THE DEGREE OF MAPS BETWEEN CERTAIN 6-MANIFOLDS

Hans-Joachim Baues

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 53225 Bonn

Germany

			l I
			1
			ı
			1
			T T
			1
			I
			I
			T T
			I
			T
			l .
			1
			I
	•		1
			l .
			1
			ı
			T
			ı
			1
			1
			I
			ı
			1
			I
			I
			1
			1
		•	1
			I
			1
•			

THE DEGREE OF MAPS BETWEEN CERTAIN 6-MANIFOLDS

HANS-JOACHIM BAUES

ABSTRACT. For manifolds M, M' of the form $S^2 \cup e^4 \cup e^6$ we compute the homomorphisms $H_*M \to H_*M'$ between homology groups which are realizable by a map $F: M \to M'$.

For oriented compact closed manifolds M, M' of the same dimension the <u>degree</u> d of a map $F: M \to M'$ is defined by the equation

$$F_*[M] = d \cdot [M']$$

Here [M] denotes the fundamental class of M. In a classical paper Hopf [H] considered such degrees. In this paper we compute all possible degrees of maps $M \to M'$ where M and M' are 6-manifolds of the form $S^2 \cup e^4 \cup e^6$ and for which the cup square of a generator $x \in H^2$ is non trivial. For example for such a manifold M the degrees of maps $M \to M$ are exactly the numbers $d = k^3, k \in \mathbb{Z}$. The result in this paper answers a question of A. Van de Ven. The author is grateful to Fang Fuquan for his remarks on Pontrjagin classes.

\S 1 Homotopy types of manifolds $S^2 \cup e^4 \cup e^6$ and degrees of maps

We consider closed differentiable manifolds M of dimension 6 which are simply connected and for which the cohomology with integral coefficients satisfies

(1.1)
$$H^{i}(M) = \begin{cases} \mathbb{Z} & \text{for } i = 0, 2, 4, 6 \\ 0 & \text{otherwise} \end{cases}$$

Moreover we assume that a generator x of $H^2(M)$ has a non-trivial cup square $x \cup x \neq 0$. We choose a generator $y \in H^4(M)$ such that $x \cup x = my$ where $m \in \mathbb{N} = \{1, 2, \ldots, \}$ is a natural number; we also write m = m(M). Moreover let $w = w(M) \in \mathbb{Z}/2$ be given by the second Stiefel-Whitney class. Then the Wu formulas show that w(M) = 0 if and only if the Steenrod square

(1.2)
$$Sq^2: H^4(M, \mathbb{Z}/2) = \mathbb{Z}/2 \to H^6(M, \mathbb{Z}/2) = \mathbb{Z}/2$$

is trivial so that (1.2) is determined by w(M). Any manifold as in (1.1) admits a homotopy equivalence

¹⁹⁹¹ Mathematics Subject Classification. 57R19, 57R35, 55S45

$$(1.3) M \simeq S^2 \cup_q e^4 \cup_f e^6$$

where the attaching map g represents $m \eta_2 \in \pi_3(S^2)$. Here η_2 is the Hopf element which generates $\pi_3(S^2) = \mathbb{Z}$. Moreover the attaching map f of the 6-cell satisfies

(1.4)
$$q_* f = w \eta_4 \in \pi_5(S^4) \text{ with } w = w(M)$$

where $q: S^2 \cup_g e^4 \to S^2 \cup_g e^4/S^2 = S^4$ is the quotient map. Here η_n with $n \geq 3$ denotes the generator of $\pi_{n+1}(S^n) = \mathbb{Z}/2$. Recall that $\pi_6(S^3) \otimes \mathbb{Z}/4 = \mathbb{Z}/4$. We define subsets

(1.5)
$$\begin{cases} \alpha(M) \subset \mathbb{Z}/4 & \text{if } w(M) = 0, \\ \beta(M) \subset \mathbb{Z}/4 & \text{if } m(M) & \text{is even} \end{cases}$$

as follows. For w(M) = 0 the suspension Σf of the attaching map in (1.3) admits up to homotopy a factorization

$$(1.6) S^6 \xrightarrow{\Sigma f} \Sigma(S^2 \cup_g e^4)$$

$$f_0 \downarrow \qquad \uparrow_i$$

$$S^3 = \Sigma S^2$$

where i is the inclusion. Then $\alpha(M)$ consists of all elements $f_0 \otimes 1 \in \pi_6(S^3) \otimes \mathbb{Z}/4$ for which (1.6) homotopy commutes, that is $i_* f_0 = \Sigma f$ in $\pi_6(\Sigma(S^2 \cup_g e^4))$. Moreover if m(M) is even then the inclusion $i: S^3 \subset \Sigma(S^2 \cup_g e^4)$ admits a retraction r. Let $\beta(M)$ be the set of all elements $(r\Sigma f) \otimes 1 \in \pi_6(S^3) \otimes \mathbb{Z}/4$ given by compositions

$$(1.7) S^6 \xrightarrow{\Sigma f} \Sigma(S^2 \cup_q e^4) \xrightarrow{r} S^3$$

where r is any retraction of i. Let $i_2 : \mathbb{Z}/2 \subset \mathbb{Z}/4$ be the inclusion which carries $1 \in \mathbb{Z}/2$ to $2 \in \mathbb{Z}/4$.

