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INTRODUCTION

The background of this paper is the studying of base extensions of arithmetic
surfaces. Let K be a number field, O the ring of integers of K, and B = spec Ok.
Let f : X — B be a regular arithmetic surface of genus g > 2 over B(i.e. X is
a regular scheme of dimension 2, X = X Xpg spec K is geometrically irreducible
of genus g > 2). One can define a relative canonical invertible sheaf wx/p on
X (see [5] for the definition)and the self-interesection number w? / p(in the sense of

Arakelov theory). A well-known result of G.Faltings says that w% g2 0ifX /B is

semi-stable(i.e. every fibre of f is a semi-stable curve over the residual field). So
a question is what if X/B is not semi-stable. Follow the same idea of G.Xiao in
[8] we consider a base extension of X/B such that the induced anthmetlc surface
X/B is semi-stable and to study the different A\C = ’\WX/B :\’/B’ where A

is the degree of base extension. However, in our case, some typical difficults of
characteristic p appear, that is, the p times of an unit of our local ring may not
be an unit again. Hence, to describe the conatant C, a new index (ramification
index) of f has to be introduced, which can be determined by the multiplicities of
irreducible components of the singular fibres in the case of characteristic zero or
when the multiplicities are not multiple of the characteristic p. On the other hand,
we hope to understand wx,p more much for the further studying of base extensions
of arithmetic surfaces. It is well-known, in the case of function fields, wx,p can
be expressed by the differential sheaves of X and B, which behave well under base
extensions and easy to compute by local coordinates. Of course, it can not be so
nice in our case since we have no base field. But the relative differential sheaf Q% /B
is easy to compute by local rings. So our first result is to give a description of
wx/p by Q% /B and the ramification divisor(which we shall define), both of which
are more convenient for compution. As a by-product, it also gives a more intrinsic
definition of wx,p. More generally, let R be a Dedekind domain whose residual field
is perfect or of characteristic zero, and X a scheme over B = spec R of dimension
2. If X is flat, proper and generic smooth over B(i.e. X xp spec @(R) smooth
over Q(R))with connected fibres(i.e. Q(R) is algebraically closed in (X)), then
we call X a curve over R. If X is regular(normal), we call X a regular(normal)
curve and so on. By arithmetic surface, we always means X is considered in the
sense of Arakelov theory. All the morphisms and algebras in this paper are of finit
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2 XIAOTAO SUN

typ, and all the rings are noetherian domain. After a preliminary of commutative
algebra in §0, the following theorem will be proved in §1.

Theorem 1.1. Let f: X — B be a regular curve over a Dedekind domain, and let

Cy,...,Cp be the irreductble components of singular fibres. If QIY‘/’Z? denotes the bid-

ual of QE\’/B) and m; = m(C;) denotes the multiplicity of C; in the fibre containing
Ci, then there exist r; > 0, ramification indez of f at C;, such that

wx/B = Qx7H @ Ox (D riCy),

=1

where r; > m; — 1, and the equality holds if and only if m; is not a multiplicity of
the characteristic of residual field of f(C;).

As the application, we use it to study base extensions of arithmetic surfaces.
The following results are obtained in §2, which belongs to G.Xiao in the case of
function field.

Theorem 2.1. Let f: X = B = spec Ok be a regqular arithmetic surface, let L D
K be a finite eztension of degree A, O the ring of integers of L and B = specOy,.
If the induced arithmetic surface f : X — B 13 semi-stable, then we have

w‘?\?/ﬁ < )‘w?\’/B’ degf*wf/g < /\degftw,\'/B:

where the second inequality is valid for any metric on f,wx/p.

By the proof of the above theorem, after some computions, we have the following
corollaries immediately.

Corollary 2.1. If X/B i3 a regular arithmetic surface of genus g, then
(1) wk/p 20
2) there i3 a constant 0 < C < w? ,, such that
X/B

2
wyx/p —C

—-——4g(g =) deg(D)

wx/D 2

for any effective Arakelov divisor D.

