not only describes the infinite system but also arbitrary finite approximations.
The infinite system is really described by expression (15). Therefore it is very often
enough to find a positive operator .7 A whose leading eigenvalue Al gives via
expression (15) the pressure P(A) . That such an operator .¢, really exists for a large
class of observables A was shown by D. Ruelle. He introduced for general A e €(Q A
the following linear bounded operator = .#, on the Banach space #(Q,) [R2]:

(£9() = ) A, ¢ e A0 106) (16)
oeF 0
where (o,6) denotes the configuration ¢’ = ({;)idl with ¢ (l) =0, {; = gi—l for
+

i21.

For this operator the Ruelle—Perron—Frobenius Theorem holds [Bo]:

Theorem (RPF) For Holder continuous A the operator = .#, has the following
properties:
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1) Thereexists hy € #(Q,), hy >0 and A\; >0 with Zjh, =A/h,

2) There exists a probability measure v A€ (0 A)* with v, 20, v A(h A) =1
. :

3) TForany fe #(2,)

lim | [A]" £y f—vp(Dhy || =0

n-o

4) P(A)=log /\1
5)  The probability measure By = h A YA is r—invariant and is a Gibbs state.

It is a rather simple exercise to show that the operator .¢ A for observables A
with finite range, that means depending only on finitely many variables 60,5 r e K3 .
leaves invariant the subspace ¢ _, (25) of all functions depending only on the

variables 60’ ’ﬁr—l . It reduces in this subspace to a matrix L =L(A) with
|r

nonnegative entries, acting in the space RI F|" and indexed by

T I

. >
~

Y

FxFx ..x FxFxFx .. x F.Its general matrix element

lL(fO’ ’sr_.]_)(o'o; ’al'--l) 18 g1ven BXPhCItIy as



(17)

r— 2
L (¢l W Tgraty_g) = itro .01 | Pogty ™ ACOTL7 11y n)

which obviously is strictly positive after iterating it sufficiently many times. Indeed, this
. matrix is a transfer matrix for the observable A in the strong sense of relation (14) as
one can verify easily. This justifies to call .# A the transfer operator for the spin system
with observable A .

In the next section we discuss a simple example of an observable A which depends
on the entire configuration §{ € 2, , that means is of infinite range, but nevertheless
allows for a transfer operator such that relation (14) is still true with some minor
modification. This example serves also as a motivation to introduce methods of analytic
function theory in our discussion which play an important role in the thermodynamic

formalism of such systems as developped by the physicists.

2. The Kac model and composition operators

The transfer operator ., defined in (16) not only allows us to determine (at
least in principle) the pressure P(A) of the observable A but several other properties
of the spin system of great interest are related to this operator and its spectral
properties. Let us mention only the ergodic properties of the measure p , under the
translation 7 and the closely related decay properties of correlation functions. By these

one understands for arbitrary observables f,ge #(Q,) functions of the form

Crg(m) =np(g 07" - 0) — iy (B (D). (18)
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Introducing the projector #: €(2,) — #(Q,)

Ph=v,(Oh,

with v, resp. h A defined as in the Ruelle-Perron—Frobenius Theorem, we find for

Cf the representation

8
In
Crg(®) = vy( 1+ 5 (8~ 1y) (19)
1
where 4 denotes the operator

By the R—P—F Theorem we know for Holder continuous A that
Lim | [A" A7 =0 (21)
n -m
and hence we find in this case

Lim Gy (n) = 0. (22)

This shows that 4, is mixing [K] and hence certainly ergodic. How fast the decay in
(22) takes place depends on the "smoothness" of the observables f and g , where

smoothness is related to the way these functions depend on the variables ¢, for large i.
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In the most favourable case the spectral radius of the operator 4 in (20) then is
strictly smaller than X, leading to an exponential decay of such correlations. In the
physics literature one talks in this case of systems with a finite correlation length.

Examples of such systems are the one dimensional lattice spin models with finite
range observables A . Another nontrivial example but with an A of infinite range is
provided by the Kac model [Ma3]. This model is characterized by the following data:
F={+1~1}, Aa,a’ =1 forall 0,0’ ¢ F and the observable

Ag)= ¢, Y &X' (23)
i=1

There & is some real parameter and 0 < A < 1 a constant describing the asymptotic
dependence of A on fi for i — w , which obviously decays esponentially fast. The

transfer operator .7 A for this model has the simple form

EAGEEDIECLDWANIRICIE (24)
o =#*] i=1

From the R—P-F Theorem we know that

n
Ly 1

n
Al

lim
n- o

-hAH =0 (25)

where 1 represents the function f(¢)=1.
Denoting the function (,\In .ZK 1)(¢) by £ (£) we see from (24) that any f
belongs to the following subspace A _(2,) in #(Q2,):
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A () = {fe #(2p): Fge A (Dp): (¢) = g(x(E))} (26)
where Dp = {z€ C: |z| <R} and x:Qy — Dy is the map

€)=Y & N (27)

i=1

Am(DR) denotes the Banach space of all functions f holomorphic in Dp and

continuous on DR with the sup norm

| 1f]| =sup |f(z)| . (28)
zeDE

That the space A _(,) is indeed invariant under the operator ., in (24), at least
for any R with R > 1'_\7 , follows from

Lemma 1 On the space A (£2,) the operator %, actsas

(£, &)= ) exp(Fo () (4, (x(¢))

o =%1
where ¢cr : DR — DR is the holomorphic map
qbg(z) = Ao + Az . (29)

The proof is a simple calculation together with the fact that for R > 1% the function
exp (Foz) foy (z) isin A (D) for fe A (Dp).
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This shows that .7, : A _(Qp)— A _(R,) is a well defined bounded linear
operator. What one would like to have now is that the eigenfunction h, corresponding
to the highest eigenvalue A; belongs to the space Am(Q A) - Instead of working in this
space one can as well study the induced action of the operator .7 A in the space

A_(Dg) which we denote by the same symbol:

Z,8(z)= ) exp(Foz) g(¥,(2) (30)
g =%1

with ¢ : Dp — D defined in (29).

Lemma 2 The eigenfunction h, belongs to the space A () , that means there
exists a function g, € A_(Dp) with

""A EA(Z) = AlgA(z)
where A, is the leading eigenvalue of .#, inthespace #(Q,).
The proof follows from positivity and compactness properties of the operator
Ly Am(DR) — Am(DR) which we will discuss in a more general setup next.

From its definition in (30) we see that ¢ A 18 the sum of two operators both of

which of the form

L5(2) = ¢(z) g © Wz) (31)

acting in some Banach space of holomorphic functions over some domain D C C , such

that 7% maps D holomorphically inside itself and ¢ is a holomorphic function on D
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too. To understand the functional analytic properties of .# it is8 obviously enough to

study the operator

C, 8(2) = § © 2) (32)

which i8 an example of a so called composition operator. These operators and their
properties have been objects of intense studies up to the present day [Sh1,Sh2]. An
interesting question is for instance, how the spectral behaviour of such an operator
depends on the spaces of holomorphic functions on which it can be defined. There seems
to take place a rather complex interplay between the way 3 maps D inside itself and
the boundary behaviour of the functions on D on which C " is considered to act. This
can be seen already from the two extreme cases for the map ¢: ¢(z)=2z or
W2) =z, . In the first case C " is the identity operator whereas in the second case it is
a rank one operator mapping the entire function space onto a 1-dim. subspace. In
simple words the result of the work of Shapiro et al. {Sh, ShT, Sch] is essentially the
following: in the different spaces of holomorphic functions over the domain D ,

characterized by the functions boundary behaviour, the operator C " in (32) can be

compact or even traceclass only if the image (D) of the closure D of D hits the
boundary of D not too often and not too smooth. For spaces of boundary regular

functions, that means those continuous up to the boundary of D, it is known [Sh] that

C » is compact if and only if #(D) does not hit #D in any point. Let us give the
argument for the Banach space Am(Dl) . In this space a linear operator .# is compact
iff any sequence {fn} converging to zero pointwise contains a subsequence {fj} such

that lim ||.ij| | =0 . Hence if C¢ is compact the sequence {f } with
P o
fn(z) = z" which obvioulsy converges to zero pointwise must contain a subsequence

{f} such that lim [|Cyf||=lim||¢- J)|=0 where ¢-J denotes the
J o J o
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function 4 - j(z) = (q/;(z))~i . This however is possible only if sup |y(z)| < 1 . The

zeD
inverse direction of our claim follows from the sequel where we will show that C ¥ has

even stronger spectral properties than being compact.

