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Recently, shortly after a conjecture of Deligne [4], new algebraic structures on
the Hochschild cochain space V = C*(A, A) of an associative algebra have been
discovered [8, 6]. It has also been pointed out in [8] that a similar structure takes
place for the singular cochain complex V = C*X of a topological space, due to Baues
(2].

In this paper, we find a very general pattern which works for these two examples:
in both cases, V' has a natural structure of an operad. Together with a multiplication,
it yields all the complicated algebraic buildup on V, see Sections 1 and 2.

The rest of the paper is dedicated to the geometry of the conjecture, which, in fact,
assumed something more than mere algebraic structure:

Conjecture (Deligne). The Hochschild cochain complez has a natural structure of
an algebra over a chain operad of the little squares operad.

In Section 4.2, we use the construction of Gromov-Witten invariants by Kontsevich
to propose a way of proving the result analogous to the conjecture in the case of
singular cochain complex.

Acknowledgment. The second author would like to thank M. Kontsevich and Yu. L.
Manin for many useful discussions. He is also grateful to the hospitality of the Max-
Planck-Institut fur Mathematik in Bonn, where this paper was written up.

1. HoMoTOoPY G-ALGEBRA STRUCTURE ON AN OPERAD

1.1. The brace structure on an operad. Let {O(n) | n > 1} be an operad
of vector spaces. Consider the graded vector space O = @, O(n), the sum of all
components of the operad. Denote by degz the degree of an element z € O and by
|z| the degree in the desuspension O[1] of the space O, i.e., degz = n, |z| =n — 1,
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whenever z € O(n). Define the following collection of multilinear operations, braces

on O:

(1) z{Zy,y..., T} = Z(—l)"y(m;id, conidy oy, id. L id, 2y, id, L L id)

for z,z,,...,z, € O, where the summation runs over all possible substitutions of
Ti,..., %, into z in the prescribed order and € 1= T7_, |z,lip, 1, being the total
number of inputs in front of z,. The braces z{z,,...,z,} are homogeneous of degree
-n,le,degz{z,,...,z.} = degz +degz, + - - + degz, — n. It will be convenient
to denote z{y} also by « o y and understand z{} as just z.

Remark. The sign is motivated by the example where O = End(V'), the endomor-
phism operad of a vector space V: End (V) (n) := Hom(V®", V). Then the sign (~1)°
is picked up by rearranging the sequence of letters z{z,,...,zn}(v1,-..,vm), where
V1,---,Um € V, m is such that z{x,,...,z,} € Hom(V®™ V), into the sequence
Y(&;301, -0, T1(Vi 1y e )y e oo Vi En(Vip41s- - )y oo, Um) In accordance with the
usual sign convention.

One can immediately check the following identities:

(2) :E{mly R a:‘:m}{yh .- "1yn}

- Z (—.l)gﬂ:‘{yl,---,yil,Il{y{|+1,---,yjl},yjl-}-],---,
0<i < i <n

Yims EmAYim+1s s Yim br Yimt1r -2 Un ks

T

where € := 300, |z, Z;”:, |y |, 1.€., the sign is picked up by the z;’s passing through
the y;’s in the shuffle.

Remark. The identity for m = n = | implies that the degree —1 bracket
(3) [:l:,y] = p 01y — (_l)lxltyly o

defines the structure of a graded Lie algebra on O.

Definition 1. A brace alyebra is a graded vector space with a collection of braces
z{z1,..., 7o} of degree —n satisfying the identities (2).

Thus we have made the following observation.

Proposition 1. For every operad O of vector spaces, the braces (1) define the natural
structure of a brace alyebra on the underlying graded vector space O.



HOMOTOPY G-ALGEBRAS AND MODULI SPACE OPERAD 3

1.2. Homotopy G-algebras. A wmultiplication on an operad O is an element m €
O(2) such that mom = 0.

Proposition 2. (1) A multiplication on an operad is equivalent to a morphism
As — O of operads.
(2) If V 1s an algebra over an operad with multiplication, then V is naturally an
assoctative algebra.

(3) The product

(4) oy = (1) m{z, y}
of degree 0 and the differentiul

(5) dz =mow — (=1)lz o m, d*=0, degd=1,

define the structure of a differential graded (DG) associative algebra on

0.

