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INTRODUCTION

The background of this paper is the studying of base extensions of arithmetic
surfaces. Let!( be a number field, () I'i." the ring of integers of !(, and B = spec 0 K.

Let f : X -+ B be a regular arithmetic surface of genus 9 2: 2 over B(i.e. X is
a regular scheIne of dimension 2, X K = X X B spec K is geon1etrically irreducible
of genus 9 2: 2) . One can define a relative canonical invertible sheaf W x /B on
X (see [5] for the defini tion)and the self-interesection number W~ / B (in the sense of

Arakelov theory). A well-known result of G.Faltings says that w~/B ~ 0 if XIB is
semi-stable(i.e. every fibre of f is a senli-stable curve over the residual field). So
a question is what if XIB is not semi-stable. Follow the same idea ?f G.Xiao in
[8], we consider a base extension of XI B such that the induced arithmetic surface

XIBis semi-stable and to study the different AC = AW~/B - wR/B' where A
is the clegree of base extension. However, in our case, some typical difficults of
characteristic pappear, that is, the p times of an unit of our local ring may not
be an unit again. Hence, to describe the conatant C, a new index (ramification
index) of f has to be introduced, wmch can be deteru1ined by the multiplicities of
irreducible components of the singular fibres in the case of characteristic zero 01'

when the multiplicities are not multiple of the characteristic p. On the other hand,
we hope to understand W x /B more much for the further studying of base extensions
of arithmetic surfaces. It is well-known, in the case of function fields, WX/B can
be expresseel by the differential sheaves of ){ and B, which behave weH nnder base
extensions anel easy to compute by Iocal coordinates. Of course, it cau not be so
nice in our case since we have no base field. But the relative differential sheaf n~/B

is easy to compute by local rings. So our first result is to give a description of
wX/B hy n~/B anel the ramification divisor(which we shall clefine), both of which
are more convenient for compution. As a by-product, it also gives a more intrinsic
definition of Wx/B. More generally, let R be a Dedekind domain whose residual field
is perfeet 01' of characteristic zero, and X a scheme over B = spec R of dimension
2. If X is flat, proper and generic SITIooth aver B(i.e. X x B spec Q(R) smooth
over Q(R))with connected fibres(i.e. Q(R) is algebraically closed in ]((X)), then
we call X a curve over R. If X is regular(normal), we caU X a regular(normal)
curve and so on. By arithmetic surface, we always ITIeallS X is considered in the
sense of Arakelov theory. All the morphisms anel algebras in this paper are of finit
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typ, and all the rings are noetherian donlain. After a preliminary of commutative
algebra in §O, the following theorem will be proved in §l.

Theorem 1.1. Let f : X --+ B be a regular curve over a Dedekind domain} and let
Cl, ... ,Cn be the irreducible components 0/ singular fibres. 1/ fl~'(/'!J denotes the bid-

ual 0/ fl~/B} and rni = m(Cd denotes the multiplicity 0/ Ci in the fibre containing
Ci, then there exist Ti 2:: 0, ramificati01l index 0/ f at Ci} such that

n

wX/ B ~ fl~/~ @ Ox(2: TiCi),
i=l

where Ti 2: rni - 1, and the equality holds i/ and only i/ mi is not a multiplicity 0/
the characteristic 0/ residual field 0/ f( Cd.

As the application, we use it to study base extensions of arithmetic surfaces.
The following results are obtained in §2, which belongs to G.Xiao in the case of
function field.

Theorem 2.1. Let f : X ---+ B = specOj{ be a regular arithmetic sur/ace} let L :>
!( be a finite extension 0/ degree Al O!- the,.,..ring 0/ integers 0/ Land jj = spec 0 L.

1/ the induced arithmetic sur/ace f : X -+ B is semi-stable) then we have

where the second inequality is valid /or any metric on f.WX/B.

By the proof of the above theorem, after same conlputions, we have the following
corollaries inlmediately.

Corollary 2.1. 1f XI B is a regular arithmetic sur/ace 0/ genus g} then

(1) w~/B 2: 0
(2) there is a constant 0 ::; C ::; w~1 B such that

W~/B - C
wX/ BD 2: 4"' ( ) deg(D)gg-1

for any effective Arakelov divisor D.