Example: In A_(D,) the operator C ¥ with 4(z) =z—'|2'—1 is not compact, even

though (D) hits & D only in the single point z = 1[Sch] .

Less restrictive for C " to be compact (or even traceclass) are the conditions on o if
one considers C b acting on spaces of functions with less regular boundary behaviour,
typical examples for such spaces being the Hardy spaces Hp(D) . For domains D with
smooth enough boundary #D and 1<p <o the space Hp(D) is defined as [D]:

H (D) = {£: { holomorphic on D and J |1(z)|Pdz < o} . (33)
4 D

It is known that for ¢ : D —— D holomorphic the operator C " is well defined and
bounded on Hp(D) [Sh]. Indeed one has [ShT]

Theorem 1 If 4 maps D inside a polygon inscribed in the boundary # D then C ¥ is
nuclear in Hp(D) in the sense of Grothendieck forall @ >p21.

Corollary 1 Under the conditions of Theorem 1 the operator C " is traceclass in the
Hilbert space Ho(D) .

Let us briefly recall the definition of compact respectively traceclass operators in a
separable Hilbert space & .



—-19 —

A linear operator J&: ¥ — ¥ is compact if there exist (not necessarily
complete) orthonormal sets {fn}l::l and {gﬂ}l:ll=1 and positive real numbers
{,tin}]':=1 with p -0 such that

N

L= Y p ()8, 1<N<o (34)
n=1

where the sum on the right hand side converges in norm and (,) denotes the scalar

product in ¥ .

Remark. The numbers p_ —are called singular values of .¥.

Using this representation for compact operators in the Hilbert space ¥ the trace

class or nuclear operators are characterized by the property:

N
L is trace class iff L i8 compact and z p<o. (35)
i=1

One then shows that any operator .#: & — ¥ of trace class has the property that

for any orthonormal basis {¢ } of J¥ the quantity E(wﬂ,.&’ p,) converges
n
absolutely and is independent of the basis. It defines the trace—functional

trace . = 2 (cpn, & tpn) which turns out to be identical to the sum over the eigenvalues
n

{\} of & counted according to their algebraic multiplicity. Grothendieck extended
this definition of trace class to general Banach spaces: A linear operator #:B— B,
B an arbitrary Banach space, is called nuclear of order q , if there exist families

* * *
{f,}eB, {f;}eB , [|f || <1, |[f]| <1, and asequence {p } of complex
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numbers, such that

2=t )8, (36)
n

and q=inf{p<1: 2 ] pn|p < o} . Convergence in (36) is again in the operator norm.
* n '
The space B is the dual space of B, that is the space of continuous linear functionals

on B with the usual norm. More details about Grothendieck’s theory can be found in
an appendix, where also the possibility for defining a trace for such nuclear operators is

discussed, which is more delicate than in the Hilbert space case.

Remark: It is common use to call a linear operator .# in a Banach space simply

nuclear, if in the representation (36) the numbers Py fulfill z | pnl < o . In this sense
n
Theorem 1 has to be understood.

As for the space A (D) also in the space H (D) defined as

H (D)= {f:{ holomorphicin D, sup |{(z)| < o} (37)
zeD

the operator C " is nuclear iff ¢ maps D strictly inside itself [Sch].

Let us come back now to the discussion of our transfer operator .¢ s in (30). Since

the maps ¥, in (29) map the disc DR for R> strictly inside itself it follows

1—-2A

from the preceding discussion that the composition operators C " are nuclear, in fact
o

of order zero (see appendix) in the space Am(DR) . Standard arguments about sums

resp. composition of nuclear operators with bounded operators finally lead to
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Lemma 3 The transfer operator %, : Am(DR) — A _(Dg) in (30) is for R > I%X

nuclear of order zero and hence of trace class.

Exercise Determine representation (36) for the operator

21(z) = z) - f(pa)
on A _(Dg), where pe € fulfills 0< jp| <1.

Our next aim is to determine the trace of the transfer operator .¢ A - To achieve
this, we need the following fixed point theorem [EH], which we formulate in a very

general form:

Theorem 2 (Earle, Hamilton) If D is a bounded connected domain in some complex

Banach space B and 1 is a holomorphic map of D strictly inside itself, then ¢/ has
* *

exactly one fixed point z in D and ||Dy(z )|| <1.

* *
Thereby D ¥z ) denotes the derivative of 4 at the point z=1z , whichisa

linear operator in B . The term "strictly inside itself" means that

inf YWz)—z' || 26>0.
zeD,z’eB\DI | .

Remark: For finite dimensional Banach spaces this result is rather classical [H], even if
its proof is not completely trivial. The above Theorem allows a complete determination

of the eigenvalues of the compostion operator C¢ on Am(D) at least, if ¢ maps D
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strictly inside itself. We restrict our discussion to the case D C € , mention however,

that the result can be generalized immediately to any Banach space B as long as the
*

operator Dy(z ) is itself nuclear [Mal]:

Lemma 4. If % maps the domain D C € strictly inside itself then the spectrum of the

generalized composition operator Zg=¢ +-C $8 o8 the space Am(D) consists of the
* *

eigenvalues A = ¢z )(¥'(z ))*, n=0,,.. converging for n— @ to the point

*
0, where z is the unique fixed point of ¢ in D.

Proof: Since .¢ is compact the spectrum of .7 is discrete with possibly 0 the only

accumulation point. Assume A to be an eigenvalue. Then we have
L1(z) = p(z)f o Y(z) = M(z) .
*
At the point z=2 we find
* * *
Pz )z ) = Mz ),

and hence, if £(z )# 0, we conclude A=g(z ). If on the other hand f(z ) =0 we

look at the once differentiated eigenequation

¢’ (2)f o Y(z) + p2)¥’ (2)f’ (H2)) = A’ (2) .

*
Taking again z=12z we get

Wz W (@ (@) =A(z),
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and hence, if f’ (z*) #0,wefind A= qp(z'*)zp’ (z*) . Repeating this argument we see
that any eigenvalue A of the operator .# must belong to the set {go(z*)'([)' (z*)n} . We
show next that any of these numbers is a simple eigenvalue of .Z . For this take any
g A(Dp) with the property g)(z')=0 for 0<k<n—1 and g™z )#0.A
straightforward calculation then shows that there is no solution in A _(Dp) of the

equation

(L2 W (2 1) =g, (38)

* *

and hence A = ¢z )¢’ (z ) is an eigenvalue of .#. From our previous arguments we

know already that eigenfunctions ¢ belonging to this eigenvalue must fulfill the
%x *

relations zpl(lk)(z )=0 0<k<n-1 and :pl(ln)(z )#0 . Differentiating the

eigenequation

Lo =X p

n n'n (39)

* *
(n + 1)-times we find at the point z=2 that cpr(ln'l"l)(z ) is uniquely determined
*
by gol(ln)(z ) . From this we conclude that the solution of equation (39) is, up to a

constant multiplicative factor, unique. The preceding characterization of v, combined

with equation (38) shows finally, that there cannot exist any solution to the equation
(£ =2 1)i(z) = () (40)
and hence besides f= ¢ also no solution to the equation

(£=-A D=0, k=12,.. . (41)
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This shows that ’\n has algebraic multiplicity 1.
Knowing this way the complete eigenvalue spectrum of the operator Z=¢ - C "

we can write down immediately its trace:

Corollary 2 The trace of the operator Z=¢ - C ¥ in the space Am(DR) is given by

the formula

® *
trace = ) A —Hz) (42)
n=0 1-9'(z)

Remark: This formula has a straightforward generalization for domains D in €™ and

reads then

P
Z

ez )
det(1 - Dy(z ))

trace .Z =

* *
where Dy(z ) denotes the derivativeof ¢ at z=2z .

Applying next this trace formula to the transfer operator .¢ A for the Kac model

in (30) we find the finite volume partition functions Z (A) can be written as
Z_(A) = (1 —A") trace .7} . (43)
n A

The factor 1—A" can be get rid of very easily: define a second transfer operator

7 A= AL A which obviously is also trace class with trace % R = A" trace .!R

Hence we can represent Z _(A) finally as:
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Z (A) = trace JK —trace & R . (44)

This shows that for the Kac model the two operators % A and .7 A Play exactly the
role which for finite range functions A played the transfer matrix L(A).
In the next section we will discuss how far this method can be extended to more

general subshifts of finite type.