(1.8) Lemma. For w(M) = 0 and m(M) even the sets $\alpha(M) = \beta(M)$ coincide and consist of a single element in the image of i_2 . In this case let $p(M) \in \mathbb{Z}/2$ be given by

$$i_2 p(M) = \alpha(M) = \beta(M).$$

Moreover we have

$$\alpha(M) = \{1,3\}$$
 if $m(M) \equiv 1 \mod 2$ and $w(M) = 0$, $\beta(M) = \{1,3\}$ if $m(M) \equiv 2 \mod 4$ and $w(M) \neq 0$, $\beta(M) = \{0,2\}$ if $m(M) \equiv 0 \mod 4$ and $w(M) \neq 0$.

For w(M) = 0 and m(M) even the <u>first Pontrjagin class</u> $p_1(M) \in H^4(M) = \mathbb{Z}$ of M is divisible by 8 and hence yields by reduction mod 16 an element in $\mathbb{Z}/2$ denoted by $p'_1(M) \in \mathbb{Z}/2$; then we have in $\mathbb{Z}/2$ the formula

$$p(M) + p'_1(M) = \{m(M)/2\} \in \mathbb{Z}/2$$

so that the element p(M) in (1.8) is also determined by the Pontrjagin class $p_1(M)$. For this compare theorem 4 and the proof of theorem 7 in [W] and [Ya]. For $m \in \mathbb{N}$ and $w \in \mathbb{Z}/2$ we define the group

$$P(m, w) = \begin{cases} \mathbb{Z}/2, & \text{if } m \text{ even and } w = 0, \\ 0, & \text{otherwise} \end{cases}$$

(1.9) Proposition. The homotopy types of manifolds (or Poincaré complexes) which satisfy the conditions in (1.1) are in 1-1 correspondence with triples (m, w, p) where $m \in \mathbb{N}, w \in \mathbb{Z}/2$ and $p \in P(m, w)$ such that mw = 0. The correspondence carries M to the triple (m(M), w(M), p(M)) defined above.

In particular each such triple (M, w, p) is realizable by a manifold as in (1.1) and the realization is unique up to homotopy equivalence. The case of Poincaré complexes in (1.9) was proved by Unsöld [U] and by Yamaguchi [Y] and [Ya]. In fact, for Poincaré complexes proposition (1.9) can be easily derived from the proof of (1.12) below. In the case of manifolds we can use the result of Wall (theorem 8 in [W]) that each Poincaré complex with the properties in (1.1) is homotopy equivalent to a smooth manifold. Compare also the result of Zubr [Z]; according to the remark at the end of [Z] the results of Jupp [J] and Wall [W] on the homotopy classification of simply connected 6-manifold have to be modified.

We now are ready to discuss the possible degrees of maps $F: M \to M'$ where M and M' are manifolds as in (1) with generators $x \in H^2(M), x' \in H^2(M')$. We say that $k \in \mathbb{Z}$ is (M, M') -realizable if there exists a continuous map $F: M \to M'$ with $F^*(x') = k \cdot x$. Moreover we say that $k \in \mathbb{Z}$ is (M, M') -good if $k^2 \cdot m(M)$ is divisible by m(M') and if

(1.10)
$$w(M) \cdot \frac{k^2 \cdot m(M)}{m(M')} = w(M') \cdot k \cdot \frac{k^2 \cdot m(M)}{m(M')}$$

holds in $\mathbb{Z}/2$. One readily checks that any $k \in \mathbb{Z}$ which is (M, M') -realizable is (M, M') -good. We define the group

(1.11)
$$G(M, M') = \begin{cases} \mathbb{Z}/2 & \text{if } w(M) = 0 \text{ and } m(M') \text{ even} \\ 0 & \text{otherwise} \end{cases}$$

Then we have the following result which completely determines all degrees k which are (M, M') -realizable.

(1.12) **Theorem.** Let $k \in \mathbb{Z}$ be (M, M') -good then k is (M, M') -realizable if and only if an obstruction element

$$\mathcal{O}(M, k, M') \in G(M, M')$$

is trivial. For w(M) = 0 and m(M') even this obstruction element is given by the formula in $\mathbb{Z}/4$

$$i_2\mathcal{O}(M, k, M') = k(-\alpha + \frac{k^2 \cdot m(M)}{m(M')}\beta)$$

with $\alpha \in \alpha(M)$, $\beta \in \beta(M')$ as described in (1.8).

Hence, for example, if k is (M, M')-good and if k is divisible by 4 then k is (M, M')-realizable. Moreover if M = M' then any $k \in \mathbb{Z}$ is (M, M)-good and by (1.12) also (M, M)-realizable. The theorem computes all possible degrees of maps $F: M \to M'$. In fact, such degrees are exactly the numbers $k^3 \cdot m(M)/m(M')$ for which k is (M, M')-realizable.

