# THE DEGREE OF MAPS BETWEEN CERTAIN 6-MANIFOLDS 

Hans-Joachim Baues

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
53225 Bonn

Germany

# THE DEGREE OF MAPS BETWEEN CERTAIN 6-MANIFOLDS 

Hans-Joachim Baues


#### Abstract

For manifolds $M, M^{\prime}$ of the form $S^{2} \cup e^{4} \cup e^{6}$ we compute the homomorphisms $H_{*} M \rightarrow H_{*} M^{\prime}$ between homology groups which are realizable by a map $F: M \rightarrow M^{\prime}$.


For oriented compact closed manifolds $M, M^{\prime}$ of the same dimension the degree $d$ of a map $F: M \rightarrow M^{\prime}$ is defined by the equation

$$
F_{*}[M]=d \cdot\left[M^{\prime}\right]
$$

Here [ $M$ ] denotes the fundamental class of $M$. In a classical paper Hopf [ H ] considered such degrees. In this paper we compute all possible degrees of maps $M \rightarrow M^{\prime}$ where $M$ and $M^{\prime}$ are 6 -manifolds of the form $S^{2} \cup e^{4} \cup e^{6}$ and for which the cup square of a generator $x \in H^{2}$ is non trivial. For example for such a manifold $M$ the degrees of maps $M \rightarrow M$ are exactly the numbers $d=k^{3}, k \in \mathbb{Z}$. The result in this paper answers a question of A. Van de Ven. The author is grateful to Fang Fuquan for his remarks on Pontrjagin classes.

## § 1 Homotopy types of manifolds $S^{2} \cup e^{4} \cup e^{6}$ and degrees of maps

We consider closed differentiable manifolds $M$ of dimension 6 which are simply connected and for which the cohomology with integral coefficients satisfies

$$
H^{i}(M)= \begin{cases}\mathbb{Z} & \text { for } \quad i=0,2,4,6  \tag{1.1}\\ 0 & \text { otherwise }\end{cases}
$$

Moreover we assume that a generator $x$ of $H^{2}(M)$ has a non-trivial cup square $x \cup x \neq 0$. We choose a generator $y \in H^{4}(M)$ such that $x \cup x=m y$ where $m \in \mathbb{N}=\{1,2, \ldots$,$\} is a natural number; we also write m=m(M)$. Moreover let $w=w(M) \in \mathbb{Z} / 2$ be given by the second Stiefel-Whitney class. Then the Wu formulas show that $w(M)=0$ if and only if the Steenrod square

$$
\begin{equation*}
S q^{2}: H^{4}(M, \mathbb{Z} / 2)=\mathbb{Z} / 2 \rightarrow H^{6}(M, \mathbb{Z} / 2)=\mathbb{Z} / 2 \tag{1.2}
\end{equation*}
$$

is trivial so that (1.2) is determined by $w(M)$. Any manifold as in (1.1) admits a homotopy equivalence

[^0]\[

$$
\begin{equation*}
M \simeq S^{2} \cup_{g} e^{4} \cup_{f} e^{6} \tag{1.3}
\end{equation*}
$$

\]

where the attaching map $g$ represents $m \eta_{2} \in \pi_{3}\left(S^{2}\right)$. Here $\eta_{2}$ is the Hopf element which generates $\pi_{3}\left(S^{2}\right)=\mathbb{Z}$. Moreover the attaching map $f$ of the 6 -cell satisfies

$$
\begin{equation*}
q_{*} f=w \eta_{4} \in \pi_{5}\left(S^{4}\right) \quad \text { with } \quad w=w(M) \tag{1.4}
\end{equation*}
$$

where $q: S^{2} \cup_{g} e^{4} \rightarrow S^{2} \cup_{g} e^{4} / S^{2}=S^{4}$ is the quotient map. Here $\eta_{n}$ with $n \geq 3$ denotes the generator of $\pi_{n+1}\left(S^{n}\right)=\mathbb{Z} / 2$. Recall that $\pi_{6}\left(S^{3}\right)=\mathbb{Z} / 12$ so that $\pi_{6}\left(S^{3}\right) \otimes \mathbb{Z} / 4=\mathbb{Z} / 4$. We define subsets

$$
\left\{\begin{array}{lll}
\alpha(M) \subset \mathbb{Z} / 4 & \text { if } & w(M)=0  \tag{1.5}\\
\beta(M) \subset \mathbb{Z} / 4 & \text { if } & m(M) \quad \text { is even }
\end{array}\right.
$$

as follows. For $w(M)=0$ the suspension $\Sigma f$ of the attaching map in (1.3) admits up to homotopy a factorization

where $i$ is the inclusion. Then $\alpha(M)$ consists of all elements $f_{0} \otimes 1 \in \pi_{6}\left(S^{3}\right) \otimes \mathbb{Z} / 4$ for which (1.6) homotopy commutes, that is $i_{*} f_{0}=\Sigma f$ in $\pi_{6}\left(\Sigma\left(S^{2} \cup_{g} e^{4}\right)\right)$. Moreover if $m(M)$ is even then the inclusion $i: S^{3} \subset \Sigma\left(S^{2} U_{g} e^{4}\right)$ admits a retraction $r$. Let $\beta(M)$ be the set of all elements $(r \Sigma f) \otimes 1 \in \pi_{6}\left(S^{3}\right) \otimes \mathbb{E} / 4$ given by compositions

$$
\begin{equation*}
S^{6} \xrightarrow{\Sigma f} \Sigma\left(S^{2} \cup_{g} e^{4}\right) \xrightarrow{r} S^{3} \tag{1.7}
\end{equation*}
$$

where $r$ is any retraction of $i$. Let $i_{2}: \mathbb{Z} / 2 \subset \mathbb{Z} / 4$ be the inclusion which carries $1 \in \mathbb{Z} / 2$ to $2 \in \mathbb{Z} / 4$.
(1.8) Lemma. For $w(M)=0$ and $m(M)$ even the sets $\alpha(M)=\beta(M)$ coincide and consist of a single element in the image of $i_{2}$. In this case let $p(M) \in \mathbb{Z} / 2$ be given by

$$
i_{2} p(M)=\alpha(M)=\beta(M)
$$

Moreover we have

$$
\begin{array}{llll}
\alpha(M)=\{1,3\} & \text { if } \quad m(M) \equiv 1 \bmod 2 & \text { and } \quad & w(M)=0 \\
\beta(M)=\{1,3\} & \text { if } & m(M) \equiv 2 \bmod 4 & \text { and } \\
\beta(M)=\{0,2\} & \text { if } & m(M) \equiv 0 \bmod 4 & \text { and } \\
& w(M) \neq 0
\end{array}
$$