3. General subshifts of finite type with nuclear transfer operators

Let us start our discussion with a slight modification of the Kac model where we

11
allow for a nontrivial transition matrix A , for instance A = [ } . The Ruelle
10
operator then takes the form
m -
ERGEED) A g, explo 5_2 ¢ \) £(0,6) . (45)

o =%x1 i=1

The right hand side depends now on the variable ¢ 0 in a new way, namely through the

matrix element Aa £, To cope with this situation we consider the operator % A 38
b

0

acting in the larger space @ A _(£2,) whose elements { we denote by
ogeF

[= (£, (6)ep (46)

with f € A _(©,) . The space A_(2,) is embedded in this space through f_ =1{ for

al ;e F, fe A (Q,).On the space agFA"’(Q p) the operator ¢, acts as
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(p0,(6)= § Ay e’ 3 Y & 01 (0" ). (47)
o’ eF i=1

Now we can proceed as in the case A, =1 . The operator ¢, in (47) induces an

operator ., in the Banach space @ Am(DR)
ceF

(Zp8),(2)= ) A, ,explo’ F2) g i(¥, 3), (48)

with the maps ¢ defined in (29). This operator is again nuclear of order zero and its

trace is given by

* 1
trace -gA = z AO',O' exp(O' /\Za_) -—’*' (49)
oeF 1-— ¢a(za)
Introducing a second operator
we find also in this case for the partition functions Z_(A):
Z (A) = trace .ZR — trace !R . (51)

It should be clear now how we can apply the preceding method to a general subshift of
finite type, which fulfills the following conditions:
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T1 There exists a map =« : 2 —-+[Rk,open sets W CIRk with
A
T(QyC U W, and maps 9 _: U W, — W_ with
oceF o eS

={o’ eF: A s = 1} such that for any (o,€) € QA we have

n0.6) = () e W

(T2) There exist complex neighbourhoods U_ of W _ in ¢® such that v,
extends to a holomorphic map of US U_/ strictly inside U,
c'e
(T3) There exist holomorphic functions A on U_ such that

A(.£) = A, () for g e F.

If a subshift of finite type (Q A*T) fulfills conditions (T1) — (T3) then its transfer

operator ., can be considered as acting on the Banach space QF A (U,) as
ce

follows:

(£p8),2) = ) A,/ exp A i(4,/(2) 8,/ (¥, (2) - (52)

This operator is nuclear of order zero with trace .¢ A Biven by the formula

1
trace £, = ) A, exp A a) Ty (z,)—) (53)

g eF
Thereby z denotes for o € S the fixed point of the mapping 1,(;0 If oS o then

*
z, is obviously not defined. This does not matter since then Aaa =0 and the
H
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corresponding term vanishes by definition. To get rid of the factor det(1 — D¢a(z;)) in
(563) we use a well known formula from multilinear algebra which tells us that [G1]

k
det(1-L)= ) (~1) trace A L (54)
=0

where A L denotes the r—fold exterior product of the linear operator L in [Rk .
r

This way we are lead to a whole class of transfer operators on the Banach spaces

® AB(U)) where AB(U ) denotes the B-space of differential r—forms
cgeF 1 r

holomorphic over the domain U aC Ck . An element LA of this space has the

representation
wr(z)=. y oW l(z)dz A.. /\dzr (55)
i, "lr=1
with w, . €A (U ) -
1 r
On the space ® A B(U ), 1 <1<k we define an operator .L’Xr)

ceFr

(2000, = T s g e Ay (90(5) ADY,1(a) (), (4, () (56)
o’ €eF
where A Dd)a;(z) denotes the r1-fold exterior product of the linear operator
r

Dy_/(2): ck— ¢k,
The trace of the operator .fl&r) is given by the formula:

1
e L4 = ] By g e Ayfar) tsee A DY (a7) ()

oeF
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This together with formula (54) then shows that

k
z,(A)= ¥ (~1)trace #{7) (57)
=0

where JLO) is identical to the transfer operator .#, in (52).
It certainly does not come as a big surprise that quite generally the partition
functions Z_(A) of a subshift of finite type fulfilling conditions (T1) to (T3) can be

expressed as

k
Z(A) = Y (~1)trace(£{THT. (58)

=0

Formula (51) for the Kac model now appears as a special case of formula (58): one only
has to take k = 1 and Dy () = A.

This concludes our discussion of transfer operators for subshifts of finite type
(Q A,T) or in other words, one dimensional lattice spin systems. In the next chapter we
turn our attention to one dimensional expanding maps of the umit interval which

through symbolic dynamics are closely related to the former systems.



—-30 -

II. Expanding Maps and their Trangfer Qperators

We restrict our discussion to dimension d =1 for the reasons we explained
already in the introduction. Let us mention however, that most of the theory extends to
expanding systems of any dimension d (See for instance [Ma4] ). The transfer operator
for a 1—dim. expanding map T is better known under the name "Perron—Frobenius
operator" and describes how densities transform under the map. This operator
corresponds exactly to the transfer operator for a subshift of finite type defined by the
symbolic dynamics of T (For symbolic dynamics see contributions in [A], [K], [M],
[P], [S])- One only has to apply the procedure discussed in the preceding section to
define the transfer operator on some space of functions smooth in some domain D . In
the present case this domain is just the phase space of T which we take as the unit
interval 1 or some complex neighbourhood of it. The map = of condition (T1) of the
preceding section, 7:§, — 1, then defines just the symbolic dynamics of T and is
the first step for applying the thermodynamic formalism for spin systems as developped
in the first chapter. The following discussion will be centered around the questions what
kind of properties an expanding map must have so that the transfer operator method in
the strong analytic form of the foregoing sections can be applied and what kind of
problems can be treated by this method. In the last chapter we will finally discuss a very
special but nevertheless for this meeting very interesting case of an expanding map

where the transfer operator method can be pushed rather far to give rather new results.

1. The Perron—Frobeni rator

We denote by I the unit interval [0,1] and consider maps T : T — I with strong

hyperbolicity properties
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Definition: A map T :I——1 is called expanding, if there exists a countable partition
A4 = {L};c  of I into nontrivial intervals I, = [t, ,t,] such that

(E1) I=U Ii
ie F

(B2) imtGNintI,=¢ if i#]

(E3) T,:=T]| is monotone and gk
1

4
(E4) |(T") (x)| 26>1 forsome n>1 andall xel.

In case the local branches Ti of T are real analytic we call T an analytic expanding

map.

Ergodic properties of T with respect to an invariant Borel measure u are closely
related to spectral properties of the Perron—Frobenius (P-F) operator [LaM] of T
with respect to pu . If .2’1(I,dp) denotes the Banach space of g integrable functions
over 1 then this operator Zr: .Zl(l,d”)——r Z,(1,dp) is defined through the

equation

[ dutx) 27 108(x) = [ dutx) f)g(T) (1)
I I

where fe .ZI(I,dp) and ge .?m(l,dp) are arbitrary. This operator tells us how

densities with respect to the measure p transform under T :if dv(x) = f(x)du(x) ,
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fe .i’l(l,d,u) , 120, then we find for any measurable set A :

(x) =

T*v(A) = v(TlA) = J dv(x) = J dv(x) X1,
I

1A

= J XA(Tx)f(x)d,u(x) = J— XA(I) -"’T f(x)dﬂ'(x) = J 'ZT f(x)dp.(x) ]
I I A

*
which shows that T v is absolutely continuous with respect to x with density
Zr {(x) . From this we conclude that v=1{u is T invariantiff L f=f.

Let us list some further properties of the P—F operator ‘ZT :

(P1) deu=JJdey forall fe 2 (Idu)
I I

(P2) Zpf20 if 20 (positivity) (2)
(P3) II-?Tllxlsl.

In the following we are mainly interested in the case where p is ordinary Lebesque
measure on I, so that from now on we set du(x) = dx . In this case the operator %,

has a simple explicit representation for expanding maps:

Zpix)= 3 |9, (x)] fo $(x) xp (%) (3)
ie ¥ !
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where ¢§ = T;I : Tli_"li is the local inverse of T restricted to Ii and X1, 18 the
1

characteristic function of the set TI, . Since the functions T, are monotone by
assumption and |(T")’(x)| 28 > 0 the functions 11); do not change sign on TI, and
|9, (x)| is therefore equal to &, (x) with €, = sign ¥, (x) on TI independent of
X.

