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Introduction Let k and N be positive integers such that N is just divided by
4 and x an even quadratic character modulo N.

In the previous paper [U2|, we established a complete theory of newforms of
Kohnen space S(k +1/2, N, x) . That is the following, '

First of all, we defined the subspace of oldforms” O{k +1/2, N,%)k in ferms of °
Kohnen spaces of lower levels and standard operators like twisting operators, shift
operators, and etc. (cf. [U2, (3.7)]).

We denote by M(k+1/2, N, x)k the orthogonal complement of O(k+1/2, N, x)x
in Kohnen space S(k +1/2, N, x), with respect to the Petersson inner product.
Put IT := {odd prime divisor p of N such that p?|N}. M(k + 1/2, N, x)k is fixed

by the twisting operator Ry: 3 5 a(n)e(nz) — 3 5 a(n) (%) e(nz) for any

p € II. Hence, we can decompose M(k +1/2, N, x)x into common eigen subspaces
on these twisting operators.

Nk+1/2,N, X))k = & Ne~(k+1/2,N,X)k »
xEMap(MT,{£1})

NP (k+1/2,N,X)k = {f € Mk +1/2,N,x)x ; fIR, = r(p)f (pe M)}.

We called these subspaces M*(k +1/2, N, x) x the space of newforms for Kohnen
spaces.

These M8~ (k + 1/2, N, x) i satisfies the Strong Multiplicity One theorem and
moreover we have an embedding as modules over Hecke algebra: (cf.[U2, §3]) '
(0.1) = (k +1/2, N, x)x — S°(2k, N/4) .

Here, S%(2k, N/4) is the space of newforms of weight 2k and of level N/4.

We can give also explicit and exact expression of the image of this embedding.
See [U2, (2.28) and (3.7)] for the details.

The purpose of this paper is some refinements of these previous works.

In the image of the above embedding (0.1), we have many liftings of cusp forms
of lower levels by twisting operators. These liftings can be considered that is not
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really new. We shall find the subspace of M%*(k 4 1/2, N, x)x which corresponds
to the spaces of ‘really new’ cusp forms.

We shall make a precise statement.

(0.2) Definition (cf. [Ul, Appendix]) Let M be an odd positive integer and denote
by v, := ordp(M) the p-adic additive valuation of M for any prime p.
Put Q := {p| ordp(M) > 1} and Q3 := {p | ordp(M) = 2}. Define

§2kM)= . S° (%, II p"er) IRaic

Q=A+B+C peQ—(B+C)  p€eB
Ia7A

where A + B + C etc. means the disjoint union of A, B, and C (cf. below §0).
The above sum is extended over all partitions 3 = A+ B + C with Q; # A
Rpic = [l ep+c Bp is the twisting operator of [{ . p .~ (;).

We define S*(2k, M) by the orthogonal complement of S?(2k, M) in S°(2k, M)
with respect to the Petersson inner product. We shall call this space S*(2k, M) the

» ~gpace-of -very-newforms of-weight-2k-and-of-level -M.--Also-we.shall call-any-element - -

in S*(2k, M) a very-newform of weight 2k and of level M.
Under these notation, we set the following definitions.

(0.3) Definition Suppose that ord;(N) = 2 and put M := N/4. M is an odd
integer. We define the subspace O*(k +1/2, N, x)x as follows:
[The case of k > 2] ‘ '

D'+ NX)x= 3. S S(k+1/2,4B,6) 5a
0<B|M 0<A|(M/B)
BEM  g(A)=y

+ >y S(k+1/2,4B,€) 4 |[U(A)Ry .

0<B|M 0<A|(M/B)* &.¢
B#M €(4)¢*=x
[The case of k = 1]

O'(3/2, N, x)k = Y Y V@B;&)klba
0<BIM O<AI(M/B)
B£EM (&)=

+ > D> V(4B;€) [U(A)Rg .

0<B|M o< A{(M/B)? £,¢
BEM {(M/B) .f(é)qb’:x

Here, ¢ and ¢ in the 5 ¢  runs over the following set:
#*=x

e(f)

(€,¢) ; € is an even (quadratic) character defined modulo 4B,
¢ is a primitive character modulo f(¢),¢* = 1,{(#)llr := [T e P,
¢ (é) $? = x as characters modulo N
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See [U1, §0 and §1] for the definition of the space V(4B;€),. The operator §a,
the shift operator U(A), and the twisting operator Ry are deﬁned as follows: For

f Zn>l a(n)e(nz):
(F1a)(2) = A3 (Az), (FIU(ANz) =) a(An)e(n2)

n>1

(fIRg)(2) = _ a(n)p(n)e(nz) .

n>1

This space O*(k +1/2, N, X)k is a subspace of Kohnen space S(k +1/2, N, X)x
We denote by M*(k+1/2, N, x)k the orthogonal complement of O*(k+1/2, N, x)k
in S(k+1/2,N,x) g

Remark. The definition of O*(k + 1/2, N,x)k is much simpler than those
of O(k +1/2,N,x)x ([U2, (3.7)]). We shall give a more simplified definition of
O(k+1/2,N, x)k in the section 3. See below (3.7).

This orthogonal complement 9* (k+1/2, N, x) k is stable by the twisting operator

R, = R(_) for any prime p € JI. Hence we can decompose this space into common
: B i PR .
eigen subspaces.

N*(k+1/2, N, x)k = b  tk+1/2,N,0)x,
~EMap(J7,{£1})

Mk +1/2, N, x)x = {f € W (k+1/2, N,k 5 fIBy = s(p)f (p€ )} .
Here I7 := {odd prime divisor p of N such that p?|M}. O
Main purpose of this paper is to prove the following theorem.

Main Theorem. Let the notation be the same as the above. Suppose the following
condition (cf. below (2.19)).

(0.4) Xp =1 for any p € IT such that ord,(M) = 2 and p = 3 (mod 4).

Then the subspaces 9**(k+1/2, N, x)k have the following nice properties (1)-(4).

(1) M*~(k+1/2, N, x)k has an orthogonal C-basis consisting of common eigen-

forms for all Hecke operators Tk+1/2 Nx(P?) (pprime, pfM) and U(p?) (p:prime,
p | M) which are uniquely determined up to multiplication by non-zero complex
numbers. Let f be such a common eigenform and A, the eigenvalue of f with

respect to Tk+1/2'N.x(p2) (p/M) resp. U(p?) (p|M). Then there exist a primitive
(very-new)form F' € S*(2k, M) of weight 2k and of conductor M which is uniquely
determined and satisfies the following: For a prime p,

FiTupm(p) = NF £(p,M)=1 and FlU(p)=A\F if plM.

Furthermore we can explicitly find which primitive form occurs via the above cor-
respondence. See the trace relation (2.21-22) for the details of these.

(2) (The Strong Multiplicity One Theorem)
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Let f, g be two non-zero elements of M**(k + 1/2, N, x)x and A a non-zero
integer. Suppose that f and g are common eigenforms of all Ty, 2.8 x(P?) (o
prime and (p, A) = 1)} with the same system of eigenvalues. Then Cf = Cy.

Therefore from (1) and this, we have an embedding as modules over (abstract)
Hecke algebra H:

N (k+1/2,N,x)x — S*(2k, M) .

Here, (abstract) Hecke algebra H means the commutative algebra generated by all
double cosets: (M) (8 3) Do(M), ald, (a,M) =1, a,d € Z;. See {M, §4.5] for
the details. .

H operates on S(2k, M) via the Hecke operators T2k ar(n) and U(p) and also on
N*<(k+1/2, N, x)x via Tip1/2,n,(n?) and U(p?). See [N] for the detail.

(3) The space of oldforms O*(k + 1/2, N, x)x has also an orthogonal C-basis
consisting of common eigenforms for all operators T, /2,8 (%) (p:prime, p[N).
The system of eigenvalues of such a common eigenform corresponds to a primitive
form F' of weight 2k either whose conductor is a divisor of M less than M or
F € §%(2k, M), ie., F is not a very-newform but a primitive form of conductor M.

