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Abstract

Let a(n, k) be the kth coefficient of the nth cyclotomic polynomial. In 2009 Ji, Li
and Moree showed that {a(n,k)|n =0 mod d,n > 1,k > 0} = Z. In this paper we
will determine {a(n,k)|n =a mod d,k =b mod f,n > 1,k > 0}.

1 Introduction

Let

o, (z) = H (x — echk) =Y a(n,k)a*
1<k<n k=0
(k,n)=1

be the nth cyclotomic polynomial, where ¢ denotes Euler’s totient function, and set
a(n, k) =0 for k > ¢(n).

It can be shown that a(n, k) € Z. In the 19th century it was conjectured that |a(n, k)| < 1,
which is the case for n < 105. However, a(105,7) = —2, and in 1931 Schur proved in
a letter to Landau (cf. [3]) that |a(n, k)| is unbounded. In 1987 Suzuki [5] showed that
{a(n,k)|n > 1,k > 0} = Z, and in 2009 Ji, Li and Moree [2] proved the generalization
{a(mn,k)|n > 1,k > 0} = Z for an arbitrary fixed positive integer m.

In this paper we will show that one can restrict n and k even further and still obtain every
integer as coefficient a(n, k).

Theorem 1. Leta < d and b < f be four nonnegative integers. Denote s(n) =n- [] p~'.
pln

p prime

Then

z  if (s((a,d)), )b ;

k) n=amoddk=bmod f.n> 1.k >0} = ,
ta(n, k) [n = amo mod f,n J {{0} otherwise .

MSC: 11B83, 11C08
Keywords: cyclotomic polynomial, Dirichlet’s Theorem, residue classes
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We would like to remark that the result also holds true if one replaces the coefficients
a(n, k) of the cyclotomic polynomials by the coefficients ¢(n, k) of the inverse cyclotomic
polynomials (see Section , equation for a definition), which is a direct corollary to
Theorem [1, see Corollary [I] in Section

2 Some properties of cyclotomic polynomials

Using the identity

2" —1=]]Palz) (1)

dn

and the Mobius inversion formula, one can show that for n > 1

O, (z) = [ J(1 — 2@, (2)

dln

where i denotes the Mobius function. From equation one can deduce the following
lemma (for a proof see, e.g., Thangadurai [6]).

Lemma 1. Let n > 1 and k > 0 be integers.

a) If p and q are primes satisfying k < p < q and (n,pq) = 1, we have a(pgn, k) = a(n, k).
b) If n is odd, we have a(2n,k) = a(n, k) - (=1).

c) If p|n, we have a(pn, pk) = a(n, k).

d) If s(n) 1k, we have a(n,k) = 0.

Another helpful tool will be the consideration of the coefficients of the power series expan-
sion of the inverse cyclotomic polynomial @, (z)~! at = 0. We denote

Q)nl(a:) =3 c(n, k)a*. (3)

o

k=0

The coefficients ¢(n, k) are integers, see for example Moree [4], and we have the follow-
ing relation with the coefficients of the cyclotomic polynomials, cf. Gallot, Moree and
Hommersom [1].

Lemma 2. Let k be a nonnegative integer and p a prime exceeding k and coprime with
n > 1. Then a(pn, k) = c(n, k) and c(pn, k) = a(n, k).
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This lemma follows from equation and

% (n, B)* = @nl(x) — [t = 2ty (4)
(for |z| <1 and n > 1).

Definition 1. Let n and k be integers with n > 0. Denote by (k mod n) the unique
integer satisfying (kK mod n) = k mod n and 0 < (k mod n) < n.

Lemma 3. Let n > 0 and k > 0 be integers.
a) We have c(n,k) = ¢(n, (k mod n)).
b) If (k mod n) >n — ¢(n), then c(n, k) = 0.

Proof. From equation it follows that

ch(n, k)ak = @nl(a:) =— H D4(x) Zoxj".

0 dln,d<n

As []gn, a<n a(x) has degree n — ¢(n) < n, we obtain c(n,k) = ¢(n, (k mod n)) and
c(n, k) =0 for (k mod n) >n — ¢(n). O

Lemma 4. Let n > 1 be a positive integer, then c¢(n,1) = pu(n).

