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THE DEGREE OF MAPS BETWEEN CERTAIN 6-MANIFOLDS

HANS-JOACHIM BAUES

ABSTRACT. For manifolds M, M’ of the form S? U e U e® we compute the homo-
morphisms H,M — H,M' between homology groups which are realizable by a map
F: M- M.

For oriented compact closed manifolds M, M’ of the same dimension the degree
d of a map F : M — M’ is defined by the equation

F.[M]=d-[M]

Here [M] denotes the fundamental class of M. In a classical paper Hopf [H] consid-
ered such degrees. In this paper we compute all possible degrees of maps M — M’
where M and M’ are 6-manifolds of the form $% U e* U ¢® and for which the cup
square of a generator z € H? is non trivial. For example for such a manifold M
the degrees of maps M — M are exactly the numbers d = k3, k € Z. The result
in this paper answers a question of A. Van de Ven. The author is grateful to Fang
Fuquan for his remarks on Pontrjagin classes.

§ 1 HOMOTOPY TYPES OF MANIFOLDS S? Ue* U e® AND DEGREES OF MAPS

We consider closed differentiable manifolds M of dimension 6 which are simply
connected and for which the cohomology with integral coeflicients satisfies

. i Z for 1=0,2,4,6

(1) (M) = {O otherwise

Moreover we assume that a generator =z of H?(M) has a non-trivial cup square
Uz # 0. We choose a generator y € H*(M) such that z Uz = my where
m € N ={1,2,...,} is a natural number; we also write m = m(M). Moreover
let w = w(M) € Z/2 be given by the second Stiefel-Whitney class. Then the Wu
formulas show that w(M) = 0 if and only if the Steenrod square

(1.2) Sq* :H*(M,Z/2)=7Z/2— H(M,Z/2)=7/2

is trivial so that (1.2) is determined by w(M). Any manifold as in (1.1) admits a
homotopy equivalence
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(1.3) M~ 5%y, et ugéf

where the attaching map ¢ represents mn; € m3(S5%). Here 1, is the Hopf element
which generates m3(.5%) = Z. Moreover the attaching map f of the 6-cell satisfies

(1.4) g f =wny € m5(S*)  with w = w(M)

where ¢ : S? Uy €' — S* U, €*/S? = $* is the quotient map. Here 7, with n > 3
denotes the generator of m,4+1(S™) = Z/2. Recall that 7¢(S®) = Z/12 so that
76(S%) ® Z/4 = Z /4. We define subsets

o(M)CZ/4 i w(M)=0,
(1.5) B(M)CZ/4 if m(M) iseven

as follows. For w(M) = 0 the suspension ¥ f of the attaching map in (1.3) admits
up to homotopy a factorization

56 =1, n(s?u, )

(1.6) fol Ti

S —— £52

where 1 is the inclusion. Then a(M) consists of all elements fo®1 € m6(S*)®Z/4 for
which (1.6) homotopy commutes, that is i, fo = = f in m6(S(S5? U, €*)). Moreover
if m(M) is even then the inclusion i : §% C £(S5% U, e*) admits a retraction r. Let
B(M) be the set of all elements (rE f) ® 1 € 76(S5*) ® Z /4 given by compositions

(1.7) S6 2 n(stu, ety s §°
where r is any retraction of 1. Let i3 : Z/2 C Z/4 be the inclusion which carries
1€Z/2t02€ Z/4.
(1.8) Lemma. For w(M) = 0 and m(M) even the sets a(M) = B(M) coincide
and consist of a single element in the image of i3. In this case let p(M) € Z/2 be
given by

i2p(M) = a(M) = B(M).