(e below(313),7(3'5); and U2,7(3:5))). T T ' B

(4) The space of oldform O*(k + 1/2, N, x)k is generated by cusp forms of
lower level. Hence, by induction, we see that the Kohnen spaces S(k + 1/2, N, x) g,
V(N; x) g are reconstructed by the spaces of type of M**(k+1/2,4B,&)x of lower
level and the operators of type of 64, U(A), and Ry.

From the above definition, 84, U (A), and Ry (almost) preserve Fourier co-
efficients of cusp forms. Hence for studying Fourier coefficients of cusp forms
€ S(k+1/2,N,x)g or V(N;X), it is sufficient to study cusp forms only in the
spaces of newforms 9*"(k+1/2, N, x)x. 0O

Finally the author has some comments about the condition (0.4).

(i) If x = 1, the condition (0.4) is always satisfied for any level M. In this
case, we obtain the following embedding for any odd positive integer M and any
k € Map(/7, {*1}),

Nk +1/2,4M, 1)k — S*(2k, M) .

(ii) If we do not assume the condition (0.4), we have examples to which we cannot
apply the method of this paper. See example (3.8) below.

This paper is composed as follows: §0 is notational preliminaries. In §1, we
collect technical proposition used in later sections. In §2, we shall explicitly find
the space corresponding to the space of very-newforms. In §3, we shall prove the
Main Theorem. Moreover, we shall give a simplification of expression formula (or
definition) of O(k+1/2, N, x ) in the formulation of theory of newforms [U2, (3.7)].

The author wrote this paper during he was staying at Max-Planck-Institut. The
author would like to express his hearty thanks to Max-Planck-Institut and its staff
for their warm hospitality. The author would like to express hearty thanks also to
Professor D. Zagier for his suggestion. That is the motivation of this paper.
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§0. Notational Preliminary. Throughout this paper, we shall keep to the
notation in the previous papers [U1] and [U2]. See [U1, §0, §1} and [U2, §1] for the
details. In particular, we shall use the following.

Let A, B be subsets of a set X and { A;}ics a family of subsets of X. If AUB is
a disjoint union, then we denote A+ B := AU B for simplicity. Similarly, if U;c; 4;
is a disjoint union, then we denote } ;. ; A; := UjerA;.

Let A be a finite set of prime numbers and (o, )pe 4 @ system of integers. We put
the following notation: A(a);:={p€ A|ap =1} and A(a)iy. := {p€ A | ap > i}
for any i € Z. Also we set the notation:ls := [[ .4 P-

We denote the set of positive integers by Z..

Let p be a prime. We denote the additive p-adic valuation for any integer m by
ordy(m). (%) (a, b integers with (a,b) # (0,0)) means the Kronecker symbol (cf.
[M p.82]).

Let k denote a non-negative integer. If 2 € C and z € C; we put 2* = exp(z -
log(z)) with log(z) = log(|z|) + vV—1arg(z), arg(z) being determined by —7 <
arg(z) < . Also we put e(z) = exp(2mv/—1z).

Let £ be the complex upper half plane. For a complex-valued function f(z) on.9,
= (cc‘ 3) € GLI(R),y= (. 7) € I'o(4) and z € $, we define functions J(a, z),

j(2) and fllali(z) on & by:J(a,2) = cz +d, 5(,2) = () 7% (2) (wz + 2)2
and fl[o]a(2) = (det @)*/2J (e, 2)* f(oxz).
For m € Z; we define a shift operator U(m) on formal power series in e(z) by

Za(n)e(nz)w(m) = Za(mn)e(nz) .

n>0 n>0

Let x be a Dirichlet character modulo N. We denote the conductor of x by f(x)
and the local p-primary component of x by x, for each prime divisor p of N.

Let V, V! be finite-dimensional vector spaces over C. We denote the trace of a
linear operator T on V by tr(T; V) and also the kernel of a linear map F from V'
to V/ by Ker(F; V). We denote the set of all mappings from a set A to a set B by
Map(A, B). Furthermore we use the abbreviated notation B4 (= Map(4, B)).

As for notations of modular forms, see [Ul, §0] and [U2, §1]. In particular, we
shall use the following.

Let k be a positive integer. Let N = 4M and M an odd natural number and let
x be an even character modulo N with x? = 1.
We define the Kohnen space S(k +1/2, N, x) as follows:

_ [ S(k+3,N,x) 3 f(2) = 2255, a(n)e(nz)
Sk+1/2, N, ) 1= { a(E'L) =0 for ;22(—1)(—1)‘“11 = 2,3 (mod 4) } ’

where . is the 2-primary component of .
In the case of weight 3/2, we define V(N;x) = V(N;x) NS(3/2, N, X) k-

These Kohnen spaces S(k+1/2, N, x); and V(INV; x), can be considered canon-
ical subspaces which correspond to the space of cusp forms of weight 2k and of odd
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level via Shimura correspondence. Therefore we can think these spaces are good
test cases for general theory of newforms of half-integral weight.

See [U1, §0, §1] for the details.

§1 Twisting operators.

Let k be positive integer and N a positive integer divisible by 4. Let x be an
even character modulo N with x? = 1.

Take a primitive character 1) module L. We define the twisting operator of 1,
say Ry, by the following:

Sk+1/2,N,x)> f= Z n)e(nz) — f|Ry = Za(n)w(n)e(nz) :

n>1 n>1

We can express this operator as follows: For f € S(k+1/2, N, x),

(L.1) Ry =s@)™ S wmA((E7).1)

m mod L

- « = ~Here;g(¥) is-the gauss-sumrof Pyice. ;g ()= Ly (E)e(i/ L).
We impose the following assumption on % from now on until the end of this
paper.
(1.2) Assumption. % is a primitive character such that ¢* = 1. It’s conductor
L :=f(¢) is odd and LZ%|N.
Remark. It follows from this assumption that L = f(3) divides I. See the
introduction and §1 as for the definition of I7 and ij.

From this assumption and [Sh, Lemma (3.6)], the map f + f|R, define an
operator from S(k +1/2, N, x) to S(k+1/2,N, x¥?).

We collect several propositions on twisting operators. We shall use them in the
following sectioms.

(1.3) Proposition. Let ¥ be the same as above. Let f € S(k+1/2,N, x). For
any n € Zy with (n,N) =1,

FIRe T ja, v w3 (n?) = %(n®) fITi1/2,8 x (R*) Ry .

Proof. For any m € Zy., put {(m) := ((é‘ 'z) ,1) and 7(m) = ((1 0 ) ,mk+1/2).

0m?

From the definition, Hecke operators are linear combinations of finitely many
operators of the following type: [Agr(n)Ao] and [Ayr(n)Ag) (n € Zy, (n,N) = 1).
Here, Ag := Ag(N, x) and A} := Ag(N, x¥?) (cf. [U2, §0(c)]).

We shall study a relation between the operators of these types and Ry.

Put Ag := 7(n)"1Aer(n) N Ap and A} := 7(n)~'A4r(n) N A). From easy
calculation, we have the following.

Bo={(r,x(@)i(n2)™+) 5 v=(24) € [o(N),6=0 (mod n?)} .
V=

By = { (n (@i, 2™+ 5 7= (24) € Lo(N),b=0 (mod n?)} .

(o]



Put H = {(Z 091 ) € SLQ(Z/TLZZ)}. This is a subgroup of SLy(Z/n?Z). For any
representative 17 € H\SL3(Z/n*Z), we take and fix an element 7/ € SL3(Z) such

that
10
¥ = (01) mod N ,
7 n mod n? .