Corollary 2.2. Let X/Z = ProjZ[ XY Z]/(X? +YP — ZP), then

Kyz2(-1)(p-3)
The following corollary is a slight generalization of a theorem of S.Zhang, we
removed the restriction of semi-stable.

Corollary 2.3. If X/B is a regular arithmetic surface of genus ¢ > 2 and not
smooth over B. Then "",2\’/13 > 0.
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§0 Preliminary.

In this section, we present some commutative algebra facts without proof, all of
which can be find in [3]) and [4}.

Let R be a ring, M a finite R-module, and {mi,...,mn} a system of generators
of M. The exact sequence

0K —=aR"3 M0

is called the presentation of M defined by {m,,...,m,}, where a maps the i-th
canonical basis element e; onto m;(i = 1,...,n)and K = kera. Let {vy}res be a
system of generators of K with vy = (z3,...,2}) € R* (A € A). Then

A
(1:1- )i=1,...,n
A€A

is called a relation matrix of M with respect to {mj,...,m,}.

Given such a matrix, let F;(M) denote the ideal of R generated by all (n — 1)-
rowed subdeterminants of the matrix (: = 0, 1, ..,n — 1), and let F;(M) = R for
i 2 n. You can prove that F;(M) does not depend on the special choice of the
relation matrix and the choice of the generating system {m;,...,m,} of M. So we

call F;(M) the i-th Fitting ideal of M.

Proposition 1. Let M be a finite R-module, F;(M) the i-th Fitting ideal of M.
Then

(1) For each algebra S/R we have
Fi(S®@rM)=_5-Fi(M)
(2) If N C R is a multiplicatively closed subset, then
Fi(My) = Fi(M)~

(3) If M has rank r, then Fy{(M) = {0} for i = 0,...,r = 1, and F;(M) # {o}
fori2>r, '

Let K := Q(R), and M a finite R-module such that My := K @r M is a free
K-module of some rank r. For a system of generators {z1,...,zn} of M, let

0=USR B Mo
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be the presentation of M corresponding to {zy,...,z,},1.e. B(e;) = z;fort =1,...,n
and U := ker 8. Clearly A" "o =0, since Uy := K Qg U of rank n — 7. Then,
for each m € N, there is a canonical R-linear map (write F := R")

™ A™M — Hompg(A"~"U, A"7™t™F)

which is defined as follows: For w € A™M choose a preimage @ € A™F with respect
to A™f3. Then '
(Pm(w) . An-—rU ) An—r+mF

takes any u € A""7U to A" Ta(u)Aw € A"t F. Therefore, there is a canonical
commutative diagram

A"M —2s  Homgp(A™~TU, A"-THTER)

l l o

A" My =255 Homp (A" Uy, A"="+7"Fy)

where x™(l) = id ® for any | € Homp(A"~"U, A"~ "*™F).

You can prove the R-submodule (7)™ (im x™) of A™ M} is independent of the
choice of the system of generators of M. If S is a R-algebra, we take M = Qi%‘/ R
the relative differential module, then we call A™(S/R) := (¢ 7))~ (zm x™) the m-th
module of integral differential forms of S/R. For our use, we suppose Q~15'/ p is of
rank 1 and S = Rlzy,...,zn|n/]. Write P := Rz, ...,z4]n, then there is an exact
sequence

I/I* 5 S@p Q},/R — QIS/R -0

Take m = 1, we have(we write A(S/R) for A'(S/R) for simplity)
A(S/R) & Homs(A" ™ I/I%, A™(S.®p b))

Finally, we complete this section by some useful properties of the bidual of a
module. Let M be a R-module and MY = Hompg(M , R), then we say M"Y :=
Hompg(MVY , R) the bidual of M. If M is a torsion free R-module, then A and
M,, for p € spec R can be identified with their images in My := M ®gr I, where
K = Q(R) is the quotient field of R. Similarly A" and M, will be identified with
their images in My, and M"Y and MY with their images in M¥. We always
identify My with MY, Then we have the following proposition.

Proposition 2. If R is a normal domain and M 1s torsion free, then

(1) MY = Npypy=1 My, MYV = 0pypy=1Mp, where the intersection is taken
for all p € spec R of heigth 1.

