Max-Planck-Institut für Mathematik Bonn

Cyclotomic polynomial coefficients $a(n, k)$ with n and k in prescribed residue classes

by

Jessica Fintzen

Cyclotomic polynomial coefficients $a(n, k)$ with n and k in prescribed residue classes

Jessica Fintzen

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

Jacobs University Bremen
College Ring 3
Mailbox 341
28759 Bremen
Germany

Cyclotomic polynomial coefficients $a(n, k)$ with n and k in prescribed residue classes

Jessica Fintzen

Abstract

Let $a(n, k)$ be the k th coefficient of the nth cyclotomic polynomial. In $2009 \mathrm{Ji}, \mathrm{Li}$ and Moree showed that $\{a(n, k) \mid n \equiv 0 \bmod d, n \geq 1, k \geq 0\}=\mathbb{Z}$. In this paper we will determine $\{a(n, k) \mid n \equiv a \bmod d, k \equiv b \bmod f, n \geq 1, k \geq 0\}$.

1 Introduction

Let

$$
\Phi_{n}(x)=\prod_{\substack{1 \leq k \leq n \\(k, n)=1}}\left(x-e^{\frac{2 \pi i k}{n}}\right)=\sum_{k=0}^{\varphi(n)} a(n, k) x^{k}
$$

be the nth cyclotomic polynomial, where φ denotes Euler's totient function, and set $a(n, k)=0$ for $k>\varphi(n)$.
It can be shown that $a(n, k) \in \mathbb{Z}$. In the 19th century it was conjectured that $|a(n, k)| \leq 1$, which is the case for $n<105$. However, $a(105,7)=-2$, and in 1931 Schur proved in a letter to Landau (cf. [3) that $|a(n, k)|$ is unbounded. In 1987 Suzuki [5] showed that $\{a(n, k) \mid n \geq 1, k \geq 0\}=\mathbb{Z}$, and in 2009 Ji , Li and Moree [2] proved the generalization $\{a(m n, k) \mid n \geq 1, k \geq 0\}=\mathbb{Z}$ for an arbitrary fixed positive integer m.
In this paper we will show that one can restrict n and k even further and still obtain every integer as coefficient $a(n, k)$.

Theorem 1. Let $a<d$ and $b<f$ be four nonnegative integers. Denote $s(n)=n \cdot \prod_{\substack{p \mid n \\ p \text { prime }}} p^{-1}$.
Then

$$
\{a(n, k) \mid n \equiv a \bmod d, k \equiv b \bmod f, n \geq 1, k \geq 0\}= \begin{cases}\mathbb{Z} & \text { if }(s((a, d)), f) \mid b \\ \{0\} & \text { otherwise }\end{cases}
$$

Keywords: cyclotomic polynomial, Dirichlet's Theorem, residue classes

We would like to remark that the result also holds true if one replaces the coefficients $a(n, k)$ of the cyclotomic polynomials by the coefficients $c(n, k)$ of the inverse cyclotomic polynomials (see Section 2, equation (3) for a definition), which is a direct corollary to Theorem 1, see Corollary 11 in Section 4.

2 Some properties of cyclotomic polynomials

Using the identity

$$
\begin{equation*}
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x) \tag{1}
\end{equation*}
$$

and the Möbius inversion formula, one can show that for $n>1$

$$
\begin{equation*}
\Phi_{n}(x)=\prod_{d \mid n}\left(1-x^{d}\right)^{\mu\left(\frac{n}{d}\right)} \tag{2}
\end{equation*}
$$

where μ denotes the Möbius function. From equation (2) one can deduce the following lemma (for a proof see, e.g., Thangadurai [6]).

Lemma 1. Let $n>1$ and $k \geq 0$ be integers.
a) If p and q are primes satisfying $k<p<q$ and $(n, p q)=1$, we have $a(p q n, k)=a(n, k)$.
b) If n is odd, we have $a(2 n, k)=a(n, k) \cdot(-1)^{k}$.
c) If $p \mid n$, we have $a(p n, p k)=a(n, k)$.
d) If $s(n) \nmid k$, we have $a(n, k)=0$.

Another helpful tool will be the consideration of the coefficients of the power series expansion of the inverse cyclotomic polynomial $\Phi_{n}(x)^{-1}$ at $x=0$. We denote

$$
\begin{equation*}
\frac{1}{\Phi_{n}(x)}=\sum_{k=0}^{\infty} c(n, k) x^{k} . \tag{3}
\end{equation*}
$$

The coefficients $c(n, k)$ are integers, see for example Moree [4], and we have the following relation with the coefficients of the cyclotomic polynomials, cf. Gallot, Moree and Hommersom [1].