Then we can chose a complete system of representatives:

B\ = (7, () &)i( D™+ ; 7€ B\SLo(Z/n?E)}
where d], is the (2,2)-entry of ;.

g . : a, b,
For simplicity, put 4}, 1= (v, (c?)(d})i (v}, 2)***1) and v, = ( I ) for
any 77. Then we have for any m, n € Z,. with (n,N) =1,
E(mn2)%§(mn2)—l = (7111 (X"b?)(d:}).?( e mnz/L)zk-’-l) J
al +mnc /L L7%{(d! - alYmn?L + ¥, L% — (mn?)3c.}
— [ %n " n "~ % 1 ]
where v, := ( ci’ 2 /L )

. We have.q,-€--Lo(N) because- L2|N and y (g,.‘i’.) -mod N> -We-have 4L2|c,,

and so (d,n—_nf,;lugjfj) = (ﬁg) ( e, c’ LS (d' _,?n/l(:f:, /L) = (cn%zlﬁ)) =

311:). Hence j(vy,2) = j(v,,z — mn?/L).

Since ¥* = (x®¥?)? = 1, both conductors f(¥?) and f(x%?) are divisors of
2or2 (M) Myl yr. From ¢, = 0 (N) and L?|N, ¢/,/L =0 (mod 2°*N) Myip).

From these and the assumption, dj, = 1 (mod N), (x4*)(d,) = (x¥*)(d;, —
mn?c; /L) and ¢*(d; — mn?c, /L) = ¥*(d;) = 1. Hence (x®?)(d}) = x(dj, —
mn?c,/L).

Therefore

n

E(mn®)7,E(mn?)™t = (v, x(dy)i(, )1,
where d, is the (2,2)-entry of ,,.
We also have the following.

_ { L mn? L mnd -1 L O Lo -1 _ _ )
’Yn—(o L)'Y:w(o L) ( )"/,’7( ) “ﬂ,:n (mod n*) .
Hence the set {f(mnz)%g(mn2)—l ; 1 € H\SL2(Z/n*Z)} becomes a complete

system of representatives of /SO\AO.
From the above, for any f € S(k+1/2, N, x),

8(v )fIRw [Bor(m)AY = > B(m)flE(m)r(n),
Fn€A5\40
m mod L

= Y Bm)fir®) (Emn)FEmn?) ") E(mn?)

Fp,m mod L

= 3 Bm) (fl1dor(n)Ad]) Je(mn?)

m mod L

= g(¥)¥(n?)f| [AGT(H)AO] Ry ,
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The assertion follows from this, the definition.of Hecke operators [U2, §0(c)], and
Ypr=1 0

Remark. We can prove this relation without the assumption %* = 1. Of course,
we need to modify the definition of Hecke operators in the general case. [l

(1.4) Proposition. The mapping f — f|Ry maps the spaces S(k+1/2, N, x)g,
V(N;x), and V(N,X)g into the spaces S(k+1/2,N,x¥?) ., V(N;x¥?), and
V(N ; sz) K respectively.

Proof. For any f = Y . ,a(n)e(nz) € S(k+1/2,N,x)g, we have f|Ry =
> onx1 a(n)p(n)e(nz) € S(k+1/2,N, x¥?) ([Sh, Lemma(3.6)}).

From the assumption (1.2), we have x2 = (x%?)2. Hence by the definition of
Kohnen space [U2, §0(d)], we have the assertion for Kohnen space.

V(N x) has a C-basis consisting of common eigenforms on all Hecke operators
T(n?) = Ty/a N x(n?), (n, N) =1 (cf. (U2, §0(c))).

Take any form f in such a basis. The system of eigenvalues of f on T(nz)
corresponds to a primitive (cusp) forms F of weight 2k (cf. [U2, (3.5)(2)]).

Suppose that f|Ry # 0. From the proposition (1.3), f|Ry is also a common

eigeriform on all'Heécke operators™T(n?) = Ty /2N g3 (12), (1, N) = 1.

Moreover its system of eigenvalues corresponds to a certain primitive (cusp) form
F' of weight 2k. In fact, let 9/ be the primitive character associated with 2. Then
we can take as F' the primitive (cusp) form associated with the cusp form F|Ry,
where Ry is the twisting operator of 3’ ([U2, §0(b)]).

Since the space U (N : X'(,Dz) corresponds to Eisenstein series via Shimura corre-
spondence (cf. [Ul, §0]), the form f|R, is orthogonal to the space U(N; X?,bz). O

(1.5) Proposition. Let ordy(N) = 2. Let [T be the same notation as in the intro-
duction and & € Map(/T,{£1}). If f|[Ry = 0 for f € &®~(k+1/2, N, x), then
f = 0. In other wards, the twisting operator Ry induces a C-linear isomorphism
from &% (k +1/2, N, x) onto &%<(k+1/2, N, x)x |Ry. Here, see [Ul, (3.5)] as
for the definition of the space G%*(k+1/2, N, x) k-

Proof. Take any non-zero form f = Zn21 a(n)e(nz) € &% (k+1/2,N,x)k-
Choose a number ng such that a(ng) # 0. Since f|R, = x(p)f any p € II, we have

a(ng) (%ﬂ) = k(p)a(ng). Hence (“—pﬂ) = +1 and so (ng,ln) = 1.
The conductor of ¢ is a divisor of /7 (cf. The remark after (1.2)). Hence, we have
¥(no) # 0. The ng-th Fourier coefficient of f|Ry is non-zero number a(ng)¥(no).

This means f|Ry #0. O

§2 The subspace corresponding to very-newforms.

In this section, we shall find the subspace of M?*(k+1/2, N, x)x which corre-
sponds to the space of very-newforms of weight 2k.

We shall study only Kohnen space in the following two sections. Hence, we
assume that ordy(N) = 2 from now on until the end of the paper.

We keep to the notation and the assumption in §0, §1, and [U2,80,82]. See
those for the details of the definitions and notations. In particular, we shall use
the following notations throughout this paper: Let denote M := N/4. M is an
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odd integer. IT := {prime number such that p?|M} v, = -ord,(N) and M, :=
HP|M,vp:=1 p, May = HP’IM .

(2.1) Notation. Let D and E be subsets of [T(v), := {p € IT | v, = 2} (cf. §0)
satisfying the following conditions:

(i) DNE=9.
(i) p=1(mod4) forallpe D+E.

Put F:= IT — (D + E). We also set a system of integers (a}'%),¢r as follows:

0, ifpeD,
af'E =< 1, ifpeE,
vp, ifpeF.

We shortly denote these by (a), (cp) or oy ete. if any confusion does not occur.
For this (&), put Mz(a) := [, p*» and N(a) := 4M1M(a) Fix k € {£1}7 =
Map(/1,{£1}). O

"(2:2) Notation: Put ¥’ := X:Hpqu-Ew(E) = :’(‘“.HpeD+E5(§-) as character modulo
N. We decompose this }’ into characters modulo N as follows:

!
(2.3) X'=n1 5= (2) , = (E> , 0<ullp, 0 < |Milgsr.

This character 77/ can be defined modulo N(a). Hence we can define the space
NORIF (k + 172, N(a), 7))k ([U2, §3, (3.7)]), where &/|r = &|r -7 € {£1}F :=
Map(F,{£1}). O

From these spaces, we define a space as follows:

(2.4) CPE) = 3y~ mle(k11/2, N(a),n' )k |U (ua?) .

O<allp

We use the same notation B(*) as in the previous paper [U2, (2.2)] for the character
X' =X Tlpepss (5)- Then CPH C B@),
The space G%~'Ir (k: +1/2, N(a), 7]’) has a C-basis, say B,, consisting of com-

mon elgenforms for all Hecke operators T(n?), (n, N(a)) =1 ([U1, (3.11)]).
MO lr .= MO~Ir (k4-1/2, N(a), 7' )k is also fixed by all Hecke operators 1'(n?),
(n,N(a)) =1 ([U2, (2.28)]). Hence from the Strong Multiplicity One Theorem for

&0lr (k+1/2, M (o), ) . ([U1, (3.11)(2))), we can see that 91%I* has a C-basis
B, NN~lr,
(2.5) Claim. We have the following decomposition.

CPE) = & CfU(a?).