Moreover we have

a(M) ={1,3} if m(M)=1mod2 and w(M)=0,
B(M) ={1,3} if m(M)=2mod4 and w(M)#0,
B(M) ={0,2} if m(M)=0modd and w(M)#D0.
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For w(M) = 0 and m(M) even the first Pontriagin class p; (M) € H*(M) = Z
of M is divisible by 8 and hence yields by reduction mod 16 an element in Z/2
denoted by pi (M) € Z/2; then we have in Z/2 the formula

p(M) + py(M) = {m(M)/2} € Z/2

so that the element p(M) in (1.8) is also determined by the Pontrjagin class p; (M).
For this compare theorem 4 and the proof of theorem 7 in [W] and [Ya). Form € N
and w € Z /2 we define the group

Z/2, f m evenand w =0,

P =
(m, ) { 0, otherwise

(1.9) Proposition. The homotopy types of manifolds (or Poincaré complexes)
which satisfy the conditions in (1.1) are in 1-1 correspondence with triples (m,w, p)
where m € Nyw € Z/2 and p € P(m,w) such that mw = 0. The correspondence
carries M to the triple (m(M),w(M),p(M)) defined above.

In particular each such triple (M, w,p) is realizable by a manifold as in (1.1)
and the realization is unique up to homotopy equivalence. The case of Poincaré
complexes in (1.9) was proved by Unséld [U] and by Yamaguchi [Y] and [Ya]. In
fact, for Poincaré complexes proposition (1.9) can be easily derived from the proof
of (1.12) below. In the case of manifolds we can use the result of Wall (theorem
8 in [W]) that each Poincaré complex with the properties in (1.1) is homotopy
equivalent to a smooth manifold. Compare also the result of Zubr [Z]; according to
the remark at the end of [Z] the results of Jupp [J] and Wall [W] on the homotopy
classification of simply connected 6-manifold have to be modified.

We now are ready to discuss the possible degrees of maps F' : M — M’ where
M and M’ are manifolds as in (1) with generators € H2(M),z' € H*(M'). We
say that k € Z is (M, M') -realizable if there exists a continuous map F : M — M’
with F*(z') = k - z. Moreover we say that k € Z is (M, M’) -good if k% - m(M) is
divisible by m(M') and if

' k% - m(M)
m(M')

k% - m(M)

(1.10) w(M) e

=w(M') k-

holds in Z/2. One readily checks that any k € Z which is (M, M’) -realizable is
(M, M') -good. We define the group

Z/2 if w(M)=0 and m(M') even

0 otherwise

(1.11) G(M,M') = {

Then we have the following result which completely determines all degrees k& which
are (M, M') -realizable.



(1.12) Theorem. Let k € Z be (M, M') -good then k is (M, M') -realizable if
and only if an obstruction element

O(M, k, M') € G(M, M")

is trivial. For w(M) = 0 and m(M') even this obstruction element is given by the
formula in Z /4

k% - m(M)

2O(M, b, M') = k(=a+ =

B)

with o € a(M), € B(M') as described in (1.8).

Hence, for example, if k is (M, M') -good and if k is divisible by 4 then k is
(M, M') -realizable. Moreover if M = M’ then any k € Z is (M, M) -good and by
(1.12) also (M, M) -realizable. The theorem computes all possible degrees of maps
F: M — M'. In fact, such degrees are exactly the numbers k3 - m(M)/m(M') for
which k is (M, M') -realizable.

§ 2 PROOF OF THEOREM (1.12)

For the proof of (1.12) and (1.8) we first consider the homotopy groups m,(C,)
of a mapping cone Cy; = BU; CA of amap g : A - B where C'A is the cone of
A. We assume that A = A’ is a suspension. Let m, : (CA, A) = (Cy, B) be the
canonical map and let ¢ : B C Cy be the inclusion. For the one point union AV B
let r =(0,1) : AV B — B be the retraction and let

mn(AV B)2 = kernel (r, : 7,(AV B) - m,B)

Then we obtain the following commutative diagram in which the bottom row is
exact.

a(CAV B,AVB) —— m,(AV B)
(2.1) l(frg.f). l(g.l).
j

B — s n(Cy) —— 7a(Cy, B) —2 5 m._.\B

Hence we can define the functional suspension operator

Ey : kernel(g, 1)« o 7,(Cy)/imn B
Eg(6) = 57 (g, 1).071(8)

where £ € m,(A V B),; with (g,1).€ = 0; see 3.4.3 [BO] and I1.11.7 [BA]. Now let
[C4,U] be the set of homotopy classes of maps Cy — U. Then the coaction C; —
Cy V £ A yields an action + of o € [EA,U] on G € [Cy, U] so that G+ a € [Cy, U]
is defined. For f € m,(Cy) with f € E,(£) we have by 11.12.3 [BA] the formula in
T (U)