Lemma 2. Let k be a nonnegative integer and p a prime exceeding k and coprime with $n>1$. Then $a(p n, k)=c(n, k)$ and $c(p n, k)=a(n, k)$.

This lemma follows from equation (2) and

$$
\begin{equation*}
\sum_{k=0}^{\infty} c(n, k) x^{k}=\frac{1}{\Phi_{n}(x)}=\prod_{d \mid n}\left(1-x^{d}\right)^{-\mu\left(\frac{n}{d}\right)} \tag{4}
\end{equation*}
$$

(for $|x|<1$ and $n>1$).
Definition 1. Let n and k be integers with $n>0$. Denote by $(k \bmod n)$ the unique integer satisfying $(k \bmod n) \equiv k \bmod n$ and $0 \leq(k \bmod n)<n$.
Lemma 3. Let $n>0$ and $k \geq 0$ be integers.
a) We have $c(n, k)=c(n,(k \bmod n))$.
b) If $(k \bmod n)>n-\varphi(n)$, then $c(n, k)=0$.

Proof. From equation (11) it follows that

$$
\sum_{k=0}^{\infty} c(n, k) x^{k}=\frac{1}{\Phi_{n}(x)}=-\left(\prod_{d \mid n, d<n} \Phi_{d}(x)\right) \sum_{j=0}^{\infty} x^{j n} .
$$

As $\prod_{d \mid n, d<n} \Phi_{d}(x)$ has degree $n-\varphi(n)<n$, we obtain $c(n, k)=c(n,(k \bmod n))$ and $c(n, k)=0$ for $(k \bmod n)>n-\varphi(n)$.
Lemma 4. Let $n>1$ be a positive integer, then $c(n, 1)=\mu(n)$.
Proof. Using equation (4) we obtain

$$
\sum_{k=0}^{\infty} c(n, k) x^{k}=\prod_{d \mid n}\left(1-x^{d}\right)^{-\mu\left(\frac{n}{d}\right)} \equiv(1-x)^{-\mu(n)} \equiv 1+\mu(n) x \bmod x^{2}
$$

and therefore $c(n, 1)=\mu(n)$.

3 Warm-up: special cases of Theorem 1

Before we tackle Theorem 1 in its full generality, we want to demonstrate that it becomes an easy generalization of Theorem 2 if we restrict only n or k to a prescribed residue class while the other variable is not required to satisfy any congruence condition.

Theorem 2. Let m and N be positive integers. Then

$$
\{a(m n, k) \mid n>1, k \geq 0,(n, N)=1\}=\mathbb{Z}
$$

and

$$
\{c(m n, k) \mid n>1, k \geq 0,(n, N)=1\}=\mathbb{Z} .
$$

This theorem follows easily from the proof of $\{a(n, k) \mid n \equiv 0 \bmod d, n \geq 1, k \geq 0\}=\mathbb{Z}$ by Ji, Li and Moree [2]. Using it, we prove the following two special cases of Theorem 1 .

Theorem 3. Let $b<f$ be two nonnegative integers. Then

$$
\{a(n, k) \mid k \equiv b \bmod f, n \geq 1, k \geq 0\}=\mathbb{Z}
$$

Proof. Let z be an arbitrary integer. By Theorem 2 there exist an integer $n>1,(n, f)=1$ and an integer $k \geq 0$ such that $c(n, k)=z$. As $(n, f)=1$, we can find an integer $r \geq 1$ with $n r \equiv b-k \bmod f$. Let $p>n r+k$ be a prime. Then by Lemma 2 and Lemma 3 we obtain

$$
a(n p, n r+k)=c(n, n r+k)=c(n, k)=z
$$

with $n r+k \equiv b \bmod f$.
Theorem 4. Let $a<d$ be two nonnegative integers. Then

$$
\{a(n, k) \mid n \equiv a \bmod d, n \geq 1, k \geq 0\}=\mathbb{Z}
$$

Proof. Let $g=(a, d)$, and denote by z an arbitrary integer. Using Theorem 2, there exist an integer $n>1,\left(n, \frac{d}{g}\right)=1$ and an integer $k \geq 0$ such that $c(n g, k)=z$. By Dirichlet's Prime Number Theorem we can pick a prime $p>\max \{k, n g\}$ that satisfies $p \equiv$ $n^{-1} \frac{a}{g} \bmod \frac{d}{g}$. Then by Lemma 2 we have $a(n p g, k)=c(n g, k)=z$ with $n p g \equiv a \bmod d$.
Although these special cases have relatively easy proofs, the combination of the congruence restrictions on both n and k in Theorem 1 requires a more complicated proof.