§ 2 Proof of theorem (1.12)

For the proof of (1.12) and (1.8) we first consider the homotopy groups $\pi_n(C_g)$ of a mapping cone $C_g = B \cup_g CA$ of a map $g: A \to B$ where CA is the cone of A. We assume that $A = \Sigma A'$ is a suspension. Let $\pi_g: (CA, A) \to (C_g, B)$ be the canonical map and let $i: B \subset C_g$ be the inclusion. For the one point union $A \vee B$ let $r = (0,1): A \vee B \to B$ be the retraction and let

$$\pi_n(A \vee B)_2 = \text{kernel}(r_* : \pi_n(A \vee B) \to \pi_n B)$$

Then we obtain the following commutative diagram in which the bottom row is exact.

(2.1)
$$\pi_{n}(CA \vee B, A \vee B) \xrightarrow{\frac{\partial}{\cong}} \pi_{n}(A \vee B)_{2}$$

$$\downarrow^{(\pi_{g}, i)_{\bullet}} \qquad \qquad \downarrow^{(g, 1)_{\bullet}}$$

$$\pi_{n}B \xrightarrow{i_{\bullet}} \pi_{n}(C_{g}) \xrightarrow{j} \pi_{n}(C_{g}, B) \xrightarrow{\frac{\partial}{\cong}} \pi_{n-1}B$$

Hence we can define the <u>functional suspension operator</u>

$$E_g : \operatorname{kernel}(g, 1)_* \to \pi_n(C_g)/i_*\pi_n B$$

$$E_g(\xi) = j^{-1}(\pi_g, 1)_* \partial^{-1}(\xi)$$

where $\xi \in \pi_n(A \vee B)_2$ with $(g,1)_*\xi = 0$; see 3.4.3 [BO] and II.11.7 [BA]. Now let $[C_g, U]$ be the set of homotopy classes of maps $C_g \to U$. Then the coaction $C_g \to C_g \vee \Sigma A$ yields an action + of $\alpha \in [\Sigma A, U]$ on $G \in [C_g, U]$ so that $G + \alpha \in [C_g, U]$ is defined. For $f \in \pi_n(C_g)$ with $f \in E_g(\xi)$ we have by II.12.3 [BA] the formula in $\pi_n(U)$

$$(2.2) f^*(G+\alpha) = f^*(G) + (\alpha, Gi)E\xi$$

where

$$E: \pi_{n-1}(A \vee B)_2 \to \pi_n(\Sigma A \vee B)_2$$

is the partial suspension; see [BA].

Now let C_h be the mapping cone of $h: A' \to B'$ and let $G: C_g \to C_h$ be a map associated to a homotopy commutative diagram

$$\begin{array}{ccc}
A & \stackrel{a}{\longrightarrow} & A' \\
g \downarrow & & \downarrow h \\
B & \stackrel{b}{\longrightarrow} & B'
\end{array}$$

Then we call G a principal map; see [BA]. The functional suspension is natural in the sense that

$$(2.3) G_* E_q(\xi) \subset E_h((a \vee b)_* \xi)$$

This follows from V.2.8 [BA] and diagram (2.1).

Now let $A = S^2$ and $B = S^2$ so that $C_g = S^2 \cup_g e^4$. Then we see by 3.4.7 [BO] or V.7.6 [BA] that $(\pi_g, i)_*$ in (2.1) is surjective for n = 6 and is an isomorphism for n = 5. Hence we obtain the exact sequence

$$(2.4) \qquad \pi_5(S^3 \vee S^2)_2 \xrightarrow{(g,1)_{\bullet}} \pi_5(S^2) \xrightarrow{i_{\bullet}} \pi_5(C_g) \xrightarrow{\delta} \pi_4(S^3 \vee S^2)_2 \xrightarrow{(g,1)_{\bullet}} \pi_4(S^2)$$

with $\delta(\alpha) = \xi$ if and only if $\alpha \in E_g(\xi)$. Here $\pi_5(S^2) = \mathbb{Z}/2$ is generated by η_2^3 and we have

$$\pi_4(S^3\vee S^2)_2=\mathbb{Z}\oplus\mathbb{Z}/2$$

where \mathbb{Z} is generated by the Whitehead product $[i_3,i_2]$ of the inclusions $i_3:S^3\subset S^3\vee S^2, i_2:S^2\subset S^3\vee S^2$ and where $\mathbb{Z}/2$ is generated by i_3 η_3 . Using the Hilton Milnor theorem [H] we see that (2.4) induces for $g\in m$ $\eta_2\in \pi_3(S^2)$ the exact sequences

$$(2.5) 0 \to \pi_5 S^2 \xrightarrow{i_*} \pi_5(C_g) \xrightarrow{\delta} \pi_4(S^3 \vee S^2)_2 \to 0 \text{if } m \text{ is even}$$

(2.6)
$$\pi_5 S^2 \xrightarrow{i_*=0} \pi_5(C_g) \xrightarrow{\delta} \mathbb{Z} \quad \text{if } m \text{ is odd}$$

For this we need the fact that the Whitehead product $[\eta_2, \iota_2] = 0$ is trivial where $\iota_2 \in \pi_2(S^2)$ is represented by the identity of S^2 . We point out that (2.5) is non split if $m \equiv 2(4)$ and is split otherwise; compare [Ya].