For $w(M)=0$ and $m(M)$ even the first Pontrjagin class $p_{1}(M) \in H^{4}(M)=\mathbb{Z}$ of $M$ is divisible by 8 and hence yields by reduction $\bmod 16$ an element in $\mathbb{Z} / 2$ denoted by $p_{1}^{\prime}(M) \in \mathbb{Z} / 2$; then we have in $\mathbb{Z} / 2$ the formula

$$
p(M)+p_{1}^{\prime}(M)=\{m(M) / 2\} \in \mathbb{Z} / 2
$$

so that the element $p(M)$ in (1.8) is also determined by the Pontrjagin class $p_{1}(M)$. For this compare theorem 4 and the proof of theorem 7 in $[\mathrm{W}]$ and $[\mathrm{Ya}]$. For $m \in \mathbb{N}$ and $w \in \mathbb{Z} / 2$ we define the group

$$
P(m, w)= \begin{cases}\mathbb{Z} / 2, & \text { if } m \text { even and } w=0 \\ 0, & \text { otherwise }\end{cases}
$$

(1.9) Proposition. The homotopy types of manifolds (or Poincaré complexes) which satisfy the conditions in (1.1) are in 1-1 correspondence with triples ( $m, w, p$ ) where $m \in \mathbb{N}, w \in \mathbb{Z} / 2$ and $p \in P(m, w)$ such that $m w=0$. The correspondence carries $M$ to the triple $(m(M), w(M), p(M))$ defined above.

In particular each such triple $(M, w, p)$ is realizable by a manifold as in (1.1) and the realization is unique up to homotopy equivalence. The case of Poincare complexes in (1.9) was proved by Unsöld [U] and by Yamaguchi [Y] and [Ya]. In fact, for Poincaré complexes proposition (1.9) can be easily derived from the proof of (1.12) below. In the case of manifolds we can use the result of Wall (theorem 8 in [W]) that each Poincaré complex with the properties in (1.1) is homotopy equivalent to a smooth manifold. Compare also the result of $\mathrm{Zubr}[\mathrm{Z}]$; according to the remark at the end of $[\mathrm{Z}]$ the results of Jupp [J] and Wall [W] on the homotopy classification of simply connected 6-manifold have to be modified.

We now are ready to discuss the possible degrees of maps $F: M \rightarrow M^{\prime}$ where $M$ and $M^{\prime}$ are manifolds as in (1) with generators $x \in H^{2}(M), x^{\prime} \in H^{2}\left(M^{\prime}\right)$. We say that $k \in \mathbb{Z}$ is $\left(M, M^{\prime}\right)$-realizable if there exists a continuous map $F: M \rightarrow M^{\prime}$ with $F^{*}\left(x^{\prime}\right)=k \cdot x$. Moreover we say that $k \in \mathbb{Z}$ is $\left(M, M^{\prime}\right)$-good if $k^{2} \cdot m(M)$ is divisible by $m\left(M^{\prime}\right)$ and if

$$
\begin{equation*}
w(M) \cdot \frac{k^{2} \cdot m(M)}{m\left(M^{\prime}\right)}=w\left(M^{\prime}\right) \cdot k \cdot \frac{k^{2} \cdot m(M)}{m\left(M^{\prime}\right)} \tag{1.10}
\end{equation*}
$$

holds in $\mathbb{Z} / 2$. One readily checks that any $k \in \mathbb{Z}$ which is ( $M, M^{\prime}$ ) -realizable is ( $M, M^{\prime}$ ) -good. We define the group

$$
G\left(M, M^{\prime}\right)=\left\{\begin{align*}
\mathbb{Z} / 2 & \text { if } w(M)=0 \text { and } m\left(M^{\prime}\right) \text { even }  \tag{1.11}\\
0 & \text { otherwise }
\end{align*}\right.
$$

Then we have the following result which completely determines all degrees $k$ which are ( $M, M^{\prime}$ ) -realizable.
(1.12) Theorem. Let $k \in \mathbb{Z}$ be ( $M, M^{\prime}$ ) -good then $k$ is ( $M, M^{\prime}$ ) -realizable if and only if an obstruction element

$$
\mathcal{O}\left(M, k, M^{\prime}\right) \in G\left(M, M^{\prime}\right)
$$

is trivial. For $w(M)=0$ and $m\left(M^{\prime}\right)$ even this obstruction element is given by the formula in $\mathbb{Z} / 4$

$$
i_{2} \mathcal{O}\left(M, k, M^{\prime}\right)=k\left(-\alpha+\frac{k^{2} \cdot m(M)}{m\left(M^{\prime}\right)} \beta\right)
$$

with $\alpha \in \alpha(M), \beta \in \beta\left(M^{\prime}\right)$ as described in (1.8).
Hence, for example, if $k$ is ( $M, M^{\prime}$ ) -good and if $k$ is divisible by 4 then $k$ is ( $M, M^{\prime}$ ) -realizable. Moreover if $M=M^{\prime}$ then any $k \in \mathbb{Z}$ is $(M, M)$-good and by (1.12) also ( $M, M$ ) -realizable. The theorem computes all possible degrees of maps $F: M \rightarrow M^{\prime}$. In fact, such degrees are exactly the numbers $k^{3} \cdot m(M) / m\left(M^{\prime}\right)$ for which $k$ is ( $M, M^{\prime}$ ) -realizable.

