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Abstract

We study equisingular strata of curves with two singular points of prescribed types. The method of
our previous work is generalized to this case. This allows to solve the enumerative problem for the class of
linear singularities. In the general case this reduces the enumerative questions to the problem of collision
of singular points.

The method is applied to several cases, explicit numerical results are given.

1 Introduction

1.1 The setup and the problem

We work with (complex) algebraic curves in P2. Identify the complete linear system |dL| = PH 0(OP2(d))
(the parameter space of plane curves of degree d) with the projective space PNd

f . Here Nd =
(
d+2
2

)
− 1, the

subscript f corresponds to the defining equation of the curves, f(x) = 0.
A classical enumerative problem is: given the singularity types S1..Sr, ”how many” curves of the system

|dL| possess singular points of these types? (To make this number finite one imposes a sufficient number of
generic base points. The degree d is assumed big enough to avoid various pathologies.)

In this paper we consider the case of two prescribed singular points. First recall the modern formulation
of the problem. The parameter space PNd

f is stratified according to the singularity types of curves. The

generic point of PNd

f corresponds to a smooth curve. The set of points corresponding to the singular curves

is called the discriminant (Σ). It is a (projective) hypersurface in PNd

f .

Definition 1.1 For the given (embedded, topological, isolated) singularity types S1..Sr, the equisingular
stratum ΣS1..Sr ⊂ PNd

f is the set of points corresponding to the curves with the given singularities.

The generic point of the discriminant lies in the stratum of nodal curves (Σ = ΣA1). Other strata correspond
to higher singularities. The stratum of r-nodal curves ΣrA1 (whose closure ΣrA1 contains the stratum of
curves of a given genus) is the classical Severi variety. Other strata are ΣAk

, ΣDk
, ΣEk

etc.. (For a
comprehensive introduction to these equi-singular families and related notions cf. [GLSbook]).

It is well known that for sufficiently high degree d (given the singularity types S1..Sr) the strata are non-
empty, pure dimensional, of expected (co-)dimension, irreducible, smooth (quasi-projective) varieties. One
sufficient condition for this is [Dimca, §I.3]: d ≥

∑
o.d.(Si) + r − 1, here o.d. are the orders of determinacy.

By construction each stratum is embedded into PNd

f , thus a natural compactification is just the topolog-
ical closure. The closures of the strata are singular in co-dimension 1. The closed stratum has the homology
class [ΣS1..Sr ] ∈ H∗(P

Nd

f , Z) (in the homology of the corresponding dimension). By Poincare duality we get

the cohomology class (denoted by the same letter): [ΣS1..Sr ] ∈ H∗(PNd

f , Z) ≈ Z. The degree of this class
is the degree of the stratum and is ”the number” of curves in |dL| possessing the prescribed singularities.
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(The degree is obtained by the intersection with the generic plane of the complimentary dimension. This
corresponds to imposing generic base points.)

In [Ker06] we proposed a method to calculate the degrees of strata ΣS of uni-singular curves. The goal
of this paper is to generalize it to the enumeration of curves with two singular points (i.e. computation of
the class [ΣS1S2 ]).

1.2 The results known and new

Since the question is completely classical, there are lots of enumerative results. We mention only a few (for
a much better discussion cf. [Klei76] and [Kaz01]).
• degΣA1 was known in 19’th century. degΣA2 was conjectured by Enriques, proved in [Vain81] and recal-
culated in [Fr.Itz95] and [Al98] (there degΣA3 was also obtained).
• The degrees of ΣrA1 are (considered to be) especially important, being the generalizations of Gromov-
Witten invariants: enumeration of fixed genus curves. This case was continuously attacked, with methods
and results in [KlPi98, KlPi04], [Ran89, Ran02],[CapHar98-1, CapHar98-2] and [Vain03]. And of course,
quantum cohomology, [KontMan94]and all that. The later approach is effective for low genus curves i.e.
when the number of nodes (or higher singularities) is big. It seems to be very difficult for high genus com-
putations (e.g. just a few singular points).
• The real breakthrough has been recently achieved in [Kaz01]-[Kaz03-2]. The proposed topological method
allows (in principle) to compute the degree of any stratum (with lots of explicit results in [Kaz03-hab]). The
drawback of his method is its generality: it solves the problem simultaneously for all the singularity sets of a
given co-dimension. So, first one should classify the singularities (by now the classification seems to exist up
to codimension 16 only). Even if this is done, one faces the problem of enumerating huge amount of cases
(the number of types grows exponentially with the codimension). And of course, each computation can give
a result for a specific choice of singularity types, it is not clear whether the method allows to obtain results
for some series of singularities.
• In [Ker06] the problem was solved for curves with one singular point of arbitrary given singularity type.
The proposed method gives immediate answer for some specific (series of) types (the so-called linear). For
all other (series of) types it gives an explicit algorithm, which works well (and can be programmed if needed).

In this paper we consider the case of two singular points: ΣS1S2 . We restrict mostly to the case of lin-
ear singularity types (cf. definition 2.4). The simplest examples of linear singularity types are Ak≤3, Dk≤6,
Ek≤8, X9, J10, Zk≤13 etc.

Lift the stratum to a bigger space: Σ̃S1S2 ⊂ PNd

f × Aux. (Here Aux is an auxiliary smooth projective

variety.) Note that the stratum Σ̃S1S2 is a subvariety of Σ̃S1 × AuxS2 . Correspondingly, it is enough to

calculate its class: [Σ̃S1S2 ] ∈ H∗(Σ̃S1 ×AuxS2 , Z). The resulting class in H∗(PNd

f ×Aux, Z) is then obtained
by pushforward.

Proposition 1.2 Let S1S2 be linear types. Then the (appropriately lifted) stratum Σ̃S1S2 is a locally complete

intersection in the space Σ̃S1 × AuxS2 blown up along some (smooth) loci. In particular, the cohomology

class [Σ̃S1S2 ] ∈ H∗(Bl(Σ̃S1 × AuxS2)) is the just the product (of classes) of the strict transforms of defining

hypersurfaces:
∏

[ Ṽi ].

This method is applied to the case of two ordinary multiple points (§1.5) and to the case S, A1 with S linear
(§3.2.3). Some explicit numerical results are given in Appendix.
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The case of two ordinary multiple pointis especially important as it can be used as the starting point to
solve many other cases by an indirect method: the chain of degenerations.