4 The main theorem

Before proving Theorem 1, we will first prove the following key result.
Lemma 5. Let $a<d, b<d$ be three nonnegative integers such that (a, d) is squarefree. Then

$$
\{a(n, k) \mid n \equiv a \bmod d, k \equiv b \bmod d, n \geq 1, k \geq 0\}=\mathbb{Z}
$$

Let $c=(a, d)$. We will prove Lemma 5 in two parts. First we will consider when c is odd, and then the case where c is even will follow easily.
Suppose c is odd. We will start this case by proving that all negative integers are contained in $\{a(n, k) \mid n \equiv a \bmod d, k \equiv b \bmod d, n \geq 1, k \geq 0\}$. In order to do this we will show that for every positive integer t there exist positive integers m and q satisfying certain conditions such that $a(c q m, k)=-t$. For this we will need three lemmas. The first will ensure that the integer m can be chosen as a product of primes that are in a prescribed primitive residue class and satisfy certain size conditions. The other two will show that there exist residue classes satisfying the properties that we will need later.

Lemma 6. Let a, m and t be positive integers with $(a, m)=1$. Then for each N there exists $n>N$ such that the interval $\left[n, \frac{3}{2} n\right)$ contains at least t primes satisfying $p \equiv a \bmod m$.

Proof. Assume that there exists N_{0} such that for every $n \geq N_{0}$ the interval $\left[n, \frac{3}{2} n\right)$ contains less than t primes satisfying $p \equiv a \bmod m$. Then for all $x \geq N_{0}$ we have

$$
\sum_{\substack{p \leq x, p \text { prime } \\ p \equiv a \bmod m}} 1<N_{0}+\log \frac{x}{N_{0}}\left(\log \frac{3}{2}\right)^{-1} \cdot(t-1)=O(\log x)
$$

which contradicts the quantitative version of Dirichlet's Prime Number Theorem

$$
\sum_{\substack{p \leq x, p \text { prime } \\ p \equiv a \bmod m}} 1=(1+o(1)) \frac{x}{\varphi(m) \log x} .
$$

Lemma 7. Let s be an integer, and let d be an odd squarefree natural number. Then there exists an integer x such that $(x, d)=(x+s, d)=1$.

Proof. Let $d=\prod_{i=1}^{n} p_{i}$ be the prime factorization of d with $n \geq 1$ (for $d=1$ the lemma holds obviously true). For each odd prime there exists an x_{i} such that $\left(x_{i}, p_{i}\right)=$ $\left(x_{i}+s, p_{i}\right)=1$. Hence by the Chinese Remainder Theorem there exists an integer x satisfying $x \equiv x_{i} \bmod p_{i}$ for $1 \leq i \leq n$, and we have $(x, d)=(x+s, d)=1$.

Lemma 8. Let s and $y<c$ be nonnegative integers and let q_{1}, \ldots, q_{N} be $N>1$ distinct primes larger than $\max \{c, 2 N+1\}$. Define $q=\prod_{i=1}^{N} q_{i}$. Then there exists an integer u with $(u, q)=(u+s, q)=1$ such that the system of congruences

$$
\begin{aligned}
k & \equiv u+s \bmod q \\
k & \equiv y \bmod c
\end{aligned}
$$

implies

$$
c q-\varphi(c q)<(k \bmod c q) .
$$

Proof. Consider the set $S=\{c q+y-c \cdot j-s \mid 1 \leq j \leq 2 N+1\}$. As $q_{i}>2 N+1$ and $\left(q_{i}, c\right)=1$, for each $1 \leq i \leq N$ there is at most one element in S that is not coprime with q_{i} and at most one element $r \in S$ with $\left(r+s, q_{i}\right) \neq 1$. Thus there exists $u \in S$ with $(u, q)=(u+s, q)=1$. Note that $u+s \equiv y \bmod c$ and $0<u+s<c q$. Hence

$$
\begin{aligned}
(k \bmod c q) & =u+s \geq c q+y-c(2 N+1) \\
& >c q-\prod_{i=1}^{2}\left(q_{i}-1\right) \geq c q-\prod_{i=1}^{N}\left(q_{i}-1\right) \geq c q-\varphi(c q) .
\end{aligned}
$$

Now we have the necessary preliminaries to prove Lemma 5.

Proof of Lemma 5.