SE(By NN~ 1F ) U ()
0(0“[)

9



Proof of the claim. It is obvious that C(P+E) is generated by all elements in the
set {f|U(a?); f € (By NM®~17)|U(u), 0 < allp}. Linear independence of these
generators follows from (U2, (2.2-3)] for the character x/. [

For any element f € (B, NMN?<'IF)|U(x), we use the same notation B}“) as in
(U2, (2.5)]. We put

(2.6) cPF) = @ cflu(e® =B,

0<allp

where we shortly write (o) = (of'F). O
Hence, we can transfer the results on the space B;a) in {U2 §2] to the space

C}D’E) . In particular, we have the following:

(2.7) Proposition. (cf. [U2, (2.18)]) Let notation be the same as above. For any
f € By NI=IR)U ),

CiP BN esr-= B efm=-C fyslefy v
where pg € Map(D, C) is defined as follows.
po 1= k(p)gp, H¥p€Dand xp= (5);
-1, ifpe Dand xp =1,
and f,, is a non-zero common eigenform on all Yp’s (p|Milplg) satisfying

Ap, for all p|Mig;

Y, = =
Jol¥p = Cofoo s {po(p), for all p € D.

Here, A, is the eigen value of f on Y}, (cf. [U2, (2.19))).

Moreover f,,le # 0 if and only if f satisfies the following conditions:

(*) fIYp = k(p)gpf forallpe E and xp, = (5)

U

Take the element g € B, NMP~'lF such that f = g]U(u). Observing that U (u) is
injection on S (k +1/2,N(e) - Ip, 7 ) AL easily seen that f satisfies the condition
(x) & g satisfies the following condition (xx) ([U2, §2]):

(55) alwp = X (0)x(p)g forall p € F and xp = (5)

Here, we note x'(p) has the meaning because x;, = 1.

10



Let denote

m?;ﬂ‘lp = ‘ﬁg:{"IF (k + 1/2, N(a),'f]’)f(

h € MOFIF (k4 1/2, N(a), )k ;
hlw, = X/ (p)k(p)h forallp € E and x, = (;) .

We know glw, = g for any g € By N M®~Ir ([U1, (3.9) and (3.11)]). Hence,
{geB,yn MP<'lF . g satisfies the condition (*%)} becomes a C-basis of the space

(D,K.’h:-
o .

Hecke operators T(n?), (n, N) = 1 commute with the operators U(u), U(a2),
and ef. Hence, all of three forms g, f, and f,,|e}; are common eigenforms on
T'(n?%), (n, N) = 1 and all of them belong to the same system of eigenvalues.

From this, (2.8) For all n € Z, with (n,N) =1,

""'"tr(T(ng);‘G(‘D'E)l'e'fr) =tr| T(n?); - : @ - Cofarletr
FE(B NN IF)U(u), f:(3)

[
= tr| T(n?); EB ' Cyg

\ geB"/ﬂ‘ﬂa'“qF, g:(*)

= tr(T(n2); 701" (k + 1/2, N (), 1 )i )

Here, we use the Strong Multiplicity One theorem on GOx'Ir (k +1/2, N(a), 77’)K
at first equality ([U1, (3.11)(2)}). O

We choose and fix a primitive character ¢ := ¢p. g such that
(2.9) ¢* = ¢pyE° = H (-) :
pEDA+E P

Remark. This is possible because of the assumption (2.1)(ii). The conductor of ¢ is
[p4g. Of course, there exist many characters which satisfy the above condition. [

By using the twisting operator R4, we can construct a subspace of 9%(k
1/2) N) X)K .

(2.10) Proposition. Under the above notations, we have

CPBes Ryp,p © N (k+1/2,N,X)k .

Proof. We shall deal only with the case of k£ > 2. We can prbve the case of k=1
in the same way.

11



From the definition and [U2, (2.2)], C?®) C B{® C S(k+1/2,N,x') - Ap-
plying the twisting operator Ry to the both sides and using the proposition (1.4),
CPENRy C S(k+1/2,N,x' )i |Rs € S(k+1/2, N, x) . Hence,

CPB)es Ry = CPB)|Ryely CS(k+1/2,N, %) e =: S%"(k +1/2, N, X)k .

From the claim (2.5), C{?:®) has a C-basis consisting of common eigenform on
T(nz), (n, N) = 1. We take any such common eigenform h and a primitive form H
of weight 2k which corresponds to h in the sense of [Ul, (3.11)].

From [U2, (2.28)], the claim (2.5), and the Strong Multiplicity One theorem of
weight 2k, H € S°(2k, M, M{>) follows.

Suppose hlef; Ry # 0. Then we have isomorphism C Chlefy Ry. From this,
the proposition (1.3), and [U1, (A.5)],

(2.11)

tr(T(n?); Chlely Ry ) = (ID”E%;.(T(TE);cn) (LD+E)tr(T( );CH)
=tr(T'(n); CH|Rp+E) - |

Here, Rpyg = Hp€D+E R, is the twisting operator of (

1D+E). 0

From [A-L, p.228, Theorem 4.1, Corollary 4.1] and the definition of D and E,
H|RpyE € S°(2k, Milpy£* [l er p*?) = S°(2k, My M2y) = S°(2k, M). Hence, by
using [U1, (3.10)(1) and (2)], we can see hlef; Rg € GP=(k +1/2, N, X) -

Moreover, from [U2, (2.28)] and the Strong Multiplicity one theorem of weight
2k, hle§ Ry € MO~(k+1/2,N,x)k. If hlef; Ry = 0, the last relation trivially holds.
Therefore, we have C{P'%)|ef, Ry C 90*(k+1/2,N,x)x. O

From (1.3) and the results in [U1, §1], this subspace C(D'E)]eﬁ& is fixed
by all Hecke operators T(n2), (n,N) = 1. Moreover C(P:B)les, C B(@|ey, C
G2 (k+1/2, N, X' )k (U2, (2.4)]. Hence, we can get the following formula from
(1.5) and (2.8).

(2.12) For all n € Z4 with (n,N) =1,

tr(T(n?); €D e Ry ) = tr(( )’f“( %), C‘D'E’le?z)
- (l;s) ( (n?); 22 <l k4 1/2, N(a )n’)x) .

lp+e

O

We shall describe the right-hand side of the above in terms of cusp forms of
weight 2k.

Take any element g € B, NN®~'l7 and the primitive form G of weight 2k which
corresponds to ¢ in the sense of [U1, (3.11)]. Then we can get

12



(2.13)

“g satisfies the condition (#%)”

= QIU(pz) — _pk—lx/(p)n;(p)g for all p € E and XP = (5)
& GU®M) = Y ()sp)G forall pe E and x, = (5)

& GIW(p) = X' (p)k(p)G forallp€ E and xp = (5)

Here, we use [Ul, (3.9)], [U1, (3.11)], and [M, Cor.(4.6.18)] in turn. W (p) is the
Atkin-Lehner operator of weight 2k (cf. [U2, §0(b)]). O

Now, we shall express tr('f’(vv,g);‘.Tlg.);."‘"’IF (k+ 1/2,N(a),n’)x) in terms of the
traces of Hecke operators T(n) on spaces of cusp forms of weight 2k. We have the
expression formula [U2, (2.28)] of the trace on the space NO~I7 (k4-1/2, N (o), 7 )k
We shall transform this expression formula.

From (2.13), the space mlyle corresponds to all G’s which satisfy the last
condition of (2.13). We can take all these forms in the same way as in [U2, (2.21-
22)] by using [Ul, (A.2)(3) and (A.5)]. See [Ul, §4] and [U2, §2] for the detail of
transformations.