Proposition 1.3 For all (in particular non-linear) singularity types the problem is reduced to the collision
of singular points.

Here is the idea of such a reduction. Given a pair of types S1S2 we want to degenerate them to the linear types
S′

1S
′
2 (or just to the ordinary multiple points). The corresponding procedure in the case of one singularity

was described in [Ker06, §4]. Thus, naively we would get:

Σ̃S1S2 ∩ {degeneration} = Σ̃S′

1S′

2
, [Σ̃S1S2 ][degeneration] = [Σ̃S′

1S′

2
] ∈ H∗(PNd

f × Aux) (1)

As was observed in [Ker06, §2.2] the last equation in the cohomology ring has unique solution (i.e. the
element [degeneration] ∈ H∗(PNd

f × Aux) is ”invertible”). Therefore, the needed class is restored uniquely

in terms of the degeneration and the known class [Σ̃S′

1S′

2
] of the stratum of linear types.

In reality the situation is more complicated, the equation above always include the residual contribution
from the diagonal ∆ = {x = y}.

Σ̃S1S2 ∩ {degeneration} = Σ̃S′

1S′

2
∪ Rx=y (2)

To advance, one should understand the geometry of this residual term. And this amounts to understanding
the result of collision S1 + S2 →?. The collision problem seems to be complicated [Ker07-2]. In particular,
by now we now have a method to classify the results of collisions in the case of linear singularities only.

In any case, for linear singularities this proposition gives an alternative method of computation. Some
examples are given in §3.3.

1.3 Content

In §2 we fix the notations and remind some notions from singularities. In particular we define the linear
singularity type (definition 2.4). In §3 we prove the proposition 1.2 and give some examples of reduction of
the problem to the collision problem.

1.4 Acknowledgements

This work is a tail of my PhD, done under the supervision of E.Shustin, to whom I wish to express my
gratitude. The conversations and advices of P.Aluffi, G.-M.Greuel, I.Tyomkin were highly important.

The work was done during my stay in Max Planck Institut für Mathematik, Bonn. Many thanks for
excellent working conditions.

1.5 An example: two ordinary multiple points

Let Sx = xp+1
1 + xp+1

2 , Sy = yq+1
1 + yq+1

2 . The ordinary multiple point is the simplest type, the first lifting
(tracing the singular point) is already a globally complete intersection:

Σ̃Sx(x) = {(x, f)| f |(p)
x = 0} ⊂ P2

x × PNd

f (3)

Here f |
(p)
x is the tensor of derivatives of order p in homogeneous coordinates, calculated at the point x. (This

precisely encodes the vanishing of all the derivatives up to order p in local coordinates).
The natural candidate for the lifting of ΣSxSy is the variety of triples (x, y, f) with f having Sy at y and

Sx at x. For calculational reasons we blowup the ambient parameter space P2
x×P2

y ×PNd

f along the diagonal
∆ = {x = y}. Geometrically we add the line l = xy (defined by a one-form). The exceptional divisor is
E = {(x, y, l)| x = y, l(x) = 0}. Thus the strict transform of the lifted stratum is defined as:

Σ̃SxSy(x, y, l) = {(x, y, l, f), x 6= y| f |
(p)
x = 0 = f |

(q)
y , l(x) = 0 = l(y)} ⊂ P2

x × P2
y × P̆2

l × PNd

f (4)
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Theorem 1.4 The strict transform Σ̃SxSy(x, y, l) is a locally complete intersection. Its cohomology class in

the cohomology of the ambient space H∗(P2
x × P2

y × P̆2
l × PNd

f , Z) is:

[Σ̃SxSy(x, y, l] = (L+X)(L+Y )
(
F +(d−p)X

)(p+2
2 )

q∏

i=0

q−i∏

j=0

(
F +(d−i−j)Y +iX−jL−(p+1+j−i)E

)
(5)

here E is the class of the exceptional divisor, for the notations of the cohomology generators cf. §2.1.1.

proof: We want to represent this as the intersection of the stratum Σ̃Sx(x, y, l) with hypersurfaces. At the

j’th step we have a variety Mj
i

↪→ PNd

f × Aux and a hypersurface Vj+1 ⊂ PNd

f × Aux. Think about the
intersection Mj ∩ Vj+1 as the pullback i∗(Vj+1). Then the task is to take the strict transform of Vj+1, i.e.
to subtract from the total transform the part of the exceptional divisor.

The straightforward approach is just to consider the components of the tensor f |
(q)
y and intersect with

all the hypersurfaces: {∂n0
0 ∂n1

1 ∂n2
2 f |y = 0}n0+..n2=q. This will bring various complicated residual pieces.

Instead, we represent this tensor condition as follows:

{
f |(i)y (x..x︸︷︷︸

i

) = 0
}q

i=0
,

{
f |(i+1)

y (x..x︸︷︷︸
i

ṽ) = 0
}q−1

i=0
, ...

{
f |(i+j)

y (x..x︸︷︷︸
i

ṽ..ṽ︸︷︷︸
j

) = 0
}q−j

i=0
, f |(q)y ( ṽ..ṽ︸︷︷︸

j

) = 0 (6)

Here ṽ is a fixed generic point, so that the points x, y, ṽ do not lie on one line. By direct check it is verified

that for generic parameters (i.e. y 6= x, ṽ /∈ Span(x, y)) these conditions are equivalent to f |
(q)
y = 0. For

non-generic situation each such equation will give a reducible hypersurface, correspondingly a residual term
should be subtracted.

• Σ̃Sx(x, y, l) ∩ {f |y = 0}. The pullback of {f |y = 0} to Σ̃Sx(x, y, l) consists of the strict transform (the
closure of the part over x 6= y) and the exceptional divisor E (over x = y). To calculate the multiplicity,
expand y = x + εv, correspondingly:

0 = f |y = f |x + .. + εpf |(p)
x (v..v)︸ ︷︷ ︸

vanish

+εp+1f (p+1)|x(v..v) + .. (7)

i.e. the exceptional divisor enters with the multiplicity (p+1). So, the strict transform is (f |y = 0)−(p+1)E

and the total cohomology class: [Σ̃Sx(x, y, l)]
(
[f |y = 0] − (p + 1)E

)
∈ H∗(PNd

f × Aux).

