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SUPERORBITS

ALEXANDER ALLDRIDGE, JOACHIM HILGERT, AND TILMANN WURZBACHER

ABSTRACT. We study actions of Lie supergroups, in particular, the hitherto
elusive notion of ‘orbits through odd (or more general) points’. Following
categorical principles, we derive a conceptual framework for their treatment
and therein prove general existence theorems for the isotropy supergroups
and orbits at general points. In this setting, we show that the coadjoint
orbits always admit a (relative) supersymplectic structure of Kirillov—Kostant—
Souriau type. Applying a generalisation of Kirillov’s orbit method to the parity
changed variants of the Heisenberg group, the Clifford supergroup and the
odd Heisenberg supergroup, we obtain ‘universal’ families of representations
parametrised by a supermanifold.

1. INTRODUCTION

Actions of Lie groups are legion in mathematics. In benign situations, they can
be understood in terms of their ‘decomposition’ into orbits as their basic constituent
pieces. The general philosophy of quantisation thus suggests the construction of
irreducible representations from orbits on some universal G-space. This was made
precise for nilpotent Lie groups by A.A. Kirillov in the form of his orbit method
[33], whose phenomenal success precludes a succinct synopsis.

Lie superalgebras, or ‘graded Lie algebras’, as they were known at the time,
were first considered in mathematics in the 1950s, in the context of deformation
theory. From about ten years later, physicists used them to encode symmetries of
elementary particles with different statistics, see Ref. [19] for a historical account.
Supermanifolds, as the classical counterparts of supersymmetric quantum fields,
were pioneered by F.A. Berezin, and with G.I. Kac, he introduced the concept of a
‘graded Lie group’ (or, in current terminology, a Lie supergroup) in 1970 [8]. Five
years later, together with D.A. Leites, he recast the notion as that of a group object
in the category of supermanifolds [9].

Almost simultaneously, B. Kostant, in his seminal paper [34], gave a detailed
account of supermanifolds and Lie supergroups geared towards the orbit method.
In that paper, he describes a version of prequantisation as a starting point for their
representation theory. In fact, as he remarks in his note [35]: Lie supergroups are
“likely to be [...] useful [objects] only insofar as one can develop a corresponding
theory of harmonic analysis”.

On the geometric side, the theory of homogeneous supermanifolds was quickly
developed [13,34]. However, these are clearly not general enough to reconstruct
the total space of an action (consider, e.g. the case of an ordinary Lie group acting
on a purely odd-dimensional supermanifold). However, this is all one obtains if
one considers, for an action of a supergroup G on a superspace X, only orbits of
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G through the ordinary points x € X, which in the case of the coadjoint action
corresponds to even elements in the dual of the Lie superalgebra.

Somewhat surprisingly, this point of view is sufficient to construct the unitary irre-
ducible representations of a nilpotent Lie supergroup, as was shown by H. Salmasian
[42]. This is, however, related to the restrictive nature of unitary representations
for Lie supergroups, which are all of ‘positive energy’ type (see Refs. [14,15] for a
modern account of unitary representations of Lie supergroups and Ref. [41] for the
interplay of unitarity and positivity).

For the purposes of harmonic analysis, this is however insufficient, even for the
very basic case of the Clifford supergroup, as was shown in Ref. [5]. In this vein,
it has repeatedly been observed—for the first time, by V. Kac [30, 5.5.4]—that it
would be highly desirable to quantise also coadjoint orbits through odd or mixed
functionals on the Lie superalgebra g, see also Refs. [10,43,44].

To understand such functionals as ‘points’ of g*, it is crucial to broaden the
notion of points. Following A. Grothendieck, a T-valued point of a space X is a map
T — X. This idea is based on considering an ordinary point as a map * — X,
allowing the (singleton) parameter space to acquire additional degrees of freedom.
The G-isotropy through a T-valued point « : T — X should then be a ‘group
bundle’ G, — T, and the orbit, a bundle G - * — T with a fibrewise G-action.

Based on the work of A. Grothendieck and P. Gabriel, such a framework was
formulated for the study of algebraic group actions in the category of schemes
by D. Mumford in his influential monograph [40]. However, to the present day,
this does not seem to have been fully appreciated in the context of supergeometry.
Moreover, a differentiable version of this theory is so far only partially available,
although necessary for applications: Indeed, while all Lie groups are real analytic,
any non-analytic (complete) vector field gives rise to an action which is not analytic
(much less algebraic). Such situations are ubiquitous, particularly in the context of
solvable Lie groups.

In this paper, we develop the notion of orbits through general T-valued points
for Lie supergroups in the differentiable (and, simultaneously, the analytic) category.
Not only does this lead to general existence statements for orbits through general
T-valued points, it also allows the construction of a Kirillov-Kostant—Souriau
symplectic structure (over T') on any such coadjoint orbit, and, as we show in
examples, the construction of representations (on vector space bundles over T')
via a generalisation of the Kirillov orbit method. This conceptual foundation neatly
accommodates all previously known examples and unravels a vast vista of potential
applications.

Let us review our main results in greater detail. Let G be a Lie supergroup acting
on a supermanifold X (which might be differentiable, real or complex analytic) and
z: T — X an embedding of supermanifolds. Consider the ‘rank function’

re(t) = dim{v €g ’ the germ of z* o a, vanishes at t}, vVt € Ty,

where a, denotes the fundamental vector field on X associated with v. Then our
existence theorems on isotropies and orbits (Theorem 4.20 and Theorem 4.24)
encompass the following statement (see the main text for details):

Superorbit Theorem. The isotropy group G, exists as a Lie supergroup over T
if vy s locally constant. Moreover, in this case, the orbit G - x — X through x
exists as an equivariant local embedding of supermanifolds over T'.

In particular, this applies when the manifold 7y underlying 7" is a point; in case
T itself is a point, we recover the usual orbits through ordinary points [13, 16, 34].

In the situation of the coadjoint action of G on g*, we write f = x. Our main
result concerning this action is the following theorem (Theorem 5.4).
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Supersymplectic Orbit Form Theorem. Assume that vy is locally constant.
Then the coadjoint orbit G - f admits a canonical supersymplectic structure over T'.

Combining this methodology with the general philosophy of Kirillov’s orbit
method, we construct, by way of example, representations for all super versions of the
three-dimensional Heisenberg group which arise by assigning arbitrary parities to the
generators in the commutation relation [z, y] = z. In every case, we find a ‘universal’
parameter space T' (which will be A' or A°") and realise the representations as
bundles of functors

H—T

whose fibres are super-vector spaces. Not surprisingly, these bear a striking similarity
to the Schrédinger representation.

The new feature, which we wish to emphasise, is that these representations are
output by a well-defined procedure within a general conceptual framework which
allows for the treatment of much more than just these examples.

We conclude the introduction by summarising the paper’s contents. In Section 2,
we present general categorical notions for the study of actions. In Section 3, we
review categorical quotients in the setting of differentiable and analytic superspaces
and suggest a weak notion of geometric quotients. In Section 4, we specialise the
discussion to supermanifolds. We prepare our discussion of isotropy supergroups by
generalising the notion of morphisms of constant rank to relative supermanifolds
(over a possibly singular base). We prove a rank theorem in this context (Proposi-
tion 4.16); this is based on an extension of the inverse function theorem presented
in the appendix (Theorem A.1). We investigate when the orbit morphism through
a general point has constant rank (Theorem 4.18) and, as an application, show the
representability of isotropy supergroups under general assumptions (Theorem 4.20).
This gives the existence of orbits under the same assumptions (Theorem 4.24). In
Section 5, we construct the relative Kirillov—-Kostant—Souriau form for coadjoint
orbits through general points (Theorem 5.4). Finally, in Section 6, we construct
‘universal’ families of representations for the super variants of the Heisenberg group.

Acknowledgements. We wish to thank the Max-Planck Institute for Mathematics in
Bonn, where much of the work on this article was done, for its hospitality.

2. A CATEGORICAL FRAMEWORK FOR GROUP ACTIONS

2.1. Categorical groups and actions. Groups and actions can be defined quite
generally for categories with finite products. In this subsection, we recall the relevant
notions and give a number of examples from differents contexts, which will serve to
illustrate our further elaborations.

In what follows, let C be a category with a terminal object *. For any S,T € Ob C,
let C% be the category of objects in C, which are under S and over T'. That is,
objects and morphisms are given by the commutative diagrams depicted below:

S S=——=3=5
| ! |
X X —Y
| ! |
T T T
Similarly, we define the categories Cr of objects over T' and C® of objects under S.

We recall the definition of group objects and actions. These concepts are well-
known, see e.g. Ref. [37].
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Definition 2.1 (Groups and actions). A C-group is the data of G € Ob C, such
that all non-empty finite products G x - -+ x G exist in C, together with morphisms

l1=1g:x—G, i:G—G, m:GxG—G
satisfying for any S € Ob C and any r, s,t €g G the group laws
Ir=rl=r, rrt=1=r"1r, (rs)t=r(st),

where we denote st := m(s,t) and s~! :=i(s). In particular,  is in a unique fashion
a C-group, called the trivial C-group.

Given a C-group G with structural morphisms 1, ¢, and m, we define the opposite
C-group G° to G, together with the morphisms 1 and i, and m® : G x G — G,
where the latter is defined by m°(s,t) .= m(t, s) for all T € Ob C and s,t €1 G.

Let X € Ob C and assume that the non-empty finite products Y7 X - -+ X Y,, exist
in C, where Y; = G or Y; = X for any j. A (left) action of a C-group G in C,
interchangeably called a (left) G-space, consists of the data of X and a morphism

a:Gx X — X,
written g - ¢ = a(g, x), for which we have
lxa=z, (rs)-z=r-(s-x)

for any S € ObC, z €5 X, and r,s €5 G. Slightly abusing terminology, it is
sometimes the morphism a that is called an action and the space X that is called
a G-space. A G°-space is called a right G-space. An action of G° is called a right
action of G.

Remark 2.2. The data in the definition of a C-group are not independent. Given m
and 1 satisfying all above equations not involving 4, there is at most one morphism
1 with the above conditions verified. Similarly, 1 is determined uniquely by m.

Since the Yoneda embedding preserves limits, a C-group is the same thing as an
object G of C whose point-functor G(—) = Homg(—, G) is group-valued. Actions
can be characterised similarly.

Example 2.3. Group objects and their actions are ubiquitous in mathematics. Since
our main interest lies in supergeometry, we begin with two examples from this realm.
(i) The general linear supergroup GL(m|n) is a complex Lie supergroup (i.e. a
group object in the category of complex-analytic supermanifolds). Its functor of
points is given on objects T by
) A B\ | A€ GL(m,05(T)), B € O:(T)™*"
GL(m[n)(T) = {(c D) ’ Ce OIET)”X%,Z)))E GL(n,((’)())(T)) }

Here, we let Oy (T) == I'(Orx), k = 0,1. The group structure is defined by the
matrix unit, matrix inversion and multiplication at the level of the point functor.
For X = A™I" we have

o {()

Hence, an action of GL(m|n) on X is given at the level of the functor of points by
the multiplication of matrices with column vectors.

As another example, consider X = Gry|q m|n, the super-Grassmannian of plg-
planes in m|n-space (where p < m and ¢ < n). For affine T, the point functor takes
on the form

a € Oy(T)™* b e Ol(T)"Xl}.

X(T) = {Z | Z rank plq direct summand of (’)(T)’”‘”}.

Again, GL(m|n) acts by left multiplication of matrices on column vectors. For
general T (which need not be affine), the functor of points can be computed in
terms of locally direct subsheaves, compare Ref. [38].
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(ii) In the category C of (K, k)-supermanifolds [4], where k C K and both are
R or C, consider the affine superspace G := A% with the odd coordinate 7. Then
G(T) = O1(T), and the addition of odd superfunctions gives G the structure of a
supergroup.

Let X be a manifold. The total space IIT X of the parity reversed tangent bundle
of X has the underlying manifold X and the sheaf of superfunctions Onrx = Q%,
the sheaf of differential forms, with the Z/27Z grading induced by the Z-grading.

The supermanifold IITX has the point functor

T X(T) = Home (T x A, X).

We denote elements on the left-hand side by f and the corresponding elements on
the right-hand side by f.
We may let © €p G act on f €p IITX by defining x - f via

(- f)” T x A" — X : (t,y) er (T x A — f(t,y +z(t)) er X.

If X has local coordinates (%), then IITX has local coordinates (z%,dz®). If
f €r IITX, then in terms of the point functor above, we have

Fat) = (), fHdet) = 5 (G5 ).
Here, j : T — T x A% is the unique morphism over T defined by j*(7) :== 0, 7

denoting the standard odd coordinate function on A°I'.
From this description, we find that the action of G on IIT X is the morphism

a:GxITX — OTX, d*(w)=w+ Tdw.

Expanding on this example a little, one may consider the action a of (A, +) on
A% given by dilation, i.e. of(7) = etr. This defines a semi-direct product group
G = A x A% and the action a considered above may be extended to G’ by
dilating and translating in the A°" argument.

In terms of local coordinates, the thus extended action is given by

a*(w) = e"(w + Tdw),

for w of degree n, compare [29, Lemma 3.4, Proposition 3.9].
(iii) Let G := A" with its standard additive structure and X := A'l'. Then G
acts on X via a : G x X — X, defined by

a(y, (y,m) = (y +vm,m)

for all R and v €r G, (y,n) €r X. In terms of the standard coordinates v on G
and (y,n) on X, we have

at(y) =y +n, a'(n) =n.

Ezample 2.4. Complementing our examples from supergeometry, we give a list of
examples for categorical groups and actions from different contexts.