For $f \in \pi_5(C_g)$ we obtain $\xi = \delta(f)$ with $f \in E_g(\xi)$. Let $X = S^2 \cup_g e^4 \cup_f e^6$ be the mapping cone of f. Then the cohomology ring $H^* = H^*(X)$ satisfies for appropriate generators $x \in H^2, y \in H^4, z \in H^6$ the formulas

$$(2.7) x \cup x = m y if g \in m\eta_2$$

(2.8)
$$y \cup x = nz \text{ if } \xi = n[i_3, i_2] + w \cdot i_3 \eta_3$$

Moreover the squaring operation $Sq^2: H^4(X,\mathbb{Z}/2) \to H^6(X,\mathbb{Z}/2)$ is determined by w; that is $Sq^2 \neq 0$ if and only if $w \neq 0$. Hence for a manifold M as in (1.3) we have $f \in E_q(\xi)$ with $g \in m(M) \cdot \eta_2$ and

(2.9)
$$\xi = [i_3, i_2] + w(M) \cdot i_3 \eta_3 \in \pi_4(S^3 \vee S^2)_2$$

Proof of (1.12). We consider manifolds $M = S^2 \cup_g e^4 \cup_f e^6$ and $M' = S^2 \cup_h e^4 \cup_d e^6$. Any map

(1)
$$G: C_g = S^2 \cup_g e^4 \to C_h = S^2 \cup_h e^4$$

is principal and hence associated to a diagram

(2)
$$S^{3} \xrightarrow{a} S^{3}$$

$$\downarrow b$$

$$S^{2} \xrightarrow{b} S^{2}$$

where b and a have degree k and $k^2 \cdot m(M)/m(M')$ respectively. We see this by V.7.4, ..., V.7.9 [BA]. Moreover for maps G, G' both associated to (a, b) there exists $\alpha \in \pi_4(S^2)$ such that

$$G' = G + i_*\alpha \in [C_q, C_h]$$

We now consider the diagram

$$\begin{array}{cccc}
S^5 & \xrightarrow{a'} & S^5 \\
f \downarrow & & \downarrow d \\
C_g & \xrightarrow{G} & C_h \\
 & & \cup & & \cup i \\
S^2 & \xrightarrow{b} & S^2
\end{array}$$

where f and d are the attaching maps of the 6-cell in M and M' respectively. The map G extends to a map $F: M \to M'$ if and only if the obstruction

(5)
$$\mathcal{O}(G) = -Gf + da' \in \pi_5(C_h)$$

vanishes in $\pi_5(C_h)$. We now assume that a' is a map of degree $k^3 \cdot m(M)/m(M')$ and that k is (M, M') -good as in the assumption of (1.12). Then we see by (2.9) and (2.3) that

(6)
$$j \mathcal{O}(G) = 0 \quad \text{in} \quad \pi_5(C_h, S^2)$$

Hence there exists an element $\mathcal{O}'(G) \in \pi_5(S^2)$ with

$$(7) i_* \mathcal{O}'(G) = \mathcal{O}(G).$$

Moreover by (2.9) and (2.2) we see that for G' in (3) we have

$$\mathcal{O}(G') = -f^*(G + i_*\alpha) + da'$$

$$= -f^*(G) + da' - (\alpha, Gi)E\xi$$

$$= \mathcal{O}(G) - (\alpha, ib)E(\xi)$$
(8)

Here $E\xi$ is given by

$$E\xi = E([i_3, i_2] + w(M) \cdot i_3 \eta_3)$$

= $[i_4, i_2] + i_4 w(M) \eta_4 \in \pi_5(S^4 \vee S^2)_2$

Since the Whitehead product $[\alpha, \iota_2] \in \pi_5(S^2)$ vanishes for $\alpha \in \pi_4(S^2)$ we therefore get

(9)
$$\mathcal{O}(G') = \mathcal{O}(G) - w(M) \cdot i_*(\alpha \circ \eta_4).$$

We now are able to construct maps $M \to M'$ as follows. Let k be (M, M')-good. Then (2) homotopy commutes and hence there exists a map G associated to (a, b). If m(M) is odd then (7) and (2.6) show that $\mathcal{O}(G) = 0$ and hence G can be extended to obtain a map $M \to M'$ associated to (a', b) in (4). If $w(M) \neq 0$ then $\mathcal{O}(G)$ might be non zero but by (9) and (7) we find G' such that $\mathcal{O}(G') = 0$ and hence G' can be extended. Hence we are allowed to put G(M, M') = 0 if m(M') odd or $w(M) \neq 0$.