(2.2) G+ a) = f(G) + (o, G E¢

E:ma1(AV B); ~ m,(SAV B),

is the partial suspension; see [BAJ.
Now let C} be the mapping cone of h: A’ = B’ and let G : Cy = Cj, be a map
associated to a homotopy commutative diagram

A —25 A

T

B, B
Then we call G a principal map; see [BA]. The functional suspension is natural in
the sense that

(2.3) G. Ey(€) C Ex((aV b).£)

This follows from V.2.8 [BA] and diagram (2.1).

Now let A = 5? and B = $? so that C; = $? U, e!. Then we see by 3.4.7 [BO]
or V.7.6 [BA] that (mg,7). in (2.1) is surjective for n = 6 and is an isomorphism for
n = 5. Hence we obtain the exact sequence

(24)  w5(S?V §%)y O r5(852) Lt m5(Cy) -2 me(S® v §2)y L my(52)

with é(a) = € if and only if & € Ey(£). Here m5(S*) = Z/2 is generated by 13 and

we have

7a(S°V S, =ZDZ/2

where Z is generated by the Whitehead product [i3,72] of the inclusions i3 : §° C
S$%v S§% i, : §%2 C 53V S? and where Z/2 is generated by i3 1;. Using the Hilton
Milnor theorem [H] we see that (2.4) induces for ¢ € mn; € w3(S5?%) the exact
sequences

(2.5) 0 — 1552 %5 m5(C,) 5 ma(SPV §%), =+ 0 if m is even
(2.6) w52 = 75(Cy) Ti) Z if misodd

For this we need the fact that the Whitehead product [1;,t2] = 0 is trivial where
2 € m2(S?) is represented by the identity of $%. We point out that (2.5) is non
split if m = 2(4) and is split otherwise; compare [Ya].
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For f € m5(C,) we obtain £ = §(f) with f € E,(€). Let X = S? U, e* Uy ¢°
be the mapping cone of f. Then the cohomology ring H* = H*(X) satisfies for
appropriate generators € H?,y € H*,z € H® the formulas

(2.7) Uz = my if g&mn
(2.8) yUz=nz if &=nliz,iz]+w: izns
Moreover the squaring operation Sq* : H*(X,Z/2) —» HS(X,Z/2) is determined

by w; that is S¢g% # 0 if and only if w # 0. Hence for a manifold M as in (1.3) we
have f € E,(¢) with g € m(M) - np and

(29) 6 = [ig,ig] + TU(M) . ‘2:37]3 € T['4(33 A% 52)2

Proof of (1.12). We consider manifolds M = S2U,e*Uyse® and M’ = S2Uj et Uge®.
Any map

(1) G:Cg=52Uge4—>Ch=52Uhe4

is principal and hence associated to a diagram

s 2 4 58

g T

gz b , g2

where b and ¢ have degree k and k? - m(M)/m(M’) respectively. We see this by
V.7.4, ..., V.7.9 [BA]. Moreover for maps G, G’ both associated to (a, b) there exists
a € m4(S?) such that

(3) G' =G +i.a€ [Cy,Chl

We now consider the diagram

'

s % 4 g5

(4) Cg —G—) Ch
U Uz

58— 8



where f and d are the attaching maps of the 6-cell in M and M’ respectively. The
map G extends to a map F: M — M’ if and only if the obstruction

(5) O(G) = —Gf + da’ € 75(Ch)

vanishes in 75(C1). We now assume that a’ is a map of degree k3 - m(M)/m(M")
and that k is (M, M') -good as in the assumption of (1.12). Then we see by (2.9)
and (2.3) that

(6) JOG) =0 in ms(Ch,S%)

Hence there exists an element O'(G) € m5(S5?) with

(7) .0'(G) = 0(G).