(i) Let G be a C-group. Any X € Ob C can be endowed with a natural G-action,
given by taking a : G x X — X to be the second projection. That is, g - x := x for
allT € ObC, g €7 G, and x €7 X. This action is called trivial.

(ii) Any C-group G is both a left and a right G-space, by the assignments

g-T:=gr or x-g:=g,

respectively, for all T € ObC, g €7 G, and x €7 X.
(iii) Topological groups and Lie groups, and their actions on topological spaces
and smooth manifolds, respectively, are examples of categorical groups and actions.
(iv) Group schemes and their actions on schemes are examples of categorical
groups and actions as well. Compare, e.g. Refs. [21,40].
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(v) A pointed (compactly generated) topological space (W, wy) is called an H -
group, if it is equipped with based continuous maps : WxW — W, e: W — W
with e(W) = wy, and j : W — W such that the following holds:

Mo (6, ldw) >~ Uuo (idw, 6) ~ idw,
po (pxidw) =~ po (idw x p), po(idw,7) = po (j4,idw) ~ e,
where ~ denotes based homotopy equivalence, cf. [1, Section 2.7]. Given a pointed,
compactly generated topological space (X, xg), its based loop space QX is a prime
example of an H-group.

In the category C of pointed, compactly generated topological spaces with based
homotopy classes of continuous maps as morphisms, an H-group together with the
homotopy classes of u, e, and j is simply a C-group. The basic theorem that the
set [X, W], = Home (X, W) of based homotopy classes has a group structure that
is natural in the variable X if and only if W is an H-group [1, Theorem 2.7.6] is an
instance of Remark 2.2.

If now (G, 1¢) = (W, wp) is an H-group and (X, zg) a pointed topological space,
then a pointed continuous map a : G x X — X is a group action in C if and only
if a(1¢, ) is pointed homotopy equivalent to idx and the diagram

GxGxX 299", gwx
[LXiXm la
GxX z X

commutes up to a pointed homotopy.

(vi) In the theory of integrable systems one encounters the following situation:
(M,w) is a symplectic manifold of dimension 2n and p : M — B is a fibration
whose fibres are compact, connected Lagrangian submanifolds. Then there is a
smooth fibrewise action of T*B on M. In the above language, T*B — B is a
group in the category of smooth manifolds over B, and it acts on X = (M — B).

To see this latter fact, let m € M, b = p(m), and My := p~1(b). The dual of
the differential of p is an injective linear map (T, p)* : T, B — T\, M whose image
is the annihilator of T,,,(M;). Since M, is Lagrangian, the musical isomorphism
wh T M — T,,, M identifies this annihilator space with T}, (Mj;). We thus have
canonical linear isomorphisms T B — T,,,(M}) depending smoothly on m. Given
v € Ty B, we obtain a smooth vector field ¢ on M.

It is easy to see that these vector fields extend to a commuting family of Hamil-
tonian vector fields on M, and that a linearly independent set of elements of 1T} B
yields vector fields on the fibre M, that are everywhere independent. Since M, is
compact, we obtain an action of the additive group of 7B whose isotropy is a
cocompact lattice Ay [27, Theorem 44.1].

2.2. Isotropies at generalised points. For many applications of group actions,
the notion of isotropy groups is essential. In the categorical framework, we can
consider isotropy groups through T-valued points, by following the general philosophy
of base change and specialisation.

Construction 2.5 (Base change of groups and actions). Let G be a C-group, X a
G-space and T' € Ob C. We assume that the finite products T' x Y1 X - -+ X Y}, exist
in C for any choice of Y; = X or Y¥; = G.

Consider the category Cr. The morphism idy : T — T is a terminal object in
Cr. Non-empty finite products in Cr, provided they exist, are fibre products xp
over T in C. Thus, if we denote

GTCZTXG, XTCZTXX,
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then
Y))r Xy xp (YVo)r =T xYy x-+-xY, =Y X xY,)r
exist as finite products in Cr. Thus, it makes sense to define on G and X7 the
structure of a Cp-group and a Gp-space, respectively. The Cp-group structure
1:1GT:T—>GT, i:iGT:GT—>GT, m:mGT:GTxTGTHGT
on Gr is defined by the equations

1) =(t,1), (tg) " =g "), (tg)(t,h) =t gh)
for all g,h € G and t € T, where we have written all morphisms in C and used

the notational conventions from Definition 2.1.
Similarly, X7 is a Gp-space via

GT XT XT —>XT : (t7g) : (t727) = (tugx)
forallger G, x €g G,and t g T.

As we have seen, groups and actions are easily defined in the full generality of
categories with terminal objects. Possibly after base change and specialisation, it
will be sufficient to consider isotropy groups only through ordinary points. Their
definition on the level of functors presents no difficulty.

We will define isotropy groups at ordinary points, passing to the general case
of T-valued points only after base change. This definition is equivalent to the one
given in Ref. [40] in the case of schemes over some base scheme.

Definition 2.6 (Isotropy group). Let G be a C-group and X a G-space. We write

X = X (%) and call the elements of this set the ordinary points of X. Let x € Xj.

The isotropy at = is the functor G, : C — Sets whose object map is defined by
Go(R)={gerG|g-z=ua},

for any R € Ob C. In other words, G, is the fibre product defined by the following
diagram in the category of set-valued functors on C:

Gy, — G

N

« —= 5 X

Here, a, : G — X is the orbit morphism defined by

(2.1) ax(9) =g x
for all R€ ObC and g € G.

The functor G, is group-valued. Indeed, let R € ObC. By construction, an
R-valued point g € G, (R) is just g €g G such that g-x = 2. If g,h € G, (R), then
(gh) - x=g-(h-2)=g -z ==z,
so gh € G;(R). Taking this as the definition of the group law on G, we see that
the canonical morphism G, — G preserves this operation. Since G(R) is a group,

so0 is G, (R), and this proves the assertion. In particular, if G, is representable and
the finite direct products G, X - -+ X G, exist, then G, is a C-group.

The above definition can be combined with Construction 2.5 to give a satisfactory
definition of the isotropy of an action at a T-valued point, as we now proceed to
explain in detail.

Let G be a C-group, X a G-space, and z €7 X. Recall the natural bijection

(2.2) Homc(A, B) — Home, (A, Br) : f — (pa, f),
valid for any (pa: A— T) € ObCr and any B € ObC.
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Applying this to A =T = %, we obtain in the notation of Definition 2.6
(X71)o = Home,. (*7, X1) = Home(T, X) = X(T).

Thus, we may consider = as an ordinary point of X7 € Ob Cr.

By Construction 2.5, G is a Cp-group and Xr is a Gp-space. In particular, we
obtain an orbit morphism a, : Gy — Xp in Crp, from Equation (2.1). It is the
composite

idr,z) Xidg idr X (aoo)

Tx G- TxXxG T x X,

denoting the action of G on X by a, and by o the exchange of factors, i.e.
(23) a’at(tag) = (t7g ' 'T(t))a vt €R Tvg €R G.

The objects T' = #p, G, and X7 in the category Cr are promoted to covariant
functors on Cp. Similarly, x and a, : Gr — Xp are promoted to natural
transformations. We now pose the following definition.

Definition 2.7 (Isotropy functor). The isotropy functor G, = (Gr), : Cr —
Sets is the fibre product defined by the diagram

G, Gr

[k

T:*TL>XT

in the category of set-valued functors on Cr.
Remark 2.8. This coincides with Mumford’s definition [40] in the case of C = Schg.
Consider now the following diagram in the category C:

Tx G
Ay Ve

Its fibre product is the functor given on R € Ob C by

(T x7xx (T x G))(R) = {(tl,tg,g) er (T xT x Q)

t1 =12
z(t1) =g- x(fz)}
={(t,9) €r (T x Q) | g-a(t) = 2(t)}.
If R comes with morphisms R — T and R — T x G in C completing the

fibre product diagram above, then we may consider R € Ob Cr via either of the
T-projections thus obtained. The above computation then gives

Gm(R) = (T XTxX (T X G))(R)

Hence, the representability of the functor G, = (Gr), in Cr is equivalent to the
existence of this fibre product in C.

Ezample 2.9. Recall the notation from Example 2.3 (iii). Any point p € Xy = X (x)
gives rise to pp € X (R) and we obviously have - pr = pg for all v € G and all
R e SSp]lég, see Section 3 and Ref. [4] for the terminology. Thus, we have G, = G
as functors, so G, is represented by the Lie supergroup G.

By contrast, take 7' = A°" with the odd coordinate 6 and define z €p X by

i(y) =0, zf(n)=0.
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Ifg

where we might as well take any other number for 2*(y). That is, for any R € SSpy°,

we have
xz(0) =(0,0), VOerT.
In this case, the isotropy functor G, evaluates on any R € SSpljfﬂg as
G.(R) = {(0,7) €r (T x G) | 70 = 0}.

Therefore, G, is represented by the superspace

SpecK[0,7]/(07) = (= KI[0,7]/(67)),
where 0,7 are odd indeterminates. It lies over T' via the morphism
p: Gy — T, p*0) =0.
The group multiplication works out to be
m: Gy xp Gy — Goy mb(y) =" +77,
i

where 7% = pi (). Thus, G, is a group object in SSpgg but not given by a Lie
supergroup over 7.

Definition 2.10 (Specialisation of a point). Let C be a category, 11,72, X be
objects in C. Given two points z; €, X and xo €1, X, we say that x4 is a
specialisation of x; if for some morphism ¢ : 75 — T3 in C, the following diagram
commutes:

Proposition 2.11. Let G be a C-group and X a G-space. Let x1 €pr, X and
T2 €7, X such that x2 is a specialisation of x1. Then there is a natural isomorphism

T X1y Gacl = Ga:z

of Sets-valued functors on Cr,.
In particular, if G, is representable in Cr,, then Gy, is representable in Cr, if
and only if the fibre product Ty x1, G4, exists in C.

Proof. By assumption, we have xo = x1 0 ¢ for some morphism ¢ : T, — T3 in C.
We compute for each R € Ob C and (t,g) €gr G, that

g-z2(t) = g-w1(p(2)),
so that the map (t,g) — (¢, ©(t), g) on R-valued points defines a natural bijection
GJC2 (R) — (T2 X1y Gzl)(R)
This proves the assertion. U

Definition 2.12 (Free G-spaces). Let G be a C-group and X a G-space. Given
a T-valued point = €7 X, the G-space X is called free at z if (Gr), is the trivial
group in the category of Sets-valued functors on Cyp. It is simply called free if it is
free at any = €7 X, for any T' € Ob C.

As the following corollary to Proposition 2.11 shows, it is equivalent to require
that X be free at the generic point z = idx €x X.

Corollary 2.13. Let G be a C-group and X a G-space. Assume that X is free at
the generic point x = idx €x X. Then X is free.



10 ALLDRIDGE, HILGERT, AND WURZBACHER

2.3. Quotients and orbits. In this subsection, we introduce basic facts and
terminology relating to quotients and orbits. For that purpose, the language of
groupoids is convenient. We briefly recall it. In what follows, we let C be a category
with all finite products.

Definition 2.14 (Groupoids). Let X € Ob C. A C-groupoid on X isaT' € ObC,
together with morphisms s,t : ' — X—called source and target—such that all
finite fibre products

MW =T xxDxx--xxT=Tx,xsT Xox¢ - Xsx4T
exist, and morphisms
1: X —7T, i:T—T, m:T® _—r

—where the first and third are over X x X (where we consider X as lying over
X x X via Ax and T as lying over X x X wia (t, s)) and the second is over the flip
0: X x X — X x X—such that the following diagrams commute:

F(S) mx xid F(z) F(lot)XXidF(2) r s X I (id,2) F(Q)
idxxml lm idxx(los)l \ Jm (i,id)l ll tl lm
r® ——r | re) —-r X ——T.

A morphism ¢ : X — Y in C that coequalises s and ¢, i.e.
pos=pot:I' —Y

will be called I"-invariant.

A subgroupoid of T' is a monomorphism j : IV — T" with the induced source and
target morphisms, such that 1, i 0 j, and m o (j x x 7) factor through j.
Ezample 2.15. We will need the following three simple examples of groupoids.

(i) Let G be a C-group and X be a G-space with action morphism a. Then
I' .= G x X is a C-groupoid over X, called the action groupoid of a. Its structural
morphisms are

s=ps: ' —X, t=a:T—X, 1=(lg,idyx): X —T,
as well as the inversion ¢ and multiplication m defined by
2(97.’17) = (g_l7g'$)7 m(ghxagQ) = (919271;)’ vgth €r G,SCGT X>

respectively. Here, we identify I'®) = G x X x G via the morphism induced by
dr xp:I'xI' —-Gx X xG.

(ii) Let X € ObC. Then T := X x X is a C-groupoid over X, called the pair
groupoid of X. Its structural morphisms are

s=p,t=p: ' — X, 1=Ax:X—T,
as well the inversion ¢ and multiplication m defined by
i(x,y) = (y,x), m(z,y,2)=(2,2), Yo,y zerkX,

respectively. Here, we identify I'® = X x X x X wvia the morphism induced by
dp xpo:I'xT'— X x X x X,

(iii) Let X € ObC. By definition, an equivalence relation on X is a subgroupoid
R of the pair groupoid of X. The definition seems to be due to Gabriel [24]. Almorox
[7, Definition 2.1] was the first to adapt this definition to the case of supermanifolds.