If m(M') even and w(M) = 0 then we define the obstruction in (1.12) by $\mathcal{O}'(G)$ in (7); that is

(10)
$$\mathcal{O}(M,k,M') = \mathcal{O}'(G) \in \pi_5(S^2) = \mathbb{Z}/2.$$

Here $\mathcal{O}'(G)$ is well defined since the map i_* in (2.5) is injective. We are able to compute the element (10) by using the suspension of diagram (4). We know that the composite

$$i_2: \mathbb{Z}/2 = \pi_5(S^2) \xrightarrow{\Sigma} \pi_6(S^3) = \mathbb{Z}/12 \twoheadrightarrow \pi_6(S^3) \otimes \mathbb{Z}/4 = \mathbb{Z}/4$$

coincides with the inclusion i_2 ; see Toda [T]. Hence $\mathcal{O}(M,k,M')$ is determined by

(11)
$$i_2 \mathcal{O}(M, k, M') = (\Sigma \mathcal{O}'(G)) \otimes 1 \in \mathbb{Z}/4$$

Since m(M') is even we see that $\Sigma h = 0$ so that there exists a retraction $r : \Sigma C_h \to S^3$ of $i : S^3 \subset \Sigma C_h$. Hence we get

$$(\Sigma \mathcal{O}'(G)) \otimes 1 = r \Sigma(i_* \mathcal{O}'(G)) \otimes 1$$

$$= r \Sigma \mathcal{O}(G) \otimes 1$$

$$= (-r(\Sigma G)(\Sigma f) + r(\Sigma d)(\Sigma a')) \otimes 1 \in \mathbb{Z}/4$$

Here we have by (1.6)

$$(13) \qquad r(\Sigma G)\Sigma f \otimes 1 = r(\Sigma G)i f_0 \otimes 1$$

$$= r ib f_0 \otimes 1$$

$$= b f_0 \otimes 1 = k\alpha \quad \text{with} \quad \alpha \in \alpha(M)$$

On the other hand we have by (1.7)

(14)
$$(r\Sigma d)(\Sigma a') \otimes 1 = \text{degree}(a') \cdot \beta \text{ with } \beta \in \beta(M')$$

By (12), (13), (14) the proof of the formula in (1.12) is complete.

It remains to prove lemma (1.8).

§ 3 Proof of Lemma (1.8)

g.e.d.

The proof of (1.8) relies on the following two propositions (3.1) and (3.2). Let $\mathbb{C}P_2$ be the <u>complex projective space</u> with $\mathbb{C}P_2 = S^2 \cup_g e^4, g \in \eta_2 \in \pi_3 S^2$.

(3.1) Proposition. Let $h: S^5 \to \mathbb{C}P_2$ be the Hopf map which is the attaching map of the 6-cell in $\mathbb{C}P_3$. Then the suspension of h admits up to homotopy a factorization

$$S^{6} \xrightarrow{\Sigma h} \Sigma \mathbb{C} P_{2}$$

$$h' \downarrow \qquad \qquad \cup i$$

$$S^{3} = \Sigma S^{2}$$

where $h' \in \pi_6(S^3) = \mathbb{Z}/12$ is a generator.

As pointed out by the referee a short proof of (3.1) is obtained as follows. The complex projective space $\mathbb{C}P^3$ is the total space of the S^2 -bundle over S^4 with characteristic element $\xi \in \pi_3(SO_3) \cong \mathbb{Z}$ being a generator. The J-homomorphism $J: \pi_3(SO_3) \to \pi_6 S^3 = \mathbb{Z}/12 \cdot h'$ satisfies $J(\xi) = h'$. Hence by a formula of James-Whitehead we obtain $\sigma h = i \circ J(\xi) = i \circ h'$; see [Jam]. We give below a different proof of (3.1) which does not use the J-homomorphism. Our proof is related with the proofs of (3.3) and (3.4) which as well are needed for the main result in this paper.

Let J_2S^2 be the <u>second reduced product</u> of S^2 with $J_2S^2 = S^2 \cup_g e^4, g \in 2\eta_2 = [i_2, i_2] \in \pi_3S^2$. We define a map

$$(3.2) \rho: \pi_5(J_2S^2) \to \mathbb{Z}/2$$

by $\rho(f) = (r\Sigma f) \otimes 1 \in \pi_6(S^3) \otimes \mathbb{Z}/2$. Here ρ does not depend on the choice of the retraction $r: \Sigma J_2 S^2 \to \Sigma S^2$ of $i: \Sigma S^2 \subset \Sigma J_2 S^2$.

(3.3) Proposition. The function ρ coincides with the function which carries $f \in \pi_5(J_2S^2)$ to $qf \in \pi_5S^4 = \mathbb{Z}/2$ where $q: J_2S^2 \to S^4$ is the quotient map.