Analogously, a multiplication on a brace algebra V = @, V,, 1s an element m € V,
such that m om = 0. It also provides V with a DG algebra structure.

Amazingly, a multiplication generates a much richer algebraic structure on an
operad, as the following theorem nmplies. Before making the statement, we should
define the algebraic structure in question.

Definition 2. A homotopy G-algebra is a brace algebra V = @, V" provided with
a differential d of degree one and a dot product zy of degree 0 making V into a
DG associative algebra. The dot product must satisfy the following compatibility
identities:

n

(6) (:El : ‘T?){yh' .- ’yﬂ} = Z(_l)tml{yla' - ':yk} : $2{yk+l, v )yﬂ}:

k=0

where € = |z4| Z:;:l lypl, and
d(z{z1,. .., xne }) = (de){zy, .., Tag }
9 - (--1)IzI jil(—l)lml|"""“"'J—"“‘|:1:{:1r:1, coydTiy o Tag }
i=]
= (—1)"’””"“:1:1 c2{Ta,. ..y Tnt1}

+ (__l)|:n| Z(_1)|r1|+-..+]ﬂ:.‘-1|${$h ey T Tiglye e 71511-1-1}
i=1

—aw{&r, .y Tu} T
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Remark. 1. Note that every homotopy G-algebra is in particular a DG Lie algebra
with respect to the commutator (3), which is a graded derivation of the dot product
up to a null-homotopy:

[2,y2] = [z, ¥}z = (=1 Iy [z ]
= (_1)|m|+|y|+l(d(${y, z}) - ((I'T){ya Z} - (_1)|I|${dy,z} - (_1)|r|+|yi${y7dz})'

Moreover, the multiplication is always homotopy graded commutative:
(8)  ay— (~1)ERIBHDY = (1)l (s o) — dz oy — (—1)Fa 0 dy),

2. Since a brace algebra V with multiplication is a DG algebra, one can define its
Hochschild cochain complex C*(V, V), as usually, with the differential

Df:=dof— (—l)mf od+mo f— (_._1)|I|f om

and the cup product
hU fa:= (—1)|h|+lm{f1’f2}’

the degree |f| meaning the desuspended total degree. (Usually, by the cup product
one means the opposite product fo U f;.) Then the relations (6) and (7) mean that
the correspondence

V = C'(V,V),

o0
x> a{a,. .., Tal,

n=0

the summation being in fact finite, is a morphism of DG algebras.

Theorem 3. A multiplication on an operad O(n} defines the structure of « homot-
opy G-algebra on O = GO(n). A multiplication on « brace algebra is equivalent to
the structure of @ homotopy G-alyebra on 1.

Proof. The differential, the dot product and the braces have been already defined.
What remains is to check the compatibility identities. In view of (4) amd (5), they
both are particular cases of (2). O

2. APPLICATIONS: HOCHSCHILD COCHAINS AND SINGULAR COCHAINS

2.1. Hochschild complex. Applying this theorem to the Hochschild cochain com-
plex C*(A, A), which is at the same time the endomorphism operad End(A)(n) =
C"(A, A) and whose multiplication cocycle m(a,b) := ab, m € C* A, A), is a mul-
tiplication on this operad, we obtain the following result conjectured by Deligne [4]
and proved in [G, §].

Corollary 4. The Hochschild compler C*(A, A) of an associative algebra A has o
natural structure of homolopy G-algebra.



4

HOMOTOPY G-ALGEBRAS AND MODULI SPACE OPERAD 5

It is clear that the product obtained this way is the usual cup product

(9) (zUy)(a,..., ) = z(ay,. .. ,“F-‘)y(akﬂv ey Q)

altered by the sign (—1){=HD{+1)  The bracket [z, z] plays the role of a primary
obstruction in deformation theory. It was introduced by Gerstenhaber in [5]. The
higher braces for the Hochschild complex have been introduced in Getzler’s work [7],
where they are used to define the Hochschild coliomology of a homotopy associative
algebra.

2.2. G-algebras. The structure inherited by the Hochschild cohomology was in-
troduced in [5] and has been discovered in a number of places in mathematics and
physics since then. A G-ulgebra is a graded vector space H with a dot product zy
defining the structure of a graded commutative algebra and with a bracket [z,y]
of degree —1 defining the structure of a graded Lie, such that the bracket with an
element is a derivation of the dot product:

[#,y2] = {=,y]z + (—I)M(h’lﬂ)y[m, z].