(2) if M and N are torsion free R-module with M, = N for all p € specR
with ht(p) = 1, then

MVV — ATVV
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§1.Relative canonical sheaf.

Let f : X — B = spec R be a curve over a Dedekind domain R, and L,A the
function fields of X and B. We use QIY /B denotes the relative differential sheaf of

X/B,and Q] /¢ denotes the differential module of L over K. The relative canonical
sheaf wy,p and the Fitting ideal sheaf F(X/B) can be introduced as the following.

Definition. The presheaves of wx,p and F(X/B) is defined as the following: For
any affine open set U = spec S of X, let

wy/s(U) =A(S/R) F(X/B)(U) = FI(Q}S/R)-

By (1) and (2) of the Proposition 1, it is easy to verify that F(X/B) is well-
defined. As for wx,p, we can suppose that X is projective and

it X o P=Py

is the embedding. If Z denotes the ideal sheaf of X in P, then it is clear, from the
_following commutative diagram, wy,p is well-defined.

Q}\'/B _‘P.__). Homox(j\n-lI/I‘Z, IX“Z*Q})/B)
(+) [ [x
QlL/K —L , Homp(A"YZ/T?), A"(i‘QL/B)L)

where v, x are the canonical maps, and ¢, ¢ are defined as in §0. For a coherent
sheaf G on, we always denotes §®o L by G1,, and L here is considered as a constant
sheaf. Since @ is an isomorphism, and x is injective, we can see easily,

U-'.\’/B =~ Homo_‘. (J\R_II/Iz s !\nl*Q]P/B)

From the definition of wy,p, we can see that wy,p is a subsheaf of the constant
sheaf Q7 /K The following lemma gives the relation of wy,s and the image of

Qi‘{/B under ~.

Lemma 1.1. Let f: X — B be a curve over Dedekind domain, and let T(Qy /)
denote the torsion of Q}(/B. Then

Ok 5/T(x/p) Zwx/p ®ox F(X/B)

Proof. It is enough to prove the lemma locally, let U = spec S and S = P/I, where
P = R[z1,...,za]n. We have the exact sequence

I 5 S@p Qhp 5 Qkp =0
Then the diagram (*) becomes into

Q% p —2—  Homg(A™'I/I*, A™S®pQpp))

i !

Qo —— Homy(A""Y(I/I), AML@p Q)
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We only need to determine Im . ,
Let {b1,...,b,} be a basis of S @p Q};/R such that {w; = B(bi)}i=1,... . generate
Q}S/R, and let

I/FP=Sti+---+St,+Sui+- - +Sun (M>n—1)

such that a(u1),...,a(um) is a system of generators of a(I/I?) and ¢; (1 = 1,...,7)
are torsion elements (i.e. a(t;) = o). then we have

AT = YT S(t A At Aui A Awg,)

stu=n—-1
AMTa(AMT /) = Y S(a(u) A - Aalug,,))

Jyendn—t
n

alu;) = Za,-jbj (r=1,..,m),
J=1

let

11 a1z Gin
a1 G2 aopn

A= o,
Aml  Gm2 Amn

be the relation matrix of Q}S/R with respect to {w; = (b:)}i=1,...n. Then, by the
definition of ¢,

olwi)(efujy ) A - - Aaluy, ) = aluj)) A - - - Aa(uj,_, ) Ab;
= +|4% |6y A - - - Aby

J1yeedn—1
where Aj’x..--,jn-l is obtained from A by keeping the raws with numbers j;,..., Jn-1
and deleting the :-th column. So, by the definition of Fitting ideal, we get

Img = Fy(QYp) - Homs(A" T I/I* A™S ®p Qb)) = Fi(Q%z) - A(S/R)