Corollary 2.2. Let XIZ = Pr'oj Z[X Y Z]/(XP + YP - ZP), then

!(~/Z 2:: (p - 1Hp - 3)

The following corollary is a slight generalization of a theorem of S.Zhang, we
removed the restrietion of semi-stable.

Corollary 2.3. 1f XI B is a regular arithmetic surface 0/ genus 9 > 2 and not

smooth over B. Then w~/B > O.
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§O Preliminary.

In this section, we present some commutative algebra facts without proof, all of
which can be find in [3J and [4).

Let R be a ring, M a finite R-module, aod {1nI, ... , rn n } a system of generators
of lvI. The exact sequence

o-r !( -t Rn ~ ]1,11 -t °
is called the presentation of Al defined by {mI, ... , 17ln }, where Q maps the i-th
canonical basis element ei anto mi(i = 1, , n)and ]{ = kern. Let {v.\} ,\EA be a
system of generators of ]{ with V.\ = (x~, ,x~) E Rn (,\ E A). Then

is called a relation matrix of Ai wi th respect to {m1 , ... , m n }.

Given such a matrix, let Fi (A{) denote the ideal of R generated by all (n - i)­
rowed subdeterminants of the matrix (i = 0, 1, .. ,11 - 1), and let Fi(M) = R for
i ~ n. You can prove that Fi (Al) does not depend on the special choice of the
relation matrix and the choice of the generating system {mI, ... , 171. n } of Al. So we
call Fi(M) the i-th Fitting ideal of A1.

Proposition 1. Let M be a finite R-module, Fi(M) the i-th Fitting ideal of M.
Then

(1) For each algebra S / R we haue

(2) 1f l\T C R is a multiplicatiuely closed subset, then

(3) ]f M has rank 7', then Fi(M) = {O} for i = 0, ... , r - 1, and Fi(A1) #- {v}
for i ~ r. .

Let ]( := Q(R), and Al a finite R-module such that A1K := ]{ 0R lvI is a free
1{-module of some rank r. For a system of generators {x 1, ... , X n} of !vI, let
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be the presentation of M corresponding to {x}, ... , X n}, i.e. ß(ed = Xi far i = 1, ... ,11

and U := ker ß. Clearly An-r+l a = 0, since U1\' := 1{ 0R U of rank n - r. Then,
for each m E N, there is a canonical R-linear map (write F := Rn)

<pm: Am A1 --+ HomR(An-ru , An-r+m F)

which is defined as follows: For w E Am lvI choose apreimage w E Am F with respect
to Amß. Then

'Pm (w) : An -ru --+ An -7'+ mF

takes any u E An-ru to An-r0'(u) /\ w E An-r+m F. Therefore, there is a canonical
commutative diagrarn

AmAl
c.pm

HomR(An-ru, i\n-r+m F)

1 lxm

AmlvlK
c.p'];

> H omK(An-ru]\·, An~r+mFK)

where xm(l) = id]<,.' 12) I for any I E H ontR(An-ru, An-r+m F).
You can prove the R-submodule (<.pK)-I ( im Xm) of Am M !\" is independent of the

choice of the system of generators of M. If S is aR-algebra, we take Al = nk/R'
the relative differential module, then we call !:i. m (S/ R) := ('P K) -I (im Xm ) the rn-th
module of integral differential forms of S j R. For our use, we suppose nk/R is of

rank 1 and S = R[Xl' ... , Xn]N /1. Vlrite P := R[x], ... , Xn]N, then there is an exact
sequence

I j 12~ S I2)p n~/R -+ n1/R -+ 0

Take m = 1, we have(we write /j,,(SjR) for /j"l(SjR) for simplity)

Finally, we complete this section by some useful properties of the bidual of a
module. Let M be a R-Inodule and MV = H01nR(M, R), then we say M VV :=
H omR(A1V

, R) the bidual of 1\1. If Al is a torsion free R-module, then A1 and
lvIp for pEspeeR can be identified with their images in M]\, := lvI 0R 1\, where
I{ = Q(R) is the quotient field cf R. Similarly A1v and A1~ will be identified with
their images in MX-, and A1vV and A1~v with their images in A1XY. vVe always
identify Mg with l\1XY . Then we have the following proposition.