(2.14) For any n € Z,. prime to N{a),

tr (T(nz), ‘J‘[?;qu-‘(k + 1/2, N(Q), 77’);{)
- Z Z E,((a(Ia W, I+ J,(t|g,0)) X =

Flvla=I4+J+K  re{£1}”7
ae{£1}F—I+D

X tr (T(n); S*("")(Qk, Milgty H pv”)|RI+J) .

pEF~(I+J)

Here, the notations are as follows: F(v); := {p € F'| vy =2}, 3" p(u),= 144k IS the
sum extended over all partitions such that F(v), = I+J+K, a(l, J); is a constant
which has a value 0, 1, and v; (= ord;(N)) according to l € I, J, F — (I + J),
E'((e(I, IN), I+ J, (|F,0))’s are the constant determined by the table [U1, (2.22)],

7|F is the restriction of 7 to F, and £ := [[ ¢ p, gy, is defined by the following
table.
1+ 7(p), ifpe D,
ox=.— ) 1+1, ifp€ Fand xp, =1,
=

1+ X @)@ () Terss (), €p€Eand xp= (5)-
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We use the same notation S*(2k, N) (the space of very-newforms) as in the Intro-
duction (0.2). Then,

S‘(T’U)(2k;MllE+J H pvy)
pEF—(I+J)
f eS8 2k, Milpys Toer—(ren)P®) s
= fiWpo=1(p)f foral pell, :
fIR,W, =a(p)f|R, forallpe F—([+J)

R, is the twisting operator of (1—) U

14
Since (D -+ E)N (I +J) C (D + E)NF = 0, the twisting operator Rp. g gives
an isomorphism: S‘(T'c’)(Zk, Milgys HpeF—(I+J) P"?)|Riyy — S*(T’a)(Qk,MllE_l_J
[Ler—(reny PPN R4 p1E (cf. [UL, (A5)]).

From the formulae (2.12), (2.14), and [U1, (A.2)(1)}; we have the following.
(2.15) For all n € Z. such that (n,N) =1,

tr (T(nz); cP-E) le'},Ré)
=2 S (@, )+, (7)) X E

F(v)a=I+J+K TE{:l:l}n
Ué{il}n_(I+J+D+E)

x tr| T(n); S* ) (2k, Mylg.s I1 ") RrysapeE | -
peIll—(I4-J+D+E)

Here, 7| is the restriction of 7 to F. We use the relation: F— (I +J)=(D+E+
FY-(I+J+D+E)=0I0-(I+J+D+E) O

We shall compare this formula (2.15) with the formula [U2, (2.28)].

We have the following one-to-one correspondence between all partitions of F'(v),
and those of T(V)e: F(W)o=I+J+K—Hw);=D+0)+(E+J)+K.

By using this correspondence, the range of parameters in the formula (2.15)
is considered as a part of the range of parameters in [U2, (2.28)). Furthermore
the space S*(™9)(2k, Mylgyy [lren-(r4+v+p+r)P?)NRiyy4pyE) Occurs in com-
mon. Thus it is enough to compare the coefficients of the traces of T'(n) on this
spaces in both formulae.

Both coefficients are defined as products of local components on p € II. We shall
compare these local components. For simplicity, we put [ := D+1 and J:= E+J.
For p € E+ F, we can verify the following identity:

' U = (eI, TN, I+ J, (1]p,0)), ifp€eF,
(2.16) Ep((w({, N)p)y L+ J,(1,0)) = { _r . .
P P :g, ifpeE,

where the left-hand side is the constant, with respect to G%~(k 4+ 1/2, N, x) ¢ deter-
mined by the table [Ul, (2.22)]. The constant in the right-hand side =, ((a(Z, J):1),

14



I+J, (7|F,0)) is the coefficient in the expression formula [U2, (2.28)] for NnO~'le (ot
1/2,N(CE),T]’)K. ) .

These identities are easily verified, in case by case, from the following facts (1)-
(3):

(1) For any p € F, we have o(l, J), = v(1, j)p and 7, = X}, = Xp-

(2) We use the same notations P° and P! as in [Ul, §2] for any subset P of
II, ie, P°:={p€ P | xp = 1} and P! := {p € P | xp # 1}. Then we have
I —(I+J) + [+ =F'—T+N+{I+I)°+(D+E)°.

(3) v(l,J), =1forany p € E. »

Finally we shall consider the case of p € D. Then if 7(p) = —1, any identity

like (2.16) does not hold. However, since any prime p € D does not occurs in the
level Mil51],e—(745)P", the Atkin-Lehner operator W, must be the identity
1. Hence if 7(p) = —1, the space S"(T"’)(2k,Mllj HpeH—(T+.f) p“?) is equal to
{0}. Therefore without a loss of validity, we can exchange the coefficient = with

= ((v(, NI+ J, (1,0)) in such cases. Thus we can have the same identity as
(2.16).also in the case of pe D. O

From the above arguments, we obtain the following
(2.17) Proposition. For all n € Z,. such that (n, N) = 1, we have
tr (T(n2);c<D'E)|e';,R¢) S S = NI+ T (o)

Ov)=I+J+K  re(x1}
aG{:hl}n“(I"’j)

xtr(T(n);S*(T"’)(Qk,Mllj I p"’)IRm)-

pell—(I+J)

Here, 5 IT(vs)=F+J+K 1S the sum extended over all partitions I (n)=I+J+K
Moreover this expression formula is a part of the formula [U2, (2.28)(1)]. O

We shall study the subspace generated by all these subspaces C(P'®)|e®y Ry's.
We set the following notations.

(2.18) Definition. For any « € Map(/1, {£1}) = {:i:l}ﬁ,

M2* = N>~k +1/2, N, )k = Z’C(D’E’leﬁ& ’
D, FE

where the above sum Z'D g is the sum extended over all partitions [I(v); = D -+
E+Fsuchthat D+ E#fPandp=1 (mod4)forallpe D+ E.

This space 91> is a subspace of mm'“(k +1/2,N,x)x. We denote by ¥~ =
M**(k +1/2, N, x)x the orthogonal complement of M%* in MP*(k +1/2, N, x)x
with respect to the Petersson inner product. Therefore we have

N5 (k +1/2, N, x)x = R(k+1/2, N, X)x ® N (k +1/2, N, -
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From [Ul,Hp.146] and (1.3), both spaces M2* and M®* are fixed by all Hecke
operators Tiy1/2,8,x(n?), (n, N)=1. O

The aim of this paper is to find the subspace which corresponds to the space
of very-newforms of weight 2k. Unfortunately, we need the following condition in
order to obtain such resulits as yet.

(2.19) Condition (= the condition (0.4) in the Introduction).
Xp =1 for any p € II(v), such that p = 3 (mod 4).
In the end of the paper, we remark this topic and give some examples. [

Take any partition [7(v); = I +J + K and 7 € {+1}7, ¢ € {£1}77-U+J),
From [U2, (2.28)(1)], the Hecke submodule S*(™9)(2k, M, 1; pen—r+0P?)|Rivs
occurs in M= (k+1/2, N, x)x with the multiplicity Z((v(I, J);), I +J, (r,0)) (= 0,
or 1).

As for this, we can see the following proposition.

(2.20) Proposition. Let I, J, and (1, 0) be the same as above and suppose [ +J #
@. Under the condition (2.19), either the following (1) or (2) holds.

(1) E((w(I,In), I+ J,(r,0)) =0.

(2) The Hecke module S*")(2k, Myl; [T cr_(1+s) P*?)|Rrys occurs in the
space C()|e Ry and so in M>*(k+1/2, N, x)x-

Proof. We assume that the statement (1) does not hold good. Then we have
Z((wI,In), I+ J,(r,0))=1

Suppose that there exists p € [+J such that p = 3 (mod 4). From the definition,

v(I,J)p =0, or 1. Moreover from the condition (2.19), x, = 1. Hence, this prime p
belongs to the case of Q9 +QQ in the table (U1, (2.22)]. Therefore, =((v(I, J)i1),I+

J(r,0)) = 4 (1 + (;pl-)) = 0. This is contradiction to the assumption. Thus
p = 1(mod 4) for any p € I + J.