## § 2 Proof of theorem (1.12)

For the proof of (1.12) and (1.8) we first consider the homotopy groups $\pi_{n}\left(C_{g}\right)$ of a mapping cone $C_{g}=B \cup_{g} C A$ of a map $g: A \rightarrow B$ where $C A$ is the cone of $A$. We assume that $A=\Sigma A^{\prime}$ is a suspension. Let $\pi_{g}:(C A, A) \rightarrow\left(C_{g}, B\right)$ be the canonical map and let $i: B \subset C_{g}$ be the inclusion. For the one point union $A \vee B$ let $r=(0,1): A \vee B \rightarrow B$ be the retraction and let

$$
\pi_{n}(A \vee B)_{2}=\operatorname{kernel}\left(r_{*}: \pi_{n}(A \vee B) \rightarrow \pi_{n} B\right)
$$

Then we obtain the following commutative diagram in which the bottom row is exact.

$$
\begin{align*}
& \pi_{n}(C A \vee B, A \vee B) \xrightarrow{\varrho} \pi_{n}(A \vee B)_{2} \\
& \downarrow\left(\pi_{\theta}, i\right) . \quad \downarrow(g, 1) .  \tag{2.1}\\
& \pi_{n} B \xrightarrow{\text { i. }} \pi_{n}\left(C_{g}\right) \xrightarrow{j} \quad \pi_{n}\left(C_{g}, B\right) \xrightarrow{\partial} \pi_{n-1} B
\end{align*}
$$

Hence we can define the functional suspension operator

$$
\begin{aligned}
& E_{g}: \operatorname{kernel}(g, 1)_{*} \rightarrow \pi_{n}\left(C_{g}\right) / i_{*} \pi_{n} B \\
& E_{g}(\xi)=j^{-1}\left(\pi_{g}, 1\right)_{*} \partial^{-1}(\xi)
\end{aligned}
$$

where $\xi \in \pi_{n}(A \vee B)_{2}$ with $(g, 1)_{*} \xi=0$; see $3.4 .3[\mathrm{BO}]$ and II.11.7 [BA]. Now let $\left[C_{g}, U\right]$ be the set of homotopy classes of maps $C_{g} \rightarrow U$. Then the coaction $C_{g} \rightarrow$ $C_{g} \vee \Sigma A$ yields an action + of $\alpha \in[\Sigma A, U]$ on $G \in\left[C_{g}, U\right]$ so that $G+\alpha \in\left[C_{g}, U\right]$ is defined. For $f \in \pi_{n}\left(C_{g}\right)$ with $f \in E_{g}(\xi)$ we have by II.12.3 [BA] the formula in $\pi_{n}(U)$

$$
\begin{equation*}
f^{*}(G+\alpha)=f^{*}(G)+(\alpha, G i) E \xi \tag{2.2}
\end{equation*}
$$

where

$$
E: \pi_{n-1}(A \vee B)_{2} \rightarrow \pi_{n}(\Sigma A \vee B)_{2}
$$

is the partial suspension; see $[\mathrm{BA}]$.
Now let $C_{h}$ be the mapping cone of $h: A^{\prime} \rightarrow B^{\prime}$ and let $G: C_{g} \rightarrow C_{h}$ be a map associated to a homotopy commutative diagram


Then we call $G$ a principal map; see [BA]. The functional suspension is natural in the sense that

$$
\begin{equation*}
G_{*} E_{g}(\xi) \subset E_{h}\left((a \vee b)_{*} \xi\right) \tag{2.3}
\end{equation*}
$$

This follows from V.2.8 [BA] and diagram (2.1).
Now let $A=S^{2}$ and $B=S^{2}$ so that $C_{g}=S^{2} \cup_{g} e^{4}$. Then we see by 3.4.7 [BO] or V.7.6 [BA] that $\left(\pi_{g}, i\right)_{*}$ in (2.1) is surjective for $n=6$ and is an isomorphism for $n=5$. Hence we obtain the exact sequence

$$
\begin{equation*}
\pi_{5}\left(S^{3} \vee S^{2}\right)_{2} \xrightarrow{(g, 1)} \pi_{5}\left(S^{2}\right) \xrightarrow{\text { i. }} \pi_{5}\left(C_{g}\right) \xrightarrow{\delta} \pi_{4}\left(S^{3} \vee S^{2}\right)_{2} \xrightarrow{(g, 1)} \pi_{4}\left(S^{2}\right) \tag{2.4}
\end{equation*}
$$

with $\delta(\alpha)=\xi$ if and only if $\alpha \in E_{g}(\xi)$. Here $\pi_{5}\left(S^{2}\right)=\mathbb{Z} / 2$ is generated by $\eta_{2}^{3}$ and we have

$$
\pi_{4}\left(S^{3} \vee S^{2}\right)_{2}=\mathbb{Z} \oplus \mathbb{Z} / 2
$$

where $\mathbb{Z}$ is generated by the Whitehead product $\left[i_{3}, i_{2}\right]$ of the inclusions $i_{3}: S^{3} \subset$ $S^{3} \vee S^{2}, i_{2}: S^{2} \subset S^{3} \vee S^{2}$ and where $\mathbb{Z} / 2$ is generated by $i_{3} \eta_{3}$. Using the Hilton Milnor theorem $[\mathrm{H}]$ we see that (2.4) induces for $g \in m \eta_{2} \in \pi_{3}\left(S^{2}\right)$ the exact sequences

$$
\begin{array}{rll}
0 \rightarrow \pi_{5} S^{2} \xrightarrow{i_{.}} \pi_{5}\left(C_{g}\right) \xrightarrow{\delta} \pi_{4}\left(S^{3} \vee S^{2}\right)_{2} \rightarrow 0 & \text { if } m \text { is even } \\
\pi_{5} S^{2} \xrightarrow{2 .=0} \pi_{5}\left(C_{g}\right) \xrightarrow[\longrightarrow]{\delta} \mathbb{Z} & \text { if } m \text { is odd } \tag{2.6}
\end{array}
$$

For this we need the fact that the Whitehead product $\left[\eta_{2}, \iota_{2}\right]=0$ is trivial where $\iota_{2} \in \pi_{2}\left(S^{2}\right)$ is represented by the identity of $S^{2}$. We point out that (2.5) is non split if $m \equiv 2(4)$ and is split otherwise; compare [Ya].