The points of this variety satisfy:

? for x 6= y: f |
(p)
x = 0 and f |y = 0

? for x = y: f |
(p)
x = 0 = f |

(p+1)
x (v..v)

• In the same way do all the intersections with
{

f |
(i)
y (x..x︸︷︷︸

i

) = 0
}q

i=1
. At each step subtract the exceptional

divisor with the necessary multiplicity. The resulting cohomology class:

[Σ̃Sx(x, y, l)]

q∏

i=0

(
[f |(i)y (x..x︸︷︷︸

i

) = 0] − [(p + 1 + i)E]
)

(8)

• Intersect now with
{

f |
(i+1)
y (x..x︸︷︷︸

i

ṽ) = 0
}q−1

i=0
. In addition to the exceptional divisor at each step one should

subtract the contribution of the locus: ṽ ∈ xy. As the point ṽ is fixed, this is just a condition that the line
l passes through a point ṽ ∈ P2. Correspondingly the cohomology class of the resulting variety is:

[Σ̃Sx(x, y, l)]

q∏

i=0

(
[f |(i)y (x..x︸︷︷︸

i

) = 0] − [(p + 1 + i)E]
) q−1∏

i=0

(
[f |(i+1)

y (x..x︸︷︷︸
i

ṽ) = 0] − [ṽ ∈ l] − [(p + i)E]
)

(9)
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• Do the rest of intersections, at each step subtracting (with appropriate multiplicities) the exceptional
divisor and the class [ṽ ∈ l]. Finally we get:

[Σ̃SxSy(x, y, l)] = [Σ̃Sx(x, y, l)]

q∏

i=0

q−i∏

j=0

(
[f |(i)y (x..x︸︷︷︸

i

ṽ..ṽ︸︷︷︸
j

) = 0] − j[ṽ ∈ l] − [(p + 1 + i − j)E]
)

(10)

Substitute now the cohomology classes for the conditions (cf. §2). (Note that as ṽ is a fixed point, the
condition ṽ ∈ l is just one linear condition on l, its class is L. The class of the exceptional divisor is
[E] = X + Y − L, cf. §2.1.1.) This proves the theorem. �

To get the solution of the enumerative problem (i.e. the degree of ΣSxSy) we should apply the Gysin

homomorphism corresponding to the projection Σ̃(x, y)→Σ. In this case it means just to extract the coef-
ficient of X2Y 2L2. In the case Sx = Sy the resulting answer should be also divided by 2, as the singular
points are indistinguishable.

Corollary 1.5 In several simplest cases the degree of ΣSxSy is:

•
q = 1.

deg(Σ
x

p+1
1 +x

p+1
2 ,A1

) =
9
(
p+3
4

)
(d− p)3(d + p− 2) − 3

4

(
p+2
3

)
(10p2 + 39p + 7)(d − p)2 + 1

2

(
p+2
3

)
(d− p)(6 + 5p)

•
q = 2.

deg(Σ
x

p+1
1 +x

p+1
2 ,D4

) =
45

(
p+3
4

)
(d − p)3(d + p − 4) + 2(d − p)(8 + 3p + p2)(35p2 + 20p − 12)

−5
8(p + 1)(d − p)2(14p4 + 105p3 + 147p2 + 114p − 80) − 6(85p2 + 45p − 28)

•
q = 3.

deg(Σ
x

p+1
1 +x

p+1
2 ,X9

) =
135

(
p+3
4

)
(d − p)3(d + p − 6) + 2(d − p)(16 + 3p + p2)(270p2 − 20p − 117)

−5
8(d − p)2(54p5 + 527p4 + 948p3 + 1853p2 − 894p − 1152) − 14(830p2 − 105p − 348)

For p = q = 1 this gives the classical result. For p = 2, q = 1 this coincides with Kazarian’s result
[Kaz03-hab].

2 Some relevant notions and auxiliary results

2.1 The ambient space

2.1.1 Coordinates

We work with various projective spaces and their subvarieties. Adopt the following notation. If we denote
a point in the space P2

x by the letter x, then the homogeneous coordinates are (x0, x1, x2). The generator
of the cohomology ring of this P2

x is denoted by the upper-case letter X, so that H ∗(P2
x) = Z[X]/(X3).

Alternatively X is the first Chern class of the dual tautological bundle OPn(1). By the same letter we also
denote the hyperplane class in homology of Pn

x. Since it is always clear, where we speak about coordinates
and where about (co)homology classes, no confusion arises. To demonstrate this, consider the hypersurface

V = {(x, y, f)| f(x, y) = 0} ⊂ Pn
x × Pn

y × PNd

f (11)

Here f is a bi-homogeneous polynomial of bi-degree dx, dy in homogeneous coordinates (x0, . . . , xn), (y0, . . . , yn),

the coefficients of f are the homogeneous coordinates on the parameter space PNd

f . The cohomology class
of this hypersurface is

[V ] = dxX + dyY + F ∈ H2(Pn
x × Pn

y × PNd

f ) (12)

A (projective) line through the point x ∈ P2
x is defined by a 1-form l (so that l ∈ P̆2

l , l(x) = 0). Correspond-

ingly the generator of H∗(P̆2
l ) is denoted by L.

A curve is denoted by C or the defining polynomial f , correspondingly the parameter space of curves is PNd

f .



6

We often work with symmetric p−forms Ωp∈Sp(V3)
∗ (here (V3)

∗ is a 3-dimensional vector space of linear

forms). Thinking of the form as of a symmetric tensor with p indices (Ω
(p)
i1,...,ip

), we often write Ω(p)(x, . . . , x︸ ︷︷ ︸
k

)

as a shorthand for the tensor, multiplied k times by the point x ∈ V3

Ω(p)(x, . . . , x︸ ︷︷ ︸
k

) :=
∑

0≤i1,...,ik≤2

Ω
(p)
i1,...,ip

xi1 . . . xik (13)

So, for example, the expression Ω(p)(x) is a (p−1)−form. Unless stated otherwise, we assume the symmetric
form Ω(p) to be generic (in particular non-degenerate, i.e. the corresponding hypersurface {Ω(p)(x, . . . , x︸ ︷︷ ︸

p

) =

0} ⊂ Pn
x is smooth).