In terms of the language of groupoids introduced above, we now recall the notion
of categorical quotients [40].
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Definition 2.16 (Categorical quotients). Let X € Ob C and I" be a C-groupoid
on X. A morphism 7 : X — @Q is called a categorical quotient of X by T"if it is
universal among ['-invariant morphisms. That is, the morphism 7 is I'-invariant,
and for any I'-invariant morphism f: X — Y, where Y € Ob C, there is a unique
morphism f : Q — Y such that the following diagram commutes:

X750

va

Y

By abuse of notation, we also say that @Q is a categorical quotient (of X by TI).
We say that 7 : X — @ is a universal categorical quotient if for all morphisms
Q' — Q, the fibre products X’ := Q' xo X and I'' := (Q' x Q') Xgxo I exist, and
' =Q xgm: X — Q' is a categorical quotient of X’ by I'".
We use the notation X/T" for categorical quotients. In case I' is the action
groupoid for the left (respectively, right) action of a C-group G, we write G\X
(respectively, X /@) for the categorical quotient (if it exists).

We now apply these notions to pointed spaces, to arrive at a definition of orbits.
At this point, we have to depart from Mumford’s definitions [40, Definition 0.4],
since the notion of scheme-theoretic image does not apply to the setting of smooth
supermanifolds that we are primarily interested in.

For any category C with a terminal object *, we define the category C* of pointed
spaces to be the category of objects and morphisms under *x. We denote the objects
* — X in this category by (X, ).

Definition 2.17 (Categorical orbits). Let G be a C-group and X be a G-space.
Let x €7 X, where T' € Ob C is arbitrary. Assume that G, is representable in Cr.
Being a group object in that category, it is naturally pointed by the unit. Since
the unit acts trivially, we have a right G -action on G in (Cp)*. If it exists, the
categorical quotient 7, : Gr — Gr /G, in (Cr)* is called the categorical orbit
of G through z, and denoted by 7, : Gy — G - x. If the quotient is universal
categorical, then we say that the orbit is universal categorical.
The space X is pointed by

zr = (idr,z) : T — Xr,

and by definition, G, acts trivially on zr, so if the categorical orbit exists, there is
a unique pointed morphism a, : G - ¢ — Xt over T such that a, o 7, = a,. In
order to avoid cluttering our terminology, we also refer to a, as the orbit morphism
of x. Also, by definition, the categorical orbit G - = is pointed in Cr, so that it
comes with a section 7' — G - whose composite with a, is . We call this section
canonical and will usually also denote it by x.

We now spell out in detail what the definition given above of an orbit through a
T-valued point is. Let G be a C-group, X a G-space in C, T' € ObC, and = €p X.
Assume that GG is representable in Cr. As we have seen above, this means that
the fibre product

GYQC :TXTXX (TX G)

exists in C. So we have in C a fibre product diagram

G, — T xG

TMTXX
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Recall that we are working under assumption that finite products exist in C. Then
G -z, provided it exists in (Cr)*, is characterised as follows: For every G -invariant
morphism f, which fits into a commutative diagram as depicted on the left-hand
side of the display below, there is a unique morphism f completing the right-hand
diagram commutatively:

(ar,n) T r_,
rxe Iy gy

In other words, for any such T, the set of pointed morphisms G -z — Y in
Cr is in natural bijection to the set of morphisms f : Gy — Y, which satisfy the
conditions:

f(£,1) =y(@), py(f(t,9)) =t,
hx(t) :Cl'(t) = f(tvgh) :f(tvg)

for all R € ObC, g,h €r G, and t €g T. Here, we recall that the equation
h - x(t) = x(t) characterises the R-valued points (¢, h) of Gy.

Universal categorical orbits carry a natural action.

Proposition 2.18. Let G be a C-group, and (X, z) a pointed G-space in C. If the
G-orbit G - x exists and is universal categorical, then the morphism

mom:GxG—G-x

induces an action of G on G - x. It is the unique action of G on G - x for which
7wy : G — G - x is G-equivariant. Moreover, the canonical point x : * — G - x of
G - x is invariant under the action of G.

Proof. By assumption, G - x is universal categorical, so the base change
idxm :GxGE—Gx(G-x)

along the projection G X G -z — G - x is a categorical quotient in C, for the
groupoid

I'=GxTI'=GxGxG,

derived from I' = G x G,. In particular, id X 7, is an epimorphism. Applying the
base change for a further copy of G, we see that so is id x id X 7.
Consider the multiplication m of G. We have

T2 (m(g1, g2h)) = T2(9192h) = T (9192) = 7 (m(g1, 92))
forall R€ ObC, g1,92 €r G, and h €g G,. It follows that
(p1,mpom):Gx G — G x(G-x)
is I"-invariant, and hence, there is a unique morphism
4G Gx(G-2) — G-z

such that ag., o (id X 7;) = 7, o m. In particular, 7, will be G-equivariant and
ag. uniquely determined by this requirement as soon as we have established that
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it indeed is an action. To do so, we compute
ag.z 0 (id X ag.z) o (id x id X 7)) = ag.. o (id x (7 o m))
= m, omo (id X m)
=m, omo (m x id)

= ag.; o (M X my)

ag.z © (m x id) o (id x id x ),
which shows that
ag.¢ o (id X ag.) = ag.p o (m x id),
since id X id X m, is an epimorphism. Similarly, one has
ag.z o (1 xid) = idg.4-

Hence, ag., is an action for which m, is G-equivariant. We will denote it by -, as
for any action.

Finally, we verify the claim that = is G-fixed. By construction, m, is pointed, so
that 7, (1) = z. For h €g G, we compute, by use of the left G-equivariance and
right G -invariance of 7, that

h-z=h-m(1) =mg(h-1) =7m,(h) = m,(1) = x.
This completes the proof of the proposition. O

Example 2.19 (Examples of orbits). Returning to the groups and actions from
Example 2.4, we explain the notion of isotropy groups and orbits in these cases. In
items (i) and (ii) below, let C denote a category such that all finite products exist.

(i) Let G be a C-group acting trivially on X € ObC. Then for all x : T — X
and R € ObC, we have G;(R) = Gr(R). Thus, the isotropy functor G, is
represented by Gy =T X G. Here, the morphism 7, = p; : Gy — T is a universal
categorical orbit, as can be seen as follows: 7, is invariant with respect to the action
groupoid I' coming from the right Gr-action on Gr. Given any I'-invariant morphism
f:Gr =Y with Y over T, it uniquely factors over 7, to f = fo (idr x 1g).

Furthermore, given Q — T, the fibre product @ X7 G = G exists. Moreover,
Q xpmy =1dg xp1: Gg = Q = @ x7 T is a categorical quotient by the above,
since (Q x Q) X7x7 I' is the action groupoid for the right Gg-action on Gg.

(ii) Assume given a C-group G, viewed as a left G-space via left multiplication.
For T € ObC and =z €7 G, we have

Go(R)={(t.9) €rGr | g-a(t) =x(t)} = {(t, 1c(t)) |t Er T} = T(R).

Thus, G, is represented by T'. Defining 7, by idg, : Gr — @ = G, we obtain
for any Y and any Gp-invariant f : Gy — Y a unique factorisation f := f. Thus,
m, : Gp — @ is the categorical quotient of Gy with respect to the G -action. In
other words, it is the categorical orbit of G through x.

Furthermore, given Q' € ObC and Q' — @, we have Q' xg Gr = Q' and
Q' xqT = Q' xq Gr = Q. The projections idg, x ¢ s and idg, X t are the identity
of @', so that Q" xq 7, = idg is the categorical quotient of @’ (the space) by @’
(the groupoid). It follows that 7, : Gy — Gr is a universal categorical orbit.

(iii) Let a continuous or smooth action a : G x X — X, respectively, of a
topological group or Lie group on a topological space or a smooth manifold be given.
The isotropies at € Xy = X (%) = X are represented by the obvious set-theoretic
isotropy groups, endowed with the subspace topology coming from the inclusion
into G. Since these isotropies are closed, they are notably Lie subgroups in the
smooth case.
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Both in the topological and the smooth case, a categorical orbit through such an
x is represented by the set of right cosets with respect to the isotropy group G,
with its canonical structure of topological space or smooth manifold, respectively.
For the rest of this example, let us focus on the topological case.

Then we can consider arbitrary continuous maps = : 7' — X, defined on some
topological space T and observe that

Gy = {(tag) € Gr ’ g€ Gm(t)}
with the subspace topology from 7" x G. We may define an equivalence relation ~
on Gt by
(t,g) ~(t',g) = t=t,g-z(t) =g -x(t).

The quotient space @) .= X/ ~ with the canonical map 7, : Gy — @ satisfies the
universal property of the categorical orbit of G through z.

If 7, is an open map, then it is already an universal categorical orbit. Indeed,
in this case, for any Q' — @, the projection py : Q" xg Gr — Q' is open and in
particular a quotient map. The map 7, is open in case T' = *, which is the situation

studied classically. In general, however, this fails to be true, as one may see in the
following example: Let G = (R,+), T := R, and X := R2. Define the action by

g-(t,s) = (t,tg+s)
and set z : T — X, x(t) == (¢,0). Then G, = (0 x R)U(R* x 0) and the projection
Gr — Gr /G, is not open, as the saturation of an open set U C G containing
(0,0) is (R x 0) UU, which is open only if R x 0 is already contained in U.

The smooth case is even more subtle, since in general, the isotropy G, might not
exist as a smooth manifold over T'. In Section 4, we study these questions for the
category of supermanifolds. A fortiori, these apply to ordinary manifolds.

(iv) The existence question for isotropies and orbits in the homotopy category
of pointed topological spaces leads immediately to subtle questions concerning
homotopy pullbacks and homotopy orbits. We do not dwell on these matters here.

(v) From the description of the action of T*B on M in Example 2.4 (vi), it
follows immediately that for any b € B, the action of 7} B on the fibre M, is
transitive and the orbits are n-dimensional real tori. Furthermore, the isotropy is a
cocompact lattice A, in T, B, depending smoothly on b, ¢f. [27, Theorem 44.1]. The
union of the Ay is total space a smooth Z™-principal subbundle A of T*B — B.

The traditional description underlines the ensuing action-angle coordinates: Ac-
tion for the base directions of B, angle for the fibre directions (compare the detailed
analysis of Duistermaat [22]). In the terminology introduced above, we find that the
isotropy of the generic point x =idx : T'= X — X is the subgroup G, = M xg A
OfGT =M XBT*B.

By our results below (Theorem 4.20 and Theorem 4.24), the orbit

G-12=Gr/Gy=(MxpT*B)/(M x5 A)

exists as a universal categorical quotient in the category of manifolds over M.
Moreover (loc. cit.), it coincides with the image of the orbit morphism a,, which is
a surjective submersion. Hence, we have G - x &2 M x g M as manifolds over M.

3. GROUPOID QUOTIENTS OF SUPERSPACES

We now apply the general setup of Section 2 to the categories of locally finitely
generated superspaces and of relative supermanifolds constructed in Ref. [4]. We
will start by recollecting some basic definitions, referring to the paper cited for more
details.

We fix a field K € {R, C}. The category SSpy has as objects pairs X = (X, Ox)
where X is a topological space and Ox is a sheaf of K-superalgebras with local
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stalks. Such objects are called K-superspaces. Morphisms ¢ : X — Y are
again pairs (o, ") where this time, ¢o : Xg — Y is a continuous map and
o' Oy — (p0)«Ox is a local morphism of K-superalgebra sheaves.

If S is a fixed K-superspace, the category of objects and morphisms in SSpy
over S will be denoted by SSpg. Objects are denoted by X/S and morphisms by
p:X/S—Y/S.

Now we fix a subfield k of K containing R and a ‘differentiability’ class w € {oo,w}.
Here, oo means ‘smooth’ and w means ‘analytic’ (over k). We consider model
spaces adapted to these data. Namely, let a finite-dimensional super-vector space
V = V5 @ Vi over k be given, together with a compatible K-structure on V7. Then
we may consider on the topological space V5 the sheaf C{Z) of K-valued functions of
differentiability class w. We set

A(V) = (V5,CF @x AN(V1)*)
and call this the affine superspace associated with V. It depends on the data of
(K,k, @), but we will usually omit them from the notation.

By definition, a supermanifold over (K, k) of class C* is a Hausdorfl K-superspace
X which admits a cover by open subspaces which are isomorphic to open subspaces
of affine superspaces. We will usually just say that X is a supermanifold. The full
subcategory of SSpy comprised of these objects with be denoted by SMang.

In the literature, the case K =k = R corresponds to (smooth or real-analytic)
real supermanifolds [16, 36], and the case K = k = C corresponds to (holomorphic)
supermanifolds [16,38]. In the case of K = C and k = R, supermanifolds are also
known as ‘cs manifolds’ [20]. We take this opportunity to replace this unfortunate
terminology with a less confusing one.

In Ref. [4], we construct a full subcategory SSpht = SSpTi® of SSpy that
admits finite fibre products and contains SMang as a subcategory closed under finite
products. Here, ‘Ifg’ stands for ‘locally finitely generated’. For any S € Ob SSplfg,
the category of objects and morphisms over S in SSp]lég will be denoted by SSpg®.
Given any super-vector space V as above, we define Ag(V) := S x A(V). Using
these as model spaces, we arrive at a definition of supermanifolds over S, compare

op. cit. We denote the corresponding full subcategory of SSpISfg by SMang.

3.1. Geometric versus categorical quotients. In what follows, fix S € SSplﬂég,

and let C be a full subcategory of SSplsfg admitting finite products. Particular cases
are C = SSpgg and C = SMang, by [4, Corollaries 5.27, 5.42]. Furthermore, let
X € ObC and T be a groupoid over X in C.

Proposition 3.1. The coequaliser m : X — Q of s,t : I' — X exists in SSpg
and is a regular superspace. If Q € C, then Q is the categorical quotient of X by T.