Denote, as above, the squarefree natural number (a, d) by c, and let d_{2} be the largest positive integer satisfying

$$
\begin{equation*}
d=d_{1} d_{2} \quad \text { and } \quad\left(b, d_{2}\right)=1 \quad \text { and } \quad d_{1} \in \mathbb{Z} \tag{5}
\end{equation*}
$$

Note that this implies $\left(d_{1}, d_{2}\right)=1$. Furthermore, write $c=c_{1} c_{2}$ with nonnegative integers c_{1} and c_{2} satisfying $c_{1} \mid d_{1}$ and $c_{2} \mid d_{2}$.
We distinguish two cases.
Case 1. c is odd. Let s be a positive integer coprime with c_{1}. Note that this implies $\left(b-s, c_{1}\right)=1$ as every prime divisor of c_{1} divides by definition d_{1} and therefore b and thus does not divide $b-s$. In addition, by Lemma 7 there exists an integer x such that $\left(x, c_{2}\right)=\left(x+s, c_{2}\right)=1$ because c_{2} is odd in this case. Denote by γ the smallest positive integer satisfying $\left(c_{2} \gamma, \frac{d_{2}}{c_{2} \gamma}\right)=1$. Note that this implies $(x+s, \gamma)=1$. Since the moduli are coprime and their product is divisible by c, there exists a unique integer $0 \leq y<c$ such that the system of congruences

$$
\begin{align*}
& k \equiv b \bmod d_{1} \\
& k \equiv x+s \bmod c_{2} \gamma \tag{6}\\
& k \equiv 1 \bmod \frac{d_{2}}{c_{2} \gamma}
\end{align*}
$$

implies

$$
k \equiv y \bmod c
$$

Let q_{1}, \ldots, q_{N} be $N>1$ distinct primes all larger than $\max \{d, 2 N+7\}$ and define $q=$ $\prod_{i=1}^{N} q_{i}$. According to Lemma 8 there exists an integer u such that $(u, q)=(u+s, q)=1$ and such that $k \equiv u+s \bmod q$ together with the system of congruences (6) implies

$$
\begin{equation*}
c q-\varphi(c q)<(k \bmod c q) . \tag{7}
\end{equation*}
$$

Furthermore, by the Chinese Remainder Theorem we can find an integer v such that

$$
p_{i} \equiv v \bmod d q
$$

implies

$$
\begin{align*}
p_{i} & \equiv u \bmod q \\
p_{i} & \equiv b-s \bmod c_{1} \tag{8}\\
p_{i} & \equiv x \bmod c_{2} .
\end{align*}
$$

As $(u, q)=\left(b-s, c_{1}\right)=\left(x, c_{2}\right)=1$, the integer v can (and will) be chosen coprime with $d q$. In addition, since d and q are coprime, there exists an integer w such that the system
of congruences

$$
\begin{align*}
& k \equiv u+s \bmod q \\
& k \equiv b \bmod d_{1} \\
& k \equiv x+s \bmod c_{2} \gamma \tag{9}\\
& k \equiv 1 \bmod \frac{d_{2}}{c_{2} \gamma}
\end{align*}
$$

is equivalent to

$$
k \equiv w \bmod d q
$$

Note that therefore $k \equiv w \bmod d q$ implies $k \equiv b \bmod c_{1}$ and $k \equiv x+s \bmod c_{2}$.
Given an arbitrary positive integer t by Lemma 6 there exist primes p_{1}, \ldots, p_{t} such that $\max \{2 d q, 2 N+7\}<p_{1}<p_{2}<\ldots<p_{t}<\frac{3}{2} p_{1}$ and $p_{i} \equiv v \bmod d q$ for $1 \leq i \leq t$. As $2 p_{1}-\frac{3}{2} p_{1}-\frac{1}{2} \geq d q$, we can choose an integer $k \equiv w \bmod d q$ with $\frac{3 p_{1}}{2}<k<2 p_{1}$.
Set

$$
m= \begin{cases}p_{1} p_{2} \cdots p_{t} p_{t+1} & \text { if } t \text { is even } \\ p_{1} p_{2} \cdots p_{t} & \text { otherwise }\end{cases}
$$

where $p_{t+1}>2 p_{1}$ is a prime. Then we obtain (cf. also [2])

$$
\begin{aligned}
\Phi_{c q m}(x) & \equiv \prod_{r \mid c q m,}\left(1-x^{r}\right)^{\mu\left(\frac{c q m}{r}\right)} \bmod x^{k+1} \\
& \equiv \prod_{r \mid c q}\left(1-x^{r}\right)^{\mu\left(\frac{c q}{r}\right) \mu(m)} \prod_{i=1}^{t}\left(1-x^{p_{i}}\right)^{\mu\left(\frac{c q m}{p_{i}}\right)} \bmod x^{k+1} \\
& \equiv \Phi_{c q}(x)^{\mu(m)} \prod_{i=1}^{t}\left(1-x^{p_{i}}\right)^{-\mu(c q m)} \bmod x^{k+1} \\
& \equiv \frac{1}{\Phi_{c q}(x)} \prod_{i=1}^{t}\left(1-x^{p_{i}}\right)^{\mu(c q)} \bmod x^{k+1} \\
& \equiv \frac{1}{\Phi_{c q}(x)}\left(1-\mu(c q) \sum_{i=1}^{t} x^{p_{i}}\right) \bmod x^{k+1} .
\end{aligned}
$$