Proposition 2. /f R is anormal domain and At! is torsion free, then

(1) MV = nht( p)=l A1~, A1vV = n ht( p)=l Alp , where thc intersection is taken
for all p E spec R of heigth 1.

(2) if A1 and N are torsion free R.-mooule with l\1p = J\T p for all p E spec R

with ht(p) = 1, then



n~/B
r.p

) Homox(An-1I/p,

(*) 1; 1x

ni/K t.pL ) H omL(An-l(I/p)L ,
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§l.Relative canonical sheaf.

Let f : JY -7 B = spec R be a curve over a Dedekind domain R, and L,/{ the
function fields of X and B. vVe use O~/B denotes the relative differential sheaf of

)[/ B, and nt/J( denotes the differential module of Lover /{. The relative canonical

sheaf W X / Band the Fitting ideal sheaf :F(X/ B) can be introduced as the following.

Definition. The presheaves 0/ wX/ Band F()[/B) is defined as the /ollowing: For
any affine open set U = spec S 0/ )[, let

WX/ B(U) = 6.(5/R) F(X/B)(U) = PI (01/ R)'

By (1) and (2) of the Proposition 1, it is easy to verify that :F(X / B) is well­
defined. As for WX/Bl we can suppose that .."Y. is projective and

i : )( Y P = PB

is the embedding. If I denotes the ideal sheaf of X in P~ then it is clear~ from the
following commutative diagram, wX/B is well-def1ned.

An(i·n~/B)L)

where " X are the canonical maps, and 'P, 'P Kare defined as in §O. For a coherent
sheaf Q on, we always denotes Q00xL by QL, and L here is considered as a constant
sheaf. Since 'P L is an isomorphism, and X is injective, we can see easily,

From the definition of wX/B, we can see that WX/B is a subsheaf of the constant
sheaf f2i/K' The following lemma gives the relation of wX/B and the image of

n~/B under I'

Lemma 1.1. Let f : ..Y -7 B be a curve over Dedekind domain, and let T(n~/B)

denote the torsion 0/ n\/B' Then

n\/B/T(n\/B) ~ wX/B 00x F(){/B)

Proof. It is enough to prove the lemma locally, let U = spec 5 and S = P /1, where
P = R{Xl' ... , Xn]N. Vole have the exact sequence

1/12 -4 S 0 p n~/R -4 n1/ R -+ 0

Then the diagrarn (*) becomes into

n1/R 'P) H om s (An -1 1/12 , An (5 (9 p n~/R) )

1, 1x

ni/K 'PK) HomL((An-l(I/12)L, An(L 0p n~/R))
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vVe only need to determine 1m 'P. _
Let {bI, ... , bn } be a basis of 5 @p n~/R sueh that {Wi = ß(bd}i=l, ... ,n generate

n~/R' and let

1/12 = 5 tl +. . . + 5 t r + S 1L 1 +. . . + S Um (m 2: n - 1)

such that a(ud, ... , o'(um ) is a system of generators of 0'(1/12 ) and ti (i = 1, ... , r)
are torsion elements (i.e. a(td = 0). then we have

An -1 1/12 = L S (t j 1 /\ . • . /\ tj, /\ u i 1 /\ . . . A u i 1-1 )

"+JJ=n-1

An-1 O' (An-l 1/12
) = L S (O'(uit) A ... 1\ O'(ujn_J)

it,.··,jn-l

n

a(ud = L Gijbj (i = 1, ... , m),
j=1

let

A=

all al2 GIn

a21 G22 a2n

be the relation matrix of n~/R with respect to {Wi = ß(bd}i=l, ... ,n. Then, by the
definition of 'P,

II'J(w·)(O'(u· ) 1\ ... /\ a(u' )) = a(u' ) 1\ ... 1\ Q(u· ) /\ b·T t)1 )n-1)1 )n-l 1

= ±IAi. . Ibl A ... Ab
)1,,,.,)n-1 n

where A~1 ,... ,j,.-1 is obtained from A by keeping the raws with numbers j1, ·.. ,jn-l
and deleting the i-th eolumn. So, by the definition of Fitting ideal, we get

Im'P = PI (nk/R) . H oms(An-l1/12 A"(S ®p n~/R)) ,...., PI (S1k/R) ·6.(5/R)

But
nk/R/T(S1k/R) ~ Im, ~ Imcp,

whieh eompletes the proof.
Let A, B be two loeal rings with tr.deg(Q(A)/Q(B)) = d and mA n B = mB,

where mA and mB are maximal ideals of A and B. For any ideal I of A, we
define vA(I) is the largest integer such that I ~ m~A(I) and eall vA(Fd(n~/B))
the ramification index of A over B, denoted by r(AB). We define the redueed
ramification index of A oyer B as the following integer

r

e(AB):= max {vA(II xd I (Xl, ... , X r ) are the generators of mB}'
(Xl,""X r ) .