Symmetric forms typically occur as tensors of derivatives of order p, e.g. f (p). Sometimes, to emphasize

the point at which the derivatives are calculated we assign it. So, e.g. f |
(p)
x (y, . . . , y︸ ︷︷ ︸

k

) means: the tensor of

derivatives of order p, calculated at the point x, and contracted k times with y.

2.1.2 Blowup along the diagonal.

The diagonal ∆ = {x = y} ⊂ P2
x × P2

y appears constantly. (Its cohomology class is given §2.1.3.1). The
blowup over the diagonal is easily described as the incidence variety.

P2
x×̃

∆
P2

y = {(x, y, l)| l(x) = 0 = l(y)}
i

↪→ P2
x × P2

y × P̆2
l , E∆ = {x = y, l(x) = 0} ⊂ P2

x×̃
∆

P2
y (14)

The variety is a complete intersection, thus its cohomology class is the product [P2
x×̃

∆
P2

y] = (L+X)(L+Y ) ∈

H4(P2
x × P2

y × P̆2
l ).

We will often need the cohomology class of the exceptional locus E∆ both as a divisor in P2
x×̃

∆
P2

y and as

a cycle in P2
x × P2

y × P̆2
l . Again, as it is a transversal intersection of the two conditions (x = y and l(x) = 0)

we get: [E∆] = (L + X)(X2 + XY + Y 2) ∈ H6(P2
x × P2

y × P̆2
l ).

The class of the exceptional divisor in the ring H ∗(P2
x×̃

∆
P2

y) is X +Y −L. It can be obtained, for example,

by noticing that the hypersurface

(
x0 x1

y0 y1

)
= 0 contains the exceptional divisor E∆ and also the residual

divisor l2 = 0.
The two classes are related by the pushforward i∗. The identity i∗(X+Y −L) = (L+X)(X2+XY +Y 2) ∈

H6(P2
x × P2

y × P̆2
l ) is directly verified.

2.1.3 Cohomology classes

2.1.3.1 The cohomology class of the diagonal The diagonal ∆ = {x = y} ⊂ Pn
x × Pn

y appears
constantly in the paper. Its class is [Fulton98]

[∆] =

n∑

i=0

Xn−iY i ∈ H2n(Pn
x × Pn

y ) (15)

For example, a condition of proportionality of two symmetric forms f (p) ∼ g(p) is just the coincidence
of the corresponding points in a big projective space, thus its class is given by the above formula (with
n =

(
p+2
2

)
− 1).
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2.1.3.2 The cohomology class of the degenerating divisor We often use the cohomology classes

of various divisors on the lifted strata Σ̃.
Consider the divisor of curves whose equation does not contain a particular monomial.
We often need to degenerate by demanding that a monomial on the Newton diagram
is absent. The condition is: a monomial xp

1x
q
2 should be absent in the normal form (i.e.

its coefficient must vanish). The class of this divisor was calculated in [Ker06, section
A.1.2]. Considering it as a degeneration we write:

[Σ̃1(x, l)]
(
F + (d − p − 2q)X + (q − p)L

)
= [Σ̃2(x, l)] ∈ H∗(P2

x × P̆2
l × PNd

f ) (16)
-

6

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Q

Q
Q

QQPPP
•p

q

The class of its pull-back to the stratum Σ̃1(x, l) is obtained by pulling back the hyperplanes X,L, F , so it
is: i∗(F ) + (d − p − 2q)i∗(X) + (q − p)i∗(L).

2.1.3.3 On the universality and Thom polynomials According to the general philosophy of R.Thom,
proved by Kazarian (cf. [Kaz03-1, Kaz03-2]), for a collection of singularities S1..Sr the degree of the stra-

tum Σ̃S1..Sr is expressed through the universal Thom polynomials, SI with I ⊆ {S1..Sr}, depending on the
relative Chern classes of the ambient space and the linear system. For one singular point: deg(ΣS) = SS.
The general expression is:

deg(ΣS1..Sr) =
∑

J1
F

..
F

Jk

SSJ1
..SSJk

(17)

the sum is over all the possible different decompositions {S1, .., Sr} =
⊔

Ji. In particular, for two singular
points: deg(ΣS1S2) = SS1SS2 + SS1,S2 . Therefore our results give the specializations of the polynomials SSi

,
to the case of a complete linear system of plane curves. (Unfortunately, the universal Thom polynomials
cannot be restored from our answers.)

As the degrees deg(ΣSi
) are known from [Ker06], the only unknowns are the specializations of SS1,S2 . To

avoid awkward expressions we present the expressions for SSxSy only.

2.2 On the singularity types

Definition 2.1 [GLSbook] Let (Cx, x) ⊂ (C2
x, x) and (Cy, y) ⊂ (C2

y, y) be two germs of isolated curve sin-
gularities. They are (embedded topologically) equivalent if there exist a homeomorphism (C2

x, x) 7→ (C2
y, y)

mapping (Cx, x) to (Cy, y). The corresponding equivalence class is called the (embedded topological) singu-

larity type. The variety of points (in the parameter space PNd

f ), corresponding to the curves with prescribed
singularity types S1..Sr is called the equisingular stratum ΣS1..Sr .

The topological type can be specified by a (simple polynomial) representative of the type: the normal
form. Several simplest types are (all the notations are from [AGLV], we ignore the moduli of analytic
classification):

Ak : x2
2 + xk+1

1 , Dk : x2
2x1 + xk−1

1 , E6k : x3
2 + x3k+1

1 , E6k+1 : x3
2 + x2x

2k+1
1 , E6k+2 : x3

2 + x3k+2
1

Jk≥1,i≥0 : x3
2 + x2

2x
k
1 + x3k+i

1 , Z6k−1 : x3
2x1 + x3k−1

1 , Z6k : x3
2x1 + x2x

2k
1 , Z6k+1 : x3

2x1 + x3k
1

Xk≥1,i≥0 : x4
2 + x3

2x
k
1 + x2

2x
2k
1 + x4k+i

1 , W12k : x4
2 + x4k+1

1 , W12k+1 : x4
2 + x2x

3k+1
1

(18)

Using the normal form f =
∑

aIx
I one can draw the Newton diagram of the singularity. Namely, one marks

the points I corresponding to non-vanishing monomials in f , and takes the convex hull of the sets I + R2
+.