In other words, a G-algebra is a specific graded version of a Poisson algebra.

Corollary 5. The dot product and the bracket [z,y] := z oy — (—=1)FWy o ¢ define
the structure of a G-algebra on the Hochschild cohomology H*( A, A) of an associative
algebra A.

Proof. A simple computation shows that the identity (1) yields the Jacobi identity for
the bracket. Equation (8) implies that the differential is a derivation of the bracket:

(10) d[z,y) = [dz,y] — (=D)Fl[z,dy] = 0.

Therefore, even before passing to cohomology, the Hochschild complex forms a DG
Lie algebra with respect to the bracket and a DG associative algebra with respect to
the dot product.

Thus, we will be through if we see that

(1) the two operatious take cocycles into cocycles and are independent of the
choice of representatives of cohomology classes,

(2) the dot product is graded commutative and

(3) the bracket is a derivation of the dot product.

It easy to observe Fact (1) from Proposition 2(3) and (10), Fact (2) from the homotopy
commutativity (8) at the cochain level. Fact (3) has already been mentioned in
Remark after (7). O
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2.3. Singular cochain complex. Let C*X be the singular cochain complex of
a topological space (or a simplicial set) X. For an n-simplex o : A(n) — X, A(n)
being the standard n-simplex, let o(ny, . .., ng) denote its face spanned by the vertices
No,...,Nk, where 1 = n; is an injective monotone function A(k) — A(n). The
singular cochain complex C*X has a natural operad structure S(n) = C"X defined
by the compositions:

v:Sk)QS(m)®...® S(nk) — S(ny + -+ + nx),
V@i @1,- - @k)(0) = (o (0 Ny, N+ Ng, ., R )

er{(a(0,1,...,m1))p2{o(n1,...,n1+12)) ...
rla(ny 4 per, . F e b))

This automatically yields the structure of a brace algebra on C*X, according to

Proposition 1. Define the multiplication m € C?*X as

m(o) =1 for any 2-simplex o.
Then Theorem 3 immediately recovers the following result of Baues [2].

Corollary 6. The singular cochain compler C*X of a topological space X has a
natural structure of homotopy G-algcbra.

The dot product determined by the multiplication m as in (4) is nothing but the
familiar cup product, up to the sign (—1){eH+D¥I+1),

pUp = g: @(o(0,...,k)Y(colk,..., n))

and the differential determined by (5) is merely the familiar coboundary operator,
up to the sign (—1)kl*+1,

n+1
(dp)(o) = E( 1)90(0(0,1,.., o, 4+ 1))

Moreover, the lower brace ¢ o ¥ is the Steenrod operation ¢ U; ¥ and higher braces
are multilinear generalizations of it.

3. GENERALITIES

3.1. A version. Here we would like to consider A,, generalizations of our results
in the spirit of {8]. An A.-multiplication on an operad O (a brace alyebra V) is a
formal sum m = my +my+my +..., each m, € O(n) (or V), such that mom = 0.
In this case (5) is also a (llﬁmeutml but not homogeneous d=do+dy+.... As
above, an Ag,-multiplication on an opelad O defines

(1) a morphism A, — O of operads, where A, is the A, (homotopy associative)
operad, see [9],
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(2) a natural structure of A -algebra on each algebra over the operad O,
(3) the structure of an A -algebra on O itself with higher products M, defined
by the formula:

M. (z1,...,zs) = m{zy,...,Tu}, forn>1,
M\(z) :=dz :=mozx —(=1)Flz om.

For any A.-algebra V the same formulas define the structure of an A-algebra on
the Hochschild complex C*(V, V), see Getzler [7].

Theorem 7. An Ay -multiplication on an operad O(n) defines the following A, ver-
ston of a homotopy G-alyebra on V = O = ®0O(n). It is a brace algebra V and an
Ao-algebra at the same time, such that the correspondence

V = C*(V, V),

(o]
wr Y a{wy,.. ., Tl

n=0

is a morphism of A -algebrus.
p ooty

3.2. Bar interpretation. In this section we want to make a translation of the alge-
braic notions introduced above into the dual language of bar constructions, following
ideas of Getzler-Jones’ work [8]. For a graded vector space V = @, V,, let V[-1],
V=1, := Vac1, be its suspension and

BY = Vi)™,

n=0
the bar coalgebra with the usual coproduct

n

Afzy| ... Jza) = Z[$1| ooz @ [Tigal - - |0l

=0
[z1] ... |zx] denoting an element of V[-1]®* C BV.
We call a product BV @BV = BV left nonincreasing if deg(zUy) > deg z, where
by definition deg{z,]...|x,]) = n.