For $f \in \pi_{5}\left(C_{g}\right)$ we obtain $\xi=\delta(f)$ with $f \in E_{g}(\xi)$. Let $X=S^{2} \cup_{g} e^{4} \cup_{f} e^{6}$ be the mapping cone of $f$. Then the cohomology ring $H^{*}=H^{*}(X)$ satisfies for appropriate generators $x \in H^{2}, y \in H^{4}, z \in H^{6}$ the formulas

$$
\begin{array}{rll}
x \cup x=m y & \text { if } & g \in m \eta_{2} \\
y \cup x=n z & \text { if } & \xi=n\left[i_{3}, i_{2}\right]+w \cdot i_{3} \eta_{3} \tag{2.8}
\end{array}
$$

Moreover the squaring operation $S q^{2}: H^{4}(X, \mathbb{Z} / 2) \rightarrow H^{6}(X, \mathbb{Z} / 2)$ is determined by $w$; that is $S q^{2} \neq 0$ if and only if $w \neq 0$. Hence for a manifold $M$ as in (1.3) we have $f \in E_{g}(\xi)$ with $g \in m(M) \cdot \eta_{2}$ and

$$
\begin{equation*}
\xi=\left[i_{3}, i_{2}\right]+w(M) \cdot i_{3} \eta_{3} \in \pi_{4}\left(S^{3} \vee S^{2}\right)_{2} \tag{2.9}
\end{equation*}
$$

Proof of (1.12). We consider manifolds $M=S^{2} \cup_{g} e^{4} \cup_{f} e^{6}$ and $M^{\prime}=S^{2} \cup_{h} e^{4} \cup_{d} e^{6}$. Any map

$$
\begin{equation*}
G: C_{g}=S^{2} \cup_{g} e^{4} \rightarrow C_{h}=S^{2} \cup_{h} e^{4} \tag{1}
\end{equation*}
$$

is principal and hence associated to a diagram

where $b$ and $a$ have degree $k$ and $k^{2} \cdot m(M) / m\left(M^{\prime}\right)$ respectively. We see this by V.7.4, $\ldots$, V.7. 9 [BA]. Moreover for maps $G, G^{\prime}$ both associated to $(a, b)$ there exists $\alpha \in \pi_{4}\left(S^{2}\right)$ such that

$$
\begin{equation*}
G^{\prime}=G+i_{*} \alpha \in\left[C_{g}, C_{h}\right] \tag{3}
\end{equation*}
$$

We now consider the diagram

where $f$ and $d$ are the attaching maps of the 6 -cell in $M$ and $M^{\prime}$ respectively. The map $G$ extends to a map $F: M \rightarrow M^{\prime}$ if and only if the obstruction

$$
\begin{equation*}
\mathcal{O}(G)=-G f+d a^{\prime} \in \pi_{5}\left(C_{h}\right) \tag{5}
\end{equation*}
$$

vanishes in $\pi_{5}\left(C_{h}\right)$. We now assume that $a^{\prime}$ is a map of degree $k^{3} \cdot m(M) / m\left(M^{\prime}\right)$ and that $k$ is $\left(M, M^{\prime}\right)$-good as in the assumption of (1.12). Then we see by (2.9) and (2.3) that

$$
\begin{equation*}
j \mathcal{O}(G)=0 \quad \text { in } \quad \pi_{5}\left(C_{h}, S^{2}\right) \tag{6}
\end{equation*}
$$

Hence there exists an element $\mathcal{O}^{\prime}(G) \in \pi_{5}\left(S^{2}\right)$ with

$$
\begin{equation*}
i_{\star} \mathcal{O}^{\prime}(G)=\mathcal{O}(G) \tag{7}
\end{equation*}
$$

Moreover by (2.9) and (2.2) we see that for $G^{\prime}$ in (3) we have

$$
\begin{align*}
\mathcal{O}\left(G^{\prime}\right) & =-f^{*}\left(G+i_{*} \alpha\right)+d a^{\prime} \\
& =-f^{*}(G)+d a^{\prime}-(\alpha, G i) E \xi \\
& =\mathcal{O}(G)-(\alpha, i b) E(\xi) \tag{8}
\end{align*}
$$

Here $E \xi$ is given by

$$
\begin{aligned}
E \xi & =E\left(\left[i_{3}, i_{2}\right]+w(M) \cdot i_{3} \eta_{3}\right) \\
& =\left[i_{4}, i_{2}\right]+i_{4} w(M) \eta_{4} \in \pi_{5}\left(S^{4} \vee S^{2}\right)_{2}
\end{aligned}
$$

Since the Whitehead product $\left[\alpha, \iota_{2}\right] \in \pi_{5}\left(S^{2}\right)$ vanishes for $\alpha \in \pi_{4}\left(S^{2}\right)$ we therefore get

$$
\begin{equation*}
\mathcal{O}\left(G^{\prime}\right)=\mathcal{O}(G)-w(M) \cdot i_{*}\left(\alpha \circ \eta_{4}\right) \tag{9}
\end{equation*}
$$

We now are able to construct maps $M \rightarrow M^{\prime}$ as follows. Let $k$ be ( $M, M^{\prime}$ ) -good. Then (2) homotopy commutes and hence there exists a map $G$ associated to $(a, b)$. If $m(M)$ is odd then (7) and (2.6) show that $\mathcal{O}(G)=0$ and hence $G$ can be extended to obtain a map $M \rightarrow M^{\prime}$ associated to ( $\left.a^{\prime}, b\right)$ in (4). If $w(M) \neq 0$ then $\mathcal{O}(G)$ might be non zero but by (9) and (7) we find $G^{\prime}$ such that $\mathcal{O}\left(G^{\prime}\right)=0$ and hence $G^{\prime}$ can be extended. Hence we are allowed to put $G\left(M, M^{\prime}\right)=0$ if $m\left(M^{\prime}\right)$ odd or $w(M) \neq 0$.