From this, / and J satisfy the conditions (i)-(ii) of (2.1). Hence we can de-
fine CU+)le%, Ry. The space S*(79)(2k, M1, Mpermr—(r4+0) P77 )| Rr4s occurs in the
expression formula (2.17) of CU)|el Ry as the case of the partition IT(v); =
I+J+(II{v),-(1+J)). O

From this proposition and the formula (2.17), we have the following formula.

(2.21) Proposition. Let the notation be same as above. Under the condition
(2.19), we have the following expressions.

(1) Foralln e Z,, (n,N) =1,
tr(ﬁf‘(nz);‘ﬁz"‘(k+1/2,N,x)K)

= Z Z =((v,In), I+ J,(1,0))

Ov)a=I+J+K  re{£1}7
I+J¢0 ae{il}n-(!‘hf)

xtr(T(n);S"(T"’)(%,MllJ 1T p”")]RI.H).

pEM—(I+J)
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(2) Foralln € Z,, (n,N) =1,

e(TEBR k412N 0x) = S S o)te(T(w): S22k, b)) |
T,0€{£1}7

Here, the coefficients Z(7, o) := [ oy Ep(7, 0) is determined by the following table.
(2.22) Table. '

2 x Ep(T,0)
(1+7(p), ' if vp := ord,(V) is even and x, = 1,

=1 if v i = (-
1+ ( ) a(p), if v, is even and x, (p),
= 1+ x(p) (?1) T(p) Hpgéqm xq(D), if vy is odd and xp, = 1,

| 1+ x(p) (71)‘: B o(P) 1,245 Xa(P), if vp is odd and x, = (;).

O

The space 0= (k 4+ 1/2, N, x)k satisfies the Strong Multiplicity One theorem
(U2, (3.7)(2)] and M**(k + 1/2, N, x)k is its Hecke submodule. Hence, from [U2,
(2.28)(2-3)], we have the following results.

(2.23) Proposition. (1) 1""*(k+1/2, N, x) has an orthogonal C-basis consisting
of common eigenforms for all Hecke operators Tj.i.1/2 v,y (p?) (p:prime, pfM) and

U(p?) (p:prime, p|M) which are uniquely determined up to multiplication by non-
zero complex numbers. Let f be such a common eigenform and A, the eigenvalue
of f with respect to Tk+1/g,N1x(p2) (pJM) resp. U(p?) (p|M). Then there uniquely
exists a (very-new) primitive form F € S*(2k, M) of weight 2k and of conductor
M which satisfied F|T(p) = A F (p{M) and F|U(p) = A\ F (p|M).

(2) (the Strong Multiplicity One theorem) Let f, g € 9*~(k+1/2, N, X)k
be two non-zero common eigenforms of all Tk+1 /Q,N'x(pz), (p,A) = 1. Here, Ais
some positive integer. Then if f and g has the same system of eigenvalues on all

Tiy1/2,5,x(P%), (p, A) = 1, then Cf = Cyg.
~ (3) From the above, we can see that 9**(k + 1/2, N, x)x is embedded into
S*(2k, M) as module over Hecke algebra H (cf. Main theorem (2) in the Introduc-
tion). That is
M= (k+1/2,N,x)k — S*(2k, M) as module over Hecke algebra H.
We note that we already obtained (cf. [U2, (3.7)])
MO~ (k+1/2, N, x) i — S°(2k, M) as module over Hecke algebra H.
.

§3 Final results and remarks.
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We found the subspaces 91*%(k 4 1/2, N, x)k which correspond to the space of
very-newforms of weight 2k in the previous section. However, its definition is so
complicated. In this section, we shall give another much simpler definition of this
subspace and state the final formulation.

In the previous paper [U2, §3], we had given a similar result for the space of
newforms M (k 4 1/2, N, x)k. Also in this case, we shall give much simpler defi-
nition later. Moreover, we study some examples which do not satisfy the condition

(2.19).
We keep to the notation in §2.
(3.1) Definition.
N (k+1/2,N, 0k = P M (k+1/2,N,x)k .
rke{x1}?

Nk +1/2,N, )k = @ M (k+1/2,N,X)x .
N.E{:f:l}n

From now on, we shortly denote these by 91* := M*(k + 1/2, N, x)x and MN? :=

MN2(k +1/2, N,x)x. From the identity in (2.18) and [U2,7(3.2)], we have
We easily see that 91* is the orthogonal complement of M2 in 9(k+1/2, N, x)x. O

We shall use the same notations as in [U2] i.e., for any primitive (cusp) form F
of weight 2k,

. . 2N
S(k+1/2,N,x; Py o= {;; €S U2 N0 3 1T = AF(n)f} |

. JFEVIViX)k 5 fIT(?) = Ar(n)f
VIN, X F)g = {for allnE_ZI:., (n,N)=1 ) } '

Here, Ap(n) is the eigenvalue of F on T'(n) (n € N). O
We have the following proposition under the condition (2.19).

(3.3) Proposition. Under the condition (2.19}, we have the following decomposi-
tions.

(1) For k > 2, ‘
MW (k+1/2,N,x)k = @ Stk+1/2,N,x; F)g -
F:(x4) :
W(k+1/2,N,x)xk = @ Stk+1/2,N,x;F) .
F:(#5)
(2) For k =1,
N*3/2,N,X)xk = P VIV, x; F)g -
F:(#4)
M2(3/2, N, x)k = P V(N,x; F)i -
F:(*5)
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Here, (x4) and (*5) are the following conditions for. a prumtlve (cusp) forms F' of
weight 2k.

(¥4): F is a very-newform of conductor M (i.e., F' € S*(2k, M)).

(%3): F is a primitive form of conductor M, but is not a very-newform (i.e.,
F € 5%(2k, M)).

See (0.2) in the Introduction or [Ul, Appendix| for the definition of the notation
S*(2k, M) and S52(2k, M).

Proof. For simplicity, we deal only with the case of k > 2. We can also prove
the case of k = 1 in the same way.

Now we have the following: Both 91* and M2 have C-basis consisting of common
eigenforms on the Hecke operators T(n?), (n, N) = 1. Let f be any element in such
a basis. The system of eigenvalues of f corresponds to a primitive form F' of weight
2k. Moreover F' € S*(2k, M) if f € M*, resp. F' € S%(2k, M) if f € M2, All of these
follow from the trace relation (2.21). From these, M* C @p.(,4)S(k +1/2,N, x; F)
and M? C @p.(u5)S(k+1/2, N, x; F)g

We can easily see that “F' satisfies either (x¥4) or (x5)” if and only if “F satisfies
-- -« the .condition-(%2).in [U2;.(3.5)]... Hence-from- [U2, .(3.5)],-we. have

NN C P S(k+1/2,N,x; Fg =Nk +1/2,N,x)x =N &N2.
Fi(»2)

The assertion is easily deduced from this. [

We shall shortly denote the notation in [U2] as follows:
No=NE+1/2 N0k O =Ok+1/2,N,X)x
Hence, we have

S(k+1/2,N,X)g, fk>2] _ o ,
{V(N;X)K, fro1 (= Nt@P=N0N"0D.
It is easily shown that 91* becomes the orthogonal complement of N2 o).

We shall explicitly express this space 912 @ O in terms of classical spaces of cusp
forms of weight k 4+ 1/2.

(3.4) Definition. We put the notation D*(k +1/2, N, x)k as follows
[The case of k > 2]

O'k+1/2,N, k= 3. 5. Sk+1/2,4B,6)x o4
0<B|M 0<A|(M/B)
B#M E(A)ZX

+ 3 ¥ Z S(k+1/2,4B,8) [U(A)Ry
0SBIM o<al(m/B) &9

()’x
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[The case of k = 1]

O*3/2, N, X))k := Z Z V(4BQE)Kl5A
0<B|M 0<A|(M/B)
B#AM  ¢(4)=x

+ 3 3 Y VEBEIU(AR,.