But
Qs/r/T(Qsyr) 2 Imy = Imp,

which completes the proof.
Let A, B be two local rings with tr.deg(Q(A)/Q(B)) = d and ms4 N B = mp,
where m, and mp are maximal ideals of A and B. For any ideal I of A, we

define v4(I) is the largest integer such that I C m'j,"‘m and call UA(Fd(QL/B))

the ramification index of A over B, denoted by r(AB). We define the reduced
ramification index of A over B as the following integer

e(AB) := mazx {‘UA(H z;}| (1, ...,2,) are the generators of mp}.
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For any morphism f : X — Y of schemes, we call r(O;O¢(,)) the ramification index
of f at z, and ¢(O;Oy(;)) the reduced ramification index of f at z. In particular,
when f : X — B is a normal curve, we define the ramification divisor of f as
n
R(f) =Y r(02,04)) Ci,

=1
where z; is the generic point of C;, and the sum takes for all point of codimension
1. It is easy to see the support of R(f) is contained in the fibres of f since X is
generic smooth over B. If X is factorial, R(f) determines an invertible sheaf on X.
Especially, when X is a regular curve, for any point z of codimension 1, we have

(wx/B @0y F(X/B))z = (wx/B ®0x Ox(=R(f)))e,

which means

(wx/B Qo F(X/B)" = (wx/B Rox Ox(—=R(f))™Y,
l.e.,
Qg = (Qyp/T(Q%x/p))"Y Zwx/s Qo Ox(—R(f))),
since wy, g is invertible. So theorem 1.1 is a corollary of the following lemma.

Lemma 1.2. Let f: X — B be a normal curve and C an irreducible component
of the fibres. If r(C f(C)) denotes the ramification indez of f at the generic point
of C, then

r(Cf(C)) 2m(C) -1,

the equality holds if and only if m(C) is not a multiple of the characteristic of the
residual field of f(C).

Proof. Let R be the local ring of B at f(C) and mg = (¢)R. Since X is normal,
we can choose a regular point & of C such that S = Ox ; is regular and only
one component of the fibre through z. If w is the local equation of C' at z, then
t = apu™©) and ag ¢ mg. Since the completion and the unramification extension
of R do not change r(C f{C)), we can assume z is a rational point of C over k(R)
and S is complete. Thus, let mg = (u,v)S, we have

Rl[u, v]]

S (t — aou™©) R[[u, v]]

1R

and

ol - Sdu @ Sdv
S/R Jdag

. (m(Clagu™(© -1 4+ u"‘(c)?)itf)du + um(©) a—vdv)S
By the definition of Fitting ideals,

m - m aao m aao
FI(QIS/R)=(m(C)aOU () 1+'U, (C)-é-{t—,u (C)E)S

let A = S, be the local ring of S at (u)S, then Fl(Qi{/R) = Fl(QIS/R)A and
r(Cf(C)) = r(AR) = va(F1(Qg)) 2 m(C) - 1

the equality holds if and only if m(C)ag is an unit of 4, i.e. m(C) is not a multiple
of the characterstic of k(R), the proof is completed.
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Corollary 1.1. If k(R) s prefect or of characteristic zero, then

r(AR) =0 <= A/R is smooth

Corollary 1.2. If f: X — B 1s a reqular curve, then
(1) Q},{”/'g i3 invertible
(2) If all the fibres of X/B are reduced, then

~s 1vv

§2. Base extensions of arithmetic surfaces.

Let I{ be a number field, Og the ring of algebraic integers of ', and let
f: X — B = spec O be a regular arithmetic surface of genus g > 2 over B (i.e.,
X is a regular projective scheme of dimension 2, Xy is geometrically irreducible of
genus g > 2). If L D K is a finite extension of degree A, then the natural morphism
7+ B = specO, — B is called a base extension of X/B. Now let us begin this
section by the following commutative diagram:

X 2 2, X, 23 XxgB 24 X

| ff, | |+ |/

A~

B — B - 4+ B

where 7, is the normalization of X x g B , ™2 1s the minimal desingulariztion of X,
and p is the contraction of (—1)-curves in the singular fibres of f;.

Let ¢ =: py om; and ¢ = ¢ o my, we call f : X = B the induced arithmetic
surface of pi. If f : X — B is semi-stable, we say 7 is a semi-stablizer. For any
irreducible component C; of fibres, the multiplicity of C; in the fibre is denoted by
m(C;). We give the following easy lemma as the begining.