If $m\left(M^{\prime}\right)$ even and $w(M)=0$ then we define the obstruction in (1.12) by $\mathcal{O}^{\prime}(G)$ in (7); that is

$$
\begin{equation*}
\mathcal{O}\left(M, k, M^{\prime}\right)=\mathcal{O}^{\prime}(G) \in \pi_{5}\left(S^{2}\right)=\mathbb{Z} / 2 \tag{10}
\end{equation*}
$$

Here $\mathcal{O}^{\prime}(G)$ is well defined since the map $i_{*}$ in (2.5) is injective. We are able to compute the element (10) by using the suspension of diagram (4). We know that the composite

$$
i_{2}: \mathbb{Z} / 2=\pi_{5}\left(S^{2}\right) \xrightarrow{\Sigma} \pi_{6}\left(S^{3}\right)=\mathbb{Z} / 12 \rightarrow \pi_{6}\left(S^{3}\right) \otimes \mathbb{Z} / 4=\mathbb{Z} / 4
$$

coincides with the inclusion $i_{2}$; see Toda [T]. Hence $\mathcal{O}\left(M, k, M^{\prime}\right)$ is determined by

$$
\begin{equation*}
i_{2} \mathcal{O}\left(M, k, M^{\prime}\right)=\left(\Sigma \mathcal{O}^{\prime}(G)\right) \otimes 1 \in \mathbb{Z} / 4 \tag{11}
\end{equation*}
$$

Since $m\left(M^{\prime}\right)$ is even we see that $\Sigma h=0$ so that there exists a retraction $r: \Sigma C_{h} \rightarrow$ $S^{3}$ of $i: S^{3} \subset \Sigma C_{h}$. Hence we get

$$
\begin{align*}
\left(\Sigma \mathcal{O}^{\prime}(G)\right) \otimes 1 & =r \Sigma\left(i_{*} \mathcal{O}^{\prime}(G)\right) \otimes 1 \\
& =r \Sigma \mathcal{O}(G) \otimes 1 \\
& =\left(-r(\Sigma G)(\Sigma f)+r(\Sigma d)\left(\Sigma a^{\prime}\right)\right) \otimes 1 \in \mathbb{Z} / 4 \tag{12}
\end{align*}
$$

Here we have by (1.6)

$$
\begin{align*}
r(\Sigma G) \Sigma f \otimes 1 & =r(\Sigma G) i f_{0} \otimes 1 \\
& =r i b f_{0} \otimes 1 \\
& =b f_{0} \otimes 1=k \alpha \quad \text { with } \quad \alpha \in \alpha(M) \tag{13}
\end{align*}
$$

On the other hand we have by (1.7)

$$
\begin{equation*}
(r \Sigma d)\left(\Sigma a^{\prime}\right) \otimes 1=\operatorname{degree}\left(a^{\prime}\right) \cdot \beta \quad \text { with } \quad \beta \in \beta\left(M^{\prime}\right) \tag{14}
\end{equation*}
$$

By (12), (13), (14) the proof of the formula in (1.12) is complete. q.e.d.
It remains to prove lemma (1.8).

## § 3 Proof of lemma (1.8)

The proof of (1.8) relies on the following two propositions (3.1) and (3.2). Let $\mathbb{C} P_{2}$ be the complex projective space with $\mathbb{C} P_{2}=S^{2} \cup_{g} e^{4}, g \in \eta_{2} \in \pi_{3} S^{2}$.
(3.1) Proposition. Let $h: S^{5} \rightarrow \mathbb{C} P_{2}$ be the Hopf map which is the attaching map of the 6 -cell in $\mathbb{C P}_{3}$. Then the suspension of $h$ admits up to homotopy a factorization

where $h^{\prime} \in \pi_{6}\left(S^{3}\right)=\mathbb{Z} / 12$ is a generator.
As pointed out by the referee a short proof of (3.1) is obtained as follows. The complex projective space $\mathbb{C} P^{3}$ is the total space of the $S^{2}$-bundle over $S^{4}$ with characteristic element $\xi \in \pi_{3}\left(\mathrm{SO}_{3}\right) \cong \mathbb{Z}$ being a generator. The $J$-homomorphism $J: \pi_{3}\left(S O_{3}\right) \rightarrow \pi_{6} S^{3}=\mathbb{Z} / 12 \cdot h^{\prime}$ satisfies $J(\xi)=h^{\prime}$. Hence by a formula of JamesWhitehead we obtain $\sigma h=i \circ J(\xi)=i \circ h^{\prime}$; see [Jam]. We give below a different proof of (3.1) which does not use the $J$-homomorphism. Our proof is related with the proofs of (3.3) and (3.4) which as well are needed for the main result in this paper.

Let $J_{2} S^{2}$ be the second reduced product of $S^{2}$ with $J_{2} S^{2}=S^{2} \cup_{g} e^{4}, g \in 2 \eta_{2}=$ $\left[i_{2}, i_{2}\right] \in \pi_{3} S^{2}$. We define a map

$$
\begin{equation*}
\rho: \pi_{5}\left(J_{2} S^{2}\right) \rightarrow \mathbb{Z} / 2 \tag{3.2}
\end{equation*}
$$

by $\rho(f)=(r \Sigma f) \otimes 1 \in \pi_{6}\left(S^{3}\right) \otimes \mathbb{Z} / 2$. Here $\rho$ does not depend on the choice of the retraction $r: \Sigma J_{2} S^{2} \rightarrow \Sigma S^{2}$ of $i: \Sigma S^{2} \subset \Sigma J_{2} S^{2}$.
(3.3) Proposition. The function $\rho$ coincides with the function which carries $f \in$ $\pi_{5}\left(J_{2} S^{2}\right)$ to $q f \in \pi_{5} S^{4}=\mathbb{Z} / 2$ where $q: J_{2} S^{2} \rightarrow S^{4}$ is the quotient map.