0<B|M o<A|(M/B)? &¢
B#M €(4)4%=x

Here, M = N/4dand { and ¢ in the ) 4  runs over the following set:
£(A)p?=x

¢ is a primitive character modulo f(¢), ¢* = 1, {(¢)|Lm,

(€,¢) ; € is an even (quadratic) character defined modulo 4B,
€ (4) $? = x as characters modulo N

O

(3.5) Proposition. We have 91° @ © C ©*. Furthermore under the condition
(2.19), we have the identity: M2 O = O*. O

We shall prepare the following general claim.

(3.6) Claim. Notations are the same as above. Let p be a prime such that p?|M
and £ an even quadratic character modulo 4M/p. Then we have the following.
(1) For k£ > 2, '

S(k+1/2,4M/p,£) |Ry*
C Sk +1/2,4M/p,€) c + .S'(k +1/2,4M/p, € (3))K 15, .

(2) For k=1,
VEM/B &) 1Ry S VaM/p O +V (aM/me (2)) 16y

Proof of the claim. Take any f =} 5, a(n)e(nz) € S(k+1/2,4M/p,£) . We

easily see that (f|R,*)(2) = f(2) —p™*/2=2/* f|U(p)b,(2). From pl(M/p), fIU(p) €
S(k+1/2,4M/p,€ (B)) o (cf. [U1, §1]). The assertion (1) is easily deduced from
this. By using [U1, (1.23)], we can prove the assertion (2) in the same way. O

We return to the proof of the proposition (3.5).

Proof of (3.5). We shall prove only the case of k > 2. We can prove the case of
k=1 in the same way. '

[O C O*]. From the definitions of 2 and ©*, both first terms coincide with each
other. .

We shall consider the spaces in the second term of . Take any such a subspace:
S(k+1/2,4B,8) ; [U(A) [L,er Ri™. Here, 0 < B|M, B# M, 0 < A|(M/B)?, ¢ is
an even quadratic character such that ¢ (4) =yx,and 0< e <2 (l € ).
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Since 0 < B|M and B # M, there exists a prime divisor p of M such that
B|(M/p). We decompose A = A;1p°%, (p,A1)=1,a2>0.

Then 0 < A;|(M/p)?. Hence every prime divisor of A, is a divisor of M/p. From
these (cf. [U1, (1.22)]),

S(k+1/2,4B,6) \U(A) [] R™ € S(k+1/2,4M/p, ) U (AN (®) [ | R

lenr lerl

C S(k +1/2,4M/p, € (ﬂ))K @) [[ R

lell

We divides into two cases: ord,(M) = 1, or ord,(M) > 2 (& p € IT).
[The case ord,(M) = 1]. From [U1, (1.20)(2)}, U(p®) commutes with [],c ,; B

up to multiplication of complex numbers. Moreover since 1%|(M/p) for all [ € II,
R, fixes the space S(k +1/2,4M/p, ¢ (ﬁ))x. Hence, we have

S(k+1/2.48, 0100 [] e € S (k4 1/2,800/m,6 (2)) W06

leq

This last subspace contains in O*. In facts, from p®|A|(M/B)?, we can see a = 0,
1, 2. Hence, this subspace is the space in the second term of £D* whose parameter

is (M/p,p°,€ (#),1).
Therefore, in this case, we have S(k +1/2,4B, &) |[U(A) [L1e g B1* C O*.

[The case of ord,(M) > 2]. In this case, p|(M/p) and so every prime divisor of
A is also a divisor of M/p. Moreover, any twisting operator R; (p # [ € II) fixes
the space S(k+1/2,4M/p, x) . Hence,

Sk +1/2,4M/p,€) |U(A) [[ R € Stk +1/2,4M/p,x) | [ | Re®
lelr leny
C S(k+1/2,4M/p,x) IRy .
When e, is either 0 or 1, the last subspace is in the second term of ©O* whose
parameter is (M/p,1,x,1) or (M/p, 1, x, (;)) respectively.
Suppose e, = 2. From the claim (3.6),

S(k+1/2,4M/p,x) i |Rp> C S(k+1/2,4M/p,X) ¢ + .
S(k+ 1/2,4M/p, x (2>)K |5p .

The last subspace is a sum of the spaces in the first term of O* whose param-
eter are (M/p,1,x) and (M/p,1,x (B)). Therefore, also in this case, we have
S(k+1/2,4B,8) g |U(A)[L;ey i € O*. Thus we obtain that © C O*.

Remark. From the same argument as above, we can also get some simplification
of the definition of O* ([UZ2, (3.7)]). See the bellow (3.7).

N2 C D*]. 92 is generated by all subspaces C(D’E)]e’;TR¢D+E, where « runs
over all elements in {£1} and D, E runs over the subsets of I7(v), such that
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0 # D+ E and p=1 (mod 4) fora.llple D+ E. ¢ = ¢pyg is chosen in (2.9) with
respect to D and F.

For this D and E, we use the same notation (2.1-2) in §2: 7/, u, and a = af'E,
etc.. From the definitions of C{P+E) and eF, we have

é(D,E)|e7IR¢g D s(k+1/2,N(a),n’)KlU(ua2) (HRze‘)Rqs

0<allp 0<e<2 lerr
leIT

So, it is enough to study the space S(k +1/2, N(a),’q’)K |U (ua?) (Hleﬂ R;e‘) Rgy.

Since N(a) = 4Milg [[;cp 1™, there exists p € D + E such that N(a)[4M/p.
From p|{(M/p), we have '

S(k: +1/2, N(a),n’)K'W(uag) C S(k+1/2,4M/p, 1) ¢ U (ua?)

C S(k+1/2,4M/prf (7)) = S(k+1/2,4M/p,X ) |

where ¥’ = x (ln+s)'

We decompose the primitive character ¢ as follows: ¢ = ¢’ - ¢, ¢’ is the local
p-primary part of ¢. Under this notation, we have (cf. the proposition (1.4))

S(k+1/2,4M/p,1' ) |U (ue®) [] Ri** Ry
lelr

C S(k+1/2,4M/p, X ) | || R Ryrgn €S (k +1/2,4M/p, x (5»;( |Rp%% Ry

lerr

From a choice of ¢ = ¢pyr (cf. (2.9)), we have R, := R(_) = Ry? and so
P

Ry Ry = Rg*®P*!. Moreover we have Ry® = Ry because ¢/(n)® = ¢/(n) for
all n € Z. Then if e, is either 0 or 2, S(k+1/2,4M/p,x(5))K |Rp°* Ry =

S(k +1/2,4M/p, x (;))K |Rg:. This subspace is the space in the second term of
O* whose parameter is (M/p,1, x (2) =x ( ) @)

P
Let e, = 1. Denote the inverse character of ¢’ by #'. Then R¢:3 = Ry and
s0 S(k +1/2,4M/p, X (;))K R,% Ry = S(k +1/2,4M/p, x (;))K Ry This
subspace is the space in the second term of D* whose parameter is (M/p, 1, x (2),
@'). Thus we obtain that 912 C O and the first assertion is proved.

Next, we shall prove the opposite inclusion under the condition (2.19).

The first term of O* is equal to the first term of ©. It is enough to study the
second term of O*. Take any space S(k ++1/2,4B,£), |[U(A)R¢ in the second term
of O*. Since 0 < B|M and B # M, there exists a prime divisor p of M such that
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B{(M/p). We decompose A and ¢ as follows: A = A1p®, (A1,p) =1,0<a€Z
and ¢ = ¢'¢”, ¢ is the local p-primary component.

‘We shall divide the cases.

[The case of ord,(M) = 1]. In this case, we have (B, p) = 1 and p®|p?. Moreover
¢ can be defined modulo 4M/p because of I 7|(M/p).

It is easily seen from computation that U(p®) commute with R4 up to multipli-
cations of complex numbers.