Moreover by (2.9) and (2.2) we see that for G’ in (3) we have

O(G") = —f*(G +i.c) + dd’
= —f*(G) + dd' — (o, Gi)E¢
(8) = 0(G) — (e, ) E(¢)

Here E¥ is given by

E¢ = E([i3,12] + w(M) - i3m3)
= [i4,i2] + 1410(}14)7}4 c 7T5(S4 vV 52)2

Since the Whitehead product [, 2] € m5(S5?) vanishes for o € m4(S?) we therefore
get

(9) O(G") = O(G) — w(M) - i.(a 0ng).

We now are able to construct maps M — M’ as follows. Let k be (M, M') -good.
Then (2) homotopy commutes and hence there exists a map G associated to (a,b).
If m(M) is odd then (7) and (2.6) show that O(G) = 0 and hence G can be extended
to obtain a map M — M’ associated to (a’,b) in (4). If w(M) # 0 then O(G) might
be non zero but by (9) and (7) we find G’ such that O(G') = 0 and hence G’ can be
extended. Hence we are allowed to put G(M,M') = 0 if m(M') odd or w(M) # 0.

If m(M') even and w(M) = 0 then we define the obstruction in (1.12) by O'(G)
in (7); that is :

(10) O(M,k,M") = O'(G) € n5(S?*) =Z/2.
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Here O'(G) is well defined since the map 7, in (2.5) is injective. We are able to
compute the element (10) by using the suspension of diagram (4). We know that
the composite

iy Z)2=15(S%) 2 me(S%) = B/12 » w6(S*) @ Z/4 = Z /4
coincides with the inclusion ¢;; see Toda [T]. Hence O(M,k, M') is determined by

(11) 1 OM, k, M') = (S0'(G))®1 € Z/4

Since m(M') is even we see that £h = 0 so that there exists a retraction » : ECp —
53 of 1 : 8% C BC). Hence we get

(ZO'(G)®1=rZ(:0(G)®1
=rZ0(G)®1
(12) = (—r(ZG)Zf) +r(Ed)(Zd')) @1 € Z /4

Here we have by (1.6)

r(EG)EfR@1=rEG)ifo®1
=rthfo®1
(13) =bfo®l=ka with o€ a(M)

On the other hand we have by (1.7)

(14) (rZd)(Za’) @ 1 = degree (a')- 8 with [ € g(M')

By (12), (13), (14) the proof of the formula in (1.12) is complete. g.e.d.

It remains to prove lemma (1.8).

§ 3 PROOF OF LEMMA (1.8)

The proof of (1.8) relies on the following two propositions (3.1) and (3.2). Let
CP, be the complex projective space with CP; = S? Ug et g € ny € My S

(3.1) Proposition. Let h : $° — CP, be the Hopf map which is the attaching
map of the 6-cell in CP;. Then the suspension of h admits up to homotopy a
factorization

56 =, vCp,

h‘l Uz

S8 T S5?




where h' € n6(S®) = Z/12 is a generator.

As pointed out by the referee a short proof of (3.1) is obtained as follows. The
complex projective space CP? is the total space of the $? -bundle over §* with
characteristic element ¢ € m3(S03) = Z being a generator. The J-homomorphism
J : 73(S03) = meS® = Z/12- b’ satisfies J(€) = h’. Hence by a formula of James-
Whitehead we obtain ch = i 0 J(£) = i o h'; see [Jam]. We give below a different
proof of (3.1) which does not use the J-homomorphism. Our proof is related with
the proofs of (3.3) and (3.4) which as well are needed for the main result in this
paper.

Let J2S5? be the second reduced product of 5% with J,5% = S2 U, e, g € 2, =
[¢2,12) € m35%. We define a map

(3.2) p:ms(J2S%) = Z/2
by p(f) = (rZf) ® 1 € m6(S*) ® Z/2. Here p does not depend on the choice of the
retraction 7 : £J,8% =5 £5% of i : £5? ¢ £.J,52%

(3.3) Proposition. The function p coincides with the function which carries f €
ns(J2S2) to qf € 7581 = Z /2 where q : J,5? — S* is the quotient map.