The envelope of the convex hull (the chain of segment-faces) is the Newton diagram.

Definition 2.2 [GLSbook]
• The singular germ is called Newton-non-degenerate with respect to its diagram if the truncation of its
polynomial to every face of the diagram is non-degenerate (i.e. the truncated polynomial has no singular
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points in the torus (C∗)2).
• The germ is called generalized Newton-non-degenerate if it can be brought to a Newton-non-degenerate
form by a locally analytic transformation.
• The singular type is called Newton-non-degenerate if it has a (generalized) Newton-non-degenerate repre-
sentative.

For Newton-non-degenerate types the normal form is always chosen to be Newton-non-degenerate . So, the
Newton-non-degenerate type S can be specified by giving the Newton diagram of its normal form DS.

Newton-non-degeneracy implies strong restrictions on the tangent cone:

Proposition 2.3 Let TC = {(l1, p1)...(lk , pk)} be the tangent cone of the germ C = ∪Cj (here all the
tangents li are different, pi are the multiplicities, so that

∑
i pi = mult(C)). If the germ is generalized

Newton-non-degenerate then pi > 1 for at most two tangents li.

So, for a generalized Newton-non-degenerate germ there are at most two distinguished tangents. We always
orient the coordinate axes along these tangents.

In the tangent cone of the singularity TC = (lp1
1 ...lpk

k ), consider the lines appearing with the multiplicity
1. They correspond to smooth branches, not tangent to any other branch of the singularity. We call such
branches free. Call the tangents to the non-free branches the non-free tangents.

As we consider the topological types, one could expect that to bring a germ to the Newton diagram
of the normal form, one needs local homeomorphisms. However for curves the locally analytic transfor-
mation always suffice. In this paper we restrict consideration further to the types for which only linear
transformations suffice.

Definition 2.4 [Ker06] A (generalized Newton-non-degenerate ) singular germ is called linear if it can be
brought to the Newton diagram of its type by projective transformations only (or linear transformations in
the local coordinate system centered at the singular point). A linear stratum is the equisingular stratum,
whose open dense part consists of linear germs. The topological type is called linear if the corresponding
stratum is linear.

The linear types happen to be abundant due to the following observation

Proposition 2.5 [Ker06, section 3.1] The Newton-non-degenerate topological type is linear iff every seg-
ment of the Newton diagram has the bounded slope: 1

2 ≤ tg(α) ≤ 2.

Example 2.6 The simplest class of examples of linear singularities is defined by the series: f = xp+yq, p ≤
q ≤ 2p. In general, for a given series only for a few types of singularities the strata can be linear. In the low
modality cases the linear types are:
• Simple singularities (no moduli): A1≤k≤3, D4≤k≤6, E6≤k≤8

• Unimodal singularities: X9(= X1,0), J10(= J2,0), Z11≤k≤13, W12≤k≤13

• Bimodal: Z1,0, W1,0, W1,1, W17, W18

Most singularity types are nonlinear. For example if a curve has an A4 point, the best we can do by
projective transformations is to bring it to the Newton diagram of A3 a0,2x

2
2 + a2,1x2x

2
1 + a4,0x

4
1.

This quasi-homogeneous form is degenerated (a2
2,1 = 4a0,2a4,0) and by quadratic (nonlinear!) change of

coordinates the normal form of A4 is achieved.
By the finite determinacy theorem the topological type of the germ is fixed by a finite jet of the defining

series. Namely, for every type S, there exists k such that for all bigger n ≥ k: jetn(f1) has type S causes f1

has type S. The minimal such k is called: the order of determinacy. E.g. o.d.(Ak) = k+1, o.d.(Dk) = k−1.
The classical theorem says: if mk+1 ⊂ m2Jac(f) then o.d.(f) ≤ k.
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3 The method

Our approach is most naive and classical. In a sense it is a brute-force calculation. Correspondingly it is
often long and cumbersome. The advantages of the method are:
• The method gives a recursive algorithm, consisting of routine parts.
• The method seems to be more effective than other approaches (to the best of our knowledge). In particular,
in Appendix we present the results for some series of types (as compared to single, isolated results previously
known).
• As the final result we obtain the multi-degree of the (partial resolution of the) stratum ΣSA1 . (The actual
degree is just a particular coefficient in a big polynomial.) This multi-degree contains many important
numerical invariants, e.g. enumeration of (S1, S2) with one or two singular points restricted to some curves,
or with some conditions on the tangents to the branches. More generally: when the parameters of the
singularity (the points, the tangents, the conics osculating to the branches etc.) are restricted to a subvariety
of their original ambient space. So, this solves a whole class of enumerative problems.

3.1 The case of one singular point

The uni-singular case was solved in [Ker06] by partial resolutions of the strata Σ̃S→ΣS. Namely, the strata
ΣS ⊂ PNd

f were lifted to a bigger ambient space Σ̃S ⊂ Aux × PNd

f (Aux for auxiliary). This was done by
taking into account parameters of the singularity (singular point, tangent cone, osculating conics etc.) For
linear singularities (def. 2.4) the lifted strata are smooth locally complete intersections defined by explicit

equations. This enabled to calculate their cohomology classes [Σ̃S] ∈ H∗(Aux × PNd

f ). For non-linear
singularities the problem was reduced to the linear case, by a chain of degenerations.

Once the class of the lifted stratum [Σ̃S] is known, the class of the original stratum [ΣS] is obtained by

projection Σ̃→Σ (Gysin homomorphism). It amounts to extracting a particular coefficient from the big

polynomial. So, the class [ΣS] is completely fixed by [Σ̃S]. Similarly, in the following we will be interested

in the cohomology classes of the lifted strata [Σ̃S1S2 ].

3.2 Two singular points of linear types

A natural approach to the case of two singularities is as follows:

• For the types Sx, Sy (here x, y ∈ P2 are the points) consider the liftings Σ̃Sx , Σ̃Sy (as above) and define:

Σ̃SxSy :=
{
(C,

{x, lxi }
{y, lyj }

x 6= y)| C ∈ Σ̃Sx ∩ Σ̃Sy

}
⊂ AuxSx × AuxSy × PNd

f (19)

here lxi , lyj are the non-free tangents (cf. §2.2). So, the stratum is defined outside the diagonal x = y and
the closure consists of all the possible results of collision of two singularities.