Thus by Lemma 3 together with equation (7) and the systems of congruences (8) and (9) we obtain

$$
\begin{align*}
a(c q m, k) & =c(c q, k)-\mu(c q) \sum_{i=1}^{t} c\left(c q, k-p_{i}\right)=0-\mu(c q) \sum_{i=1}^{t} c(c q, s) \\
& =-\mu(c q) t c(c q, s) \tag{10}
\end{align*}
$$

Let us first consider the case $s=1$. As $c(c q, 1)=\mu(c q)$ by Lemma 4, equation (10) yields

$$
\begin{equation*}
a(c q m, k)=-\mu(c q)^{2} t=-t . \tag{11}
\end{equation*}
$$

Since $\left(b, d_{2}\right)=1$ and $\left(x+s, c_{2} \gamma\right)=1$, we infer from Dirichlet's Prime Number Theorem the existence of a prime $q_{N+1}>k$ coprime with $d q m$ such that

$$
\begin{aligned}
q_{N+1} & \equiv 1 \bmod d_{1}, \\
q_{N+1} & \equiv b(x+s)^{-1} \bmod c_{2} \gamma \\
\text { and } \quad q_{N+1} & \equiv b \bmod \frac{d_{2}}{c_{2} \gamma} .
\end{aligned}
$$

Let $q_{N+2}>k$ be a prime coprime with $c q m q_{N+1}$ and satisfying

$$
q_{N+2} \equiv \frac{a}{c}\left(q m q_{N+1}^{2}\right)^{-1} \bmod \frac{d}{c} .
$$

Using Lemma 1, the system of congruences (9) and equation (11), we obtain

$$
a\left(c q m q_{N+1}^{2} q_{N+2}, k q_{N+1}\right)=a\left(c q m q_{N+1} q_{N+2}, k\right)=a(c q m, k)=-t
$$

with

$$
\begin{gathered}
c q m q_{N+1}^{2} q_{N+2} \equiv q m q_{N+1}^{2} a\left(q m q_{N+1}^{2}\right)^{-1} \equiv a \bmod d \text { and } \\
k q_{N+1} \equiv b \bmod d_{1}, k q_{N+1} \equiv b \bmod c_{2} \gamma \text { and } k q_{N+1} \equiv b \bmod \frac{d_{2}}{c_{2} \gamma}, \text { i.e. } k q_{N+1} \equiv b \bmod d
\end{gathered}
$$

Hence, if $c=(a, d)$ is odd, we have

$$
\begin{equation*}
\mathbb{Z}_{<0} \subseteq\{a(n, k) \mid n \equiv a \bmod d, k \equiv b \bmod d, n \geq 1, k \geq 0\} \tag{12}
\end{equation*}
$$

As $a(n, k)=0$ for every $k>\varphi(n)$, it only remains to show that

$$
\mathbb{Z}_{>0} \subseteq\{a(n, k) \mid n \equiv a \bmod d, k \equiv b \bmod d, n \geq 1, k \geq 0\}
$$

In order to do this we will proceed as above, this time exploiting the fact that we proved that $-1 \in\{a(n, k) \mid n \equiv a \bmod d, k \equiv 1 \bmod d, n \geq 1, k \geq 0\}$.
Define

$$
q_{0}= \begin{cases}q & \text { if } \mu(c q)=1 \\ q q_{N+3} & \text { otherwise }\end{cases}
$$

where $q_{N+3}>\max \{d, 2 N+7\}$ is a prime coprime to q. Then for the special case $b=$ $s=t=1$ the construction of equation (11) establishes the existence of a prime $m_{0}>$ $\max \{2 d q, 2 N+7\}$ and an integer $k_{0} \geq 0$ such that $a\left(c q_{0} m_{0}, k_{0}\right)=-1$ with $\left(k_{0}, c\right)=1$ (consider the system of congruences (97).
Let $\tilde{q}=q_{0} m_{0} q_{N+4}$, where q_{N+4} is a prime larger than k_{0} and coprime with $c q_{0} m_{0}$. Then \tilde{q} is a product of at most $N+3$ and at least 2 primes that are all larger than $\max \{d, 2(N+3)+1\}$. Note that we can therefore apply Lemma 8. Hence by the construction of equation (10)
above and by setting $s=k_{0}$, there exists a product \tilde{m} of primes all larger than $2 d \tilde{q}$ and a nonnegative integer \tilde{k} such that