~=l
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For any morphism f : X -+ }~ of schemes, we caU r (V x0 j( x)) the ramification index
of f at x, and e(VxOj(x)) the reduced ramificatian index of f at x. In particular,
when f : )( -+ B is anormal curve, we define the ramification divisor of f as

n

R(f) := L r( CJ Xj°!(xd) Ci,
i=l

where xi is the generic point of Ci, and the sum takes for all point of cadimension
1. It is easy to see the support af R( f) is contained in the fibres of f since X is
generic smooth over B. If)( is factorial, R(f) determines an invertible sheaf on X.
Especially, when ..Y is a regu1a.r curve, far any point x of codimension 1, we have

(WX/B 00x F(}CjB))x = (WX/B 00x Ox(-R(f)))x,

which means

(WX/B 00x F(..YjB))VV = (WX/B Q90x Vx(-R(f)))VV,

n:y/~ ~ (n~/B/T(n~/B))VV~ wX/B 00x Ox(-R(f))),

since wX / B is invertible. So theorem 1.1 is a corollary of the following lemma.

Lemma 1.2. Let f : X -+ B be anormaL curve and C an irreducibLe component
0/ the fibres. // r( C f( C)) denotes the ramification index 0/ f at the generic point
0/ CJ then

r(Cf(C)) ;::: m(C) - 1,

the equaLity hoLds ij and only ij m(C) is not a multipLe 0/ the characteristic 0/ the
residuaL field 0/ f( C).

Proof. Let R be the loeal ring of B at j(C) and mR = (t)R. Sinee ..\ is normal,
we ean ehoose a regular point x of C such that S = OX,x is regular and only
one component af the fihre through x. If 'l.L is the Ioeal equation of C at x, then
t = aoum(C) and ao rt. ms. Since the eompletion and the unramifieation extension
of R do not change r(Cj(C)), we ean assurne x is a rational point of Cover k(R)
and S is eomplete. Thus, let ms = (u, v)S, we have

S ~ R[[u, v]]
- (t - ao·um(C))R[[u, vJ]

and
n1 _ S du ffi S dv

SIR - aao aao
((m(C)aoum(C)-1 + um(C) -)du + um(C) -dv)Sau Dv

By the definition of Fitting ideals,

F\ (n1/R) = (m(C)aoum(Cl-\ + um(C) ~~, um(C) ~:)8

let A = S(u) be the loeal ring of S at (u)S, then Fdn~/R) = F 1 (n1/R)A and

r (Cf (C)) = r ( AR) = VA (F1(n~ /R)) ;::: m (C) - 1

the equality holds if and only if m(C)ao is an unit of A, i.e. m( C) is not a multiple
of the eharacterstie of k(R), the proof is eompleted.
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Corollary 1.1. 11 k(R) is prelect or 01 charactenstic zero, then

r( AR) = 0 {:::::} AIR is smooth

Corollary 1.2. I/ f : ..:( ~ B is a regular curue, then

(1) n\/~ is invertible

(2) I/ all the fibres 0/ )(1Bare reduced.. then

,...,.. nl vv
Wx/B = HXjB'

§2. Base extensions of arithmetic surfaces.

Let !( be a number field, 0 j{ the ring of algebraic integers of !(, and let
f : ..:( ~ B = spec Oj{ be a regular arithmetic surface of genus 9 2:: 2 over B (i.e.,
X is a regular projective scheme of dimension 2, ..:(!{ is geometrically irreducible of
genu~ 9 :2: 2). If L :) !{ is a finite extension of degree A, then the natural morphism
'Tr : B = spec 0 L ~ B is called a base extension of )(1B . Now let us begin this
section by the following commutative diagram:

x< p
X 2

1f2
) Xl

1fl
> X xBB Pl

) X

li 112 1ft 1P2 1/
...... ......