• Try to relate the defining ideals I(Σ̃SxSy), I(Σ̃Sx), I(Σ̃Sy). Try to relate the cohomology classes [Σ̃SxSy ],

[Σ̃Sx ], [Σ̃Sy ]. The difficulty here is that naive intersection contains a residual variety over the diagonal

Σ̃Sx ∩ Σ̃Sy = Σ̃SxSy ∪ Rx=y. (Alternatively: I(Σ̃SxSy) %< I(Σ̃Sx), I(Σ̃Sy) >.) Its contribution should be

subtracted from the product of classes [Σ̃Sx ] × [Σ̃Sy ]. But the dimension of this residual piece is always

bigger than the dimension of the needed stratum: dim(Rx=y) > dim(Σ̃SxSy).

3.2.1 Intersections with hypersurfaces

A way to repair this situation is to split the intersection into a step-by-step procedure of intersection with
hypersurfaces (cf. [StuVog82], [vGas89, vGas91]).
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? Suppose the lifted stratum is a (globally) complete intersection of hypersurfaces: Σ̃Sy = ∩k
i=1Vi. At each

step of the intersection we have (set theoretically)

Σ̃
Sx∩

j
i=1Vi

∩ Vj+1 = Σ̃
Sx∩

j+1
i=1Vi

∪ Rj+1, Σ̃SxSy ( Σ̃
Sx∩

k−1
i=1 Vi

( Σ̃
Sx∩

k−2
i=1 Vi

( .. ( Σ̃SxV1 ( Σ̃Sx (20)

Here Σ̃
Sx∩

j+1
i=1 Vi

is an irreducible variety and its dimension drops (precisely) by one with each intersection. Rj

is the residual piece produced at the j’th step (it contains all the non-enumerative contributions). The key
point is: as the initial variety is irreducible and the intersection is by a hypersurface, the resulting variety

is pure dimensional, dim(Σ̃
Sx∩

j+1
i=1 Vi

) = dim(Rj+1). Therefore, the contribution of the residual piece can

be subtracted: [Σ̃
Sx∩

j+1
i=1 Vi

]= [Σ̃
Sx∩

j
i=1Vi

][Vj+1]−[Rj+1] (up to multiplicities). By repeating this procedure we

calculate the needed class [Σ̃SxSy ].

? Suppose the variety is a locally complete intersection Σ̃Sy = ∩k
i=1Vi and its defining equations are

known (the case of linear singularities). Represent it locally by the minimal collection of hypersurfaces

∩k
i=1Vi ( ∩k′

i=1Vi. Perform the above procedure to get the class [Σ̃
Sx∩

k′

i=1Vi
]. And now subtract the residual

contributions (due to non-globally complete intersection): [Σ̃
Sx∩k′

i=1Vi
] = [Σ̃SxSy ] + [Σ̃SxR].

3.2.2 The classes of residual pieces

The classes of residual pieces can be computed by the thorough check of the intersection geometry. The
process is greatly simplified by the following trick.

Consider the stratum ΣSxSy as a projective subvariety of ΣSx . Correspondingly, we start from a lifting

Σ̃Sx , add some parameters of the singularity: Σ̃Sx × AuxSy and define the lifting Σ̃SxSy ⊂ Σ̃Sx × AuxSy ⊂

PNd

f × Aux. So, we calculate the class [Σ̃SxSy ] ∈ H∗(Σ̃Sx × AuxSy) and then take its pushforward.

Blowup the space Σ̃Sx × AuxSy along some smooth loci and the consider the strict transform of the

defining hypersurfaces in Bl(Σ̃Sx × AuxSy).

In more details: let Σ̃Sx(x, {lxi }) be the lifting for the linear singularity Sx. Assign the second point y,
the line l = xy and the non-free tangent lines {lyj }. So, consider:

Σ̃Sx(x, {lxi }, y, {lyj }, l) =
{
(x, {lxi }, f) ∈ Σ̃Sx(x, {lxi }), x ∈ l 3 y, {y ∈ lyj }

}
(21)

The projection Σ̃Sx(x, {lxi }, y, {lyj }, l)→Σ̃Sx(x, {lxi }, y, {lyj }) is the blowup over the diagonal x = y. We blow
up further along the cycles: {x = y, lxi = l}, {x = y, lxi = lyj }. Next blow up along the triple coincidence
loci: {x = y, lxi = l = lyj }, {x = y, lxi = lxj }, {x = y, lyi = lyj }. and so on. The process stops very quickly
as SxSy are linear (so there are at most two different non-free tangent lines for each type). Denote the

corresponding blown up variety by Bl(Σ̃Sx).

The defining condition of Sy are of the form: f |
(q)
y (v1..vq) = 0 (here vi are either vectors along the

non-free tangents or some generic vectors). Pull back the first of these hypersurfaces V1 to Bl(Σ̃Sx), i.e.
consider its total transform. By expanding around the diagonal y = x + εv and all the other coincidence
loci one sees that the residual piece is precisely the exceptional divisor (with appropriate multiplicities).

Remove them to get the strict transform: Ṽ1 ∩ Bl(Σ̃Sx). In the same way one continues with all the Vi’s

to get: Σ̃SxSy = Bl(Σ̃Sx) ∩ Ṽ1 ...

3.2.3 Example: the case Sx, A1

In this case we can give quite general answer. Let TC = (lp1
1 ..lpr

r ) be the tangent cone of Sx. We consider
first the case of one non-free tangent (i.e. pi > 1 for only one li).
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Let p be the multiplicity, r be the number of free branches, so the expansion of
the defining equation starts as f = xp

1 + xp−r
1 xr

2 + terms in mp+1. The type Sx is
assumed to be linear, let p + k be its order of determinacy. So the corresponding
Newton diagram has the shape shown on the picture. In particular, the monomials
xq

2 for q < p + k are absent. -

6

.