In addition we get the following result:

(3.4) Addendum. For $\epsilon = 1, 2$ there exist $h_{\epsilon} \in \pi_5(J_2S^2)$ with $h_1 \in E_g([i_3, i_2] + \iota_3\eta_3)$ and $h_2 \in E_g([i_3, i_2]), g \in 2\eta_2$, such that for an appropriate retraction r the following diagram homotopy commutes.

$$S^{6} \xrightarrow{\Sigma h_{\epsilon}} \Sigma J_{2}S^{2}$$

$$\downarrow^{r}$$

$$S^{3} = \Sigma S^{2}$$

Here h' is a generator of $\pi_6 S^3 \cong \mathbb{Z}/12$.

Proof of (1.8). Let $M = S^2 \cup_g e^4 \cup_f e^6$ as in § 1. If m(M) is odd (and hence w(M) = 0) there is a map

$$G: S^2 \cup_g e^4 \to \mathbb{C}P_2$$

of degree m(M) in H_4 and degree 1 in H_2 . By (2.6) and (2.9) this map carries f to

$$G_*f = m(M) \cdot h$$

where h is the Hopf map in (3.1). Hence (3.1) shows that $\alpha(M)$ contain $\{m(M)\}\in \mathbb{Z}/4$. Hence $\alpha(M)=\{1,3\}$ since $\alpha(M)$ is a coset of $i_2\mathbb{Z}/2$ and m(M) odd.

Next let m(M) be even. In this case we obtain a map

$$G:S^2\cup_g e^4\to J_2S^2$$

of degree t=m(M)/2 in H_4 and degree 1 in H_2 . By (2.6) and (2.9) the map G carries f to

$$G_* f \in E_{2n_2}(t \cdot [i_3, i_2] + t \cdot w(M) \cdot i_3 \eta_3)$$

On the other hand a retraction $r: \Sigma J_2S^2 \to S^3$ yields a retraction $r' = r(\Sigma G): S^2 \cup_g e^4 \to S^3$ so that in $\pi_6(S^3) \otimes \mathbb{Z}/2$ we have by (3.3)

$$(r'\Sigma f) \otimes 1 = r(\Sigma G)(\Sigma f) \otimes 1$$
$$= \rho((\Sigma G)(\Sigma f))$$
$$= q(Gf)$$
$$= t \cdot w(M) \mod 2$$

This shows $\beta(M) \in i_2(\mathbb{Z}/2) \subset \mathbb{Z}/4$ if w(M) = 0 and it yields the formula for $\beta(M)$ in (1.8) if $w(M) \neq 0$. q.e.d.

For the proof of (3.1), (3.3) and (3.4) we need the <u>infinite reduced product</u> JX of James [Ja] where X is a pointed space. In fact J is a functor which carries pointed spaces to pointed spaces and one has a canonical natural transformation

$$(3.5) JX \xrightarrow{\simeq} \Omega \Sigma X$$

which is a homotopy equivalence since we assume that X is a connected CW-complex. Moreover J is a monad in the sense that there are natural maps $i=i_X:X\to JX,\,\mu:JJX\to JX$ satisfying

(1)
$$\mu J(i_X) = 1 \text{ and } \mu i_{JX} = 1.$$

By (3.5) the suspension Σ can be described by the composite

(2)
$$\Sigma : [Y, X] \xrightarrow{(i_X)_*} [Y, JX] \xrightarrow{\vartheta} [\Sigma Y, \Sigma X]$$

where the isomorphism ϑ is obtained by (3.5).

Proof of (3.1). We consider $V = J\mathbb{C}P_2$ and the suspension

(1)
$$\Sigma: \pi_5 \mathbb{C} P_2 \xrightarrow{i_*} \pi_5(V) \cong \pi_6(\Sigma \mathbb{C} P_2)$$

Using $g = \Sigma \eta_2$ in (2.1) we see that the sequence

(2)
$$\pi_6 S^4 \xrightarrow{(\eta_3)_*} \pi_6(S^3) \xrightarrow{i_*} \pi_6 \Sigma \mathbb{C} P_2 \to 0$$

is exact since $(\pi_g, i)_*$ is an isomorphism for n = 7, 6; compare 3.4.7 [BO] or V.7.6 [BA]. Here we have $(\eta_3)_*\pi_6S^4 = \Sigma\pi_5S^2$ so that the following diagram commutes

$$(3) \qquad \begin{array}{ccc} \pi_{6}(S^{3}) & \xrightarrow{i_{\bullet}} & \pi_{6}\Sigma\mathbb{C}P_{2} \\ & & & \\ \Sigma & & \parallel & \\ & \pi_{5}S^{2} & \xrightarrow{0} & \pi_{5}V & \xrightarrow{j} \pi_{5}(V, S^{2}) & \xrightarrow{\partial} & \pi_{4}S^{2} & \longrightarrow & 0 \end{array}$$

The bottom row is exact. The space V is a CW-complex in which all cells have even dimension. Therefore we obtain the exact sequence

(4)
$$\pi_6(V^6, V^4) \xrightarrow{\partial} \pi_5(V^4, S^2) \to \pi_5(V, S^2) \to 0$$