Proof. The existence and regularity of @ is immediate from [4, Propositions 2.17,
5.5]. By definition, the morphism 7 : X — @ is a coequaliser in SSpg. But since
C is a full subcategory of SSpg, SSpgg being full in the latter, @ is the coequaliser
of s,t in C, and thus has the quotient property as required by Definition 2.16. [

Remark 3.2. We can describe the colimit @ of s,t : I' — X explicitly. Indeed,
by [4, Remark 2.18], O is the equaliser in the category Sh((Q)o) of sheaves on Qq,
defined by the diagram

P st

Og —— m0:O0x :;n (0 © 80)+Or.
t

Moreover, since the embedding of SSpg in SSp preserves colimits, one may see
easily that Qg is the coequaliser of sg,tg : 'g — X, i.e. the topological quotient
space of Xy by the equivalence relation generated by so(v) ~ to(7).
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Ezample 3.3. Recall the action from Example 2.3 (iii) and the T-valued point z
from Example 2.9. Recall that the isotropy group G, is in this case representable
by the group object

Gy = SpecK[0,7]/(07), pH(0) =0, mi(y)=7'++* 1(7) =0
in SSpqu«g7 where 6, are odd indeterminates. In particular, it lies in (SSpljig)*.
Let € be an even indeterminate and define

Q = SpecK[e|0]/(£%, 6¢).
We then have morphisms
pe:Q—T, ph(0)=0, ¢:T—Q, ¢'(c):=0, ¢*0):=0.

The morphism

Te:Gr — Q, wh(0) =0, nb(c):=0y

x

is in the category (SSp;{g)*. We claim that 7, : Gp — @ is the categorical orbit

of G through x.
To establish this claim, let b : G X7 G, — G7 denote the action by right
multiplication of the isotropy, i.e. b*(y) = ' ++2. We compute

(e 0 b)*(e) = bH(07) = O(y" +7%) = 07" = pi(07) = (ma 0 p1)(e)
so 7, is indeed G -invariant. If f is a function on G, then
f=Jo+ fo0 + fyv + fo, 00
where f, € K for « = 0,0,,6~. Then
OB AEN G

so f is Giz-invariant if and only f, = 0. In this case,

f:']r:c(f)a .f:f0+f90+f0'y€,

and f is unique with this property. It is easy to conclude that m, : Gp — @ is the
categorical quotient of G by G, and thus the claim follows. Notice that G-z = @
is not a supermanifold over T.

Definition 3.4 (Weakly geometric quotients). The coequaliser 7 : X — @ of
s,t: ' — X is called a weakly geometric quotient of X by I' if Q € ObC.

Remark 3.5. The terminology is justified as follows: If GG is a group scheme acting
on a scheme X, then a morphism 7 : X — @ is called a geometric quotient of X
by G if it is the coequaliser of ps,a : G x X — X in the category of locally ringed
spaces, and in addition, the scheme-theoretic image of (p2,a) : G x X — X x X is
X Xg X, see [40, Definition 0.6].

In terms of the above terminology, we may rephrase Proposition 3.1 as follows.
The result is a generalisation of [40, Proposition 0.1].

Corollary 3.6. Let the weakly geometric quotient Q of X by T exist in C. Then Q
1s the categorical quotient of X by I in C.
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4. EXISTENCE OF SUPERORBITS

In this section, we will derive general sufficient conditions for the existence of
orbits through generalised points in the category SMang of supermanifolds over S.
Here and in what follows, S will denote some object of SSp]Iég .

The material is organised as follows: In Subsection 4.2, we discuss at length the
notion of morphisms of constant rank basic for our considerations. In particular,
we characterise precisely when the orbit morphism of a generalised point is locally
of constant rank. Subsequently, in Subsection 4.3, we study the isotropy of a
supergroup action at a generalised point. This leads, in Subsection 4.4, to the
existence of orbits through generalised points.

4.1. Tangent sheaves of supermanifolds over S. We briefly collect some defini-
tions and facts concerning tangent sheaves.

Definition 4.1 (Tangent sheaf). Let px : X — S and py : Y — S be superspaces
over S and ¢ : X/S — Y/S a morphism over S. Let U C X be open. An py',Os-
linear sheaf map

v cpalOy|U — 0X|U

will be called a vector field along ¢ over S (defined on U) if v = vg + v; where
vi(f9) = vi(H)e*(9) + (1) (fui(g)

for all i = 0,1 and all homogeneous local sections f, g of p}}OOle.

The sheaf on Xy whose local sections over U are the vector fields along ¢ over S
defined on U will be denoted by Tx/s—y/s or T,.x/s—y/s if we wish to emphasize
. It is an Ox-module, and will be called the tangent sheaf along ¢ over S. In
particular, we define Tx/s = Tiay:x/5—x/s and Tx = Tx/., the tangent sheaf of
X over S and the tangent sheaf of X, respectively.

Let 7 be an even and 6 an odd indeterminate. Whenever X is a K-superspace,
we define
XIr|0] = (Xo, OX[T|9}/(72,79)).
There is a natural morphism (+)|;—g—o : X — X[7]6] whose underlying map is the
identity and whose pullback map sends 7 and 6 to zero.

Lemma 4.2 (Superderivations and super-dual numbers). Let X/S and Y/S be
superspaces over S and ¢ : X/S — Y /S be a morphism over S. There is a natural
bijection

{¢ € Homg(X[7|0],Y) | ¢lr=o—0 = ¢} —> D(Tx/s—y/s) 1 ¢ — v

given by the equation

(4.1) ¢ (f) = ¢H(f) + Tug(f) + Oui(f) (72, 76)
for all local sections f of Oy . Symbolically, we write
e 0¢F(f) oy 99 (f)
vo(f) - 67' a’nd vl(f) - 89 .
Proof. Since X|[7|0] is a thickening of X [4], the underlying map of ¢ is fixed by
¢0 = wo. The assertion follows easily. O

Definition 4.3 (Infinitesimal flow). Let v € I'(Tx/s—y,s). The unique morphism
¢V € Homg(X|[7]0],Y), such that ¢¥|,—g—o = ¢, associated with v via Lemma 4.2,
is called the infinitesimal flow of v.

The infinitesimal flow construction allows us to introduce for each fibre coordinate
system a family of fibre coordinate derivations.
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Construction 4.4 (Fibre coordinate derivations). Let S € SSplfg and X/S be in
SMang with a global fibre coordinate system x = (z%).

By [4, Propositions 5.18, 4.19, Corollary 5.22], there are unique morphisms
¢ € Homg(X[7]0], X) such that

6 (z?) = xZ—FT(Sab for |z*] = (:)7
2° 4+ 68, for |z%| = 1.

Evidently, we have (¢%|;—s—0)*(2?) = 2°, and hence ¢®|,—g— = idx.

On account of Lemma 4.2, the morphisms ¢® are the infinitesimal flows of unique
vector fields over S, denoted by 8%@ € I'(Tx/s). We call these fibre coordinate
derivations and simply coordinate derivations in case S = *.

coordinate system (x%), and not only on the coordinate z®.

As we shall presently see, the coordinate derivations give systems of generators
for the relative tangent bundle.

Proposition 4.5 (Coordinate expression of vector fields). Let S be in SSp , X/S
be in SSphcg Y/S be in SMang, and ¢ : X/S — Y /S be a morphism over S Let
(y*) be a local fibre coordinate system on an open subset V.C Yy. Let U C Xg be an
open subset, such that po(U) CV, and v € Tx;s—y;s(U). Then

(4.2) v= Za v(y®) ¢ o a(Za'

In particular, we have
Tx/s—vys = ¢ (Tyys) = Ox @ 10, v ' Ty/s,
and this Ox -module is locally free, of rank vk, Tx /sy s = dimg g, (2) Y for x € Xo.

Proof. We may assume that (y*) is a globally defined fibre coordinate system. Define
the vector field v" € *(Ty,5)(U) € Tx/s-v,s(U) by

0

= Z ) 8y

Let ¢ and ¢’ be the infinitesimal flows of v and v’, respectively. For any index a,

we have v/ (y%) = v(y®), and hence ¢%(y*) = ¢'*(y®). This implies that ¢ = ¢, by
reason of [4, Propositions 5.18, 4.19, Corollary 5.22]. Hence, we have v’ = v.

and this readily implies the remaining assertions.

Corollary 4.6 (Local freeness of Tx/g). Let S € SSplfg and X/S € SMang. Then
Tx/s is locally free, with vk, Tx;s = dimg , X, for x € Xo.

A special case of the above concerns the relative tangent spaces.

Definition 4.7 (Tangent space). Let p = px : X — S be a superspace over S. For
any point x € X we let my , be the maximal ideal of Ox , and »(z) == Ox z/Mmx 4.
Setting s == px o(x), we define

T.(X/S) = Deros , (Ox 2, #(x)),
the Z-span of all homogeneous v € Homoy , (Ox 2, #(x)) such that

)
(4.3) v(fg) = v(f)g(x) + (=) f(2)u(g).

This is naturally a super-vector space over »(x), called the tangent space at x over
S. For S =, we also write T, X. The elements are called tangent vectors (over S).

As is immediate from the definitions, the tangent space coincides with the tangent
sheaf over S along the morphism (%, »(z)) — X.
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Corollary 4.8 (Dimension of Ts,X). Let S € SSp]lég, X/S be a supermanifold
over S, and x € Xg. Then dimg Ts X = dimg , X.

Definition 4.9 (Tangent morphism). Let ¢ : X/S — Y/S be a morphism of
superspaces over S. We define the tangent morphism

Tors: Txys — Tx/s—v/s
by setting
Toys(v) =vo &
for any locally defined vector field v over S. In view of Proposition 4.5, if Y is in
SMang, then the range of 7,/g is in ¢*(Ty/s).
Similarly, we obtain for any x € Xy a tangent map

To(p/S) : To(X/S) — Ty () (Y/S)

by setting
Tu(p/S)(v) =vo &l
for any tangent vector v over S.

4.2. Morphisms of constant rank. In order to handle supergroup orbits through
T-valued points, we will need to understand morphisms of locally constant rank in
the setting of relative supermanifolds. The relevant definitions are as follows.

Definition 4.10 (Split module morphisms). Let R be a superring and E, F be
graded left R-modules. A morphism f : E — F of R-modules is called split if
ker f is a free direct summand of E and coker f is a free direct summand of F.

We have the following useful characterisation of splitness for a morphism.

Lemma 4.11. Let R be a local supercommutative superring and f : R™"™ — RPl
an even R-linear map. The following are equivalent:
(i) f is split.
(ii) ker f is a direct summand of R™".
(iii) coim f is a direct summand of R™™.
iv) im f is a direct summand of RP!.
)
)

—~

i
(v) coker f is a direct summand of RP!4.
(vi) There are graded bases of R™™ and RP1, such that the matrix My of f is

A0 10 10
=0 p) 4=60) 2= o)

Proof. By the definitions, item (i) implies items (ii) and (v). We have the equivalence
of items (ii) and (iii) and of items (iv) and (v). In case (ii) or (iii), ker f and coim f
are projective and hence free by Kaplansky’s Theorem, which says that a projective
module over a local ring is free [31]. This holds similarly for im f and coker f in
case of (iv) or (v). Clearly, item (vi) implies (i).

Assume that we have (ii). Then there is a homogeneous basis of R™" containing
a homogeneous basis of ker f. With respect to this basis and any homogeneous basis
of RP1, the matrix A ¢ of f has exactly k + ¢ non-zero columns, where m — kjn — ¢
is the rank of ker f. Then the proof of [36, Lemma 2.3.8] shows that item (vi) holds.
Working with rows, we see in a similar fashion that item (v) implies (vi). O

Definition 4.12 (Morphisms of constant rank). Let f : X/S — Y/S be a
morphism of supermanifolds over S and x € Xy. We say that f is of locally constant
rank over S at x if for any x’ in some open neighbourhood of z, the tangent map
on stalks

Ti/sa Txysar — ([ Tyys)er = Oxor ®0y.,, Tyys.y's
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where y’' = fo(2'), is a split morphism of graded Ox ,-modules and the rank of its
kernel is independent of z’. We say f is of locally constant rank over S if it is of
locally constant rank over S at x for any x € Xj.

For our notion of constant rank morphism (which is defined on stalks) to be
applicable, we need the following technical proposition, which clarifies the notion of
direct summands for finite locally free sheaves.

Proposition 4.13. Let X be a superspace and F a finite locally free Ox-module.
Assume that £ C F is a submodule. The following are equivalent:

(i) &€ is a locally direct summand of F.
(ii) & is finite locally free and a locally direct summand of F.
(iii) For any x € Xy, &, is a direct summand of F,, and the function

Xo — N? 12— d, = dim,, () Ex/mx 2 Ex
is locally constant. Here, »#(z) = Ox ,/mx 5 is again the residue field.

Certainly, item (ii) implies (i). For the remainder of the proof, without loss of
generality, we may assume that F = F§, so that dimensions become natural numbers
(instead of pairs thereof). Moreover, shrinking X, we may assume that F admits a
basis (fj)j<m of global sections. We introduce the notation

E:v = g:c/mX,wgw7 Fa: = ]::r/mX,a:]:za
and briefly postpone the rest of the proof to state and prove the following lemma.

Lemma 4.14. Under the above assumptions, let © € Xg and U C Xy be an open
neighbourhood of x. Let (e;)j<x € E(U), k = d,. Assume there is an expression

k
(44) €e; = Z hijfj —+ 7
j=1

where r; is in the span of f;, j > k, such that the image of det(hijz)i<i j<i n ()
is non-zero. Then the following are equivalent:
(1) For ally in some open neighbourhood V -C U of x, (e; )<k generates E,.
(ii) For all y in some open neighbourhood V- C U of x, we have d, = k.