@
@

@

•

....
•

HH•

p

p−r

r p+kLet lx denote the non-free tangent line of Sx. The initial lifted variety is:

Σ̃SxA1(x, y, l, lx) =
{ (x, y, l, lx, f), x 6= y

(x, lx, f) ∈ Σ̃Sx(x, lx)

∣∣∣ f |
(1)
y = 0, l(x) = 0 = l(y)

}
⊂ Aux × PNd

f (22)

Here Aux = P2
x ×P2

y × P̆2
l × P̆2

lx
is the auxiliary space. According to the general method we blow Aux along

the cycle x = y, l = lx. Let E∆l
denote the exceptional divisor, let π∗(E∆) denote the total transform of the

first exceptional divisor (over the diagonal x = y). Let Bl(Σ̃Sx) denote the strict transform of the stratum.
As in the example of ordinary multiple point(§1.5) we represent the defining conditions of the node as:

f |y = 0 = f (1)|y(x) = f (1)|y(vx) where x 6= vx ∈ lx. As in that case the computation consists of intersecting
with the hypersurfaces and subtracting the exceptional divisor.

• The total transform of the hypersurface {f |y = 0} ⊂ Bl(Σ̃Sx) is reducible, with exceptional divisor over
the diagonal x = y. To check this expand: y = x + εv and expand the equation.

0 = f |y = f |x + .. + εp−1f (p−1)|x(v..v)︸ ︷︷ ︸
vanish

+εpf |(p)
x (v..v) + .. (23)

For generic v, vx (i.e. l 6= lx) the term f |
(p)
x (v..v) does not vanish, so the residual piece is π∗(pE∆). Over

the degeneracy locus {x = y, l = lx} the first non-vanishing term in the expansion is εp+kf (p+k)|x(v..v).
Correspondingly, the strict transform of {f |y = 0} is: π∗({f |y = 0}) − π∗(pE∆) − kE∆l

. The points of this
hypersurface correspond to:
? {f |y = 0} for x 6= y

? f |
(p)
x (v..v) = 0 for x = y, l 6= lx

? f (p+k)|x(v..v) = 0 for x = y, l = lx

• To find the strict transform of f (1)|y(x) = 0 inside Σ̃Sx ∩
x6=y

{f |y = 0} expand

0 = f (1)|y(x) = f |x + .. + εpf |(p)
x (v..v)︸ ︷︷ ︸

vanish

+εpf |(p+1)
x (v..v) + .. (24)

As above we get that the strict transform of {f (1)|y = 0} is: π∗({f |
(1)
y (x) = 0}) − π∗((p + 1)E∆) − kE∆l

.
• The last hypersurface is treated similarly. Here there are two cases:

? r = 0, i.e. there are no free branches. Then the strict transform is: π∗({f |
(1)
y (vx) = 0}) − (l =

lx) − π∗((p + 1)E∆) − (k + 1)E∆l

• r > 0: π∗({f |
(1)
y (vx) = 0}) − (l = lx) − π∗(pE∆) − (k + 2)E∆l

Note that here (l = lx) is a divisor and the strict transform is pure-dimensional (as it should be).

In the general case of several non-free tangents, one should blow up the space over all the simple coin-
cidence loci: x = y, l = li, then over the double coincidences: x = y, lj = l = li, etc.. Then one proceeds
similarly to the case of one non-free tangent.

3.3 Approach by degenerations

In general the equations are not known or the variety is not a locally complete intersection (the case of non-

linear singularities). Apply the degeneration procedure: Σ̃SxSy→Σ̃S′

xS′

y
(as described in [Ker06]) to arrive at
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simpler singularity types. (The trivial choice is ordinary multiple points of sufficiently high multiplicities).
As in the above cases the degeneration is done by a chain of hypersurface sections:

Σ̃SxSy ∩ V1 = Σ̃SxSy∩V1 + Rx=y
1 ... Σ̃

SxSy∩
k−1
i=1 Vi

∩ Vk = Σ̃SxS′

y
+ Rx=y

k (25)

so, at each step we get a pure dimensional variety and the contribution of the residual pieces can be
subtracted. As was explained in §1.2 this reduces the enumerative problem to the geometry of of the pieces
Rx=y

i .
When this geometry is easily understood (e.g. the case when both initial types are linear), the problem

is solved. So, for linear types we get an alternative solution of the problem. We show below some examples.
The methodod degeneration has been described in details in [Ker06]. Recall that the cohomology class of
the degenerating divisor that forces to vanish the coefficient of xp

1x
q
2 is (d − p − 2q)X + F + (q − p)L (cf.

§2.1.3.2).
We consider some examples, following the chain of degenerations:

xp−1
1 x2 + xp+1

2 →xp
1 + xp+1

2 →xp+1
1 + xp+1

2

xp−1
1 x2 + x1x

p
2 + xp+2

2
p≥3
→ xp

1 + x1x
p
2 + xp+2

2 →xp+1
1 + x1x

p
2 + xp+2

2

(26)

• Sx = xp
1+xp+1

2 , Sy = yq+1
1 +yq+1

2 . Sx→Sx
′ = xp+1

1 +xp+1
2 . (For p = 2: A2, A1, for p = 3: E6, A1). Degenerate

by demanding that f |
(p)
x = 0. The cohomology class of the corresponding divisor is (d − p)X + F − pL.

As the result get the stratum Σ̃SxSy and a residual piece over the diagonal. The piece occurs because the
restriction to the diagonal has a component of curves with a point of multiplicity p + 1. The corresponding
type Sx

′′ = (xp−q
1 +xp−q

2 )(xq+1
1 +x2q+1

2 ) is obtained by collision [Ker07-2]. So, this piece should be subtracted.
Its multiplicity is q + 1 as is obtained below. Therefore we get the equation for cohomology classes:

[Σ̃SxSy(x, y, l, lx)]((d − p)X + F − pL) = [Σ̃Sx
′
Sy

(x, y, l, lx)] + (q + 1)[x = y, x ∈ l Σ̃Sx
′′(x, lx)] (27)

The numerical results for some simple cases are given in Appendix.
• xp

1 +x1x
p
2 +xp+2

2 →xp+1
1 +x1x

p
2 +xp+2

2 . (For p = 2: A3, A1, for p = 3: E7, A1) First we should calculate the

class of the (auxiliary) stratum Σ̃
x

p+1
1 +x1x

p
2+x

p+2
2 ,A1

. This is done by degeneration of the ordinary multiple

point. At this step no residual piece over the diagonal is produced.
Next, the type xp