$$
\begin{align*}
a(c \tilde{q} \tilde{m}, \tilde{k}) & =-\mu(c \tilde{q}) \sum_{i=1}^{t} c\left(c \tilde{q}, k_{0}\right)=-\mu\left(c q_{0} m_{0} q_{N+4}\right) t c\left(c q_{0} m_{0} q_{N+4}, k_{0}\right) \\
& =-t a\left(c q_{0} m_{0}, k_{0}\right)=t \tag{13}
\end{align*}
$$

(we used Lemma 2 for the third equality) and

$$
\tilde{k} \equiv u+k_{0} \bmod q \tilde{k} \equiv b \bmod d_{1}, \tilde{k} \equiv \tilde{x}+k_{0} \bmod c_{2} \gamma \quad \text { and } \quad \tilde{k} \equiv 1 \bmod \frac{d_{2}}{c_{2} \gamma},
$$

where \widetilde{x} is an integer satisfying $\left(\widetilde{x}, c_{2}\right)=\left(\widetilde{x}+k_{0}, c_{2}\right)=1$. By choosing a prime $\widetilde{q}_{N+1}>\tilde{k}$ coprime with $d \tilde{q} \widetilde{m}$ that satisfies the following system of congruences

$$
\begin{aligned}
\widetilde{q}_{N+1} & \equiv 1 \bmod d_{1} \\
\widetilde{q}_{N+1} & \equiv b\left(\widetilde{x}+k_{0}\right)^{-1} \bmod c_{2} \gamma \\
\widetilde{q}_{N+1} & \equiv b \bmod \frac{d_{2}}{c_{2} \gamma}
\end{aligned}
$$

and a prime $\widetilde{q}_{N+2}>\tilde{k}$ coprime with $c \tilde{q} \widetilde{m} \widetilde{q}_{N+1}$ satisfying

$$
\widetilde{q}_{N+2} \equiv \frac{a}{c}\left(\tilde{q} \widetilde{m} \widetilde{q}_{N+1}^{2}\right)^{-1} \bmod \frac{d}{c},
$$

we obtain

$$
a\left(c \tilde{q} \widetilde{m} \widetilde{q}_{N+1}^{2} \widetilde{q}_{N+2}, \tilde{k} \widetilde{q}_{N+1}\right)=a\left(c \tilde{q} \widetilde{m} \widetilde{q}_{N+1} \widetilde{q}_{N+2}, \tilde{k}\right)=a(c \tilde{q} \widetilde{m}, \tilde{k})=t,
$$

with

$$
c \tilde{q} \widetilde{m} \widetilde{q}_{N+1}^{2} \widetilde{q}_{N+2} \equiv \tilde{q} \widetilde{m} \widetilde{q}_{N+1}^{2} a\left(\tilde{q} \tilde{m} \widetilde{q_{N+1}^{2}}\right)^{-1} \equiv a \bmod d \quad \text { and } \quad \tilde{k} \widetilde{q}_{N+1} \equiv b \bmod d .
$$

Hence we have $\mathbb{Z}_{>0} \subseteq\{a(n, k) \mid n \equiv a \bmod d, k \equiv b \bmod d, n \geq 1, k \geq 0\}$, and therefore

$$
\mathbb{Z}=\{a(n, k) \mid n \equiv a \bmod d, k \equiv b \bmod d, n \geq 1, k \geq 0\}
$$

Case 2. c is even. We distinguish two subcases.
Case 2.1. $4 \mid d$. The condition that $c=(a, d)$ is squarefree implies that $4 \nmid(a, d)$, but $2 \mid(a, d)$ and therefore $\frac{a}{2}$ is an odd integer. Hence by Case 1 for every integer z there exist integers $n \equiv \frac{a}{2} \bmod d$ and $k \equiv b \bmod d$ such that $a(n, k)=z \cdot(-1)^{b}$. By Lemma 1 we obtain

$$
a(2 n, k)=a(n, k) \cdot(-1)^{k}=z \cdot(-1)^{b} \cdot(-1)^{b}=z
$$

with $2 n \equiv 2 \frac{a}{2} \equiv a \bmod d$.