Lemma 8. The structure of a brace algebra on « graded vector space V' is equivalent
to the structure of a bialgebra on the bar coulgebra BV defined by a left noincreasing
product.

Proof. A product U on BV compatible with the coproduct A and satisfying deg(z U
y) > deg z determines the braces uniquely by the formula

[xll ce l'l:m] U [Ull ces |yu]
= (=l Ay e {yiens - 3o i dBn {Birrs - H eyl



8 MURRAY GERSTENHABER AND ALEXANDER A. VORONOV

where the sign is the same as in (2). The associativity of the product is then equivalent
to the relations (2). O

Let V be a brace algebra, B V the corresponding bar bialgebra. A DG-bialyebra is
a bialgebra with a degree —1 differential which is simultaneously a derivation and a
coderivation.

Lemma 9. An A -multiplication on « brace algebra V is equivalent to the structure

of a DG-bialyebra on the bar bialgebra BV .

Proof. An Ay -multiplication m on V is equivalent to a codifferential § on BV, as
has been well-known since Stasheff [14]. That ¢ is a derivation is equivalent to the
compatibility condition of Theorem 7. 0O

4. TOPOLOGICAL AND MIRROR REFLECTIONS

4.1. Moduli spaces and little squares. As predicted by Deligne [4], the struc-
ture of a homotopy G-algebra on the Hochschild complex arises from an action of a
chain complex of the little squares operad. The following combinatorial version of
this statement was proved by Getzler and Jones. Consider Fox-Neuwirth’s cellular
partition of the configuration spaces F(2,n) of n points in R% cells are labelled by
ordered partitions of the set {1,...,n} into subsets with orderings within each sub-
set. This reflects grouping points lying on common vertical lines on the plane and
ordering the points lexicographically. Take the quotient cell complex K,M(n) by the
action of translations R? and dilations R} and assemble these quotient spaces into a
cellular operad KX, M(n). The resulting space M(n) is a circle bundle over the real
compactification M,, , of the moduli space Mg, of n-punctured curves of genus zero,
see {1, 8, 10, 11]. The space M(n) can be also interpreted as a “decorated” moduli
space, see next section. Cells in this cellular operad K, M(n) are enumerated by pairs
(T,p), where T is a tree with » initial vertices and one terminal vertex, labelling a
component of the boundary of M{(n), and p is a partition, as above, of the set in(v)
of incoming vertices for each vertex v of the tree T

In [8], it is shown that a complex V is an A, homotopy G-algebra, iff it is an
algebra over the operad K, M(n) satisfying the following condition. The structure
mappings

K, M(n) = Hom(VE" V),

of the algebra V over the operad K, M(n) send all cells in K, M(n) to zero, except
cells of two kinds:

(1) (én, ((71), (225 .- .,1%a)), where &, is the corolla, the tree with one root and n
edges, connecting it to the remaining n vertices, corresponding to the config-
uration where the points 15,...,1, sit on a vertical line, the ¢xth point being
below the iy, st, and the ¢;st point is in the half-plane to the left of the line;
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(2) (0n, ((z1,72,...,%,)), corresponding to the configuration where all the points
sit on a single vertical line, the ¢4th point being below the 754st.

Cells of the first kind map to the braces z; {ziy,..., %, }, n > 1, and cells of the
second kind map to the A, products M, (z;,,..., i), n > 1.

Thus, the conditions of Theorem 7 and, in particular, when M,, = 0 for n > 2 the
relations (6) and (7), follow from the combinatorial structure of the cell complex.

This construction of Getzler and Jones is essentially combinatorial and the question
of a natural topological construction, perhaps, similar to those which come from
quantum field theory (cf. [10]), where algebraic operations are obtained by integration
over cycles, remains a mystery. At least in known examples, we anticipate that other
cells give rise to nonzero multilinear operations.