Proof. Using equation we obtain

c(n, k)" = H(l — 217D = (1 — 2)7#™ =1 + p(n)z mod 22,
k=0 djn
and therefore c¢(n, 1) = u(n). O

3 Warm-up: special cases of Theorem

Before we tackle Theorem [1}in its full generality, we want to demonstrate that it becomes
an easy generalization of Theorem [2]if we restrict only n or k to a prescribed residue class
while the other variable is not required to satisfy any congruence condition.

Theorem 2. Let m and N be positive integers. Then
{a(mn,k)|n>1,k>0,(n,N)=1} =Z

and
{c(mn,k)|n>1,k>0,(n,N)=1} =Z.
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This theorem follows easily from the proof of {a(n,k)|n =0 mod d,n > 1,k > 0} = Z by
Ji, Li and Moree [2]. Using it, we prove the following two special cases of Theorem .

Theorem 3. Let b < f be two nonnegative integers. Then

{a(n,k)|k=bmod fin>1,k>0}=27.

Proof. Let z be an arbitrary integer. By Theorem [2]there exist an integer n > 1, (n, f) =1
and an integer k£ > 0 such that ¢(n,k) = 2. As (n, f) = 1, we can find an integer r > 1
with nr = b — k mod f. Let p > nr + k be a prime. Then by Lemma [2) and Lemma 3| we
obtain

a(np,nr + k) =c(n,nr + k) =c(n, k) =z

with nr +k = b mod f. [

Theorem 4. Let a < d be two nonnegative integers. Then

{a(n,k)|n=amod d;n>1,k >0} =7Z.

Proof. Let g = (a,d), and denote by z an arbitrary integer. Using Theorem , there
exist an integer n > 1, (n,g) = 1 and an integer k > 0 such that ¢(ng,k) = 2. By
Dirichlet’s Prime Number Theorem we can pick a prime p > max{k, ng} that satisfies p =
n‘1§ mod g. Then by Lemmawe have a(npg, k) = c¢(ng, k) = z with npg = a mod d. O

Although these special cases have relatively easy proofs, the combination of the congruence
restrictions on both n and k£ in Theorem (1| requires a more complicated proof.

4 The main theorem

Before proving Theorem [T} we will first prove the following key result.

Lemma 5. Let a < d, b < d be three nonnegative integers such that (a,d) is squarefree.
Then
{a(n,k)|n =a mod d,;k =bmod d,n>1,k>0} =27.

Let ¢ = (a,d). We will prove Lemma |5|in two parts. First we will consider when ¢ is odd,
and then the case where ¢ is even will follow easily.

Suppose c is odd. We will start this case by proving that all negative integers are contained
in {a(n,k)|n =amod d,k = bmodd, n > 1,k > 0}. In order to do this we will show
that for every positive integer ¢t there exist positive integers m and ¢ satisfying certain
conditions such that a(cgm, k) = —t. For this we will need three lemmas. The first will
ensure that the integer m can be chosen as a product of primes that are in a prescribed
primitive residue class and satisfy certain size conditions. The other two will show that
there exist residue classes satisfying the properties that we will need later.
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Lemma 6. Let a, m andt be positive integers with (a,m) = 1. Then for each N there exists

n > N such that the interval [n, %n) contains at least t primes satisfying p = a mod m.

Proof. Assume that there exists Ny such that for every n > Nj the interval |n, %n)
contains less than ¢ primes satisfying p = a mod m. Then for all z > Ny we have

-1
Z 1 <N0+10gi (log§) (t—1)=0(logz),
Ny 2

p<z, p prime
p=a mod m

which contradicts the quantitative version of Dirichlet’s Prime Number Theorem

> 1=(1+0(1))

p<z, p prime
p=a mod m

w(m)logx

]

Lemma 7. Let s be an integer, and let d be an odd squarefree natural number. Then there
exists an integer x such that (z,d) = (x + s,d) = 1.

Proof. Let d = [[,p; be the prime factorization of d with n > 1 (for d = 1 the
lemma holds obviously true). For each odd prime there exists an z; such that (z;,p;) =

(x; + s,p;) = 1. Hence by the Chinese Remainder Theorem there exists an integer x
satisfying = = x; mod p; for 1 <i <n, and we have (z,d) = (z + s,d) = 1. O
Lemma 8. Let s and y < ¢ be nonnegative integers and let qi,...,qn be N > 1 distinct

primes larger than max{c,2N + 1}. Define q = Hf\il qi. Then there exists an integer u
with (u,q) = (u+ s,q) = 1 such that the system of congruences

k=u+ s mod ¢
k =y mod ¢

implies
cq — p(cq) < (k mod ¢q) .