In addition we get the following result:
(3.4) Addendum. For € = 1,2 there exist h, € w5(J25%) with hy € Ey([i3,12] +

t3nz) and hy € Ey([iz,12]), g € 21, such that for an appropriate retraction r the
following diagram homotopy commutes.

g6 _Zhe \ w7,5?

NI
53 £s?
Here h' is a generator of 1S = Z /12.

Proof of (1.8). Let M = S?U, e* Uy e® asin § 1. If m(M) is odd (and hence
w(M) = 0) there is a map

G:5%Uye! - CP,
of degree m(M) in H,y and degree 1in H,. By (2.6) and (2.9) this map carries f to

G.f=m(M)-h

where h is the Hopf map in (3.1). Hence (3.1) shows that a(M) contain {m(M)} €
Z /4. Hence a(M) = {1,3} since a{M) is a coset of i3 Z/2 and m(M) odd.
Next let m(M) be even. In this case we obtain a map

G: St Uy et = Jp5°

of degree t = m(M)/2 in Hy and degree 1 in H,. By (2.6) and (2.9) the map G
carries f to



Gif € Engy(t - lig, 2] +1 - w(M) - 1373)

On the other hand a retraction » : £J25% — S® yields a retraction v’ = r(ZG) :
5% U, e! = S* so that in m5(5%) ® Z/2 we have by (3.3)

(r'Ef)@1=r(EG)(Zf) @1

=t-w(M)mod?2

This shows B(M) € 12(Z/2) C Z /4 if w(M) = 0 and it yields the formula for (M)
n (1.8) if w(M) #£ 0. g.e.d.
For the proof of (3.1), (3.3) and (3.4) we need the infinite reduced product JX of

James [Ja] where X is a pointed space. In fact J is a functor which carries pointed
spaces to pointed spaces and one has a canonical natural transformation

(3.5) JX = QX

which is a homotopy equivalence since we assume that X is a connected CW-

complex. Moreover J is a monad in the sense that there are natural maps: =ix :
X > JX, p:JJX = JX satisfying

(1) pJ(ix)=1 and ,uiszl.

By (3.5) the suspension £ can be described by the composite

2) 5 [Y, X] ¥ [v,JX] -2 [5Y, 5X]

where the isomorphism 9 is obtained by (3.5).
Proof of {8.1). We consider V = JCP, and the suspension

(1) S nsCPy % m5(V) 2 m6(SCPy)

Using 'g = Y12 in (2.1) we see that the sequence

(2) 65t U 6 (S%) 24 16 SCPy = 0

is exact since (my,1). is an isomorphism for n = 7,6; compare 3.4.7 [BO] or V.7.6
[BA]. Here we have (13)«msS* = Em55? so that the following diagram commutes
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1!'3(53) —l'———} WGECPQ
(3) ] n
7552 —2 o mV D m(V,S?) —2 mS? —— 0

The bottom row is exact. The space V is a CW-complex in which all cells have
even dimension. Therefore we obtain the exact sequence

(4) 76(VE, V) -2 15 (V4 52) = ms(V, S2) = 0
Let S3y = S}; = S° and let A = S}, V S}, be the one point union with inclusions

tw,ig : S® C A accordingly. Then V* is the mapping cone of g : A = S§? with
giw = [t2,¢2] and giy = 12. This shows that

my(V4,52) —— m(AV S,

(5) aJ' l(y,l)-

7452 pe— Z/2
commutes. The isomorphism is §~! = (7,,:),0™! as in (2.1). Moreover we have

Ta(AV 8%y = Z/2iwns D Z/21iyms + Zliw, i2] + Zlin, ia)
The space V has exactly 3 cells a, b, ¢ of dimension 6. Let

Pa SPxCP, -V
p:CP, xSV
pe:Stx8?x 8?5 JStcvV
be the canonical maps given by $2 C CP,. Then a = p,(e? x e*),b = pp(e? x &?)

and ¢ = p.(e? x e? x e?) where e U* = §% and S?U e! = CP,. We claim that 89
defined by (4) and (5) satisfies the formulas:

(6) {93(0) = 60(b) = [irr,i2) + liw, ia] + iwms

80(c) = 3liw, is]

Moreover we have for ji. defined by (1) and (3)

(7) Jis(h) = [in, 2]

11



Now (6) and (7) yield by (4) the proposition in (3.1). In fact by (3) and (5) the
group

(8) V2 (22026 Z)/~ .

is generated by iwmna, [tH,12], [tw,i2] with the relation 89(a) ~ 0 and 69(c) = 0
where i,h is represented by [ip,12]. Hence 7,k in (1) is a generator of m;V = Z /6.
[t remains to prove the formulas in (6). Since Sq? is non trivial in $? x CP, and
CP, x S% we see that i1 has to be a summand of §9(a) and 69(b). On the other
hand we show below that

(9) 200(a) = 200(b) = 2ig, iz] + 2iw, 2]

This implies the first formula in (6).
For i = 1,2,3 let S; = S? be the 2-sphere with 2-cell e;, that is S; = * U e;.
Moreover let T = S; x S; x S3 and let

££3S£C51V52VS3=T2

be the inclusions. Then the two cell e; X ej in T with ¢ < 7 has the attaching map
[:,€;]) which is the Whitehead product of &;,¢;. Hence T* is the mapping cone of

g:AZSmVS];;VSQg—)SlVSzVSg

where S12 = S13 = S23 = S° and g|Si; = [£i,€;]). Moreover let w € m5(T*) be the
attaching map of the 6-cell e; X e; X e3 in T. Then we know

(10) w € Ey([€12, 8] + (€13, 2] + [€23,&1])

where €;;: 5;; CAC AVT? and & : S? C T? C AVT? are the inclusions. Formula
(10) corresponds to the Nakaoka Toda formula [NT], see also 3.6.10 in [BO] or
[BI]. Now (10) and the canonical map T — JS5? show that the second formula in
(6) holds. For this we use the naturality (2.3). On the other hand we have the
canonical map A : §% x §% — J,5% — CP, which is of degree 2 in Hy. Then (10)
and the maps p,(1 x A): T = V,pp(A x 1) : T — V show that (9) holds. For this
we again use (2.3). q.e.d.

Proof of (8.8) and (8.4). Thespace J,5? is the 4-skeleton of JS?%; let j : JoS? C JS?

be the inclusion. Then j induces the exact sequences

0 y Z s ms JoS? — 3y g JS? —— 0
1 || s ¥
0 — 2z 2% 720722 22, 2/302/2 —— 0
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Here ¢ is the map in (2.5) for g = {12,¢2]. In the top row 1 € Z is mapped to the
attaching map w of the 6-cell in JS? for which §(w) = (3,0) by (10) in the proof of
(3.1) above. Recall that the second coordinate of §(z),z € m5J25%, coincides with
q(z) € n55* = Z /2. The kernel of § is given by the inlcusion i, : 75.5% C m5J25%.
We now obtain by the maps in (3.5) (1) the following commutative diagram

7653 7sJS2  —  m(JS?)

li. l(h‘). T#-

" .
(2) 76(ST2S2)2 m5(J1S%) T2 r(JUS?)

J
m6(S%)  ms(JaS?) —L— w5(JS?) = w6 SP

[0 =

Here u;, resp. us, is induced by the inclusion iy : X C JX with X = J,5? and
X = JS? respectively. We have Ju;z = £(z). Moreover we have p,up; = 1. Now
we get for y = 7, L(z) € 76(S5?) the equation dujz = i,y + 2z with r.(z) = 0 and
2z = 0 since kernel (r,) = Z/2. Now we obtain

(3) wz =91ty +2)=(Ji)I ly+ 97"z

and hence by diagram (2)

Ja(z) = pul(Jg)swrm

4
® =97y + pa(J5)9 7 2

Therefore we get

() djs(z) =y + 2 =r.3(z) + 7'

where 2’ is an element of order at most 2. Since the kernel of ¢’ in (1) is the element

of order 2 we thus derive from (5) the result in (3.3) and (3.4) respectively; compare
the definition of § in (2.4). q.e.d
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