1+x1x
p
2+xp+2

2 is degenerated (by demanding that the coefficient of xp
1 vanish). A residual

piece occurs over the diagonal (collision of xp
1 + x1x

p
2 + xp+2

2 and a node), its type is: xp
1x2 + x2

1x
p−1
2 + xp+2

2 .
Subtracting its cohomology class (with multiplicity 2) gives the final result.
• xp+1

1 + x2
1x

p−1
2 + xp+2

2 . (For p = 1: A3, A1, for p = 2: D5, A1.) This stratum is treated by degeneration of

Σ̃
x

p+1
1 +x

p+1
2 ,A1

. The first degeneration xp+1
1 +xp+1

2 →xp+1
1 +x1x

p
2 +xp+2

2 brings no residual piece. The second

xp+1
1 + x1x

p
2 + xp+2

2 →xp+1
1 + x2

1x
p−1
2 + xp+2

2 brings the residual piece over the diagonal when the tangent to

the singular point at x passes through the point y also. This piece is: xp+1
1 + x2

1x
p−1
2 + xp+3

2 , as always it
should be subtracted with multiplicity 2.

• xp+1
1 + x2

1x
p−1
2 + xp+3

2 . (For p = 2: D6, A1.) The cases p = 1, 2 are exceptional here due to specific

coincidences on Newton diagram. This stratum is treated by degeneration of Σ̃
x

p+1
1 +x2

1x
p−1
2 +x

p+2
2 ,A1

. There

residual piece over the diagonal occurs when the tangent line at x passes through y. The type is: xp+1
1 +

x2
1x

p−1
2 + xp+4

2 therefore it is irrelevant (by codimension).

3.3.1 The multiplicity of the piece over diagonal

It is computed in the standard way: as the multiplicity of the intersection of two varieties. Say the degen-

erating hypersurface is defined by f |
(p)
x (v..v︸︷︷︸

p

) = 0 (with residual pieces subtracted). We should obtain the
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local equations of the stratum Σ̃SxSy near the diagonal x = y. This is done by expansion y = x + εv and the

corresponding expansion of the equations depending on y. In our case Sy = yq+1
1 + yq+1

2 , so the equations
(outside x = y) are f (q)|y = 0. When approaching the diagonal the flat limit should be taken (cf. [Ker07-2,
§3.1]). In particular in this case the resulting system of series is:

f |(p−1)
x = 0, f |(p)

x (v..v︸︷︷︸
p−q

) + .. = 0, f |(p+1)
x ( v..v︸︷︷︸

p+2−q

) + .. = 0, f |(p+2)
x ( v..v︸︷︷︸

p+4−q

) + .. = 0 .., f |(p+q)
x (v..v︸︷︷︸

p+q

) + .. = 0

(28)
Form here one get by contraction with v:

f |
(p)
x (v..v︸︷︷︸

p

) + εq+1f |
(p+q+1)
x ( v..v︸︷︷︸

p+q+1

).. = 0, f |
(p+1)
x (v..v︸︷︷︸

p+1

) + εp+q+1f |
(p+q+1)
x ( v..v︸︷︷︸

p+q+1

).. = 0,

f |
(p+2)
x (v..v︸︷︷︸

p+2

) + εp+q+1f |
(p+q+1)
x ( v..v︸︷︷︸

p+q+1

).. = 0 .., f |
(p+q)
x (v..v︸︷︷︸

p+q

) + .. = 0
(29)

Thus, intersection with f |
(p)
x (v..v︸︷︷︸

p

) = 0 gives the piece of multiplicity q + 1.

A Some numerical results

Below are listed some specifications of Thom polynomials for linear types. As was emphasized in §2.1.3.3
we give the polynomials SSxSy only. The degree of the stratum ΣSxSy is then SSxSSy − SSxSy . The singular
types are specified by their normal forms or by the standard notation.
• S

x
p+1
1 +x

p+1
2 ,A1

= −3
4

(
p+2
3

)
(d − p)2(3p + 4)(p2 + 3p + 4) + 3

(
p+2
3

)
(d − p)(5p + 6)

• S
x

p+1
1 +x

p+1
2 ,D4

= −5
8(d − p)2(p + 1)(3p − 1)(p2 + 3p + 8)(p2 + 3p + 10) + 2(d − p)(p2 + 3p + 8)(35p2 +

20p − 12) − 6(85p2 + 45p − 28)

• S
x

p+1
1 +x

p+1
2 ,X9

= −5
8(d − p)2(3p + 2)(3p − 2)(p2 + 3p + 16)(p2 + 3p + 18) + 2(d − p)(p2 + 3p + 16)(270p2 −

20p − 117) − 14(830p2 − 105p − 348)

• S
x

p
1+x

p+1
2 ,A1

= −3
8p3

(
p(3 + p)(d − p)2(p2 + 3p − 2) + 4(p − 1)(d − p)(p2 + 3p − 2) − 8p

)

• S(xp−1
1 +x

p
2)(x1+x2

2),A1
= −9

(
p+3
4

)
p(d − p)2(4 + p + 2p2) − 3

2p2(3 + p)(d − p)(p3 − 3p2 − p − 8) + 3p(p4 +

3p3 + 3p2 + 4p − 4)

• S(xp−1
1 +x

p−1
2 )(x2

1+x3
2),A1

= −
(d−p)2

4
(3p2 + p + 2)(p2 + 3p + 6)(p2 + 3p + 4)(p + 1)

+ d−p

2
(p2 + 3p + 4)(3p4 + 23p3 + 30p2 + 28p + 12) − 12 − 30p − 28p2 − 21p3 − 5p4

• S(xp−1
1 +x

p−1
2 )(x2

1+x4
2),A1

= −
(d−p)2

4
(p2 + 3p + 6)(p2 + 3p + 8)(9p3 + 18p2 + 16p + 8)

+3 d−p

2
(p + 1)(p2 + 3p + 6)(3p3 + 20p2 + 18p + 16) − 3(32 + 72p + 78p2 + 51p3 + 10p4)
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