Proof. Consider the set S = {cq+y—c-j—s|1 <j<2N+1}. As ¢ > 2N + 1 and
(gi,c) = 1, for each 1 < i < N there is at most one element in S that is not coprime
with ¢; and at most one element r € S with (r + s,¢;) # 1. Thus there exists u € S with
(u,q) = (u+s,q) = 1. Note that w + s =y mod ¢ and 0 < u + s < ¢q. Hence

(kmodcq) = u+s>cqg+y—c(2N+1)
2 N

> cq— [l =1 =cq—]](@—1) > cqg—plcq).

i=1 =1
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Now we have the necessary preliminaries to prove Lemma

Proof of Lemma [5l
Denote, as above, the squarefree natural number (a,d) by ¢, and let dy be the largest
positive integer satisfying

d=didy and (b,ds)=1 and d; €Z. (5)

Note that this implies (dy,dy) = 1. Furthermore, write ¢ = ¢;c2 with nonnegative integers
¢ and ¢y satisfying ci|d; and cy|ds.

We distinguish two cases.

Case 1. c is odd. Let s be a positive integer coprime with ¢;. Note that this implies
(b — s,c1) = 1 as every prime divisor of ¢; divides by definition d; and therefore b and
thus does not divide b — s. In addition, by Lemma [7| there exists an integer x such that
(x,c9) = (x + s,c9) = 1 because ¢; is odd in this case. Denote by ~ the smallest positive
integer satisfying (cy7, %) = 1. Note that this implies (x +s,7) = 1. Since the moduli are
coprime and their product is divisible by ¢, there exists a unique integer 0 < y < ¢ such
that the system of congruences

k =b mod d;
k=x+ s mod cyy (6)
k=1 mod 2
C27Y
implies
k =y mod c.

Let ¢1,...,qv be N > 1 distinct primes all larger than max{d,2N + 7} and define ¢ =
Hﬁil ¢i- According to Lemma [§ there exists an integer u such that (u,q) = (u + s,¢q) =1
and such that £k = u + s mod ¢ together with the system of congruences @ implies

cq — ¢(cq) < (k mod cq). (7)

Furthermore, by the Chinese Remainder Theorem we can find an integer v such that

p; = v mod dg
implies
p; = u mod q
pi =b— s mod ¢ (8)

pi = x mod ¢y .

As (u,q) = (b—s,c1) = (z,¢9) = 1, the integer v can (and will) be chosen coprime with
dg. In addition, since d and ¢ are coprime, there exists an integer w such that the system
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of congruences
k=u+ s mod g

k= b mod d;
k=x+ s mod cyy (9)
k=1 mod 2
C27Y
is equivalent to
k =w mod dgq .

Note that therefore £k = w mod dq implies k = b mod ¢; and k = x + s mod ¢s.

Given an arbitrary positive integer ¢ by Lemma [f] there exist primes py, ..., p; such that
max{2dq,2N + 7} < p1 <ps < ... < p < %pl and p; = v mod dq for 1 < i < t. As
2p — %pl — % > dq, we can choose an integer k£ = w mod dq with 3’% < k < 2p;.

Set

_ ) D1P2- s PP if ¢ is even;
pip2- - Pt otherwise,

where p;y1 > 2p; is a prime. Then we obtain (cf. also [2])

Doy () = H (1 — ")) mod

rlegm, r<k+1

H(l —a' H (1 — 27)" %) mod 2+

r|cq =1

t
H 1 _ :L,pz —pleam) 116 Rt
i=1

~

n(cq) mod xk’—i—l

2:1

1
1 — u(eq 2P | mod zF*t!.
B (2) ( ) Z

Thus by Lemma |3| together with equation and the systems of congruences and @
we obtain

t

t
acqm, k) = c(cg, k) = p(cq) Y clcq,k —p) =0— p(cq) Y clcq,s)
i=1 i=1
= —p(cq)te(ey, s). (10)
Let us first consider the case s = 1. As ¢(cq, 1) = p(cg) by Lemma [4] equation yields

a(cqm, k) = —p(cq)®t = —t. (11)
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Since (b,dy) = 1 and (z + s,coy) = 1, we infer from Dirichlet’s Prime Number Theorem
the existence of a prime gy.1 > k coprime with dgm such that

gN+1 = 1 mod dl,
qne1 = bz +5)7! mod cyy
d
and gnv+1 = b mod =
27y

Let qni2 > k be a prime coprime with cgmqy,, and satisfying

a d

(qmqifﬂ)_1 mod —.