Moreover, if this is the case, and for every y € V, £y is a direct summand of F,
then (e;|v )<k is a basis of sections for Ely and e1lv, ..., exlv, fexilv,. .., fmlv is
a basis of sections for Fly.

Proof. Let f := det(h;;). The assumption implies that the image of f, in »(z) is
non-zero, so that the image of (e; ) <k in E; is a basis. Moreover, there exists an
open neighbourhood V' C U of x such that f is invertible on V. In particular, for any
y € V, the image of (e; )<k in Ey is linearly independent, and d,, = dim E, > k.

Conversely, by Nakayama’s Lemma, if d, = k, then (e; ) <k is a (minimal) set
of generators for &,. This shows the equivalence of (i) and (ii).

If now in addition, &, is a direct summand, then the argument in [39, proof of
Theorem 2.5] shows that (e;,,) <k is a basis of £,. Hence, if this is true for every
y € V, then the map

Oklv — Elv,
defined by multiplication with the row (eq,...,ex), is stalkwise and hence globally
an isomorphism. In other words, (e;|v);<k is a basis of sections for £|y-.

Moreover, we may invert Equation (4.4) on V, so that the sections

el‘V»'~~aek|V7fk+1‘V7"'afm|V

generate F|y. Arguing as above, they form a basis of sections. O
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Proof of Proposition 4.13 (continued). We retain the simplifying assumptions made
above. Let us show that (i) = (iii).

Possibly shrinking X, we may assume that 7 = £® E’ for some submodule £’. In
particular, &, is a direct summand of F, for any x € X. Fix z € Xy, set k = d,,
and decompose f; = e; + e; according to the splitting. We may write the e; in
terms of the f; as in Equation (4.4).

By construction, the sections (e;);<m generate £, so after reordering e; and f;,
we may assume that det(h;;2)1<s, i<k has non-zero image in s¢(x). In particular, by
Nakayama’s Lemma, (e;.) <k is a set of generators for &,. Let ¢ : O% — & be
given by multiplication with the row (eq,...,ex).

Then ¢, is surjective, so we can choose an open neighbourhood U of z and
s; € O%(U), j < m, such that ¢,(s;,) = e;,. Shrinking U, we may assume that
©(s;) = ej, j < m. It follows that (e;); <k generates £|y. By Lemma 4.14, it follows
that d, = k for all y in a neighbourhood V' C U of z, proving item (iii).

Finally, let us prove that (iii) = (ii). Let € X, and set k := d,. Suitably
shrinking X', we may assume d, = k for all y € Xy. Clearly, m > k. By Kaplansky’s
Theorem [31], £, is free for any y € X, so there exists an open neighbourhood U of
xz and e; € E(U), j < k, such that (e; )<k is a basis of &,.

Express e; in terms of f; as in Equation (4.4). The image of (e; )<k in Fy
is linearly independent, so after reordering (f;), we may assume that the image
of det(h;j +)1<i,j<k in 2(z) is non-zero. Then Lemma 4.14 applies, and for some
open neighbourhood V' C U of z, (ej|v);<k is a basis of sections for £|y and

eilv, .- eklv, fexilv, ..., fm|v is a basis of sections for F|y. But then the sub-
module of F|y generated by the sections f;, k < j < m, is complementary to E|y,
as we may check stalkwise. This finally proves item (ii). O

Corollary 4.15. Let f: X/S — Y/S be a morphism of supermanifolds over S
and z € Xg. The following are equivalent:

(i) The morphism f has locally constant rank over S at x.
(ii) There is a neighbourhood U C Xo of x such that for all ' € U, ker Ty /g o
is a direct summand of Tx ;g ., and dimker Ty (f/S) is independent of x'.
(iii) There exist an open neighbourhood U C Xy of x and homogeneous bases of
Tx/slu and f*Ty,s|lu such that the matriz M of Ty,s|u has the form

it 9) 4= 8 o=( )

Proof. The equivalence of items (i) and (ii) follows from Lemma 4.11. Certainly,
(iii) implies (i). Conversely, on applying Proposition 4.13, it follows from (i) that
there is some open neighbourhood U of z such that

Tx/slv =ker(Tr9)lu @€, [ Tyslu =im(Tys)lu @ &'

and all of the above Ox|y-modules are free. The tangent map 7;,g induces an
isomorphism & — im(7},g)|v of Ox|y-modules, so for a suitable choice of bases,
this induced map is represented by the identity matrix. This gives the required
block matrix expression, proving (iii). O

With the above definition, we generalise the rank theorem [36, Theorem 2.3.9,
Proposition 3.2.9] in two respects: First, one may consider supermanifolds and
morphisms over a general base superspace S. Secondly, we show the regularity not
only of fibres, but also of the inverse images of subsupermanifolds of the image.

Proposition 4.16 (Rank theorem). Let X/S and Y/S be in SMang, and f :
X/S — Y/S be a morphism of locally constant rank over S. Then the following
statements hold true:
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(i) For any x € Xy, there is an open subset U C Xy, so that the morphism f|y
factors as fly = jop. Here, j:Y'/S — Y/S is an injective local embedding of
supermanifolds over S and p: X|y /S — Y'/S is a surjective submersion over S.

Moreover, we may take Y' = (Yy,Oy+), where Y] = fo(U), endowed with the
quotient topology with respect to fo, and Oy = (Oy/J)ly;, J = ker ft. The
morphism j is given by taking jo equal to the embedding of Y{ into Yy, and j* the
quotient map with respect to the ideal J.

(i) If f': X'/S — Y/S is an embedding of supermanifolds over S with f{(X()) C
fo(Xo) and ideal J' 2 J, then the fibre product X’ xy X exists as a supermanifold
over S, and the projection py : X' xy X — X is an embedding over S. We have

(4.5) dims(X/ xy X) = dimg X' 4+ dimg X — dimg Y.

The supermanifold Y'/S over S constructed in item (i) is called the image of
flu. For the assertion of item (ii) to hold, it is sufficient to assume that f has
locally constant rank over S at any x € f5 ' (f4(z")), for any 2’ € X},

Proof. The statement of (i) is well-known in case S = * [36, Theorem 2.3.9], in
view of Corollary 4.15. By Theorem A.1, the inverse function theorem holds over a
general base. Thus, in view of Corollary 4.15, the proof of the rank theorem carries
over with only incremental changes to the general case.

As for (ii), the assumption clearly implies that f’ factors through j to an embed-
ding p’ : X'/S — Y’ /S over S. Since p is a submersion over S, the fibre product
X' Xy X exists, and has the fibre dimension stated on the right-hand side of (4.5).
(See [36, Lemma 3.2.8] for the case of S = #, the proof of which applies in general,
appealing again to Theorem A.1l and its usual corollaries.)

Since j is an injective local embedding, it is a monomorphism, and it follows that
X’ xy: X is actually the fibre product of f’ and f. We have a commutative diagram

X' xy: X -2, X

of morphisms over S such that the left upper square is a pullback whose lower row
is an embedding. In particular, ps o is injective. The image of ps o is the locally
closed subset f ' (f(X})) of Xo.

To show that this map is closed, we shall show that it is proper. Let K C X, be
a compact subset and L = pg_l(po(K)), which is a compact subset of X|). Then
pg’é(K) is a closed subset of (X' xy X)o = Xg Xy; Xo whose image in X x X,
is contained in L x K. Thus, p;(l)(K) is compact and ps ¢ proper, hence closed by
[12, Chapter I, §10, Propositions 1 and 7]. Moreover, pg is a surjective sheaf map.
Hence, ps is an embedding. O

Remark 4.17. From the relative inverse function theorem (Theorem A.1), it is clear
that the usual normal form theorems hold for submersions and immersions over S.
Therefore, any morphism f : X/S — Y/S which factors as f = j o p where p is a
submersion over S and j is an immersion over S has locally constant rank over S.

4.3. Isotropies at generalised points. In what follows, fix a Lie supergroup
G (i.e. a group object in SMang) and an action a : G x X — X of G on a
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supermanifold X. Let T € SSp]lég and x €7 X be a T-valued point. We recall from
Equation (2.3) the definition of the orbit morphism through =z,

g : Gp/T = (T x G)/T — X1/T = (T x X)/T,

by
az(tag) = (ta a(g,x(t))) = (tag : Z(t)), V(t,g) €R GT7
and for any R € SSp]lég. When T = x is the singleton space, i.e. z € X is an
ordinary point, then a, : G — X is the usual orbit morphism, see Ref. [16].
Let g be the Lie superalgebra of G, i.e. the set of left-invariant vector fields on G.
This is a Lie superalgebra over K. For v € g, let a,, € I'(Tx) denote the fundamental
vector field induced by the action. It is characterised by the equality

(4.6) (v®1)oa* = (1®a,)oad.
Let z er X with T € SSp]Iég . The equation above specialises to
(4.7) vodl =o%o(idg x 2)" o (1@ ay) 0 d,

where we denote the lift of v to Gr by the same letter and the flip by ¢. In the
following, for any v € g, we set v(z) = zf o a,.

We shall need to understand when the orbit morphism a, for an arbitrary x €7 X
is a morphism of locally constant rank over T'. The following is a full characterisation.

Theorem 4.18. Let x €p X with T € SSp%ég. Given t € Ty, we define
(4.8) gor={veEg|v(@)= (2% 0 ay)y = 0},
where (—); denotes the germ in Ty at t. Consider the rank function of x, defined by
ry(t) = dimg gz ¢, ¢ € To.
Then the following are equivalent:
(i) The orbit morphism a, has locally constant rank over T.

(ii) The function r, is locally constant on Tp.
(iii) Any t € Ty admits a neighbourhood U C Ty such that r,(U) < r.(t).
(iv) The map Ty — Gr(g) : t — gz, to the Grassmannian variety of graded

subspaces of g is locally constant.
(v) Ifv e g, t €Ty, such that v(z) = x* o a, vanishes in a neighbourhood of t,
then v(x) vanishes on the connected component of t in Tp.

In this case, the image of the morphism a, has dimension over T given by
(4.9) dimp, (4 g.z0(¢)) iM @z = codimg g, ¢ = dimg —7,(t), t € Ty, g € Go,
and the kernel of T, 7 is given by
(4.10) ker 7o, /7,(t,9) = OGr.(tg9) Ok Bayt,  V(t,9) € To x Go.

Proof. Fix t € Ty and choose a homogeneous basis (v;) of g, ;. There is an open
neighbourhood U C Ty of ¢ such that v;(z)|y = 0 for all j. Hence, for any s € U,
we have g, ; C g5, S0 75 is a lower semicontinuous function and items (ii) and
(iii) are equivalent. Moreover, if (ii) holds, then the map ¢ — g, ¢ from Tj to the
Grassmannian variety of g is locally constant, so (ii) implies (iv), and the converse
is obvious. Moreover, (v) is just a reformulation of (iv).

Before we embark on the remainder of the proof, let us make some preliminary
considerations. The Lie superalgebra g, being the set of left-invariant vector fields,
may be canonically considered as a subset of 7 4, for any g € Go. (In general, the
tangent space at a point is not a subset of the stalk of the tangent sheaf!) In fact,
we have

(4.11) Tr /1, t9) = OGr,(t,9) OK 8,
for all (¢,9) € Ty x Go.
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For any v € g, we denote the vector field over T' on Xp corresponding to the
fundamental vector field a, by the same letter. Then by Equation (4.7), we have

Tan /7 (V) =voal =00 (idg x 2)f o (1 ®ay) o d”.

Since v is left-invariant, we have

0="Ta,/T.(t.0) (V) = (V0 aL)(10)

— 0= ((idr x 1g)ﬂovoai)t = ((1g x 2)* o a, oaﬁ)t = (2% o ay);
— 0= (z*oay) =v(z),
and in particular
Oot S Ky, Ki=kerTy 0 €T :=Tq, 1

We define

. . o] . M\® k
O:=0c;, M) =MGr(tg), Mg = Ni=1 M)

Ottg) = Owa)/mE gy Titg) = Tit.g) /M) Titg)s

and let Ié(tyg) be the image of K 4) in 7V'(t,g). Then Q(tvg) is local and Noetherian
(4, Lemma 3.36, Lemma 4.4], so that the submodule K, 4 is finitely generated.

We have g = Ty 4)(Gr/T), and v € g lies in the submodule K g)/m; )K (1 ) if
and only if v € g, ; (being left-invariant, it is determined by its value at a point).
Hence, the image of g+ in

Tieg)/™.0) Tit.9) = Tit.) /M (t.0) Tit.g) = Ti.9) (G /T)

is precisely Ié(t,g)/m(t’g)lé(t’g). Since lé(t)g) is finitely generated, Nakayama’s Lemma
applies, so IC(M) is generated by the canonical image of g, and

(4.12) Kit.g) = Ot,9) ®k Ga,t + (MG 0y T1,9)) N Ki,g)-

Having concluded our preliminary discussion, let us put outselves in the situation
of item (iv). We will show that the second summand in Equation (4.12) does not
appear. To that end, let b be a subspace of g complementary to g, ;. Let U be an
open neighbourhood of (¢, g), such that g, = g, for any (¢',¢’) € U. Consider
the decomposition

T=08kg=0®k 0z+ DO Xk b.
Take v € K14y and denote by v’ the second projection of v in this decomposition.

Since the projection is linear over the ring O, we have ’UEt',g') e m(y 1T g for
all (¢',¢’) € U where v is defined. But this implies that v' = 0, since T is a locally
free O-module and O admits no non-zero sections which vanish to any order on an
open set. Thus, the second summand in Equation (4.12) does indeed not appear.
We conclude that

Kl = Oly ®k gz,e» Tlv = K|y @ Olu @k b.