1['

B B B B >B

where 'TrI is the normalization of )( x B B, 'Tr2 is the minimal desingulariztion of Xl
and p is the contraction of (-1 )-curves in the singular fibres of 12'

Let <f; =: PI 0 'TrI and 'P = <f; 0 'Trz, we call 1 : 5t ~ B the induced arithmetic
surface of pi. If j : 5:: -+ B is semi-stable, we say 'Tr is a semi-stablizer. For any
irreducible component Ci of fibres, the multiplicity of Ci in the fibre is denoted by
m(Cd. \Ve give the following easy lemma as the begining.

Lemma 2.1. For any coherent shea/ ~ on ..:(, we haue

Proof. Without lasting the generality, we can assume ~ is torsion free. So we only
need to check

for any codimension one point x of ..YI, since <f;( x) is also of codimension one at
once x is a codimension one point on _Y I, but this is clear. So the lemma follows~

since all the isomorphisms (<f;·~)x ~ <f;*(~~(x») are compatible with
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Lemma 2.2. Let ..Y" =..:\. x B B, i/ all the fibres 0/ 11 : ..X'] -t iJ are red'Uced, then

Proof. Since cjJ*n~jB == 1rj(pin\jB) == 1r;(n~jB)' we only need to prove

By the exact sequenee

we know that

( *111 )YY f"ooJ (1 )YY1r]HS jB == ma

So it is enough to prove

for any codimension one x of X 1· Let S == Os ,1T1 (x), S == 0 X 1 ,x and R == 0 B, ft (x)"

Then (n~1{jj)x == n~/ R is a free S-module ~f rank oue, since all the fibres of

11 : ":\.1 -t B are redueed. So there exists a E S such that

By the definition of Fitting ideal, (a)5 = Fo(5/5), the lemma is proved.

Let ri be an irredueible eomponent of the fibres of /] and Ci == cjJ(ri), 5, 5 and
Adenote the Ioeal ring......of X 1l ~x: and ..:\. at the geu:.-rie points of r i, 1r] (rd and
cjJ(rd respectively. Let Rand R be the loeal rings of B and B at 1dr i) and f (Ci) ,

m R = (i)R and mR == (t)R. If m(Gi) = bi and mA == (u )A, then t == aoub;, ao is

an unit of A. Sinee m(rd == 1, we can write m S = (t)S. Let ai be the reduced

ramification index of 1r at /1 (r;), i.e., t = fota
;, 1"0 is an unit of R.

Lemma 2.3. Let R(1r]) be the ramification divisor 0/ ..:\] .4 ..t and p denote the
characteristic 0/ k(R). Then

(1) r(S5) ::;~, and 1"(55) = 0 i/ p f bio
(2) // R(/) denotes the mmification divisor 0/ fand

m

cjJ*(R(j)) - R(1rI) == L kif i

1=1

then ki 2:: O.
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Proof. From the commutative digram

5 ( A

r r
R ( R

we know (t)S = (Ubi)S, the reduced ramification index e(SA) = ~. So, if (1) is
proved, plus lemma 1.2, (2) is clear.

ms is generatecl by t and u with rota; = aou bi , 1'0 and ao are also units of S.
Let So = rö1

0.0, then

t-i+I b
(-) ; = So, in Q(5)

u

So y = i~ E S since S is the integral closure of S in Q(S). If 51 denotes the
localization of S[y] at m sn S[y], where S[y] denotes the algebra generated by y
and.-S in S, then mSt = (i)Sl and SI is already a discrete valuation ring in Q(S).
SO S = SI, which implies

O§/S = S· ds/s(y)

By uy = ie j, we have uds/ S (y) = 0, so

From yb; = So, we know biybi-1ds/s(y) = O. If pi bi, then

b bj-1 d:. cl rd 0
i Y 'F m 5 1 an H S/s =

So r(SS) = 0, we have proved the lemma.