gN+2 = —
c c

Using Lemma , the system of congruences @D and equation ([11]), we obtain

a(Cqm%szQNH, kqn11) = alcgmani1qn+2, k) = a(cqgm, k) = —t

with
Cqmq]2V+1QN+2 = qmq?\/ﬂa(qmq?\,ﬂ)’l = a mod d and
d
kqni1 =bmod dy, kqni1 = b mod ¢y and kqy1 = b mod —2, ie. kgyy1 =bmod d.

Co27Y

Hence, if ¢ = (a,d) is odd, we have

Z<o C{a(n,k)|n=amodd k=bmodd,n>1k>0}. (12)

As a(n, k) = 0 for every k > p(n), it only remains to show that
Zo C{a(n,k)|n=amod d,k=bmod d,n>1k>0}.

In order to do this we will proceed as above, this time exploiting the fact that we proved
that —1 € {a(n,k)| n=amod d,k =1 mod d,n > 1,k > 0}.

Define

_ {q if p(cq) = 1;
4o = .
qqn+3 Otherwise,

where qy13 > max{d,2N + 7} is a prime coprime to q. Then for the special case b =
s =t = 1 the construction of equation (11 establishes the existence of a prime mgy >
max{2dq,2N + 7} and an integer ky > 0 such that a(cgomo, ko) = —1 with (ko,c) = 1
(consider the system of congruences (9))).

Let ¢ = qomoqn+4, Where gy 4 is a prime larger than ky and coprime with cggmg. Then ¢ is
a product of at most N+3 and at least 2 primes that are all larger than max{d, 2(N+3)+1}.
Note that we can therefore apply Lemma . Hence by the construction of equation ([10)
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above and by setting s = ko, there exists a product m of primes all larger than 2dg and a
nonnegative integer k such that

t
aleqm, k) = —p(cq) Y elcd, ko) = —p(cgomogn 4)te(cqomogn 14, ko)
=1
= —ta(cqomo, ko) =1 (13)

(we used Lemma [2] for the third equality) and

~ ~ -~ ~ d
k=u+komod g k=bmodd;, k=2x+ ko mod coy and kElmOd—Q,
7Y

where 7 is an integer satisfying (%, c;) = (& + ko, ¢2) = 1. By choosing a prime gy.1 > k
coprime with dgm that satisfies the following system of congruences

a/N—i-l 1 mod dl

Gne1 = b(T + ko) mod cyy

a/N_i_l = b mod _2
Co7Y

and a prime qy42 > k coprime with cgmgy,, satisfying

| 2

|
m mod —,
c(q C]N+1) -

N2 =
we obtain
a(cqmaz?vHCYNH, ]%(YN-H) = a(cqman+1qn+2, iﬁ) = a(cgm, ];’) =t,
with
GG AN 2 = GMGa 1 a(GMd% ) P =amod d and kiyy =bmod d.
Hence we have Z~o C {a(n, k) |n =a mod d,k =b mod d,n > 1,k > 0}, and therefore

Z ={a(n,k)|n=amod d,k=bmod d,n>1k > 0}.

Case 2. cis even. We distinguish two subcases.

Case 2.1. 4|d. The condition that ¢ = (a,d) is squarefree implies that 4 { (a,d), but

2|(a,d) and therefore § is an odd integer. Hence by Case 1 for every integer z there

exist integers n = ¢ mod d and k = b mod d such that a(n, k) = z-(—1)". By Lemma
[ we obtain

a(2n, k) = a(n, k) - (=) =z (=1)"- (=1)’ = 2

with 2n = 2% = a mod d.
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Case 2.2. 41d. As g is an odd integer, there exists an integer § with 25 = 1 mod g
Then (8,%) = 1, and, since 4 a3 is odd, we have that (¢ + aB,d) = L(a,d) is
squarefree. Thus by Case 1 for every integer z there exist integers n = g +af mod d

and k = b mod d such that a(n, k) = z - (—1)°. Using Lemma I} we obtain
a(2n,k) = a(n,k) - (-1)fF =z (=1)"- (=1)" =2
with 2n =2 (£ + af8) = a mod d.