In addition we get the following result:
(3.4) Addendum. For $\epsilon=1,2$ there exist $h_{\epsilon} \in \pi_{5}\left(J_{2} S^{2}\right)$ with $h_{1} \in E_{g}\left(\left[i_{3}, i_{2}\right]+\right.$ $\left.\iota_{3} \eta_{3}\right)$ and $h_{2} \in E_{g}\left(\left[i_{3}, i_{2}\right]\right), g \in 2 \eta_{2}$, such that for an appropriate retraction $r$ the following diagram homotopy commutes.


Here $h^{\prime}$ is a generator of $\pi_{6} S^{3} \cong \mathbb{Z} / 12$.
Proof of (1.8). Let $M=S^{2} \cup_{g} e^{4} \cup_{f} e^{6}$ as in $\S$ 1. If $m(M)$ is odd (and hence $w(M)=0$ ) there is a map

$$
G: S^{2} \cup_{g} e^{4} \rightarrow \mathbb{C} P_{2}
$$

of degree $m(M)$ in $H_{4}$ and degree 1 in $H_{2}$. By (2.6) and (2.9) this map carries $f$ to

$$
G_{*} f=m(M) \cdot h
$$

where $h$ is the Hopf map in (3.1). Hence (3.1) shows that $\alpha(M)$ contain $\{m(M)\} \in$ $\mathbb{Z} / 4$. Hence $\alpha(M)=\{1,3\}$ since $\alpha(M)$ is a coset of $i_{2} \mathbb{Z} / 2$ and $m(M)$ odd.

Next let $m(M)$ be even. In this case we obtain a map

$$
G: S^{2} \cup_{g} e^{4} \rightarrow J_{2} S^{2}
$$

of degree $t=m(M) / 2$ in $H_{4}$ and degree 1 in $H_{2}$. By (2.6) and (2.9) the map $G$ carries $f$ to

$$
G_{*} f \in E_{2 \eta_{2}}\left(t \cdot\left[i_{3}, i_{2}\right]+t \cdot w(M) \cdot i_{3} \eta_{3}\right)
$$

On the other hand a retraction $r: \Sigma J_{2} S^{2} \rightarrow S^{3}$ yields a retraction $r^{\prime}=r(\Sigma G)$ : $S^{2} \cup_{g} e^{4} \rightarrow S^{3}$ so that in $\pi_{6}\left(S^{3}\right) \otimes \mathbb{Z} / 2$ we have by (3.3)

$$
\begin{aligned}
\left(r^{\prime} \Sigma f\right) \otimes 1 & =r(\Sigma G)(\Sigma f) \otimes 1 \\
& =\rho((\Sigma G)(\Sigma f)) \\
& =q(G f) \\
& =t \cdot w(M) \bmod 2
\end{aligned}
$$

This shows $\beta(M) \in i_{2}(\mathbb{Z} / 2) \subset \mathbb{Z} / 4$ if $w(M)=0$ and it yields the formula for $\beta(M)$ in (1.8) if $w(M) \neq 0$.
q.e.d.

For the proof of (3.1), (3.3) and (3.4) we need the infinite reduced product $J X$ of James [Ja] where $X$ is a pointed space. In fact $J$ is a functor which carries pointed spaces to pointed spaces and one has a canonical natural transformation

$$
\begin{equation*}
J X \xrightarrow{\simeq} \Omega \Sigma X \tag{3.5}
\end{equation*}
$$

which is a homotopy equivalence since we assume that $X$ is a connected CWcomplex. Moreover $J$ is a monad in the sense that there are natural maps $i=i_{X}$ : $X \rightarrow J X, \mu: J J X \rightarrow J X$ satisfying

$$
\begin{equation*}
\mu J\left(i_{X}\right)=1 \quad \text { and } \quad \mu i_{J X}=1 \tag{1}
\end{equation*}
$$

By (3.5) the suspension $\Sigma$ can be described by the composite

$$
\begin{equation*}
\Sigma:[Y, X] \xrightarrow{\left(i_{X}\right)}[Y, J X] \xrightarrow[\cong]{\bigoplus}[\Sigma Y, \Sigma X] \tag{2}
\end{equation*}
$$

where the isomorphism $\vartheta$ is obtained by (3.5).
Proof of (3.1). We consider $V=J \mathbb{C} P_{2}$ and the suspension

$$
\begin{equation*}
\Sigma: \pi_{5} \mathbb{C} P_{2} \xrightarrow{i_{4}} \pi_{5}(V) \cong \pi_{6}\left(\Sigma \mathbb{C} P_{2}\right) \tag{1}
\end{equation*}
$$

Using $g=\Sigma \eta_{2}$ in (2.1) we see that the sequence

$$
\begin{equation*}
\pi_{6} S^{4} \xrightarrow{\left(\eta_{3}\right)} \pi_{6}\left(S^{3}\right) \xrightarrow{i_{+}} \pi_{6} \Sigma \mathbb{C} P_{2} \rightarrow 0 \tag{2}
\end{equation*}
$$

is exact since $\left(\pi_{g}, i\right)_{*}$ is an isomorphism for $n=7,6$; compare 3.4.7 [BO] or V.7.6 [BA]. Here we have $\left(\eta_{3}\right)_{*} \pi_{6} S^{4}=\Sigma \pi_{5} S^{2}$ so that the following diagram commutes

$$
\begin{array}{ccc}
\pi_{6}\left(S^{3}\right) & \xrightarrow{i_{0}} & \pi_{6} \Sigma \mathbb{C} P_{2} \\
\Sigma \uparrow & & \|  \tag{3}\\
\pi_{5} S^{2} & \xrightarrow{0} & \pi_{5} V \\
\stackrel{j}{\longrightarrow} & \pi_{5}\left(V, S^{2}\right) \xrightarrow{\partial} \pi_{4} S^{2} \longrightarrow 0
\end{array}
$$