Let $S_W^3 = S_H^3 = S^3$ and let $A = S_W^3 \vee S_H^3$ be the one point union with inclusions $i_W, i_H : S^3 \subset A$ accordingly. Then V^4 is the mapping cone of $g : A \to S^2$ with $gi_W = [\iota_2, \iota_2]$ and $gi_H = \eta_2$. This shows that

(5)
$$\pi_{5}(V^{4}, S^{2}) \xrightarrow{\partial} \pi_{4}(A \vee S^{2})_{2}$$

$$\downarrow \qquad \qquad \downarrow_{(g,1)}.$$

$$\pi_{4}S^{2} = \mathbb{Z}/2$$

commutes. The isomorphism is $\theta^{-1} = (\pi_g, i)_* \partial^{-1}$ as in (2.1). Moreover we have

$$\pi_4(A \vee S^2)_2 = \mathbb{Z}/2 i_W \eta_3 \oplus \mathbb{Z}/2 i_H \eta_3 + \mathbb{Z}[i_W, i_2] + \mathbb{Z}[i_H, i_2]$$

The space V has exactly 3 cells a, b, c of dimension 6. Let

$$p_a: S^2 \times \mathbb{C}P_2 \to V$$

$$p_b: \mathbb{C}P_2 \times S^2 \to V$$

$$p_c: S^2 \times S^2 \times S^2 \to JS^2 \subset V$$

be the canonical maps given by $S^2 \subset \mathbb{C}P_2$. Then $a = p_a(e^2 \times e^4), b = p_b(e^4 \times e^2)$ and $c = p_c(e^2 \times e^2 \times e^2)$ where $e^2 \cup * = S^2$ and $S^2 \cup e^4 = \mathbb{C}P_2$. We claim that $\theta \partial$ defined by (4) and (5) satisfies the formulas:

(6)
$$\begin{cases} \theta \partial(a) = \theta \partial(b) = [i_H, i_2] + [i_W, i_2] + i_W \eta_3 \\ \theta \partial(c) = 3[i_W, i_2] \end{cases}$$

Moreover we have for ji_* defined by (1) and (3)

(7)
$$ji_*(h) = [i_H, i_2]$$

Now (6) and (7) yield by (4) the proposition in (3.1). In fact by (3) and (5) the group

(8)
$$\pi_5 V \cong (\mathbb{Z}/2 \oplus \mathbb{Z} \oplus \mathbb{Z})/\sim$$

is generated by $i_W\eta_3$, $[i_H, i_2]$, $[i_W, i_2]$ with the relation $\theta\partial(a) \sim 0$ and $\theta\partial(c) = 0$ where i_*h is represented by $[i_h, i_2]$. Hence i_*h in (1) is a generator of $\pi_5 V \cong \mathbb{Z}/6$. It remains to prove the formulas in (6). Since Sq^2 is non trivial in $S^2 \times \mathbb{C}P_2$ and $\mathbb{C}P_2 \times S^2$ we see that $i_W\eta_3$ has to be a summand of $\theta\partial(a)$ and $\theta\partial(b)$. On the other hand we show below that

(9)
$$2\theta \partial(a) = 2\theta \partial(b) = 2[i_H, i_2] + 2[i_W, i_2]$$

This implies the first formula in (6).

For i = 1, 2, 3 let $S_i = S^2$ be the 2-sphere with 2-cell e_i , that is $S_i = * \cup e_i$. Moreover let $T = S_1 \times S_2 \times S_3$ and let

$$\xi_i: S_i \subset S_1 \vee S_2 \vee S_3 = T^2$$

be the inclusions. Then the two cell $e_i \times e_j$ in T with i < j has the attaching map $[\xi_i, \xi_j]$ which is the Whitehead product of ξ_i, ξ_j . Hence T^4 is the mapping cone of

$$g: A = S_{12} \vee S_{13} \vee S_{23} \to S_1 \vee S_2 \vee S_3$$

where $S_{12} = S_{13} = S_{23} = S^3$ and $g|S_{ij} = [\xi_i, \xi_j]$. Moreover let $w \in \pi_5(T^4)$ be the attaching map of the 6-cell $e_1 \times e_2 \times e_3$ in T. Then we know

(10)
$$w \in E_g([\xi_{12}, \xi_3] + [\xi_{13}, \xi_2] + [\xi_{23}, \xi_1])$$

where $\xi_{ij}: S_{ij} \subset A \subset A \vee T^2$ and $\xi_i: S^2 \subset T^2 \subset A \vee T^2$ are the inclusions. Formula (10) corresponds to the Nakaoka Toda formula [NT], see also 3.6.10 in [BO] or [BI]. Now (10) and the canonical map $T \to JS^2$ show that the second formula in (6) holds. For this we use the naturality (2.3). On the other hand we have the canonical map $\lambda: S^2 \times S^2 \to J_2S^2 \to \mathbb{C}P_2$ which is of degree 2 in H_4 . Then (10) and the maps $p_a(1 \times \lambda): T \to V, p_b(\lambda \times 1): T \to V$ show that (9) holds. For this we again use (2.3).