Case 2.2. $4 \nmid d$. As $\frac{d}{2}$ is an odd integer, there exists an integer β with $2 \beta \equiv 1 \bmod \frac{d}{2}$. Then $\left(\beta, \frac{d}{2}\right)=1$, and, since $\frac{d}{2}+a \beta$ is odd, we have that $\left(\frac{d}{2}+a \beta, d\right)=\frac{1}{2}(a, d)$ is squarefree. Thus by Case 1 for every integer z there exist integers $n \equiv \frac{d}{2}+a \beta \bmod d$ and $k \equiv b \bmod d$ such that $a(n, k)=z \cdot(-1)^{b}$. Using Lemma 1, we obtain

$$
a(2 n, k)=a(n, k) \cdot(-1)^{k}=z \cdot(-1)^{b} \cdot(-1)^{b}=z
$$

with $2 n \equiv 2\left(\frac{d}{2}+a \beta\right) \equiv a \bmod d$.
We conclude that also in this case $\{a(n, k) \mid n \equiv a \bmod d, k \equiv b \bmod d, n \geq 1, k \geq 0\}=\mathbb{Z}$.

Now we are ready to prove Theorem 1 .

Proof of Theorem 1 .

We denote (a, d) by c and distinguish two cases.
Case 1. $(s(c), f) \mid b$. We want to show that in this case

$$
\{a(n, k) \mid n \equiv a \bmod d, k \equiv b \bmod f, n \geq 1, k \geq 0\}=\mathbb{Z}
$$

Note that every prime divisor of $s(c)$ divides $\frac{c}{s(c)}$, which divides every integer congruent $\frac{a}{(s(c), f)} \bmod \frac{d}{(s(c), f)}$. Hence it is enough to find for every integer z integers

$$
n \equiv \frac{a}{(s(c), f)} \bmod \frac{d}{(s(c), f)} \quad \text { and } \quad k \equiv \frac{b}{(s(c), f)} \bmod \frac{f}{(s(c), f)}
$$

with $a(n, k)=z$ because by Lemma 1 we have

$$
a(n(s(c), f), k(s(c), f))=a(n, k)=z
$$

with $n(s(c), f) \equiv a \bmod d$ and $k(s(c), f) \equiv b \bmod f$. As

$$
\begin{aligned}
\left(s\left(\left(\frac{a}{(s(c), f)}, \frac{d}{(s(c), f)}\right)\right), \frac{f}{(s(c), f)}\right) & =\left(s\left(\frac{(a, d)}{(s(c), f)}\right), \frac{f}{(s(c), f)}\right) \\
& =\left(\frac{s((a, d))}{(s(c), f)}, \frac{f}{(s(c), f)}\right) \\
& =\left(\frac{s(c)}{(s(c), f)}, \frac{f}{(s(c), f)}\right) \\
& =1,
\end{aligned}
$$

we can assume without loss of generality that $(s(c), f)=1$.
We will now modify the restrictions $n \equiv a \bmod d$ and $k \equiv b \bmod f$ on the coefficients $a(n, k)$ to be able to apply Lemma 5 .

Define

$$
\lambda(x)=\prod_{\substack{p \mid x, p^{2} \neq x, p p r i m e}} p,
$$

and let g_{2} be the largest positive integer such that

$$
g=\operatorname{lcm}\left(\frac{d}{s(c)}, f\right)=g_{1} g_{2} \quad \text { and } \quad\left(\frac{d}{s(c)}, g_{2}\right)=1
$$

where g_{1} is a positive integer. Let

$$
n_{0}=\frac{a}{s(c)}+\frac{d}{s(c)} \lambda\left(\frac{a}{s(c)}\right) .
$$

As $\left(g_{1}, g_{2}\right)=1$, by the Chinese Remainder Theorem there exists a unique y satisfying $0 \leq y<g$ such that

$$
n \equiv n_{0} \bmod g_{1} \quad \text { and } \quad n \equiv 1 \bmod g_{2}
$$

is equivalent to

$$
n \equiv y \bmod g
$$

Note that $\left(n_{0}, g_{1}\right)$ is squarefree because if p is a prime with $p^{2} \mid\left(n_{0}, g_{1}\right)$, then $p^{2} \mid g_{1}$ implies $p \left\lvert\, \frac{d}{s(c)}\right.$ by definition of g_{1}. Hence $p \left\lvert\, \frac{a}{s(c)}\right.$ (see definition of n_{0}). If, however, $p^{2} \left\lvert\, \frac{a}{s(c)}\right.$, then $p^{2} \nmid \frac{d}{s(c)}$ and $p \nmid \lambda\left(\frac{a}{s(c)}\right)$, which contradicts $p^{2} \mid\left(n_{0}, g_{1}\right)$. Thus $p^{2} \nmid \frac{a}{s(c)}$, which implies $p \left\lvert\, \lambda\left(\frac{a}{s(c)}\right)\right.$ and therefore $p^{2} \left\lvert\, \frac{d}{s(c)} \lambda\left(\frac{a}{s(c)}\right)\right.$, which again contradicts $p^{2} \mid\left(n_{0}, g_{1}\right)$. We conclude that (y, g) is squarefree, and for a given integer z by Lemma 5 there exist integers $n \equiv y \bmod g$ and $k \equiv b \bmod g$ such that $a(n, k)=z$.
Let $p>\max \{d, k, n\}$ be a prime satisfying