The bottom row is exact. The space $V$ is a CW-complex in which all cells have even dimension. Therefore we obtain the exact sequence

$$
\begin{equation*}
\pi_{6}\left(V^{6}, V^{4}\right) \xrightarrow{\partial} \pi_{5}\left(V^{4}, S^{2}\right) \rightarrow \pi_{5}\left(V, S^{2}\right) \rightarrow 0 \tag{4}
\end{equation*}
$$

Let $S_{W}^{3}=S_{H}^{3}=S^{3}$ and let $A=S_{W}^{3} \vee S_{H}^{3}$ be the one point union with inclusions $i_{W}, i_{H}: S^{3} \subset A$ accordingly. Then $V^{4}$ is the mapping cone of $g: A \rightarrow S^{2}$ with $g i_{W}=\left[\iota_{2}, \iota_{2}\right]$ and $g i_{H}=\eta_{2}$. This shows that

$$
\begin{array}{ccc}
\pi_{5}\left(V^{4}, S^{2}\right) & \stackrel{\partial}{\longrightarrow} \pi_{4}\left(A \vee S^{2}\right)_{2} \\
\partial \downarrow & & \downarrow(g, 1) .  \tag{5}\\
\pi_{4} S^{2} & & \mathbb{Z} / 2
\end{array}
$$

commutes. The isomorphism is $\theta^{-1}=\left(\pi_{g}, i\right)_{*} \partial^{-1}$ as in (2.1). Moreover we have

$$
\pi_{4}\left(A \vee S^{2}\right)_{2}=\mathbb{Z} / 2 i_{W} \eta_{3} \oplus \mathbb{Z} / 2 i_{H} \eta_{3}+\mathbb{Z}\left[i_{W}, i_{2}\right]+\mathbb{Z}\left[i_{H}, i_{2}\right]
$$

The space $V$ has exactly 3 cells $a, b, c$ of dimension 6 . Let

$$
\begin{aligned}
& p_{a}: S^{2} \times \mathbb{C} P_{2} \rightarrow V \\
& p_{b}: \mathbb{C P}_{2} \times S^{2} \rightarrow V \\
& p_{c}: S^{2} \times S^{2} \times S^{2} \rightarrow J S^{2} \subset V
\end{aligned}
$$

be the canonical maps given by $S^{2} \subset \mathbb{C} P_{2}$. Then $a=p_{a}\left(e^{2} \times e^{4}\right), b=p_{b}\left(e^{4} \times e^{2}\right)$ and $c=p_{c}\left(e^{2} \times e^{2} \times e^{2}\right)$ where $e^{2} \cup *=S^{2}$ and $S^{2} \cup e^{4}=\mathbb{C} P_{2}$. We claim that $\theta \partial$ defined by (4) and (5) satisfies the formulas:

$$
\left\{\begin{array}{l}
\theta \partial(a)=\theta \partial(b)=\left[i_{H}, i_{2}\right]+\left[i_{W}, i_{2}\right]+i_{W} \eta_{3}  \tag{6}\\
\theta \partial(c)=3\left[i_{W}, i_{2}\right]
\end{array}\right.
$$

Moreover we have for $j i_{*}$ defined by (1) and (3)

$$
\begin{equation*}
j i_{*}(h)=\left[i_{H}, i_{2}\right] \tag{7}
\end{equation*}
$$

Now (6) and (7) yield by (4) the proposition in (3.1). In fact by (3) and (5) the group

$$
\begin{equation*}
\pi_{5} V \cong(\mathbb{Z} / 2 \oplus \mathbb{Z} \oplus \mathbb{Z}) / \sim \tag{8}
\end{equation*}
$$

is generated by $i_{W} \eta_{3},\left[i_{H}, i_{2}\right],\left[i_{W}, i_{2}\right]$ with the relation $\theta \partial(a) \sim 0$ and $\theta \partial(c)=0$ where $i_{*} h$ is represented by $\left[i_{h}, i_{2}\right]$. Hence $i_{*} h$ in (1) is a generator of $\pi_{5} V \cong \mathbb{Z} / 6$. It remains to prove the formulas in (6). Since $S q^{2}$ is non trivial in $S^{2} \times \mathbb{C} P_{2}$ and $\mathbb{C} P_{2} \times S^{2}$ we see that $i_{W} \eta_{3}$ has to be a summand of $\theta \partial(a)$ and $\theta \partial(b)$. On the other hand we show below that

$$
\begin{equation*}
2 \theta \partial(a)=2 \theta \partial(b)=2\left[i_{H}, i_{2}\right]+2\left[i_{W}, i_{2}\right] \tag{9}
\end{equation*}
$$

This implies the first formula in (6).
For $i=1,2,3$ let $S_{i}=S^{2}$ be the 2 -sphere with 2 -cell $e_{i}$, that is $S_{i}=* \cup e_{i}$. Moreover let $T=S_{1} \times S_{2} \times S_{3}$ and let

$$
\xi_{i}: S_{i} \subset S_{1} \vee S_{2} \vee S_{3}=T^{2}
$$

be the inclusions. Then the two cell $e_{i} \times e_{j}$ in $T$ with $i<j$ has the attaching map $\left[\xi_{i}, \xi_{j}\right]$ which is the Whitehead product of $\xi_{i}, \xi_{j}$. Hence $T^{4}$ is the mapping cone of

$$
g: A=S_{12} \vee S_{13} \vee S_{23} \rightarrow S_{1} \vee S_{2} \vee S_{3}
$$

where $S_{12}=S_{13}=S_{23}=S^{3}$ and $g \mid S_{i j}=\left[\xi_{i}, \xi_{j}\right]$. Moreover let $w \in \pi_{5}\left(T^{4}\right)$ be the attaching map of the 6 -cell $e_{1} \times e_{2} \times e_{3}$ in $T$. Then we know