This proves that K = ker 7, /7 is locally a free direct summand of 7" = T¢,./7, and
hence (i). Moreover, this proves Equation (4.10). On applying Proposition 4.16 (i),
the tangent map T 4)(a./T') induces a surjection g — Ty, +) ima,. Hence, we
see that
dimy, (¢, g.20(¢)) iM @z = codimg g, ¢ = dim g — 7,.(),

proving Equation (4.9).

Conversely, assume that (i) holds. Then K is a finite locally free direct summand
of T, by Proposition 4.13. In particular, the function

t — dimg K(t,g)/m(t,g)lc(tyg) = dimg Gzt = Tw(t)

is locally constant, which implies (ii). This concludes the proof of the theorem. O
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As a special case of Theorem 4.18, we recover the well-understood case of an
ordinary point [13,16]. In fact, we can be slightly more general.

Corollary 4.19. Let Ty = * and x €7 X. Then the orbit morphism a, : G — X
has locally constant rank.

Proof. Since Ty = * is a singleton space, the condition (ii) in Theorem 4.18 is void
and therefore automatically fulfilled. O

We now apply these general results to the problem of the representability of the
isotropy group functor.

Theorem 4.20. Let x €p X with T € SSp]lég, Assume that x is an embedding
and the rank function r, of x is locally constant. Then G, is representable by a
supermanifold over T of fibre dimension

(4.13) dimTﬁ(mg) (GT)x =Tz (t) = dimK th.
The canonical morphism G, — Gr is a closed embedding.

Proof. By Theorem 4.18, a, : Gr/T — X7 /T is a morphism of locally constant
rank over T, and locally, its image has fibre dimension over T' given by

dimp,ima, = dimg — r;(t) = dim G — r,(¢).

In view of Proposition 4.16, it will be sufficient to prove for any superfunction f
defined on an open subspace of Xrp:

A (f) =0 = a%(f)=0.

But for any supermanifold R and any ¢t €z T', we have

(Nt 1ar) = [t 1ay - (1) = f(t,2(1) = 25 (),
so this statement is manifestly verified. Hence, GG, is representable and the canonical

morphism is a closed embedding. The expression for the fibre dimension of G,
follows from Equation (4.5), since dimr T = 0. O

4.4. Orbits through generalised points. Having discussed the representability
of the isotropy group functor, we pass now to the existence of orbits. In what follows,
to avoid heavy notation, we will largely eschew writing /S for morphisms over S,
instead mostly stating the property of being ‘over S’ in words.

We have the following generalisation of Godement’s theorem [3, Theorem 2.6],
with an essentially unchanged proof. We have added the detail that in this situation,
the quotients are universal categorical.

Proposition 4.21. Let R/S be an equivalence relation on X/S in SMang, as
defined in Example 2.15 (iii). Then the following assertions are equivalent:

(i) The weakly geometric quotient m: X — X/R exists in SMang and, as a
morphism, is a submersion over S.

(ii) The subsupermanifold R of X xg X is closed, and (one of, and hence both
of) s,t: R — X are submersions over S.

If this is the case, then m: X — X/R is a universal categorical quotient. The quo-
tient is effective, that is, the morphism (t,s) : R — X xx/r X is an isomorphism.
Moreover, its fibre dimension is

Proof. Apart from the statement about universal categorical quotients, all statements

are proved for S = x in Refs. [3,7]. In general, the proof carries over unchanged.
Let us prove the statement concerning universal categorical quotients. So, let

the assumption of item (i) be fulfilled and set @ := X/R. Then 7 is a submersion
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over S, and hence, X’ := Q' xg X exists in SMang for any ¢ : Q' — Q, by
[4, Proposition 5.41] and the normal form theorem for submersions over S (which
follows from Theorem A.1l). By item (ii), s is also a submersion over S. Then so
ismos,and R = (Q' x Q") xgxq R exists in SMang, where R lies over Q X Q
via (m xmw)o (t,s): R — Q X Q.

First, we claim that condition (ii) holds for the equivalence relation R’/S on
X'/S in SMang. Note that we have a pullback diagram

R=Q xgR——>R

Q—rQ

Since 7 o s is a submersion over S, so is s’. Next, consider the morphism
R/ = (Ql X Q/) XQXQ R — X/ XsX, = (Q, X Q/) XQXQ (X Xs X)

It is an embedding by [4, Corollary 5.29]. Thus, the assumption (ii) is verified for
R’ and X', and the weakly geometric quotient 77’ : X’ — X’/R’ exists in SMang
and is a submersion over S. It is categorical by Corollary 3.6.
The morphism p; = idg X 7 : X’ — @’ is manifestly R’-invariant, so that
there is a unique morphism
0: X'/JRN — Q', ¢or' =idgy xg .

Since so is p1, ¢ is a surjective submersion.
To see that it is a local isomorphism, we compute the dimensions of the super-
manifolds over S in question. On one hand, we have

dims Q =2 dims X — dims R,
and on the other, we have
dimg X' /R’ = 2dimg X' — dimg R’
= Q(dimQ/ X'+ dimg Q/) - (dimQ/XQ/ R +2 dimg Q/)
= 2dimg X' — dimg/x g/ R’ = 2dimg X — dimgxq R
= 2(d1mQ X + dimg Q) — (dimQXQ R+ 2dimg Q)
= Qdims X — dims R
Upon invoking the inverse function theorem (Theorem A.1), this proves that ¢ is a

local isomorphism over S. Finally, we need to show that (g is injective.
To that end, let ¢} € Qp, ¥; € Xo, such that o(q}) = mo(]). Assume that

o(mg(a1, 1)) = @o(mo(ga, x2)), so that ¢i = ¢, because
©o 071'6 =P1,0: X(I) = QB XQO XO — Q6
It follows that mo(x1) = ¥o(q}) = Yo(¢h) = mo(x2), so that (x1,22) € Ry, since 7

is an effective quotient. Then (g}, ¢5, z1,22) € Ry, so that 7 (¢}, z1) = 7y(dh, x2),
proving the injectivity. O

We now wish to apply this proposition to supergroup actions. Thus, fix a
Lie supergroup G and a G-supermanifold X. Let x €p X, where T is some
supermanifold. We assume that G, is representable in SMany and that the
canonical morphism G, — G is an embedding over T' (automatically closed).

We define an equivalence relation R, on G by

R, =Gr xr Gy, i:Ry — Gr xrGr,
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where 7 is given by
i(9.9') = (9.99"), V(9.9") €rjr (Gr X1 Ga)/T,

and for any supermanifold T/T over T. It is straightforward to check that ¢ is an
embedding and indeed, that R, is an equivalence relation.

Proposition 4.22. Let G, be representable in SMany and the canonical morphism
G, — G be an embedding. Then the weakly geometric quotient 7, : Gp — G - x
of Gr by G, exists in SMany. It is universal categorical, effective, and a submersion
over T. Its fibre dimension is

(4.15) dimy G -z = dim G — dimr G,.

Proof. The underlying map of G, — Gr is injective and a homeomorphism
onto its closed image, so it is proper. Therefore, the map underlying the morphism
i: Ry — G X7 G is closed. The first projection s of R, is obviously a submersion
over T. Then Proposition 4.21 applies, and we reach our conclusion. Equation
(4.15) follows from Equation (4.14), since dimr R, = dim G + dimy G,. O

Definition 4.23. In the situation of Proposition 4.22, we say that the orbit G -
of G through x exists. By abuse of language, the morphism a,, : G - * — X over
T induced by a, will also be called the orbit morphism.

Combining this fact with our previous results, we get the following theorem.

Theorem 4.24. Let x : T — X be an embedding such that the rank function r, is
locally constant. Then the orbit G - x exists, and its fibre dimension over T is

(4.16) dimT7(t,g-x0(t)) G -z=dimdG - ’I"x(t), V(t,g) € (GT)O =Ty x GO.

Moreover, the morphism a, has locally constant rank over T and if U C Xq is
open such that a,|y admits an image in the sense of Proposition 4.16, then so does
dm\ﬂmyo(m and these images coincide.

Proof. Combining Theorem 4.20 with Proposition 4.22, we see that G - x exists.
Equation (4.16) follows from Equation (4.15) and Equation (4.13).

The orbit map a,, is locally of constant rank, so by Proposition 4.16, locally in
Gr, it factors as j o p, where p is a surjective submersion and j is an injective local
embedding. By the universal property, p factors through the canonical projection
7w, : G — G - x to a submersion, so that a, admits a similar factorisation. It
follows by Remark 4.17 that a, has locally constant rank.

Moreover, since 7 o is surjective and 7 is an injective sheaf map, it follows that
imag|y = imag|r, o) whenever one of the two is defined. O

5. COADJOINT SUPERORBITS AND THEIR SUPER-SYMPLECTIC FORMS

In this section, we construct the Kirillov—Kostant—Souriau form in the setting
coadjoint superorbits through general points. We will follow the notation and
conventions of Sections 3-4 and Ref. [6], only briefly recalling the basic ingredients
of the latter reference.

Let G be a Lie supergroup—i.e. a group object in SMang = SManﬁk—With
Lie superalgebra g. We set g = g o ® g1, where g g is the Lie algebra of Gj.
(Note that the latter is a k-form of g5.) The dual K-super vector space of g will be
denoted by g*. Let g; be the set of K-linear functionals f = f5 @ f1 € g* such that
Jo(9k0) € k. We denote the adjoint action of G on A(gy) by Ad.

The coadjoint action is defined by

<Ad*(g)(f),$> = <f’ Ad(g_l)($)>, Vger G,z €7 A(gk)vf €r A(Qﬂt%

where (-, ) denotes the canonical pairing of g* and g.
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5.1. The super-symplectic Kirillov—Kostant—Souriau form. Let T' € SMang
and f €7 A(gf). Assume that f is an embedding and the rank function 7 is locally
constant, so that the orbit G - f exists in SMany, by Theorem 4.24. Then by
Equation (4.10), there is a short exact sequence

. T/
0 P9y Og, @k g = TGT/T - TGT/T‘)G'f/T 0

of Og,-modules. Here, p : G — T is the structural projection and gy is the
Op-module defined by

(5.1) 9;(U) = {vegrU) | v(Nlv = (fFoa,)lv =0}
for any open U C Ty. Here, we let g7 = O ®x g.
We define an even super-skew symmetric tensor @y,
{.:Jf : TGT/T%G-f/T ®(DGT TGT/T%G»f/T — 0GT7
by the formula

‘:Jf (ﬂf/T('U% 7;,~/T(w)) = <f7 [U7 w]>7 Vo, w € (OGT ® g)(U)7
where U C Ty x Gy is open, and we identify f with a section of Or ® g via the
natural bijection
Hom (T, A(g)) — T'((Or ® §)k5)-
compare [4, Corollary 4.26, Proposition 5.18]. The identification is via

fi(z) = (f.z), Vo €gCT(Ong).
Lemma 5.1. The 2-form @y is well-defined and non-degenerate.

Proof. Let v € g be homogeneous and x € g C F(OA(QE:))' Then we compute for all
supermanifolds R and all u €z A(g;) that

a(@)() = | _ (AL (6") ), )

= 2] AdGT)@) =~ [v.9]) = —p(ad(v) @),

Here, we let |7| = |v| and follow the conventions of Definition 4.3.

Note that vector fields are uniquely determined by their action on systems of
local fibre coordinates, by Proposition 4.5. Moreover, any homogeneous basis of g
contained in g defines a global fibre coordinate system on Az (g;).

Therefore, a vector field v € g defines a section of p*gy if and only if we have

0=0v(f)(x) = f(as(@)) = =(f,ad(v)(x)) = (=1 "|(ad" (v) (), z)
for all z € g, i.e. when ad*(v)(f) = 0. (Here, we interpret f as the section p#(f) of
Oc, ® g*.) Since
v(f) =0 <= Ty, /r(v) =0,
we have
@f (T (0, Ty pr(w)) = (f o,w]) = =(=1)"V(ad" () (£), w)
for all homogeneous local sections v, w of Og, ® g. Because the tensor @y is super-

skew symmetric, it follows that @y is well-defined. But the same computation shows
that it is non-degenerate, so we have proved the assertion. O

Since G - f € SMany, we have

TGT/T—>G~f/T = W;(TG.f/T),
by Proposition 4.5, so we may ask whether @; is induced by some tensor w; on
G - f. Indeed, this is the case, as we presently show.
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The module inverse image and direct image functors ((m¢)*, (7f)o.) form an
adjoint pair, so there is a natural bijection

Homo, , (A* Ta.g/1: (7 )0+ O ) —— Homog, (A* Tar/r-6-1/7: O )-

Proposition 5.2. There is a unique even super-skew symmetric tensor
wy : Ta.p/r ®0g.; Tap/r — Oc.f

such that mi(wy) = wy.

Proof. By the above, there is a unique even super-skew symmetric tensor

Wi Tap/r @06 Tapjr — (71)0+OGr s

such that 7} (wy) = wy. We need to show that it takes values in the subsheaf Og.y.
But G- f = Gr/Gy is a weakly geometric quotient by Proposition 4.22 and
Theorem 4.24, so that by Remark 3.2, we have

Oc.r = ((mf)0+0c, )7

It thus remains to prove that wy takes values in the sheaf of invariants.

To that end, fix a homogeneous basis (z,) of g contained in gx. Take any
v,w € Tg.p/7(U), where U C (G - f)o is open and define V' := (ﬂ'f)al(U) C Ty x Gy.
We may write w}ﬁc ov =73 Uq(xq0 ch) for some v, € Og,.(V), |va| = 24| + |v], and
similarly for w.