Proof of (3.3) and (3.4). The space J_2S^2 is the 4-skeleton of JS^2 ; let $j:J_2S^2\subset JS^2$ be the inclusion. Then j induces the exact sequences

Here δ is the map in (2.5) for $g = [\iota_2, \iota_2]$. In the top row $1 \in \mathbb{Z}$ is mapped to the attaching map w of the 6-cell in JS^2 for which $\delta(w) = (3,0)$ by (10) in the proof of (3.1) above. Recall that the second coordinate of $\delta(x)$, $x \in \pi_5 J_2 S^2$, coincides with $q(x) \in \pi_5 S^4 = \mathbb{Z}/2$. The kernel of δ is given by the inclusion $i_* : \pi_5 S^2 \subset \pi_5 J_2 S^2$. We now obtain by the maps in (3.5) (1) the following commutative diagram

$$\pi_{6}S^{3} \stackrel{\vartheta}{\cong} \pi_{5}JS^{2} \stackrel{1}{\longrightarrow} \pi_{5}(JS^{2})$$

$$\downarrow_{i_{\bullet}} \qquad \downarrow_{(Ji)_{\bullet}} \qquad \uparrow_{\mu_{\bullet}}$$

$$(2) \qquad \pi_{6}(\Sigma J_{2}S^{2}) \stackrel{\vartheta}{\cong} \pi_{5}(JJ_{2}S^{2}) \stackrel{(Jj)_{\bullet}}{\longrightarrow} \pi_{5}(JJS^{2})$$

$$\downarrow_{r_{\bullet}} \qquad \uparrow_{u_{1}} \qquad \uparrow_{u_{2}}$$

$$\pi_{6}(S^{3}) \qquad \pi_{5}(J_{2}S^{2}) \stackrel{j_{\bullet}}{\longrightarrow} \pi_{5}(JS^{2}) \stackrel{\vartheta}{\cong} \pi_{6}S^{3}$$

Here u_1 , resp. u_2 , is induced by the inclusion $i_X: X \subset JX$ with $X = J_2S^2$ and $X = JS^2$ respectively. We have $\vartheta u_1x = \Sigma(x)$. Moreover we have $\mu_*u_2 = 1$. Now we get for $y = r_*\Sigma(x) \in \pi_6(S^3)$ the equation $\vartheta u_1x = i_*y + z$ with $r_*(z) = 0$ and 2z = 0 since kernel $(r_*) = \mathbb{Z}/2$. Now we obtain

(3)
$$u_1 x = \vartheta^{-1} (i_* y + z) = (Ji)_* \vartheta^{-1} y + \vartheta^{-1} z$$

and hence by diagram (2)

(4)
$$j_*(x) = \mu_*(Jj)_* u_1 x$$

$$= \vartheta^{-1} y + \mu_*(Jj)_* \vartheta^{-1} z$$

Therefore we get

(5)
$$\vartheta j_*(x) = y + z' = r_* \Sigma(x) + z'$$

where z' is an element of order at most 2. Since the kernel of δ' in (1) is the element of order 2 we thus derive from (5) the result in (3.3) and (3.4) respectively; compare the definition of δ in (2.4).

REFERENCES

- [BA] Baues, H.J., Algebraic Homotopy, Cambridge Studies in Advanced Math. 15, Cambridge University Press (1989), 450 pages.
- [BI] Baues, H.J., Identitäten für Whitehead Produkte höherer Ordnung, Math. Z. 146 (1976),
- [BO] Baues, H.J., Obstruction theory, Lecture Notes in Math. 628 (1977), 387 pages.
- [H] Hopf, H., Abbildungsklassen n-dimensionaler Mannigfaltigkeiten, Math. Annalen 92 (1926), 209-224.
- [J] Jupp, P.E., Classification of certain 6-manifolds, Proc. Camb. Phil. Soc. (1973), 293-300.

- [Ja] James, I.M., Reduced product spaces, Ann. of Math. 62 (1955), 170-197.
- [Jam] James, I.M., On sphere bundles over spheres, Comment. Math. Helv. 35 (1961), 126-135.
- [NT] Nakaoka, M. and Toda, H., On the Jacobi identity for Whitehead products, J. Inst. Polytechn., Osaka Univ. 5 (1954), 1-13.
- [T] Toda, H., Composition methods in homotopy groups of spheres, Annals of Math. Studies 49.
- [U] Unsöld, H.M., On the classification of spaces with free homology, Dissertation Fachbereich Math., Freie Universität Berlin (1987).
- [W] Wall, C.T.C., Classification Problems in differential topology V, Invent. math. 1 (1966), 355-374.
- [Y] Yamaguchi, K., On the homotopy type of CW-complexes with the form $S^2 \cup e^4 \cup e^6$, Kodai Math. J. 5 (1982), 303-312.
- [Ya] Yamaguchi, K., The group of self-homotopy equivalences of S²-bundles over S⁴, I, II, Kodai Math. J. 10 (1987), 1-8.
- [Z] Zubr, A.V., Classification of simply-connected topological 6-manifolds, Lecture Notes in Math. 1346 (1988), 325-339.