As soon as at least for one ie & TIL $1 ~Zp does not leave invariant the
space ¢ (I) of continuous functions over I since .y f in this case is certainly
discontinuous at least at one of the two points Tt, or Tt, , . Hence eigenfunctions of
..S!T are at most piecewise continuous, in general even only Jl . Here on the other
hand we are interested in systems whose P—F operator has piecewise analytic
eigenfunctions. This seems at first to be a rather restricted class of maps, but it turns
out that such maps play a rather interesting role in hyperbolic geometry in dimension 2
and the dynamical systems there: it was shown by Bowen and Series [S] that the
symbolic description of geodesic flows on surfaces of constant negative curvature involves
such one dimensional maps as some kind of Poincaré map of the corresponding flows. For
more details we refer to the lectures by Adler [A], Manning [M], Pollicott [P] and
especially Series [S], where one can find also the references to the original literature. To
introduce this class of maps, we need some more notation. If £ = {Ii}ie  i8 any

countable partition of I into closed intervals I, = [a; ;,a.] we denote by
the set of boundary points of the L, completely specifying the partition £ .

Definition: A partition . = {A.} is compatible with the action of the map T iff
T & ./(C & £ Denote then by T  the partition determined by the set
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T & g={Ta:ae &} U{0,1}.

We next introduce 8o called Markov maps:

Definition: An expanding map T :1——1 with partition . = {L},_ 5 is Markov, if

(M1) T o& . is afinite set

(M2) there exists a finite number N such that T &/,C oy if & denotes the

N
partition defined by theset U T (U {0,1} .
n=1

Examples

(1)

If Tx = (5)
beod esen,
then T is Markov since d'd‘={0,%,§} and p="T d’d‘={0,%,l}
obviously obeys: T dfpc & -
1
"x-mOdl X*O
If Tx= , then (6)
0 x=0

1
& o= {0} U {H:neﬂl}.lf Sp=T & ;= {01} wefind : T #5C &, and
T is Markov.
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Remark 1 The partition &£ constructed above for a Markov map is the minimal
partition of I finer than the partition T .4 and compatible with T . We will see that
this partition &% determines the kind of smoothness an eigenfunction of the P-F

operator .ZT for T can have at most.

Remark 2 A Markov map has a second important partition namely the one determined
by ‘o U & P It is also compatible with T but finer than partition # . This
partition is in a certain sense the minimal Markov partition of the system (I,T) from
which symbolic dynamics can be constructed. This is the kind of partition used in almost
all of the lectures during this meeting. See especially the lectures of [P] and [S].

If T:I—1 is an expanding Markov map with partition A= {Ii}ieﬁf we
denote the partition 2 constructed above by P= {Oj} e X The P—F operator £

can then be written as

(£p0®=Y ¥ oA fwex) if xe0;, (7
i€ S Le ¥ jt

where we introduced for £ € % and xe O ¢ the notation
fo(x)=1]4 a(x) (8)

and defined for all i e & and £,je K& the transition matrices

1 if $(0,)CO
A(i) — ! . ¢ (9)
3t '
0 otherwise
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To derive expression (7) one uses the fact that for all i ¢ F

TL=U O, (10)
1 -j€~7€ J

where X, = {je J:int Ojﬂint TL # ¢} . (11)

From this one derives that (O j) CO, for (int O j) int O, # ¢ . Simple functional
analytic properties of the above P—F operator (7) can be derived for analytic Markov
maps T . These are expanding Markov mapﬁ with a partition # obeying the following

conditions:

(A1) T, =T}|; isreal analytic
1

(A2) for amy O.i € # there exists a complex neighbourhood Uj CC with
O.i C U.i such that the mappings 4 extend to holomorphic maps on

U U., mapping any U. for je J4. strictly inside U. .
e X J J 1 1
Je s

See the contributions of Pollicott [P] and Series [S] for examples where such
maps can arise.
For analytic Markov maps the P-F operator % in (7) obviously defines a

nuclear operator of order zero on the Banach space 20 Am(U R.) of piecewise analytic
X

functions over the domains Uy . The proof is the same as for subshifts of finite type
fulfilling conditions (T1) — (T3). As in this latter case we can define also for expanding
maps partition functions Z_(A) for abitrary observables A e #(I) by
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n—1
Z(A)= ) ep )} ATN). (12)
xeFix T! k=0

A very special role in the ergodic theory of such expanding maps is then played by the
function A(x) =-plog|T’(x)| which for piecewise analytic functions is itself
piecewise analytic. In this case the partition function Z (A) is just

n—1
Z (A)=% (8= ) TT W (13)
xeFix T! k=0

It is not too difficult to show, that for expanding Markov maps Z_ (/) can be rewritten

as
(14)
* g, lin) (i)
= ) ) | 0o ) ;)N Ao Ay
il €F Ly 0 ¥ 1 m 17 m
1 im 1oy
where x*i oy 18 the unique fixed point of T™ with the property that
1 m
k1, c0, NI (15)
il...im P'k ik
(lk) (ik)
and =1 forall 1<k<m (£ :=£.) . In the case A =0 for
Aty Cmr = 1) b1t

some k , the corresponding term has to be set equal to zero in (14).

To apply now the theory of transfer operators we define generalized P—F operators
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A9 @ A (U)— ® AUy for s=01

B Lex © Le ¥
as follows
(L9@)=F Y (9, v AD g (0). (16)
BT Csiex -t

7
Aslong as | | is finite (remember ¥ is finite by definition!) and ¢,(z)#0 on

U U.i the operators !gs) ,8=0,1 are nuclear for all e C . If on the other hand
i

| | = o the range of B’s such that 5) is nuclear has to be investigated in more
detail. This will be done later for the continued fraction transformation, where ¥ =N .

Applying next the trace formula (53) in ch. I. we find

) = () 1y @) Py (0)° —L
trace .7} EyangLUwgln e (1)

*
where z denotes the unique fixed point of Ti =T |I respectively gbi in the interval
' i

Op with ;Li(O[) C Oy . From this we conclude

Z,(B) = trace 2’50) — trace !él) . (18)

It is a little bit cumbersome but straightforward to show for general me I :

Z () = trace !go)m — trace !él)m . (19)
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This shows piecewise analytic Markov maps possess nuclear transfer operators
(generalized Perron—Frobenius operators) which give a simple description of their
partition functions Z_(f) . In the next section we apply these results to zeta functions

assciated with such systems.

2. Ruelle’s zeta functions for expanding maps

We restrict our discussion to analytic expanding Markov maps introduced in the
last section. It should be mentioned that the theory of zeta functions has been
developped for quite general dynamical systems [R], but the results are most complete
in the case considered here. These functions play a fundamental role in Parry’s and
Pollicott’s work on the distribution of closed orbits in hyperbolic systems [P]. If
T:I——1 is such a Markov map and A:I— € some function then we defined

already the partition functions

n—1
k
Z,(A) = ) exp ) A(T%).
xeFix TV k=0

These numbers can be put together in a very elegant way in some kind of generating

function, the so called zeta function

(@A) =exp ) §2¥Z,(A), (20)
k=1
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which in this generality was introduced by D. Ruelle [R] for general hyperbolic
dynamical systems. In the special case A =0, the above formal power series in 2z is
just the Artin—Mazur function [ArM] for T , since in this case
Z(0)=4#{xel: T"x = x} again simply counts periodic points of T of period n .
Quite a lot is known about analyticity properties of the function ((z,A) both as a
function of z e € and of A in some Banach space of functions [R]. In general there is
some disc D around z = 0 such that ((2,A) for fixed A is meromorphicin D . For

our class of maps this result can be improved quite a lot:

Theorem 3 If T:I—— 1 is an analytic Markov map with partition £ = {Ii}i cF
and local inverses 1/3 , 1€ F, and if the functions exp A o 1/;1 extend to holomorphic

functionson U U i then the Ruelle function ((z,A) has a meromorphic extension to
je %

the entire complex z—plane . This extension is given by the formula

Proof: Consider the generalized P-F operators .ZXS) , 8=0,1 defined on

(200 ¥
(0@ =1 T epAwm@) w6 A g0 (21)
ieF Le X it

One then shows again

Zm(A) = trace JXO)m — trace j[gl)m .
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Using next the fomula
det(1 — z.¢) = exp trace log(l —z .%) (22)
valid for the Fredholm determinant of a nuclear operator of order zero [G1], we find

det(l —z .i‘xl))
det(1~z #{)

((z,A) =

By Grothendieck’s theory for nuclear operators the right hand side obviously is
meromorphic in the entire z—plane as the-quotient of two entire functions.