Theorem 2.1. //1r is a semi-stablizer 0/ degree A, then

w~/B :::; /\W~/B deg f*ws/ B :::; /\deg f*WX/B

Proof. Since q,*(n\-/~) is invertible, by lemma 2.1, we have

From lemma 2.2,

(q,*n~/B) vv ~ O~~~B 00xt F(..Y11X) vv

Let U = "-Y1 - {singularities of Xl}' then, on U, n~~~B and F("-Y1/~};)VV are in­

vertible such that
m

q,*WX/B ~ wXt/B 00X1 OX 1(L kird on U
i=l
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So there exists a divisor D] on )(2 and 7r2 (D 1) = closed points on )(1 such that

m

ep*WX/B t'V W X2 / B 0 Ox2(D] +L kjfi)
i=l

where ep = cP . 7r2 and we still use r i to denote the striet image of r i on X 2. Let
](X/B and ]{X

2
/B denote the weil divisors OfWX/B and W X2 / B' we·forget the metric

this moment, thus
m

ep* ]('(/8 = ](X
2
/8 + L kjr i + D 1

i=l

we claim D1 2 0, in fact, let D1 = D~ - D;', where D~ 2 °and D~' 2 °have no
common eomponents. If D~' > 0, then there is an irreducible component f of D~'

such that f D~' < °since (D~')2 < 0, which implies

m

0= fcp* ]{X/B = r ](X
2
/B + r L kir i + r D~ - r D~'

i=l

i.e., r ]\'"'(2(8 < 0, it is impossible since 7r2 is the minimal desingularization of Xl.
On the other hand, '

]\'"'(2/B = p. [(S; / B + D 2

D 2 2 °is composed by (-1 )-curves. Let

m

v = D 1 + D 2 + L kjfi

i=l

then V is an effective vertical divisor on ....y2 and

(2.1)

Now we suppose WX/B, WX2 / B and wS/ B have the metrics such that the residue

maps (we only write out for XI B the other is same)

are isometrie for a1l infinit places v and points P (see [2] and [5] for the detail).
Since

cp*wx/Blw = .0\2 w/Lw = p·w",Y/älw

for all infinit places tu of L, we know that the isomorphism (2.1) is an isometrie
if we give the trivial metric on Ox2 (F). So we have (in the sense of Arakelov
intersection)

,}"2 }~2 V *},.. V •l'
/' \. X / B - \..Y /B = ep \. X / B + p \. ..Y/ ii

where ](X/B and ](S/8 denote the Arakelov divisors of WX/B and w ..Y/ B' Let

c = ~(V <po J{X/B + V p'J{.Y/jj)



12 XIAOTAO SUN

then C ~ 0, since V is an effective vertical divisor. So the first inequality is proved.
By p*w.Y/ B '-+ r..p*WX/B, we have

J*ul.Y/ B = f2*P*W.Y/ B '-+ f2*r..p*WX/B = rr* f*wx/B

which proves the second inequality. Since both sheaves are the same at the infinit
places, the inequality has nothing to do with metric. We complete the proof of
theorem 2.1.

Remark 2.1. I/ C = 0, i.c., 1\/(l/B = /(R/B' then D 2 = 0 (.Y2 is minimal),

..Y1 has only rational doub le points and ki = 0, i. e., (r i - 1)r ~ 0, which implies

Ti ~ 1. So bi = m( Ci) can not be a multiple 0/ the chara~teristic 0/ k(f( Cd)
(otherwise Ti ~ bi by the lemma 1.2), but this implies r(SS) = 0 by the lemma 2.9,
so R(f) = 0, i. e., all the /ibres 0/ XI Bare reduced. Clearly, the contJerse is also
true. Thus C = 0 i/ and only i/ all the /ibres 0/ ..YI Bare reduced, ){l has only
rational double points and X 2 is minimal.

Corollary 2.1. // XI B is a regular arithmetic sur/ace 0/ genus g, then

(1) w'i/B ;::: 0

(2) the~e exists a constant 0 :s c ~ w'i/ B such that

w~/B - C
wX/BD ;::: 4~(g _ 1) deg(D)

/or any effectitJe Arakelov divisor.