Denote by (t,g,h) the generic point of Grly X1 Gfly. We compute for any
superfunction k£ on G - f, defined on an open subset of U, that

(w5 0 v) (k)(t, gh) = v(k) (8, gh) - (1)) = v(k)((t,9) - F(1)) = (7} 0 ) (k) (2, 9).

Here, we are using the fact that G - f is a universal categorical quotient (Theo-
rem 4.24), so that, by Proposition 2.18, it admits a G-action for which m¢ is
equivariant and f, considered as a T-valued point of G - f, is fixed by G.

On the other hand, using results from Ref. [6], we have

Z(va(a:a 071'90 )(t, gh) = Zva (t gh Ok((t,ghexp(m:a)) (@)

T=
a

=

= Zvau,gh); (. gexp(r Ad(B) wa)h) - £(1)

= Yl gh) 52| k(t gesp(r A @) - £(0)

T=

= > valt, gh)(Ad(h)(wa) o 75) (k) (L, 9).
Combining both computations, we arrive at the equality

(5.2) Zva(t,gh)(Ad( (Ta) o7rf Zva (t,9) xaowf)

of vector fields over T' along the morphism

ﬂfomGT:ﬂ'fOpliGT XTGf—)G'f.
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Using Equation (5.2), we may compute

wy(v,w)(t, gh) = @p(r% 0 v, 7} 0 w)(t, gh)

_ Z 1) ez (v,uwy) (t gh) (£ (£), [0, 7))
B Z )7l () (£, gh) ( £(£), [Ad(R) (z4), Ad(R) ()]
- Z ‘w“‘lxbl (v wb)(t,g)<f(t)a [l'a,l'b]>

= wf(ﬂf, ow, 77?0 ow)(t,g) = ws(v,w)(t, g),
which shows that indeed, wy(v, w) is right Gy-invariant, and hence, that wy takes

values in the sheaf Og., as desired. (]

We may consider wy as a global section of Qé_f/T = /\2 Qé,f/T, i.e. a 2-form
over T'. We show that it is closed.

Proposition 5.3. The 2-form w¢ over T is relatively closed.

Proof. The element of I'(O¢, ® g*) corresponding to f is a left G-invariant 1-form
(which is, moreover, even and real-valued). We show that it gives a potential for the
pullback of ws. To that end, we follow ideas of Chevalley-Eilenberg [17].

Let v,w € g. Denote by d = dg,. /7 the relative differential. Then

twd + diy = Lay,

where ¢y, |ty] = |v], denotes relative contraction, and L,, |£,| = |v|, denotes the
relative Lie derivative. We have

df (v, w) = (=)l udf = (=), (2, f)
= *[ﬁv; Lw]f = 7L['u,w]f = 7<f7 [v,w]) = 7®f'(7;f/T(v)77;rf/T(w))a

since t, f = (f,w) € T'(Or), so that di,f =0 = Lyt f. Since both sides of the
equation are Og,.-bilinear, the equation

@0p (Try 7 (0), Ty yr(w)) = —df (v, w)
holds for any vector fields v,w on G over T, defined on some open subset. But
since Wy = 7} (wy) by Proposition 5.2, we have
ﬂ-g"(wf)(’u?w) = (:)f (ﬁl’f/T(v)?ﬁl’f/T(w)) = _df(vﬂ w)
for any vector fields v, w on G over T. Thus,
ﬂjﬁc(dwf) = dﬂ?c(wf) =—d*f=0

Since ch is an injective sheaf map, we conclude that dw; = 0. (]

We summarise the above results in the following theorem.

Theorem 5.4. Let G be a Lie supergroup with Lie superalgebra g. Let T be a
supermanifold and f : T — A(g;) an embedding such that the rank function ry is
locally constant.

Then the coadjoint orbit G- f exists, is universal categorical, and with the Kirillov—
Kostant-Souriau form wy, G - f is a supersymplectic supermanifold over T'.
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6. APPLICATION: THE ORBIT METHOD FOR SUPERGROUPS OF HEISENBERG TYPE

This section offers an application of our general theory of coadjoint orbits to the
geometric construction of representations. By way of example, we show how the
formalism can be applied to give a certain ‘universal’ T-families of representations
of two graded variants of the 3-dimensional Heisenberg group. At this point, we
will not address the issue to which extent unitary structures exist on these families,
nor in which precise sense they are universal. We intend to treat these issues in
forthcoming work, together with an extension to more general Lie supergroups.

Let us consider the Lie superalgebra g over K spanned by homogeneous vectors
x,y, z satisfying the unique non-zero relation

[z,y] = =.

When z,y, z are even, g is the classical Heisenberg algebra of dimension 3|0.
When z,y are odd, z must be even. The central element z spans a copy of K,
so g is a unital Lie algebra in the sense of Ref. [2], and its unital enveloping
algebra (g)/(1 — z) is the Clifford algebra Cliff(2,K). (NB: We will use a different
normalisation below.) For this reason, g is called the Clifford-Lie superalgebra, and
its representation theory was studied e.g. in Refs. [5,42]. However, the construction
of the representations used there is ad hoc. Below, we show how they arise in a
natural fashion.

A third possibility, which does not seem to have been considered before, is that
x,y are of distinct parity (but see Ref. [23]). In this case, z is odd. As we show
below, besides characters, there exists a family of representations (which happen to
be finite-dimensional) parametrised by T = A% which bear a striking resemblance
to the Schrodinger representation of the Heisenberg group.

6.1. Parity-independent computations. A number of computations concerning
the Lie superalgebra g of Heisenberg type introduced above can be performed inde-
pendently of the parity of its elements. We begin with the coadjoint representation
of g. Let z*,y*, z* be the dual basis of z,y, z. In terms of this basis, we have

0 0 0 0 0 (=1
ad*(z)= |0 0 —(=D)lIE |, ad*(y)=(0 0 0 , ad®(z) =0.
0 0 0 0 0 0

Recall the definitions given at the beginning of Section 4. We will consider the
field k = R, since we are mainly interested in super versions of real Lie groups. A
Lie supergroup G (i.e. a group object in the category of supermanifolds over (K, R)
of class C¥) with Lie superalgebra g is uniquely determined by the choice of a real
Lie group Gy whose Lie algebra is a real form gg 5 of g5, compare Ref. [6].

We fix gr = gr g @ g1 by setting gr 5 = g5 N (2, ¥, 2)r. Let G be the connected
and simply connected Lie supergroup whose Lie superalgebra is g and whose Lie
group has Lie algebra gg 5. Unless g is purely even, Gg is the additive group of R.

Let T be any supermanifold and f = az* + By* + vz* €r A(gh). Then the orbit
exists if the orbit map ay attached to f has locally constant rank, by Theorem 4.24.
Observe that

ad*(az + by + c2)(f) = —ayy” + (=1)VIOF D pry g
for v = ax + by + cz € g, where a, b, c € K. Hence, we have v € gy, for some ¢t € Tj
if and only if
a7y = b’Yt = 07

where ; denotes the germ of 7 at the point ¢. (Compare the definition of gs; from
Equation (4.8).) Thus, a = b =0 whenever y; # 0, and a, b are arbitary otherwise.
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That is, we have

Kz 0,
(6.1) gf7t = { ,Yt 7_é
g v = 0.

Hence, assuming Ty to be connected, Theorem 4.18 shows that the orbit map ay is
of locally constant rank if and only if supp~y = {t|y: # 0} € {&,Tp}. Moreover, the
orbit will be up to isomorphism over T independent of o and 3. In what follows,
we will therefore assume that o = 5 = 0.

We will be mostly interested in the case where suppy = Tp, since the orbits in
the case v = 0 will just be G- f =T, as G is connected. Hence, let suppy = Tp.
The orbit will again be independent, up to an isomorphism over T', of the choice
of «v. However, there is in general no canonical choice for «y, so we will keep this
information. As we shall see below, this is sensible since v will play the role of a
scaling parameter in the representation associated with the orbit.

To compute the coadjoint action, we realise G in matrix form and g as left-
invariant vector fields on G. For any R € SSp]lég7 consider 3 x 3 matrices with
entries in Or. We fix the parity on the matrices by decreeing that the rows and
columns of nos. 1, 2, 3 have parities depending on those of x, y, z according to Table 1.

TABLE 1. Parity distribution for the supergroups of Heisenberg type

Ll [yl [l=][1]2]3]
o[ofolfofofo
1| 1]0/|1|0]1
0| 1|1 /0f0|1
1joji]ijo]o

Then matrices of the form

~

/

1 a c
0o 1 ¥
0 0 1

are even if and only if |a’| = |z|, |b'| = |y|, and |¢/| = |z|. Let G'(R) be the set
of these matrices where in addition {a’,t’, ¢’} CT'(Ogr ). Clearly, by defining the
group multiplication by the multiplication of matrices, G’ is the point functor of a
Lie supergroup. As we shall show presently, it is isomorphic to G. Since Gj = Gy is
the additive group of R, unless G is purely even, it will be sufficient to show that
the Lie superalgebra of left-invariant vector fields on G’ is precisely g.

Let (a,b,c) be the coordinate system on G defined on points by

1 d ¢ (-’ h=a,
RO 1 V| =L (-)¥p h=b,
0 0 1 (-l h=c

Note that this sign convention is natural in the following sense: Consider the
supermanifold G’ as the affine superspace of strictly upper triangular matrices.
Then a,b, ¢ are the linear superfunctions which constitute the dual basis to the
standard basis (Elg, E;3, Ea3) of elementary matrices.

Let é?a, 55> 6— be the coordinate derivations given by the coordinate system
(a,b,c). Let Ry, Ry, R, be the left-invariant vector fields on G’ determined by

7]
or(le),  Re=[Re, Ry,

0
Rr(lG’) = %(16")3 Ry(lG/) = ab

where write R, (1¢/) for lﬁG, o R, etc.
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We now proceed to compute these explicitly. Let ¢® : x[r,] — G’ be the

infinitesimal flow of R, (1¢s), where |7,| = |z|. (Compare Definition 4.3.) For any
function h on G’, we have
1 (=Dl 0
0 e 0
5 hio 1 o0]= (afh)ag,),
Ty 172=0 0 0 1 a

as one sees by inserting the coordinates h = a, b, c. Thus, we have

1 (-1l 0
(")) =hl0 1 0
0 0 1
Similarly, we obtain
10 0
(¢} =h|0 1 (-1,
0 0 1
for the infinitesimal flow ¢¥ of R, (1¢/).
We compute
1 d P 1 d+ (=), ¢
(Rzh) [0 1 ¥ =9 0 1 b,
0 0 1 Te =0\ 0 0 1
1 d ¢ 9 1 d (—1)|y‘a’7y+c’
(Ryh) [0 L 0 ) =o=|  h{0 1 (—D)lvlr, +0 |,
0 0 1 Tym="\o 0 1
by again inserting the coordinates for h. We obtain
0 0 0
6.2 R,=—, R,=—+(=1Dl*l¥lg=—.
(6:2) o =gy T g,

Here, we have used the parity identity |z| + |y| + |2| = 0. From these expressions,
we see immediately that

o 0 0
6.3 R.=[R,,R,) = (-1 lellyl | 2 o= | = (—1)l=llyl ==
(63 [Re, Ry] = (<0t [ 2 84— qyietl 2
and that this is the only non-zero bracket between the vector fields R,, R,, R.. The
sign (—1)®l1¥l that appears in the case of |z| = |y| = 1 is an artefact of the parity

distribution which is non-standard in that case.

Since R, Ry, R, are linearly independent, they span the Lie superalgebra of G’,
and it follows that G = G’. In what follows, we will identify these two supergroups.
Moreover, we will identify x,y, 2 with R,, Ry, R,, respectively.

For further use below, we note that the right-invariant vector fields L, Ly, L,
defined by

L'U = —’LﬁG () RU (] ZﬁG7 v = .’E, y7 Z,
take on the form
0 0 0 0
6.4 A N S S N
(64) ga o T B D 5
One immediately checks the bracket relation [L,, L] = —L..

We now calculate the adjoint action of G in terms of the matrix presentation. Let
Re SSp]lég and (g,v) €r G x A%(g) (cf. Ref. [6] for the notation), where we write

1 da (¢
g=10 1 V|, v=~E&(lg)+ny(le) +Cz(le) € I'((1a(9)" Ta)o)-
0 0 1
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According to the definition of a, b, and ¢, the generic point idg €g G is

1 (=D)llg  (=1)l*l¢
idg = [0 1 (1)l
0 0 1

Denoting the diagonal morphism of R by Ag, we compute, for any function h on G,
that

Ad(g)(v)(h) = AL (1@ v® 1)h(gide g )

1 (=D)lla (=D)Fle4 (=1)¥la'b — (—1)1*lab
=AL(1euvel)h|o 1 (=1)l¥lp
0 0 1

To evaluate this further, we insert a, b, ¢ for h. For h = a,b, Equation (6.2) tells us
that we get £ and 7, respectively. For h = ¢, we get, upon applying Equation (6.3):

(—=1)l=llvle 4 (_1)III(\y\+1)na/ —(—=1)¥lew'.