$$
\begin{equation*}
w \in E_{g}\left(\left[\xi_{12}, \xi_{3}\right]+\left[\xi_{13}, \xi_{2}\right]+\left[\xi_{23}, \xi_{1}\right]\right) \tag{10}
\end{equation*}
$$

where $\xi_{i j}: S_{i j} \subset A \subset A \vee T^{2}$ and $\xi_{i}: S^{2} \subset T^{2} \subset A \vee T^{2}$ are the inclusions. Formula (10) corresponds to the Nakaoka Toda formula [NT], see also 3.6.10 in [BO] or [BI]. Now (10) and the canonical map $T \rightarrow J S^{2}$ show that the second formula in (6) holds. For this we use the naturality (2.3). On the other hand we have the canonical map $\lambda: S^{2} \times S^{2} \rightarrow J_{2} S^{2} \rightarrow \mathbb{C} P_{2}$ which is of degree 2 in $H_{4}$. Then (10) and the maps $p_{a}(1 \times \lambda): T \rightarrow V, p_{b}(\lambda \times 1): T \rightarrow V$ show that (9) holds. For this we again use (2.3).
q.e.d.

Proof of (9.9) and (9.4). The space $J_{2} S^{2}$ is the 4 -skeleton of $J S^{2}$; let $j: J_{2} S^{2} \subset J S^{2}$ be the inclusion. Then $j$ induces the exact sequences


Here $\delta$ is the map in (2.5) for $g=\left[\iota_{2}, \iota_{2}\right]$. In the top row $1 \in \mathbb{Z}$ is mapped to the attaching map $w$ of the 6 -cell in $J S^{2}$ for which $\delta(w)=(3,0)$ by (10) in the proof of (3.1) above. Recall that the second coordinate of $\delta(x), x \in \pi_{5} J_{2} S^{2}$, coincides with $q(x) \in \pi_{5} S^{4}=\mathbb{Z} / 2$. The kernel of $\delta$ is given by the inlcusion $i_{*}: \pi_{5} S^{2} \subset \pi_{5} J_{2} S^{2}$. We now obtain by the maps in (3.5) (1) the following commutative diagram


Here $u_{1}$, resp. $u_{2}$, is induced by the inclusion $i_{X}: X \subset J X$ with $X=J_{2} S^{2}$ and $X=J S^{2}$ respectively. We have $\vartheta u_{1} x=\Sigma(x)$. Moreover we have $\mu_{*} u_{2}=1$. Now we get for $y=r_{*} \Sigma(x) \in \pi_{6}\left(S^{3}\right)$ the equation $\vartheta u_{1} x=i_{*} y+z$ with $r_{*}(z)=0$ and $2 z=0$ since kernel $\left(r_{*}\right)=\mathbb{Z} / 2$. Now we obtain

$$
\begin{equation*}
u_{1} x=\vartheta^{-1}\left(i_{*} y+z\right)=(J i)_{*} \vartheta^{-1} y+\vartheta^{-1} z \tag{3}
\end{equation*}
$$

and hence by diagram (2)

$$
\begin{align*}
j_{*}(x) & =\mu_{*}(J j)_{*} u_{1} x \\
& =\vartheta^{-1} y+\mu_{*}(J j)_{*} \vartheta^{-1} z \tag{4}
\end{align*}
$$

Therefore we get

$$
\begin{equation*}
\vartheta j_{*}(x)=y+z^{\prime}=r_{*} \Sigma(x)+z^{\prime} \tag{5}
\end{equation*}
$$

where $z^{\prime}$ is an element of order at most 2. Since the kernel of $\delta^{\prime}$ in (1) is the element of order 2 we thus derive from (5) the result in (3.3) and (3.4) respectively; compare the definition of $\delta$ in (2.4).

## References

[BA] Baues, H.J., Algebraic Homotopy, Cambridge Studies in Advanced Math. 15, Cambridge University Press (1989), 450 pages.
[BI] Baues, H.J., Identitäten für Whitehead Produkte höherer Ordnung, Math. Z. 146 (1976), 239-265.
[BO] Baues, H.J., Obstruction theory, Lecture Notes in Math. 628 (1977), 387 pages.
[H] Hopf, H., Abbildungsklassen n-dimensionaler Mannigfaltigkeiten, Math. Annalen 92 (1926), 209-224.
[J] Jupp, P.E., Classification of certain 6-manifolds, Proc. Camb. Phil. Soc. (1973), 293-300.
[Ja] James, I.M., Reduced product spaces, Ann. of Math. 62 (1955), 170-197.
[Jam] James, I.M., On sphere bundles over spheres, Comment. Math. Helv. 35 (1961), 126-135.
[NT] Nakaoka, M. and Toda, H., On the Jacobi identity for Whitehead products, J. Inst. Polytechn., Osaka Univ. 5 (1954), 1-13.
[T] Toda, H., Composition methods in homotopy groups of spheres, Annals of Math. Studies 49.
[U] Unsöld, H.M., On the classification of spaces with free homology, Dissertation Fachbereich Math., Freie Universität Berlin (1987).
[W] Wall, C.T.C., Classification Problems in differential topology V, Invent. math. 1 (1966), 355-374.
[Y] Yamaguchi, K., On the homotopy type of $C W$-complexes with the form $S^{2} \cup e^{4} \cup e^{6}$, Kodai Math. J. 5 (1982), 303-312.
[Ya] Yamaguchi, K., The group of self-homotopy equivalences of $S^{2}$-bundles over $S^{4}, I, I$, Kodai Math. J. 10 (1987), 1-8.
[Z] Zubr, A.V., Classification of simply-connected topological 6-manifolds, Lecture Notes in Math. 1346 (1988), 325-339.


[^0]:    1991 Mathematics Subject Classification. 57R19, 57R35, 55S45