Proof. Fix a semi-stablizer 7r of degree A, let C be the constant such that

AW3</B - w~/B = I\C,

then, by the result of [2] and our theorem 2.1, W'i/B ~ 0 and

W3</B = ° {:=::> wR/B = 0, C = 0

For any effective divisor D (we can suppose D is an irreducible horizontal divisor),
we have

r..p*WX/Br..p* D = p*w.Y:/jjr.p*D + Vr.p* D 2:: w.y/Bp*r.p* D

Since };IBis semi-stable, by the result of {2], we get

By the definitiori of C, we have

W~/B - C
wX/BD 2:: • ( ) deg(D)4g g-1

and
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Remark 2.2. Some other results 0/ arithmetic sur/ace in the semi-stable case can
also be generalized to nonsemi-stable case, but we omit here. For example, the
theorem 9 0/ C. Soule in [6} and some results 0/ Bost, J.-B. in [lj. It would be
interesting to give a detail description 0/ C, which need to study the singularities
produced by base extension. A more general question is to study the finit ramification
coverings 0/ a two dimensional regular scheme and to understand the relations
between the singlarities 0/ the finit covering and the singularities 0/ the branch
loeus (the image 0/ ramification divisor). We hope to come to these problems again
in the other oceasion.

CoroUary 2.2. Let X/tE = Pro} Z[~Y y~ ZJ!(..-YP + YP - ZP) and 1r : B -+ Z a

semi-stablizer 0/ degree A. Then

[{~/z :::: ~W~/B + (p - l)(p - 3)

In particular,

KJ</z ;::: (p - l)(p - 3)

Proof. X/Z has only one singular fibre F at p, F = pe. From the proof of theorem
2.1, we have

/\KJ.c/z - KR/B ;::: cj;* I(y/z( cj;* R(f) - R(1rt))

Now the loeal equation of C is u = x + y - 1 (we eonsider the affine case) and

n1 _ Z[X Y]dX +Z[X Y]dY
x/z - (pXp-1dX +pyp- 1dY)7l[..-Y Y]

Thus

which implies

where V(u) denotes the valuation detennined by Ioeal ring Z[x Yhu)' But x + Y =
1+tt, so x and Y can not belong to (u) at the same time, i.e., r(Cf(C)) = p. Hence

cj;. R(f) - R(1rl) 2:: cj;*((p - l)C)

and
/\I.;J</z - I(} / B ~ A(p - 1)]';x/zC

But ](x/zC = ~](y/zF = 29;2 = p - 3, we have

whieh complete the proof of corollary.
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Remark 2.3. It is easy to see our lemma 2.9. (2) means TI'i I(v: / B - I{xt/ B is an
effective divisor on the regular part of Xl. In fact} our theorem 2.1 holds for any
base extensions once we know this fact. Professor E. Kunz told me in a letter that
it can be proved by the th eory 0 f regular differential forms and Tr; I(S / B - I{Xl / B

is the conductor of TrI. Thus the lemma 2.9 tell 'us that if m(Ci) is not a multiple
of the chamcteristic of k(f(C;)) (for example.. the case of chamcteristic zero), the
conductor of TrI is 4>* R(f). In fact, in this case, we can prave lemma 2.9 for
any base extension ("Yl may have multiple fibres). A question is to determine the

conductor of TI'1 by R(f) and R(fd in geneml case and to prove r(SS) = 0 when

p]b; in lemma 2.9, 01' give an example in which 1'(5S) #- O.

"Vith this remark in mind, we complete the paper by a generalization of S.Zhang's
result. The theorem of S.Zhang said: If XI Bis semi-stable and not smooth of genus
9 2: 2, then w3</B > 0 (see (7] or [9]). We remove the restriction of semi-stable as
the following

Corollary 2.3. 1f f : ..:( -+ B is a regular arithmetic surface of genus 9 2: 2 and

not smooth, then w~/ B > O.

Proof. Let TI' be the base extension of )(1B such that )[ IBis semstable. By
our Remark 2.1, w~/B = 0 if and only if C = 0 and WR/B = 0, which implies

X = ..X:2 is smooth over B by Zhang's theorem. So Xl = X 2 (otherwise, X 21iJ
will have a singular fibre with two irreducible components at least). Since Xl is
regular, the conductor ideal sheaf of TrI is locally principle, i.e. an invertible sheaf,
whose divisor is 4>* R(f) by OUT lemma 2.3, which is zero since all of the fibres of
..'CIB are reducible. Thus ..:(1 = X = ..Y. x B iJ is smooth, that is, the support of
.rl (n~ / ä) = pi.rj (nk/B) is empty. It is impossible since )[/B is not smooth and

PI is flat.
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