Instead of studying the function ((z,A) in the variable z e € for fixed A , we
can also consider the function ((1,4A) for fixed A and [ varying in the complex
plane. Of special interest again is the case A = —log|T’(x)| , which we mentioned
already in the last section: there is a close connection between this function and the
Selberg zeta function for geodesic flows on surfaces of constant negative curvature, if one
takes for T the appropriate expanding maps. These matters are discussed in the
lectures by Pollicott [P].

By applying exactly the same arguments as above and also the fact, that
det(1 - .z’ﬂ) is holomorphic in 4 as long as the nuclear operator .z’ﬂ depends itgelf

analytically on £ in some domain, we arrive at

Theorem 4 If T:I—1 is an analytic Markov map with finite partition
A ={L}ic 30 | ¥| < m, then the function
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o
(Lo =exp ¥ Lz (8 (23)
m=1
m—1
with  Z_(f) = 2 exp—0 2 log[T'(Tkx)| extends to a meromorphic
k=0

xeFix TO

function in the whole complex A-plane . This extension can be written as

det(1 — LAY
C(l,ﬁ) = ° ( !go)) (24)
det(1 — .z'f, )

Proof: We have to take simply the generalized P—F operators .fgs) defined in (16) of
ch. IT.

Remark: Obviously, the poles of this function have to be found among those values of 8
for which the operator .fg;) has A=1 as an eigenvalue. Their multiplicity

determines the order of the pole.

In the next chapter we are going to apply our general results to the continued
fraction map Tx = %mod 1 . This map plays an important role in number theory in
connection with continued fraction expansions. But this map is also closely related to the
symbolic description of the geodesic flow on the so called modular surface as found by
Artin [Ar] whose work was continued quite recently by Series, Bowen, Adler et al. For

more details see their contributions [A], [S].
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III. Th ntinued Fraction Transformation (Gauss—Ma

1. Perron—Frobeniug operators

The transformation T:I—1

Tx = (1)

plays a crucial role in number tlieory through its relation to the continued fraction

expansion of any real in the unit interval I:

1
X = 1 , .eN . (2)
1

For short, we will write this a8 x = [nl,n2, ... ] . It is known that this expansion is

1
T .
For irrational x however the expansion does not determinate and it is also unique.

finite iff x is rational. In this case the expansion is not unique since n+ 1=n +
From its definition we find

T[n,ng, . ] = [0y, 1, ], k=012, .. (3)
and n) = [(Tk_lx)_l] where [x] denotes the largest integer < x. From this we can

see immediately that the distribution of the entries n, in the expansion (2) of x is

closely related to the ergodic proporties of the dynamical system T in (1). Obviously,



—44 —

the Gauss map T is an analytic expanding Markov map defined in sect. 1 of ch. II: For
the partition £ = {I_} o with

Bl=

1= s3] ®

. 7
we find: T| (x) =T (x) =2 —n is analyticin x#0,and [(T?) (x)] 24>1 for
n

all xel.
Furthermore we get forall ne N: T =1, s0 that xpp =1 for all ne N . The
n

inverse maps # = T;l :I— 1, have the explicit form
1
Ux) =77 (5)
and hence are meromorphic in the entire z—plane with a simple poleat z=—i.
Since T/ = {0,1} and hence Top= &y if & 5= {0,1} , the partition 2 is

the trivial partition & = {I} . Therefore the generalized P—F operators Jgs) as
defined in (16) of ch. II. have the form

A= o)) g

1

] . 2‘ . i

It is easy to verify that (U;)CU; for all ieN . With this choice of U; the
operators !gs) define nuclear operators of order zero on the space A_(U,) for all g
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with Reﬁ>% for 8 = 0 respectively Reﬂ>—% for s=1.

Before we are going to discuss the different zeta functions for this system, let us
investigate a little bit in more detail the above operators .fgn) . For =1 the
operator 40) is the ordinary Perron—Frobenius operator for T with respect to dx ,

which perhaps was known already to Gauss. In fact, he must have known at least the

(0)
eigenfunction belonging to the leading eigenvalue A, of Xﬁ:l , which by property

(P1) of the P—F operator in (2) of ch. IT must be equal 1. This eigenfunction h is the

invariant density of the map T and turns out to be given by

1 1

and defines what is called Gauss measure for T .

Obviously, the function h(z) belongs to the space A_(U,) . In a letter to Laplace
Gauss stated the result, that the asymptotic probability for the event T"x < a in the
limit n — o is given by the formula: P(T"x < a) = l’o%‘? log(1 + a) . In modern

terminology this simply says

a
lim (T [0,a]) = lim dp(x) = J' 1 ax, 9
limur e =lim [ k=g [ o ©)
T 7 [0,a] 0

where 4 denotes any normalized measure on I absolutely continuous with respect to

Lebesque. By relation (1) in ch. IT we can write this also as

lim [ g 47(3) [4™"8] (0t = [ xpq 7 BRIK, (10)
I I
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and the result of Gauss is a special case of the asymptotic behaviour of the operator
_40) under iterations. Unfortunately, it never became known how Gauss derived his
result in (9). In his letter to Laplace he also posed the problem of determining the rate of
convergence to the asymptotic law. A first proof of relation (9) was given much later by
R. Kuzmin [Ku] in (1928), who also showed the error for finite n to be bounded by

q‘fﬁ for some 0<q<1 . This result was improved by P. Levi to Q" with

0 < q<0.68 [Le]. In the meantime the number q has been determined numerically

even up to 20 decimal places [W] as
q % 0.30366300289873265860 ..... . (11)

In the space A _(U;) Kuzmin’s (or better Levy’s) Theorem follows from spectral
properties of the operator !&0) valid for real 8> % ;

Theorem 5 The operator .L’go) tA(U;)— A_(U;) has a positive leading
eigenvalue A, (f) which is simple and strictly larger than all other eigenvalues in

absolute value. The corresponding eigenfunction hﬁe Am(Ul) is strictly positive on

- * K *
U;NR . The adjoint operator .},’go) :Am(Ul)-——»Am(Ul) has a positive

*

cigenfunctional £ with eigenvalue A,(6) with £f)> 0 if >0 on U NR.If 2

denotes the projector
o= L,@hy, (Ehy) =1 12
3=Ltg®hg, (Lghg)=11) (12)

then .L'go) has the representation

20 =82+ 4 (13)
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with S‘b . .Afi= Jﬁ . 9ﬂ= 0 . The spectral radius of .A"g is strictly smaller than
A (B) .

*
Exercise: Determine the eigenfunctional £, .
From this Kuzmin’s Theorem then follows as a simple corollary

Corollary 3: If .!go) is the generalized P—F operator for the Gauss map in the space
A_(U;) then

| |’\1(ﬁ)—n—fgo)n" ﬁ| | € qg

)
where 1= 1%(57 | <1 and A,(B) is the second highest eigenvalue of .Zgo) in

absolute value. If =1 then A;(1)=1 and hence q; = |Ay(1)] [MaR1], [MaR2].
The proof of Theorem 5 is a Perron—Frobenius type of argument based on
positivity properties of the operator !go) . What positivity really means in the setup of

infinite dimensional Banach spaces we are going to explain next.

Definition A set K in the real Banach space B is called a proper cone, if pfe K for
all fe K andallp>0 andif KN—-K = {0} . A proper cone is called reproducing if
B =K-K, that is every g e B has a representation g = fl—-f2 , fi eK, i=12.
Given such a proper, reproducing cone K in B we can define positive operators with

respect to K :

Definition: A linear operator .#: B— B is positive with respect to K if Z/KCK.
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(o]
In the following we assume the cone K to have nonemty interior int K=K .

. o]
Definition: A positive operator .#: B—— B is called uo—positive with up € K, if
there exist for every 0 #fe K a number pe N and reals a,5> 0, such that

p
ﬁuos.f -{gauo,

where the order < is defined by K:f<g&g—-fe K . For uo—positive compact

operators one has a Perron~Frobenius Theorem [Kr]:

Theorem 6 (Krasnoselskii) If .#:B— B is a compact uj—positive operator with

respect to the cone K such that Bu, < ZPu, <au,, then there exists exactly one
0 0 0 _ y

[@]
eigenvector h; € K anda A, >0 such that .z’hl = Alhl . The eigenvalue ’\1 is
simple, in absolute value strictly larger than all other eigenvalues of .¢ and fulfills the
bounds ﬁllp $A S oMP . For any fe B onehas lim ,\In L= c(f)h; where

n—-mw

*
4 c=A1c.