Hence, S(k+1/2,4B,&), [U(A)Ry C S(k+1/2,4M/p,€ (£))  IU(p*)Ry C
S(k+ 1/2,4M/p,§ (41) ¢2)K [U(p®). This last space is the space in the second
term of O whose parameter is (M/p, p*, ¢ (&) %, (0)ierr)-

[The case of p?|M]. In this case, p|(M/p) and so all prime divisors of A are also
prime divisors of M/p. Hence,

S(k+1/2,4B,€), [U(A)Rs C S(k +1/2,4M/p, &) \U(A)Ry
cs (k +1/2,4M/p, ¢ (ﬁ) ¢"2) |Rgr = S(ic +1/2,4M/p, x¢’2)K |Rg: .

If ¢’ is of order either 1 or 2, this last space is the space in the second term of O
whose parameter is (M/p, 1,x¢'%, (0)temr) or (M/p, 1, x¢'2, (1, (0)1£p)) respectively.

Suppose the order of ¢ is 4. Then ¢/% = (;). S(k+ 1/2,4M/p, x (5))1{ has

a C-basis consisting of common eigenforms on T'(n?), (n, N) = 1.
Take and fix a form f from such a basis. If f|Rg = 0, we trivially see that
f|Rg € N?@O. Suppose that f|[Rg # 0. From [U2, (3.5)], there exists a primitive

form F of weight 2k such that f € S (k +1/2,4M/p, x (;) ; F)K and the conductor

of F'is a divisor of M/p.

From (1.3), f|Rg € S(k+1/2,N,x) becomes a common eigenform on T(n?),
(n, N) = 1 and moreover its system of eigenvalues is equal to those of F|R,. We
note that this cusp form F|R, is not always a primitive form. we divides the case.

[The case of p|M]. In this case, we have p?|(M/p) and so the space S(2k, M/p)
is fixed by the twisting operator R,. Hence, F|R, € S(2k, M/p). We denote by G
the primitive form corresponding to F'|R,. The conductor of G is a divisor of M /p.
Since f|Ry € S(k+1/2,N,x;G)g, it follows from [U2, (3.5)] that f|Ry € O.

[The case of ord, (M) = 2]. In this case ord,(M/p) = 1. Let M” be the conductor
of F. Since 0 < M"|(M/p), ord,(M") = 0 or 1. From the results of [A-L], we have
F|R, € S°(2k, M")|R, C 5°(2k, M") and so F|R,, is a primitive form. Here, M’ is
the least common multiplier of p? and M".

If M' < M, F|R, satisfies the condition (*3) in [U2, (3.5)]. Hence, f|Ry €
S(k+1/2,N,x; F|Rp) is contained in O.

If M' = M, F|R, € S?(2k, M) and so F|R, satisfies the condition (*5) in the
proposition (3.3). Hence, f|Ry € S(k+1/2, N, x; F|Rp) . is contained in 912.

Thus the assertion of the proposition is proved. [

Now, we can prove Main Theorem in the Introduction.
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Proof of Main Theorem. Assume the condition (2.19). From the above propo-
sition (3.5), we have D* = M? @ O. Hence N* is the orthogonal complement of O*
(cf. the remark before (3.4)). The statements (1) and (2) of Main Theorem follow
from the definition (3.1) and the proposition (2.23).

The statement (3) of Main Theorem follows from (3.3), (3.5), and [U2, (3.5)]. O

By using the argument in the proof of the proposition (3.5), we can give much
simpler expression of O 'and D*.

(3.7) Proposition. (1-1) A simpler expression of O: For k£ > 2,

o= 3 S(k+1/2,4B,6)8a

0<B|M 0<A|(M/B)
B#M  g(4)=y

+ > > Y S(k+1/2,4B,) U(A)Ry

0<B|M 0<A|(M/B)? ¢'=1
B#M

£(2)=x Hlin
o= D Sk +1/2,N/p, )y +S(k+1/2 N/p.x ( )) 1651
p|M
+ ) Sk+1/2,N/p, ) U@+ > S(k+1/2,N/p,x)k |Ryp .
p|Mi,e=1,2 peIl
E(":-)=x

(1-2) A simpler expression of ©: For k = 1,

9= Z Z V(4B;€)x 184

0<B|M 0<A|(M/B)

+ > Y. Y VEBOkIU(AR,

0<B|M 0<Al(M/B)? ¢3=1
B# g(A)=x f@®lin

=Y {vimxx+v(Nmx (), 16}

piM

+ > VIR U@+ Y VIN/BX) i | Ry -

p|M1,6=1,2 pEl
6(2‘:)=x

(2-1) A simpler expression of O*: For k > 2,

D‘=Z{S(k+1/2,N/p, X)x +S(k+1/2 N/p, x ( )) [&}

piM

+ Y S(k+1/2,N/p, ) U@+ Y. S(k+1/2,N/p,x$?) x | Rg.

plM1,a=1,2 pEM,d*=1
e(2)=x Hé)lp
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(2-2) A simpler expression of D*: For k=1,
o' = > (Vim0 +V(Nmx (B)) 15}

pIM

+ ), VIN/BOLIUE)+ D V(N/pixd®) Ry -
p|Mi,a=1,2 pEIl,¢*=1
f(Lo.)=x f(é)lp

Here, if x (resp. x (2)) cannot be defined modulo N/p, we consider that the
spaces S(k+1/2,N/p,x)x and V(N/p;x)g (resp. S(k +1/2,N/p, x (E))K and
' V(N/p',x (2))K) are equal to {0}.
Proof. We deal only with the case of £ > 2 because we can also prove the case
of k=1 in the same way.

The first term of © is equal to those of D* and it is

> > S(k+1/2,4B,8)k |84 .

0<B|M 0<A|(M/B)
B#M ,...E(A-)-—.-x

We divide the cases.

[The case of AB # M]. In this case, there exists a prime divisor p of M
such that AB|(M/p). Hence S(k+1/2,4B,€) 164 € S(k+1/2,4AB,£ (2)), C
S(k+1/2,N/p,x)k from [U1, (1.9)]. Here we must note the character x. If p*|M,
X can be defined modulo N/p. Otherwise if ord,(M) = 1, we have (p, M/p) =1
and so (p, AB) = 1. Hence from the relation £ (4) = X, we have x, = 1. Therefore
X can be defined modulo N/p also in this case.

[The case of AB = M]. In this case, from B # M, there exists a prime di-

visor p of M such that p|4. From [U1, (1.9)], we have S(k +1/2,4B,&), |64 C
S(k +1/2,N/p, € (M))K |Sp = S(k+ 1/2,N/p, x (E))K |5p. Here, we must note
the character x (2).

If p?|M, x can be defined modulo N/p. Otherwise if ord,(M) = 1, we have
(p, B) =1 and so {, = 1. From the relation x = § (ﬂ), we have xp, = (;). Hence,
X (P-) can be defined modulo N/p.

We easily make simplifications of the second terms of both O and O* in the same
way as in the proof of (3.5). After the above procedure, we may have the same
space from both the first term and the second term. In that case, we cut out such
a space from the second term. Thus we obtain the assertions. O

Finally, we give the simplest example which does not satisfy the condition (2.19).

(3.8) Example. Let p be an odd prime such that p = 3 (mod 4) and & € Z.
For any x € Map({p}, {£1}), we have the following isomorphism as modules over
Hecke algebra M (cf. [U2, (2.28)]).

(3.9) m@"‘(k+1/2,4p2, (E))K o S*((_I)k"")(Qk,pNRpEB @ S*(r.l)(gk’pz) .
re{x1}ir}
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Here, we use the fact that Atkin-Lehner operator is equal to 1 on S(2k,1).
Noting S*(2k, p) = S°(2k, p), we can give examples S*((-1)"%)(2k, p) # {0} for
some p, k, and &. Then we also have S*((_l)k"")(2k,p)|Rp # {0}.
There is no character of order 4 in the character group (Z/pZ)™. Hence, we can-

not construct the space corresponding to S *((‘l)k"")(2k, p)| R, by the same method
of the section 2.

I wonder that any form in this “bad”-part is of special type, for exa.mple a theta
series of special type. U
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