Lemma 2.1. For any coherent sheaf § on X, we have

(¢°3)" = (7 (3"))"

Proof. Without losting the generality, we can assume § is torsion free. So we only
need to check

(6*F)x = " (Fg())

for any codimension one point z of X, since ¢(z) is also of codimension one at
once z is a codimension one point on X, but this is clear. So the lemma follows,
since all the isomorphisms (¢*§): = ¢*(F4(s)) are compatible with

("B k(xy) = (9"8) Box, K(X1) = ™ (Fr(x))-
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Lemma 2.2. Let X = X xp B, if all the fibres of fi : X1 — B are reduced, then
(6" Q)" 2 (0, 5 Qox, FolX1/X)YY.

Proof. Since ¢*Qy, p = 7{(piQ/p) = WI(Q]\-:/ﬁ), we only need to prove

(miQ,5)"" = (X, 5 @ox, Fo(X/X1))™
By the exact sequence

*0l o 1 1
Tflﬂg/g — Q.\'I/E — QX“,X — 0,

we know that

(‘H'IQ;—(/B-)VV = (Ima)¥Y
So it is enough to prove

(Ima):c = }-O(OX1 ,I/O.’?,m(a:)) ' (Qf\'lfﬁ)x

for any codimension one z of X1. Let S = O r (), S = Ox, c and R= 05 , ..
Then (Ql\ /g): = Q%/R is a free S-module of rank one, since all the fibres of
fi: X1 — B are reduced. So there exists a € S such that

(Ima)r =a: (Qf\.l/ﬁ);
By the definition of Fitting ideal, (a)5 = fo(g/S), the lemma is proved.

Let I'; be an irreducible component of the fibres of f) and C; = #(I';), S, S and

A denote the local ring of Xy, X and X at the generic points of T';, m(I'i) and
@(T';) respectively. Let R and R be the local rings of B and B at f;(T';) and f(C;),
mz = ({)R and mp = (t)R. If m(C;) = b; and m4 = (u)A, then t = aou®, aq is
an unit of A. Since m(I';) = 1, we can write mg = (1)S. Let a; be the reduced

ramification index of 7 at f,(T;), i.e., t = 79t , g is an unit of R.

Lemma 2.3. Let R(m;) be the ramification divisor of X, —+ X and p denote the
characteristic of k(R). Then

(1) 7(SS)< %, and r(5S)=0ifptbi
(2) If R(f) denotes the ramification divisor of f and

¢"(R(f)) — R(m) = Z kil

then k; > 0.
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Proof. From the commutative digram

— 4

[

R+——R

1 — U

we know (t)~ (u%)S, the reduced ramification index e(§A) = 7 So, if (1) is
proved, plus lemma 1.2, (2) is clear.

mg is generated by £ and u with rot% = aou®, ry and ag are also units of S.
Let sg = ro-lao, then
&

U

Lo )

(—)" =30, inQ(S)

it

Soy = € S since S is the integral closure of S in Q(S). If S} denotes the
localization of § [y] at mz N S[y], where S[y] denotes the algebra generated by y
and S in S, then mg, = (£)S; and S| is already a discrete valuation ring in Q(S).
So § = S}, which implies

Q15/5 S dy /s(y)
By uy = t%, we have “d§/s(y) =0, so

r(85) S vglu) =ei =

From y% = sq, we know b;y®~ ld§/s( ) =0. If ptb;, then
biytiT! ¢ mg, and le"/s =0
So r(58) = b, we have proved the lemma.
Theorem 2.1. If 7 is a semi-stablizer of degree A, then
wi/ﬁ < ,\w\/B degf,.w\/B Adeg fuwx /B
Proof. Since ¢*(Q}Y\//}§) is invertible, by lemma 2.1, we have
$" (7)) = (6" Q/p)"Y
From lemma 2.2,
(¢ QY/B)VV = QI\V;/B Boy, F(X1/X)VY