It turns out that operator Jgo) in (6) of this chapter is u,—positive with respect

to the following cone K :
K={fe Am(Ul):flUlmRZO} (14)

which is obviously proper, reproducing and has non empty interior.
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Theorem 7 The generalized P—F operator .40) is for real 8> % ug—positive with
respect to the cone K . Its leading eigenvalue Al(ﬁ) fulfills a minimax principle

fg’)f(x) 0)¢(x)
min max = 4(8) = max mig T (15)

erlﬂIR feK erlnuz feK

_ o
Proof (idea): Take ug(x) = 1, which is certainly in K . The bound _rgo) f<a(f) is
trivial. To establish a lower bound Af) < .{g))pf forsome p2>1 for fe K\{O} , one

assumes that for every peN there exists a point xe U, NR such that

.Zgo)p f(x) = 0 . Using the explicit form of _{BO) one then shows that this is possible

o
only if £=0. To get the minimax principle one argues as follows: if fe K then also

0)
o f(x)
.Zéo) fe K, hence the function iﬂfr takes its minimum and its maximum in

U, N R . Then obviously

0) < 0) x
min [ﬁqg—)]fs.fgo)fg max { i()]f

erlﬂIR : erlﬂIR

o
This being true for all f e K, we conclude

0)¢(x Ds(x
sup min [ﬁqg—)] <A (f) <inf max i( )

feK feK
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by referring to the bound for A, in Theorem 6. Since by the same Theorem h, belongs

[0}
to K we get the minimax principle for A,(6) .

This minimax principle leads to simple rigorous bounds for the eigenvalue Al(ﬁ) :

0) < 0) x
min ﬁ(é;')St\l(ﬂ)S max ﬁﬂg‘)’ (16)

erlﬂIR | erlﬂIR

e}
where f is arbitraryin K . For f=1 this gives for instance

¢[263 ] <n@ <[ 283) (17)

where ((z;q) = z (q_il-i')' z is the Hurwitz zeta function.
i=

In the special case =1 we succeeded in [MaR2] applying the same technique
also to the second highest eigenvalue A,(8) . To achieve this, one introduces the
B—space Al,m(Ul) CA_(U;) ofall f8 in A (U,) which together with their first

derivative ng(z) are continuous on U, . Since any eigenfunction of .Z‘{O) different
from h1 must lie in the kernel of the projector ‘9,6:1 onto hl we can restrict our

discussion to the following space
Ai,m(Uﬂ ={fe A (U)): K=0}. (18)

Since .i’go)f’l = .ﬂ’l.z’go) this space is invariant under _40) , and obviously, _40)

restricted to this space is indentical to the operator .Ai of Theorem 5. To define then a

cone left invariant by .Ai we proceed as follows: any fe Ai o Can be written as
1]
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A

f=h,-f, where h, is the eigenfunction of J.’gg% with leading eigenvalue
A;(1) =1, which obviously is nonvanighing on U, . Then define the cone C as follows

C= {feAi’m(Ul) :1/(x)20 on U NR}. (19)
In [MaR2] we proved

Theorem 8 The operator—., is u,—positive in the Banach space Ai m(Ul) with

o]
respect to the cone C, where uy(z) =1-h,(z) e C.
From this it follows that at least for /=1 the eigenvalue A,(8) is again simple

and real, in fact negative. It can be determined from the minimax principle:

/ I
max min (i{-)—(i)-=/\2(1)=min max (_—XQ—G—E)— (20)

o — £’ (x) ° = f£7(x)
feC xeU,NR feC xeU,MR
®
2 1 1 a1
where Vi(z) = (z + 1) 2 ST T f(z+n)' (21)
n=1

roblems:

1) Prove that all eigenvalues of the operator Xgo) are simple.

2) Do there exist invariant cones analogous to the cone C for 3 if $17
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2. Generalized transfer operators in Hardy spaces

In the foregoing sections we discussed spectral properties of generalized P—F
operators in Banach spaces of boundary regular holomorphic functions. In this section we
try to restrict the space further to functions holomorphic in entire half planes which
however need not be so regular at the boundaries of such domains. For certain Hilbert
spaces of such functions it turns out that the operators .fgo) are isomorphic to very
simple integral operators J% with kernel just the Bessel functions. To derive this we
proceed as follows: From the explicit form of the operator .i’ﬁ = Jgo) in (6) we see
that any eigenfunction of .Zﬁ in the space A_(U,) must be holomorphic and bounded
in every of the half planes

H

_14s={ze C:Rez>-1+4§} (22)

for & > 0. It is therefore quite natural to introduce an .z’ﬂ invariant space J¥ of such

functions. This can be done via a generalized Laplace transform:

(z) =j dm(s)e*2p(s) (23)
0

where dm(s) is some measure on R + Which will be determined shortly. The function

¢ should belong to some space of square integrable functions over R, with respect to

+
the measure pu . Since the space & we are looking for should be .2’6 invariant we

apply .z’ﬂ to f in (23) and find

o 1

[z-}-_n]w J dm(s)e_B 70 s) (24)

Zg1(2) = )
=1 0

n
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1
]26 —Bz+n
e

Obviously for Re 8> 7 the sum 2 [ is uniformly convergent

n=1

Z+n

in s R + and summation and integration can be interchanged. This sum however can

be rewritten also as

o

28 8=
1
y [z+n ] ”+n_ 2 (-F)—((k+2ﬁ 2+ 1) (25)
n=1
@ Z
where ((z;q) = 2 [q_}_n ] is the Hurwitz zeta function. For Rez > 1 this
n=0

function can be represented also as [Gr]

1 tz—lﬁ—ql’.
¢(z9) = r(g) J = dt (26)
and hence relation (25) can be written as
@ . 128 —; +n T k251 ot
E[Hn] c —EL;,)—WJ'—hdt. (27)
n=1

Inserting this into expression (24) we find

.Zﬁf(z)=T dm(s) ga(s)J di
0

Zrﬁrlm

The sum in this expression can be performed explicitly to give [GR]:
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O (-st)  Fopa(2V)
kzomﬁﬁlzm-—;‘%w:r- (28)

Inserting this finally gives

.zﬂr(z)=J' dt ‘fﬂ_l e—ZtJ dm(s) i R os) . (29)
o ¢ —1 0 -3
(ts)
ﬂ-—l
With ¢(s) =38 2%(s) we find for
f-3

f(z)=J dm(s)e™2s 2 {¥(s).

0

B-r w

T t —zt ~
#4(s) = J 0 ait— e JO dm(s) Fg 1 (24NN

Chosing therefore the measure

dm(s) = -2 (30)
e -1

we get

® 1

B-% .
xﬁf(z)=j0 dmt) 2 (FgP)e) (31)
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with
X ) = JO dm(s) %3 | (24E)N)

From this we conclude

Lemma 4: If & 3 denotes the space of all functions f holomorphic in the half plane

H , and bounded in every half plane H ; for 6 > 0, which have a
~2 -3t

representation

) 8- 1
f(z) = j dm(s)s 2 & %) (32)
0

with Qe .2’2([R +,dm) , then .?ﬂ leaves this space invariant.

Proof: The operator % B Zo(R +,dm) — Z,(R ,dm) is bounded. Since its kernel

Ry
Fq ﬁ_l(wﬁ) is integrable with respect to dm the operator Kﬁ is even trace class (as
a Hilbert space operator). The space J¥ 3 can obviously be made a Hilbert space by

introducing the scalar product

() = | dm(s)(6)(6) (33)
0
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® B— 1 . .
if f(z) =J dm(s)s Ee_schi(s) , € Lo
0

R, ,dm).

We can give a more direct description of this Hilbert space without using explicitly

representation (32):

Theorem 9 For Re 2> 1 the space & 8 is identical to the generalized Hardy space

"?lgg)ﬁ of functions { holomorphic in H y Dbelonging to the Hardy space

2
55’(2)[15[ 1 ] for any & > 0 such that
—g+é
)] 4o
J x2Reﬁ_2de dy(|fx— % + i) | 2- [{x +i9)| D) < w.
0 —m

Ordinary Hardy space J{(z)(H a) over the half plane Re z > a is defined as

#2(H )= {f:1 holom.in H_, boundedin H,, forall ¢ >0

+o
and J dy |fa +iy)|% < o} .