$$
p \equiv(s(c))^{-1} \bmod f
$$

and let $q>p$ be a prime such that

$$
q \equiv p^{-2} \bmod d
$$

Since $n \equiv n_{0} \bmod g_{0}$ implies $n \equiv \frac{a}{s(c)} \bmod \frac{d}{s(c)}$, every prime divisor of $s(c)$ divides n, and we have by Lemma 1

$$
a\left(n s(c) p^{2} q, k s(c) p\right)=a\left(n p^{2} q, k p\right)=a(n p q, k)=a(n, k)=z .
$$

Furthermore, using $n \equiv n_{0} \bmod \frac{d}{s(c)}$, we have

$$
n s(c) p^{2} q \equiv n_{0} s(c) p^{2} p^{-2} \equiv\left(\frac{a}{s(c)}+\frac{d}{s(c)} \lambda\left(\frac{a}{s(c)}\right)\right) s(c) \equiv a \bmod d
$$

and $k s(c) p \equiv b s(c)(s(c))^{-1} \equiv b \bmod f$.

Hence $\{a(n, k) \mid n \equiv a \bmod d, k \equiv b \bmod f, n \geq 1, k \geq 0\}=\mathbb{Z}$, as desired.
Case 2. $(s(c), f) \nmid b$. Suppose that $n \equiv a \bmod d$ and $k \equiv b \bmod f$. Then $s(c) \mid s(n)$, but $s(c) \nmid k$, i.e. $s(n) \nmid k$. Thus $a(n, k)=0$ by Lemma 1.
Therefore we obtain in this case $\{a(n, k) \mid n \equiv a \bmod d, k \equiv b \bmod f, n \geq 1, k \geq 0\}=\{0\}$, as desired.

Corollary 1. We have

$$
\{c(n, k) \mid n \equiv a \bmod d, k \equiv b \bmod f, n \geq 1, k \geq 0\}= \begin{cases}\mathbb{Z} & \text { if }(s((a, d)), f) \mid b ; \\ \{0\} & \text { otherwise }\end{cases}
$$

The corollary follows easily from Theorem 1 by using Lemma 2 with a prime $p \equiv 1 \bmod d$. Lemma 1 implies in addition that each value in the set $\{a(n, k) \mid n \equiv a \bmod d, k \equiv b \bmod f$, $n \geq 1, k \geq 0\}$ is assumed by infinitely many different pairs (n, k).

Acknowledgements

This paper was written during a two month internship at the Max-Planck-Institute for Mathematics in Bonn. I would like to thank the MPIM for its hospitality and nice research atmosphere. In particular, I am grateful to my internship supervisor Pieter Moree for his many helpful comments and suggestions on this paper. Finally, I would like to thank Kestutis Cesnavicius, Nathan Kaplan and Anton Mellit for comments on earlier versions.

References

[1] Yves Gallot, Pieter Moree and Huib Hommersom, Value distribution of coefficients of cyclotomic polynomials, Unif. Distrib. Theory, to appear.
[2] Chun-Gang Ji, Wei-Ping Li, Pieter Moree, Values of coefficients of cyclotomic polynomials II, Discrete Math. 309 (2009), 1720-1723.
[3] Emma Lehmer, On the magnitude of the coefficients of the cyclotomic polynomial, Bull. Amer. Math. Soc, 42, 389-392 (1936)
[4] Pieter Moree, Inverse cyclotomic polynomials, J. Number Theory 129 (2009), 667-680.
[5] Jiro Suzuki, On coefficients of cyclotomic polynomials, Proc. Japan Acad. Ser. A Math. Sci. 63 (1987) 279-280.
[6] Ravindranathan Thangadurai, On the coefficients of cyclotomic polynomials, Cyclotomic fields and related topics (Pune, 1999), 311-322, Bhaskaracharya Pratishthana, Pune, 2000.

Jacobs University Bremen, College Ring 3, Mailbox 341, 28759 Bremen, Germany
E-mail address: J.Fintzen@Jacobs-University.de