Let U = X, — {singularities of X}, then, on U, QIXV;’B and F(X,;/X)VV are in-
vertible such that

Pwy/p = wy, /8 ®ox, Ox, (Z k&) onU

=1
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So there exists a divisor Dy on Xy and m2(D;) = closed points on X; such that

Prwx/p Zwy, 5O 0x, (D1 + Z kiT;)

1=1

where ¢ = ¢ - m and we still use I['; to denote the strict image of I'; on X3. Let
Kx/pand Ky, /B denote the weil divisors of wy,p and w /B we forget the metric
this moment, thus

‘P*A’X/B = I‘i}(,/ﬁ + Z kiTi + Dy
i=1
we claim Dy > 0, in fact, let Dy = D{ — DY, where D] > 0 and DY > 0 have no
common components. If DY > 0, then there is an irreducible component I' of DY
such that ' D} < 0 since (DY)? < 0, which implies

0=T¢'Kxp=TKy 5+I ) kI:+TDj-TDf

i=1

i.e., I‘I{X2/§ < 0, it is impossible since m is the minimal desingularization of Xj.
On the other hand, '
I‘Xg/ﬁ = ptfi"\':/g + Dy

D, > 0 is composed by (—1)-curves. Let

V=D1+D2+Zkiri

i=1
then V is an effective vertical divisor on \» and

,\’l/é = 0x,(V)

(2.1) w'wx/B Qoy, p'w

Now we suppose wx/pg, wy, /B and wg /B have the metrics such that the residue
maps (we only write out for X/B the other is same)

L]

(U, /x, ® O, (P))|p =

are isometric for all infinit places v and points P (see [2] and [5] for the detail).
Since

* 1 *
¥ w_\(/3|w = Q,\'QM/LW =p w,{’/ﬁ'w

for all infinit places w of L, we know that the isomorphism (2.1) is an isometric
if we give the trivial metric on Oyx,(V). So we have (in the sense of Arakelov
intersection)

’\I{?\’/B — I\—‘%:/g = V(p‘[‘f‘\'/s + Vp‘f\’f/‘g

where K y;p and K5 /B denote the Arakelov divisors of wx,p and wy /B Let

C= (V QD'IX'X/B +V p*Ii-j:/ﬁ)

> | -
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then C > 0, since V is an effective vertical divisor. So the first inequality is proved.
By p‘w-?lﬁ — @'wx/p, we have

f*w’_f('/ﬁ = f2*P‘w,\7/§ = fz*‘P*WX/B = ﬂ"f*wx/g

which proves the second inequality. Since both sheaves are the same at the infinit
places, the inequality has nothing to do with metric. We complete the proof of
theorem 2.1.

Remark 2.1. If C = 0, e, ’\K?{/B = K?”(/E’ then Dy = 0 (X, s minimal),
X1 has only rational double points and k; = 0, t.e., (r; — 1)%._'L < 0, which implies
ri < 1. So b; = m(C;) can not be a multiple of the characteristic of k(f(C:))
(otherwise r; > b; by the lemma 1.2), but this implies r(§5) = 0 by the lemma 2.9,
so R(f) =0, i.e., all the fibres of X/B are reduced. Clearly, the converse is also
true. Thus C = 0 if and only if all the fibres of X/B are reduced, X; has only
rational double points and X, is minimal.
Corollary 2.1. If X/B is a regular arithmetic surface of genus g, then

(1) wi/p 20

(2) there ezists a constant 0 < C < w?wB such that

4g(g - 1)

for any effective Arakelov divisor.

wx/pD 2>

Proof. Fix a semi-stablizer 7 of degree A, let C be the constant such that

then, by the result of [2] and our theorem 2.1, “’,ZY/B > 0 and
wi/p=0 = w?-\-,/g =0,C=0
For any effective divisor D (we can suppose D is an irreducible horizontal divisor),
we have
¢rwx/pp'D = plwg g’ D+ Ve D 2 wg gpay™ D

Since X /B is semi-stable, by the result of {2], we get

2

Y38

X/ .