—0

(34)

(35)

Proof: A simple calculation using essentially Plancherel’s Theorem shows that for

fe a'b'ﬂ as in (32)
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o +o
L[ 2ReB2ax [ ay(ittx—§+i)| % |ix + 1)) =
0 —0
_T(2Re —1,cn m(s) [ H8) 12 < o
ot 7 = IO CIRE

0

holds. To show that any fe "ﬂz)ﬂ has a representation as in (32) with
e Z,(R +,dm) is a straightforward genmeralization of the classical Paley—Wiener

Theorem [D] for functions in %(2)(H0) . Details are given in [Ma2].
For fBe € with Reﬁ>% one defines spaces ‘”1&?}3 as those holomorphic

functions in H , which vanish for Rez—— o and have the property that /' (2)
2

belongs to o’?ﬁg) Byl 28 in Theorem 9. Obviously, the space & 3 is again identical to

the space ”l&g)ﬁ . The case F=1 has been discussed in [MaR1]. Using next

arguments very similar to the ones used for =1 in [MaR2] one proves

Theorem 10 The spectrum o Jﬁ) of .2’3: A_(U;)— A _(U;) and the spectrum
3(.zﬂ) of £g: Hg— Hp are identical and equal to (%) of the integral
operator .7% with kernel 5'23_1(2@ in Zo(R +,dm).

An immediate consequence of this is

Corollary 4 Forreal § with > %, all eigenvalues of .Zﬁ: A (U;)— A _(U,) are
real.

Conjecture: For general real 8, 8> :1'; , the eigenvalues are simple.
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3. Zetafunctions for the Gauss map

Since Tx = %mod 1 is an analytic expanding Markov map as introduced and

discussed in ch. II, we can immediately apply the general results about zeta functions for

such maps as described in sect. 2 of this ch. II. We only have to take care of the fact that

for this map the set Fix T" of all periodic points of period n has infinite elements for

all n e N: Obviously, x e Fix T® iff the continued fraction expansion of x is periodic

of period n , that means if x = [k; ko, ...] then x e Fix T iff k, =k forall

ieN.Such x’s we write as

x=[kp, ..k ].

Consequently, the partition functions

n—1
k
Z (A)= ) exp ) A(T%)
xeFix T® k=0
are not well defined for general A Inserting
Fix T'={x=[ ky, ...,k ]k €N} we find
n—1
Z,(A)= ) [ Texp ALy e ddgidp oy g 1)
i, .. ipeN k=0

or if we introduce the function ¢(x) = exp A(x)

the

(36)

et
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n—1

Z @)= ) T TeAlijpp - sipip - dyppeg 1) (37)

iy g e k=0

To ensure convergence of these sums it is certainly sufficient the function |p(x)| to
behave like |x|'5 for x— 0 for some §>1 . To be able to apply again the
techniques of analytic function theory, obviously, the function ¢ has to have some mild
analyticity properties: the functions ¢ o 1/Ji (2) = w[;—%] must be holomorphic in
the disc U, . Obviously, the function P(x) =exp—Blog|T'(x)| = x*P  has this

1
zZ+1

28
] arein A_(U,) forall i< N and furthermore
|e(x)] ~ | x| 2 for x—0 , 80 that convergence in (37) is guaranteed for Re 8> % :

property, since the functions [
Summarizing this discussion we hence get for the Gauss map T :

Theorem 11 [Ma5] If ¢:I—— C is such that po e A (U;) forall ieN and

l(x)| ~ |x|6 as x— 0 for some § > 1, then the zeta function

((zp) =exp ) fl—n Z ()
n=1

extends to a meromorphic function in the entire z—plane . This extension is given by

det[l—z.fq(ol)]

R FEr O

where the nuclear operators !‘(ps) , 8=20,1 are defined as
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A= o[ )evis). @
i=1

As mentioned already several times, of special interest is the case
p(x) = exp—Blog|T'(x)| = x# . Then the above operators (38) are just the
generalized P~F operators of section 1 of the present chapter:

_ng)f(z) = E [ﬁ;]wm(— 1)’ [ﬁ;] : (39)
i=1

For Re 8> % these are nuclear operators of order zero and depend analytically on .

Hence we can apply Theorem 4 in section II. 2 to find

o
Theorem 12 The function ¢(1,8) = exp 2 %Zm(ﬂ) with
m=1
n—1
Z,(B) = 2 [ ] (Tkx)zﬁ extends to a meromorphic function in the complex
n k=0

xeFix T
p-half plane Re 8> % through the formula

et 1- AD)
R P )

whose poles are among the (—values , for which !20) has eigenvalue A=1.

We will show next that the function ((1,5) is meromorphic even in the entire

B—plane . To achieve this we have to find meromorphic continuations of the functions
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det (1 - !&s)) . Since the arguments for s =0 and 8 =1 are identical, we restrict the
discussion to the case s =0 . For simplicity we write again .Zﬁ for Jgo) , which is

the operator

1]

#9= 1 () o) 8

i=1

The idea is to extend this operator to the whole A—plane . This can be done step by step

as follows: we write .i’ﬁ in a slightly different way as

=5 () 1o+ [ [er] 0] 2

For Reﬁ>% this gives

o

Z4f(z) = (0)(26;z + 1) + .2 [;-}f]w [f [-z-}ﬁ] —f(O)] . (42)

i=1

That means, .L’ﬁ is the sum of the finite rank operator
£ i(z) = £0)¢(22 + 1) (43)

which is trivially nuclear of order zeroin A_(U,), and another nuclear operator

-?51(2)='

1

It~ 8

)0
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The zeta function ((28;z + 1) isforany gz e U, a meromorphic function in the entire
B-plane with the only pole at 8= 11, , which is simple and has residue % . From this we

conclude that the operator % 8 in (43) is a nuclear operator meromorphic in the entire

B-plane with the property:

lim | £ of(z) — sp—r £0) | = — ¥z + 1){(0), (45)
i [ 4105200

where 1 denotes the function #(x) = %J—(log I'(x) . The operator .2 B in (44) on the
other hand is nuclear of order zero in the domain Re 8> 0 . This comes from the fact

that

|f[z—.}T{] —f(O)l <c—L1  forall i2M and M large enough.
|z + 1]

The foregoing discussion shows that the operator .Zﬁ in (42) defines an analytic
continuation of the operator .Zﬂ in (40) which is nuclear of order zero in the domain
Re 8> 0 with a simple pole at the point (= % , determined by equation (45). Quite
generally we can continue the operator .Zﬁ in (40) meromorphically into the whole

P-plane as follows: for any N e N we decompose .Zﬂ into two pieces

g3 Y [ 00 (1)

+
k=0 i=1
(46)
@
26
1 1

+2 [z+1] fN[z 1]’

i=1

where fN(z) denotes the rest term in Taylor’s expansion of f around the point z=10:
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N
fe(2) = f(z) - ¥ f(_k-@ 2 (47)
k=0

Since the Taylor expansion for fe A (U;) is uniformly convergent for instance for all

z with |z| <F we find that for |z| <%

|1y(2)| < C|z| N (48)

Expression (46) can be simplified to give

N
TAOED) %9((2ﬂ+k;z+l)+ [-Z-J-T]zﬁfN[ﬁf]. (49)
k=0

1

I~ 8

i
The first term in (40) defines a finite rank operator .fﬂ N
N

A k
‘gﬁ,N f(z) = z f(—gg)- 26+ kz+1), (50)

meromorphic in the entire B-plane with simple poles at the points 28+ k=1 . The

behaviour of the operator .¢ BN for p— I—E—k 0 <k < n is the following:

A k) k)
M | g ) -5 : kEO)] =—wWz+1) {(TPO +
B

(51)
N ] :
+ 2 f(——l,'-g—)-)o (1+L-kz+1).

£=0, L$k
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. . 2 . 1-k . .
T hat th 1 he foll
his shows that the residue of .¢ AN at the point g — —— 18 the following operator
of rank 1 in the space A _(U,)

#, 1(z) = 5 f(k).o .

Obviously this operator is nilpotent for all k > 1 that means I‘E =0 for k>1.

The second term in the representation (46) on the other hand defines a nuclear

operator ‘Zﬁ N AL(U)— Am(Ul) with

EFTIOED) [z_l-{] i [2_11.] (52)

with fy defined in (47).