Thus, identifying x with z(1g), etc., and writing v in columns, we find

1 d ¢ Ex &x
Adfo 1 ¥ ny | = ny i}
0 0 1) \¢ (¢ + (=1)l=lpa’ — (—1)U=+DIvlgp) 2
One may verify the correctness of this result by rederiving the bracket relation
9 z
[z, y] = 8777’, - *1)| Hyl[%Tyy]
52 1 (=Dl 0
= (_1)\z||y| Ad |0 1 0 (Tyy)
6Ty87'm To=T7y=0 0 0 1
o2 jellyl (_1)lellyl+al ja
T e, p D) (1)) = -
It is now straightforward if somewhat tedious to derive
1 o ¢ 5*33* (5* + (_1)|y|(|w\+i)b/<*)m*
(6.5) Ad* (0 1 V| [ny | = (n* — (=1)l=la/¢*)y*
0 0 1 Crz* ¢*z*
for any
1 a (¢ &x*
(g,v") er G x A¥(g"), g=1(0 1 V|, v'=|ny
0 0 1 C*z*
As for the adjoint action, we make a sanity check:
2 1 (-1l 0
ad*(z)(z*) = p Tz:Tz:o(—l)lm“z‘ Ad* |0 1 0] (122%)
0 0 1
o jall 21+l ol jall=
— —_1)l=llzl+=z T : — _(_1)l=ll= *7
| (DI (el < (e

which is in agreement with our previous computations.
Returning to our point f = vz* €p A(gy), we have

Q\
Q
X

(6.6) (t,9) €r Gy < d't*(y) =Vt (7) =0, g=

OO =
O =
-
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Moreover, the orbit map ay : Gr — A(gg) takes the form

(ap)h(@) =7b, (ap)f(y) = =) Flya,  (ap)H(z) =1,
in terms of coordinates a,b,c on G and the (linear) coordinates x,y, z on A(gg),
given by

¢z (-DFlgra(ar) =€ h=u,

hiny* | =4 EDWhyryly™) =" h=y,

= (~DFI¢2(z) = ¢ h==z

We will now analyse this further, separately in the two cases in which G is not a
Lie group (i.e. when at least one of z,y, z is odd).

6.2. The Clifford supergroup of dimension 1|2. Assume that |z| = |y| =1. In
this case, G is called the Clifford supergroup. This case has been given a definitive
treatment by Neeb and Salmasian [41,42]. Our emphasis here will be to put in
the general context the orbit method. Moreover, we shall obtain the full family of
Clifford modules for any non-trivial central character in one sweep.

We will take 7 := A' and 7 = u, the standard coordinate function on Al
so f =z : T — A(g;). The Lie supergroup Gy over T' = Ty is completely
determined by its underlying Lie group (Gy)o over Ty and its Lie superalgebra gy,
defined in Equation (5.1). In view of Equation (6.1), we have gy = Opz. For R = x,
the condition in Equation (6.6) is void. We conclude that the point functor of G is

given by
= (0 (419)) o <TOns01)

so that Gy = AL with the standard addition of A! as multiplication over T
The orbit G- f = Gr /Gy is T x A%2 with fibre coordinates a,b. The local
embedding ay : G - f — A(g;)r over T is given by

(@)t (@) = b, (@)t y) = —va, (@) (z) =7

Proceeding for G - f analogous to the general philosophy of geometric quanti-
sation or Kirillov’s orbit method, cf. Ref. [18], we now construct a T-family of
representations. This approach demands us to choose a polarising subalgebra. To
avoid reality problems, we consider the case of K = C. In the real case, we would
have to complexify function sheaves.

A polarising subalgebra corresponds here to the preimage  in gr = Or @ g of a
locally direct submodule of gr/g; which is maximally totally isotropic with respect
to the supersymplectic form induced by wy. We will consider the case of

b= (x,2)0.
The image in gr/gy is indeed maximally totally isotropic.

Extending the general philosophy of geometric quantisation to our situation, the
space of h-polarised sections of the canonical line bundle on G - f is a T-family of
G-representations that should be considered a quantisation of (G - f,wy, ). In the
case at hand, it corresponds to the functor H, defined on objects R € SSpgg by

H(R) = {(t,9) | t €r T, ¥ € T((t*"Oc,)5), Rath = 0, Rotp = —it* ()},

where we write R, etc., in order to emphasise that we are acting by left-invariant
vector fields. By Equations (6.2) and (6.3), the conditions on ¢ amount to

W= gae“ﬁ(”’)c

where ¢ € I'(Opgy 011 5), and we consider b as fibre coordinate on (R x ANy /R.
Thus, v admits an expansion in the powers b°,b! of b, with coefficients in functions
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on R. Thus, H is the point functor of the trivial C-vector bundle over T of rank
1|1 = dimT'(Opo1 ). We denote the corresponding Or-module by the same letter.
The action of g on H is given by right-invariant vector fields. Indeed, for v € g,
¥ € H(U), we set w(v) := —L,1. By Equation (6.4) and the conditions on 1, we
readily obtain
0
o’
Since the supercommutator of 7(z) and 7 (y) is an anticommutator, we recognise
this as the ‘fermionic Fock space’ or ‘spinor module’ of the Op-Clifford algebra
Cliff (2, Or) = (Or ®34(g))/(z — i~y - 1). That is, we have a trivial bundle of ‘spinor’
modules C!I! over the base space R, where the central character on the fibre at ¢ € R
is iy(t) = it. (The fibres at ¢ # 0 are unital algebra representations of Cliff(2, C),
whereas the fibre at 0 is a non-unital representation.)

m(z) = —iby, w(y) = — m(z) = iv.

6.3. The odd Heisenberg supergroup of dimension 1|2. Assume now that
|z| =0, |y| = |z| = 1. In this case, we call G the odd Heisenberg supergroup, since it
is an central extension of the Abelian Lie supergroup Al' with respect to a 2-cocycle
corresponding to an odd supersymplectic form.

We will take T := A% and ~ := 6, the standard coordinate function on A°', so
f=0z":T — A(g}). Arguing as in the last subsection, we conclude that

6;® ={(t(§3%)) | ¢ eTOn0}
so that G = T x A" where A°! carries its usual additive structure. The orbit
G-f=Gr/Gyis T x AU with fibre coordinates a,b. The local embedding
af: G- f— A(gg)r over T is given by
(@p)*(@) =b,  (a5)*(y) = —va, (ap)*(z) =7
As a polarising subalgebra, we again choose
b= {(x,2)o.
Once again, we define H on objects R € SSp(lcfg by
H(R) = {(t,¥) |t er T, ¥ € T((t"Oc, o), Rotd = 0, Rotp = —it* ()0}

we see that the condition on 1 amounts to

¥ = e 0 = (1 + it (7)0),
where ¢ € I'(Ogyp0n 5) admits a finite expansion in b with coefficients in functions
on R. The corresponding sheaf is H = O ® C'!', representing the trivial rank 1|1
C-vector bundle over T' = A%,

Then one readily computes the representation 7(v)y) = —L,y of g by right-
invariant vector fields:

w(x) =ivb, 7(y) =—=, w(z)=717.

Since the supercommutator of w(x) and n(y) is an ordinary commutator, this is
a parity reversed Schrodinger representation. This becomes even more apparent
when we write out the integrated action 7 (¢, g)(¢,v) = (¢, 7(g):¥) of G on R-valued
points of H:

1la
mT{o1
00

where ¢ and ¢ are related by ¢ = @eit”(v)q

i) Y=gt g (b) = O ),
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APPENDIX A. THE RELATIVE INVERSE FUNCTION THEOREM

In this appendix, we prove a relative version of the inverse function theorem,

valid for an arbitrary base S € SSplﬂég. This was used heavily in Section 4.

Theorem A.1 (Inverse function theorem). Let X/S,Y/S € SMang and ¢ :
X/S — Y/S be a morphism over S. For any x € Xy, the following are equivalent:
(i) There is an open neighbourhood Uy C Xo of © so that Vi = po(Up) C Yo
is open, and ¢ : X|y — Y|y is an isomorphism.
(ii) The germ (Ty/s)z : Tx/s,0 — Ty/S,p0(x) 05 invertible.
(iii) The map Tsop : TsaX — Ts ()Y is invertible.

Basic for the proof is the following proposition, allowing us to locally extend
morphisms of full rank to supermanifold neighbourhoods.

Proposition A.2. Let X and Y be open subspaces of Aglq/S. Consider a morphism
p:X/S—Y/S

over S such that tk T's o = plq for all z € Xj.

Then for any x € Xo, y = @o(x), there exist open subspaces U C X,V C Y,
x € Uy, vo(Uo) = Vo, a supermanifold S’, supermanifolds X', Y’ € SMang: over S’
of dimension dimgs X' = dimg' Y’ = p|q, an embedding i : S — S’, and embeddings
ix U — X', jy : V. — Y’ over i which fit into a commutative diagram

x 2y

Wl

U—"—V
of morphisms over S’ such that tk T/ 5" = plq for all 2’ € X{.
In the proof of the proposition, we will use the following lemma.

Lemma A.3. Let ¢ : X/S — Y/S be a morphism of supermanifolds over S. For
any pair m|n of non-negative integers, the set

{x € X | tkTs . > m\n}
is open. Here, we write p|q = m|n if and only if p > m and g = n.

Proof. In local fibre coordinates, T ¢ is represented by the Jacobian matrix
Jacg(¢)(x), which is a continuous function of x. Since the rank of the upper or
lower diagonal block of a block matrix is a lower semicontinuous function and the
finite intersection of open sets remains open, the assertion follows. O

Proof of Proposition A.2. By assumption, S is in SSp]lég7 so by definition [4], it
locally admits embeddings into some A”*. Passing to open subspaces, we may
assume that there is an embedding i : § — S’ == A"ls.

We define X = Ag‘,q and Y = Aﬁgfg,, cf. Ref. [4]. That is, X is the affine
superspace over S’ of fibre dimension p|g and Y is the functor given on objects
T/S' € SSp.# by ~

Y(T/S'") = F(O%D X O%,I)'
We may define the morphism jx : X — X over i as the restriction of i x idgplq
to X. By the Yoneda Lemma, Homg (Y, }N/) = Y’(Y/S'). Thus, j': Y/S' — 57/5’
is determined by the tuple (%) of standard fibre coordinate functions on Ag‘q,
restricted to Y.

Since the morphism jx is an embedding, jg( is an surjective sheaf map, and there
a| =

exist an open subspace X’ C X and functions (¢'*) € T(Ox), |¢ |z%|, such
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that jx o(z) € X{ and jg((go’“) = ©#(j"(2*)). By the definition of Y, the tuple (¢'®)
defines a morphism ¢ : X’ — Y over S’.

In view of Lemma A.3, we may assume that the matrix (%ﬁ: (x)) over K has rank
plq for every x € X{j. In particular, the upper left principal p x p block is invertible.
We may now apply the inverse function theorem to the map ¢} : X, — K? whose
components are the functions underlying the even entries of (¢'*). Possibly after
shrinking X, it follows that Yy := ¢ (Xp) is a locally closed k-submanifold of K?
of dimension p and differentiability class o, such that the restriction of the even
coordinates in (z®) to Yy defines a coordinate system, and that ¢ is an isomorphism
of k-manifolds of class w.

Define Y’ =Y x Ag‘,q and a morphism ¢’ : X’ — Y’ by " (29) = ¢’ for all
a. There is a natural map Y’ — Y over S/, and j’ manifestly factors through it
to a morphism jy : V — Y’ where V C Y is a maximal open subspace. These
morphisms fit into a commutative diagram as in the assertion, since

Fx (@) = ¢ (a%),
and in particular, Vy = po(Uy), where Uy = j)}}O(Xé).
Moreover, the Jacobian matrix of ¢’ has full rank by construction. To see that

Jjy is an embedding, notice that jy,o is injective and that moreover, there is a
commutative diagram

v— I Ly

J F

ixidapla
Ag\q A Ag\/q

where the left column is the canonical embedding, the right column z is the coordinate
chart defined by (z%), and the lower row is an embedding by the construction of
Aglq in Ref. [4]. This proves the claim. O

Remark A.4. The only slightly non-trivial point in the proof is that one may not
assume in general that the functions ¢'® be k-valued. This is circumvented by the
use of the classical inverse function theorem.

We finally come to the proof of the relative inverse function theorem.

Proof of Theorem A.1. Certainly, the condition (i) implies (ii) and (ii) implies (iii).

To prove the remaining implication, we may by Proposition A.2 assume that
X,Y C Artrlats and S C A"l® are open subspaces, that the structural morphisms
of X/S and Y/S are the respective restrictions of the projection APt7lats s ATls,
and that the Jacobian of ¢ over S is invertible at every point.

Since the absolute Jacobian of ¢ (i.e. the Jacobian over ) has triangular block
form with the Jacobian of the S-part being the identity, we may drop the relative
setting and assume that S = %. The Jacobians of the canonical embeddings jx,
and jy, of the underlying spaces are injective, so by assumption, ¢q has invertible
Jacobian at some point. Hence, g is invertible after possibly shrinking the domains.

Because we have X = X x A% and Y = Yj x A°17, we may upon postcomposing
with ¢y 1'% id o), assume that ¢o = idx,. Rephrasing this setting, we may assume
that S C AP is an open subspace and X =Y = § x A9 where the structural
morphism is the projection 7 : A?/4 — AP, This has put us back in a relative
setting, but the only non-linearity now comes from the odd directions.

We now expand

@ (0°) = fupf® (mod I?)
b
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where fu, = 7 (hap), hap € T'(Og), and I is the ideal of I'(Ox) generated by the
standard odd coordinate functions (0*). Then for any z € Sy = X,

(fan(2)) = Jacs(9)(2) = Ts -

is invertible, so that the inverse matrix (f¢°) exists.
Define ¢ : Y/S — X/S by

wHOY) =) e
b

Since ¢ is over S, we have

PHWH0%) = Y FUH(0") = 0" (mod 7).

b

But then (¢ 0 ¢)f = id + & where § is Ox,-linear and §(I) C I?, so that 67+ = 0.
It follows that (1 o )* is invertible, and in particular, ¢ possesses a left inverse.
Applying the above argument to the latter, we obtain a right inverse of . It follows
that ¢ is invertible in a neighbourhood of x. O
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