Awx/pD > @G—_—l)degtp D

By the definition of C', we have
2
wy,p—C

wx/pD 2 4—g(fg—_T)d69(D)
and

wg(/B—C=0 = w??/§=0
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Remark 2.2. Some other results of arithmetic surface in the semi-stable case can
also be generalized to nonsemi-stable case, but we omit here. For ezample, the
theorem 8 of C. Soule in [6] and some results of Bost, J.-B. in [1]. It would be
interesting to give a detail description of C, which need to study the singularities
produced by base eztension. A more general question is to study the finit ramification
coverings of a two dimensional regular scheme and to understand the relations
between the singlarities of the finit covering and the singularities of the branch
locus (the tmage of ramification dzvzsor} We hope to come to these problems again
in the other occasion.

Corollary 2.2. Let X/Z = ProjZ[(XY Z]/(X?P +Y? —ZP) and 7 : B - Z a
semi-stablizer of degree A\. Then

. 1
K%z 2 X“"i’{/s +(-1({p-3)

In particular,
E%;z2(p-1)(p-3)

Proof. X/Z has only one singular fibre F" at p, F' = pC. From the proof of theorem
2.1, we have

AK% )z - I\:’\,/B > ¢"Kx/z(¢*R(f) — R(m1))

Now the local equation of C is u = z + y — 1 (we consider the affine case) and

QL _ ZIX Y)dX + Z[X Y]dY
XIZ = (pXp=1dX + pYP=1dY)Z[X Y]

Thus
Fi(Q%/z) = (pz®™, py* ') Zlz y]

which implies
r(CF(C)) = p+ min (vw(z"™"), v (¥ ™))

where v(,) denotes the valuation determined by local ring Z[z y](4). But z +y =
1+ u, so z and y can not belong to (u) at the same time, i.e., r(Cf(C)) = p. Hence

¢"R(f) — R(m1) 2 ¢*((p - 1)C)

and

AR = L% - AMp — 1)K y/zC

But Kx/zC = ;Kx/2F = 29;—? = p — 3, we have

K \/Z> \I\\/B (p—1)(p-3)

which complete the proof of corollary.
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Remark 2.3. It is easy to see our lemma 2.8. (2) means M Kg,5— Ky, 518 an
effective divisor on the reqular part of X,. In fact, our theorem 2.1 holds for any
base extensions once we know this fact. Professor E. Kunz told me in a letter that
it can be proved by the theory of regular differential forms and WfI{X/E - KX,/E
13 the conductor of my. Thus the lemma 2.9 tell us that if m(C;) is not a multiple
of the characteristic of k(f(C;)) (for ezample, the case of characteristic zero), the
conductor of m 13 ¢*R(f). In fact, in this case, we can prove lemma 2.8 for
any base eztension (X, may have multiple fibres). A question is to determine the
conductor of m; by R(f) and R(f1) in general case and to prove r(§5) = 0 when

plb; in lemma 2.8, or give an ezample in which r(gS) # 0.

With this remark in mind, we complete the paper by a generalization of S.Zhang’s
result. The theorem of S.Zhang said: If X/B is semi-stable and not smooth of genus
g > 2, then “".%(/B > 0 (see [7] or [9]). We remove the restriction of semi-stable as
the following

Corollary 2.3. If f : X — B s a regular arsthmetic surface of genus ¢ > 2 and
not smooth, then “"%{/B > 0.

Proof. Let 7 be the base extension of X/B such that }?/E is semstable. By

our Remark 2.1, wﬁ(/B = 0 if and only if C = 0 and w}/-é = 0, which implies

X = X, is smooth over B by Zhang’s theorem. So X; = X, (otherwise, X;/B
will have a singular fibre with two irreducible components at least). Since X is
regular, the conductor ideal sheaf of m; is locally principle, i.e. an invertible sheaf,
whose divisor is ¢*R(f) by our lemma 2.3, which is zero since all of the fibres of

X/B are reducible. Thus X; = X = X xp Bis smooth, that 1s, the support of

FI(Q}(/g = piF1(Q%, ) is empty. It is impossible since X/B is not smooth and

1 iS ﬂat.
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