Because of (48) the operator .¢ BN is nuclear of order zero and holomorphic in 8
in the half plane Ref > -%I- . Since the above arguments hold for any N € N, we have

shown

Theorem 13 The operators .ng) in (39) have meromorphic continuations as nuclear
operators of order zero into the entire complex S-plane with simple poles at the points
B= 1—5—1‘ , k=2828+ 1, ..., and residue the rank 1 operator J’kf= %Ilaf(k)(o) .
The Fredholm determinants det(1 — .{g)) are meromorphic in the entire A-plane
with simple poles at the points = I—E—k- Jh=2828+ 1,28 +2,... .

Let us apply this result to the following function CT which is a little modification

of Riemann’s zeta function:
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(=3 =3 [i1%, (53)

xeFix T iel

with [i] = [i,,i,...] the irrational number x> 0 , which obeys the equation

x2+ix=1.Since

(p(B) = trace .i’go) — trace .Yél) (54)

the analyticity properties of (T(ﬁ) are determined by the analyticity properties of the

two traces in (54).

Lemma 5 The trace of the operator .ng) is meromorphic in the entire § plane with a
simple pole at the point 8= %— 8.

Proof: Since .ng) = (- l)s(.é\ Bts.N + < B+s N) » where the operators on the right
have been defined in (50) resp. (52), we find

trace #48) = (- 1)%(trace fﬁﬂ N T trace ’;ﬂ-i-s N - (55)

~

The trace of the operator ¢ Bra,N can be determined explicitly, since this operator is

a finite sum of rank 1 operators:

N
trace £, N = ) L4 2+ 2z + 1) 4= (56)
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Using the formula [GR]:

4 (ar) =-alla+ 1), (57)
we find:

N
trace ¢ BeN= ) (- 5L (284 2) . (28+ 2% +k-1)((28 +%+k),  (58)
k=0

with {(x) ordinary Riemann’s zeta function. Since this function has only one pole,
namely at the point x = 1, which i8 simple, we conclude from (58): trace . BN i8
meromorphic in the entire S—plane with simple pole at the point 28+ 28 =1 with

residue % . On the other hand we know, that the operator .¢ B+s,N is holomorphic in

~N

B in the half plane Re 8> —g-— s and hence trace & B+s N is holomorphic in this

region t00. Since representation (55) holds for any N € N Lemma 5 is proved.

From this we then get

Theorem 14 The function (m(B) = 2 [i ]‘6 has a meromorphic continuation into the
ieN
entire S—plane with simple poles at the points =+ 1 with residues 1.

Problem Does there hold something like Riemann’s conjecture about the position of the

zero’s of the function (i, ? Does the function CT fulfill some functional equation? Since

the function i — [i] is not multiplicative it is not obvious why this should be true.
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Theorem 13 allows also an improvement of Theorem 12:

Theorem 15 The function ((1,5) in Theorem 12 has a meromorphic extension to the
entire (—plane with trivial zero’s at the points S=0 resp. S =é . The nontrivial
poles respectively zero’s of ((1,5) are among the points S such that .tgo)
respectively ng) have A =1 among their eigenvalues.

Remark: We know already that Jgo) has A =1 as an eigenvalue for =1 : the
eigenfunction is just the density of the Gauss measure. Our discussion above also shows
that the operator .2’%1) has a spectral radius strictly smaller than 1. Hence =1 isa
simple pole of the function ¢(1,6) . A similar argument shows that {(1,5) has no other
pole on the real axis for 8> 1 nor any zero for 82 0. Of special interest are the poles
of ¢(1,8) ontheline Re 8= % : one expects a close relation between these numbers and
the eigenvalues of the hyperbolic Laplacian Ap on the modular surface My ,
I' = PSL(2,Z) . This is related to recent work of Pollicott on Selberg’s theory for
compact hyperbolic surfaces via transfer operators. The function ((1,8) , where the
Gauss map is replaced by the Bowen—Series boundary map [S] for the corresponding
compact surface, is then closely related to Selberg’s zeta function for this surface. Its
poles on the line Re f= % hence determine the spectrum of AI‘ completely. This way
it is, at least in principle, possible to determine these eigenvalues through the spectrum
of the corresponding transfer operators. Since the Bowen—Series maps belong to the class
of analytic expanding Markov maps the methods developped above should be of some
help. Since for the modular surface MI‘ the Gauss map is more or less the
Series—Bowen map one should expect ((1,5) and its poles on the line f= % +is tobe
closely related to the spectrum of — Ay . Since My for T =PSL(2,Z) is not compact
its Laplacian has continuous spectrum, into which there are embedded infinitely many

eigenvalues. Not much seems to be known about these numbers. It would be nice if more
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could be learned about them through our transfer operators .L"gs) by using the theory
developped above.
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Appendix
rothendieck’s Th fN I

This theory generalizes nuclear resp. .trace class operators to arbitrary Banach
spaces {G2].

If B is an arbitrary B-space and B* its dual, that means the space of bounded
functionals on B , the projective topological tensor product B* 67 B is the completion
of the ordinary tensor product Bi‘r ® B under the norm

. *
[IX[1,=1inf ) |le;[[ |lel] (A1)
{i}

* *
where the infimum is taken over all finite representations X = z e; ® eeB ®B.

{i}
® A
The elements X e B GIB are called Fredholm—kernels and any such X has a

representation
*
X = 2 Ae ®e (A2)
{i}

i * * *
with ¢ e B, e; € B suchthat |[e||=||e;|| =1 and {X} e, ,that means
Y Al <e.
{i}

Every such X defines in a canonical way a linear operator .i’x :B— B

through
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Iy f= 2 A ez(f) e . (A3)
{i}

A

*
On the space B GTB of Fredholm kernels there exists a canonical linear functional,

the trace:

trace X = A e:(ei) . (A4)

{i}

One can define nuclear operators in an arbitrary Banach space B as follows:

Definition 1 A linear bounded operator .Z: B —— B is nuclear, if there exists a
* A
Fredholm kernel X ¢ B @WB with 7= .i’x.

An interesting class of nuclear operators are the p—summable ones. To define

these we need
*x A
Definition 2 A Fredholm kernel X ¢ B ®_B is called p—summable (0<p<if X
*
has a representation X = z Aje; @e with {A} e f.p , that means
{i}
Y IANP<o.

{i}

A nuclear operator . is p—gummable , if there exists a p—summable

~

x
XeB @IB with

L=
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The order of a Fredholm kernel X is the infimum q of all 0 < p <1 such that X is
p—summable . Since a nuclear operator .# can have more than one Fredholm kernel
with £= %4 the trace of . cannot be defined in general. For nuclear operators of

order < % Grothendieck proved however

Theorem Al If .Z is nuclear of order g% then . has a trace with

trace £ = 2 p, » where p. are the eigenvalues of .¥ counted according to their
{i}

algebraic multiplicities. The Fredholm determinant det(1 —z.¥) is an entire function of

z given by the formula det(1-z.¥) =TT (1—pz) . For this Fredholm determinant
‘ i
the formula

det(1 — z.¥) = exp trace log(1l — 2 %)

is true. If #= () and the dependence on S is holomorphic for S in some domain
D then det(1 — #(B)) is holomorphicin D.

For special Banach spaces, for instance those of holomorphic functions over
domains in €, every nuclear operator .¢ is of order zero and hence of trace class
[G2].

The notion of nuclear operator can be generalized to Frechet spaces, complete
metric topological spaces. Among them there is a class of spaces, so called nuclear
spaces, which have the nice property that every bounded map of such a space ¥ into an
arbitrary Banach space B is nuclear.

A typical example of such a nuclear space is the space H(D) of all holomorphic
functions over some domain D in €™ whose topology is defined by the seminorms

|| ||g» K compactin D:



-T2 —

| 1] | g = sup |(z)] .
zeK

By using nuclearity of the space (D) one proves in an elegant way nuclearity of the
composition operator C gbf =fo 1 if 9 maps D strictly inside itself: consider namely
the operator C " #(D) — A _(D) . One shows that under the above condition C "
is bounded and hence nuclear: we have only to find a neighbourhood of zero in  #/(D)
which is mapped into a bounded set in A_(D) . For this define

Uy (0) = {fe H#(D):sup |f(z)| < M}
ze K

where a compactum K is chosen such that
YD)CKCD.
But then we find for all e Uy (0)

C =sup |[fo¥(z)] <sup |f(z)| <M
1G4l =sup [fo a)| <sup |fa)]
zeD

and hence C¢UM(O) is bounded in A _(D) . Composing C " with the bounded

injection
i:A_(D)— H#(D) i(f)=f

we find C ¢°i : Am(D) — A _(D) is nuclear. More details about nuclear spaces and

nuclear operators on Frechet spaces one finds in [G2].
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