Wish 10. In all the examnples, where a homotopy G-algebra structure occurs, e.y., the
Hochschild compler or the singular cochein complez, the structure extends nontrivially
to a natural structure of an algebra over the operad K,M(n).

This operad is closer to the homotopy G-operad in the sense of Ginzburg-Kapranov
[9]. The latter operad is the operad cobar construction for the Koszul dual to the
Gerstenhaber operad, which is the homology operad H,M(n), see [3, 8].

4.2. The construction. Here we are going to sketch how to make Wish 10 come
true in case of the homotopy G-algebra C*X. Our construction is a real version of
Kontsevich’s contsruction of Gromov-Witten invariants in {12, 13]. The difference
is that we replace the moduli spaces _A-;t-u,,.ﬂ, which are compact complex mani-
folds, with the spaces M(n), which are circle bundles over the real compactifications
M, 41, Which are compact real manifolds with corners.

Let (X,w) be a compact manifold with a sufficiently positive Kéhler form w. We
will replace singular cochains C*X with smooth forms

V=0'X.
We want to define the natural structure of an algebra over the chain operad C,M(n)
on V. In particular, this will yield the structure of an algebra over the cellular chain
operad K, M(n) on V, giving a solution of Wish 10.

Let M(n)(X, ) be the moduli space of stable holomorphic maps (C; p1, ..., pat1;
Ty s Tmy Too} ) from a (degenerated) curve C of genus 0 to X:

¢:C =X

mapping the fundamental class of C to a given homology class 8 € H3(X,Z). Here
the curve C has n + 1 punctures py,...,p,4+; and all the singularities of C must be
m double points. For each ¢, 1 <1 <n, 7; is the choice of a tangent direction at the
1th double point to the irreducible component that is farther away from the “root”,
i.e., from the component of C' containing the puncture co 1= p,y1. 7o 18 a tangent
direction at oo. The stability of a map 1s understood in the sense of Kontsevich
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[12, 13]: each irreducible component of C contracted to a point by ¢ must be stable,
i.e., admit no infinitesimal automorphisms. Because of finite group of automorphisms,
the moduli space M(n)(X, ) is only a compact stack. In some cases, e.g., when X
is a homogeneous space, it is a smooth stack with corners. Let us assume it is one.

Notice that the configuration space M(n) considered in Section 4.1 is the same
as the moduli space of data (C;p1,....Pus1;71,- -+, Tm, Teo) as above, except that
all components of C must be stable, cf. [8, 10]. The operad composition is given
by attaching the oo punctures on curves to the other punctures on another curve,
remembering the tangent direction at each new double point. Let

T M(n)(X,B) = M(n)

denote the forgetful map of the space M(n)(X,5) of maps to the space M(n) of
curves.
There is a universal (evaluation) map

¢:C—- X

from the universal curve over M(n)(X, ) to the manifold X. The natural projection
C — M(n)(X, ) admits n + 1 canonical sections s,,. .., $y41, sending a point of the
moduli to the 7th puncture on the universal curve.

Now we are ready to deline the structure of an algebra over the operad C. M(n)
on V. Let (¢, ¢) := fx ¢ A+ be the Poincaré pairing on V. Leaving aside problems
with pairings and duals for infinite dimensional vector spaces and replacing singular
cochains with differential forms once again, it suffices to construct mappings

(11) fu VO 5 QO M(n)
which will define the structure of an algebra over an operad
C.M(n) = Hom(VE", V)

after dualizing V with the help of the Poincaré pairing. (Honestly speaking, we would
have to replace singular chains with currents then). We define the mapping (11) by
the formula

ffx((Pl: SRR ‘Pn+l) = Z exl’("’ / w) Tr*(s;d)"cp] ARERNA 3:1+1(I)“Pﬂ+l)a
BEH,(X Z) B

where ®* and sI’s are pull-backs and m. is a push-forward (fiberwise integration).
In fact, because of the summation over the lattice H,(X,Z), we have to replace the
ground field € with formal power series in 8 € H,(X,Z).

Claim 11. The maps (11) define « morphism of operads, that is, the structure of an
algebra over the chain operad C. M(n) on the de Rham complez V = Q*X.
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As soon as some hard problems with the construction, such as the smoothness of

the stack of stable maps, are solved, the verification of the operad properties of this
claim is automatic. So, we postpone the proof of it until better times.

1
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11.

12.

13.

14.
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