We conclude that also in this case {a(n,k)|n =a mod d,k =bmod d,n > 1,k > 0} = Z.
[

Now we are ready to prove Theorem [T}

Proof of Theorem [1l
We denote (a,d) by ¢ and distinguish two cases.

Case 1. (s(c), f)|b. We want to show that in this case
{a(n,k)|n=amod d,k =bmod f,n>1,k>0}=7.

Note that every prime divisor of s(c¢) divides ﬁ, which divides every integer congruent

W‘Sf) mod m. Hence it is enough to find for every integer z integers

n= ¢ mod and k=

b mod /
(s(c), f) (s(c), f) (s(c), f) (s(c), f)

with a(n, k) = z because by Lemma [1| we have

a(n(s(c), f), k(s(c), ) = a(n, k) = =
with n(s(c), f) = a mod d and k(s(c), f) = b mod f. As

<S<((s(c6;,f>’<s(g,f>>)’m) - ( <s(fé>fl}>)’<s<c€,f>)

we can assume without loss of generality that (s(c), f) = 1.

We will now modify the restrictions n = a mod d and £ = b mod f on the coefficients
a(n, k) to be able to apply Lemma

10
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Define

Aoy = ]I »

plz, p2fa,
pprime

and let go be the largest positive integer such that

d d
g=lem (@J) = 9192 and (@;92) =1,

where g, is a positive integer. Let

As (g1,92) = 1, by the Chinese Remainder Theorem there exists a unique y satisfying
0 <y < g such that
n=nomod g3 and n=1mod go

is equivalent to
n =y mod g.

Note that (ng, g1) is squarefree because if p is a prime with p?| (ng, g1), then p?|g; implies
| j‘f:) by definition of g;. Hence p| el (see definition of ng). If, however, pﬂﬁ, then p? ¢ f‘lc)

and pt A (ﬁc)), which contradicts p?| (ng, g1). Thus p* { ;, which implies p|A (j‘b) and

therefore pﬂj“c))\ (%), which again contradicts p?|(ng, g1). We conclude that (y,g) is

squarefree, and for a given integer z by Lemma 5| there exist integers n = y mod g and
k = b mod g such that a(n, k) = 2.

Let p > max{d, k,n} be a prime satisfying
p=(s(c))"" mod f,
and let ¢ > p be a prime such that
g=p ?modd.

Since n = ng mod gg implies n = ﬁ mod #‘2), every prime divisor of s(c¢) divides n, and
we have by Lemma
a(ns(c)p’q, ks(c)p) = a(np’q, kp) = a(npg, k) = a(n, k) = z.

Furthermore, using n = ng mod %, we have

ns(c)pq = nos(c)p’p > = (Sac + d))\ (Sa)>) s(c) = a mod d
and ks(c)p = bs(c)(s(¢)~! = b mod f.

11



Cyclotomic polynomial coefficients Jessica Fintzen

Hence {a(n,k)|n=amod d,k =bmod f,n>1k >0} =27, as desired.

Case 2. (s(c), f) 1 b. Suppose that n = a mod d and k = b mod f. Then s(c)|s(n), but
s(c) tk, ie. s(n){k. Thus a(n, k) =0 by Lemma [I]

Therefore we obtain in this case {a(n,k)|n =a mod d,k =b mod f,n > 1,k >0} = {0},
as desired.

[
Corollary 1. We have

Z if (s((a,d)), /)] b ;

k) n=amoddk=bmod f.n>1k> 0} = .
te(n. k) [n = amo mod f,n J {{O} otherwise.

The corollary follows easily from Theorem [1| by using Lemma [2] with a prime p = 1 mod d.

Lemmal[I]implies in addition that each value in the set {a(n, k) |n = a mod d, k = b mod f,
n > 1,k > 0} is assumed by infinitely many different pairs (n, k).
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