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In this paper we develop the quadratic homological algebra which is needed for the metastable
range of homotopy theory. On the one hand we study quadratic functors and their derived
functors (§ 1 ... § 7 and Appendix A, B); on the other hand we describe applications in
homotopy theory (§ 8 ... § 11).

Let Add(R) be the additive completion of a ringoid R and let Ab be the category of abelian
groups. We classify quadratic functors by “quadratic E-modules”, see (3.1).

Theorem (3.7): There is a 1-1 correspondence which carries a quadratic functor F
Add @ — Ab 10 a quadratic R-module F{ g} . This correspondence yields an equivalence
of categories.

We are especially interested in the case when R is a ring R (then Add(R) is the category of
finitely generated free R-modules) or when R is the ringoid C'yc which is the full subcategory
of Ab consisting of cyclic groups Z/p* of prime power order and Z (then Add (@ ) is the
category of finitely generated abelian groups). But also the topological ringoid consisting of
elementary Moore spaces M(Z,n) = S" and M (Z/p‘,n) is important for the computation
of homotopy groups of Moore spaces, see (9.3).

In case the ringoid R is the ring Z of integers a quadratic Z-module is the same as a -
module where (¢} is the ring described by generators and relations in (2.2). The quadratic
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functor Add(Z) — Ab , corresponding to Q by (3.7), is the direct sum of the tensor square
®? and the quadratic construction P? in (2.11).

For the proof of theorem (3.7) we use the quadratic tensor product A @ g M € Ab where A is
an R°P-module and where M is a quadratic B-module, we also introduce the quadratic Hom-
functor for which Homg (B, M) € Ab, see § 4 and § 5. For quadratic functors F' : Ab— Ab
and G : A=b"’J — Ab one has the quadratic approximations (4.7), (5.7)

A AQr F{1} - F(A),
X : G(A) = Homz{A, G{Z})

which are natural in A € Ab. Here F{Z} and G{Z} are quadratic Z-modules corresponding
to F and G respectively. For the classical functors

F=g@7% P% A% §2,T

the quadratic approximation X is an isomorphism, see (2.13) and (4.8). We introduce derived
functors of the quadratic tensor product @ and the quadratic Hom-functor respectively in §
7 and in Appendix A and B. They only partially coincide with the derived functors in the
sense of Dold-Puppe [15].

We need such quadratic derived functors of @ and Hom for new natural six term exact
sequences in homotopy theory. The sequences are useful for the computation of the homotopy
groups m,, M(A,n) of a Moore space and the homology H,, K(A,n) and the cohomology
H™K(A,n) of an Eilenberg-MacLane space in the meta stable range. In particular the
naturality of these exact sequences yields insight in the functorial properties of these groups.

We now describe the exact sequence for r,,, M(A,n) ; the sequences for H,, K(A,n) and
H™K(A,n) are of a similar nature, see theorem (10.5) and theorem (10.6).

Theorem (9.5): For m < 3n — 2 there is a natural exact sequence (A € @
0 — A* 1,{S"} = amtmuM(A,n) = A+" 1_1{S"} LA
AR mm{S"} = 7mM(A,n) - \xrM(A,n) - 0

Here i M(A,n) is the cokernel of iy : T M(A,n)" — m M(A,n) where i is the inclusion
of the n-skeleton M{A,n)" . Moreover m,, {S™} is the quadratic Z-module given by homotopy
groups of spheres

Tm{S™} = (wm(s") B (s 5 Tr,,,(s")) .

The map H is the Hopf invariant and P = [i,,1,), is induced by the Whitehead square. The
operators ¥ and x" are derived from the quadratic tensor product, see (7.4).

Various examples of explicit computations of m,,M(A,n) are given at the end of § 9. Using
the exact sequence in the theorem we obtain in (9.10) a new homotopy invariant

7(M) € Ho(M) ¥ 72, 1{S"}

of an (n — 1)-connected (2n + 1)-dimensional closed manifold M, or more generally Poincaré
complex M. The torsion invariant 7{M) is an analogue of the invariant

(N} € Hy(N) ® m20-1{S"}
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which determines the homotopy type of an (n — 1)-connected (2n)-dimensional Poincaré
complex N and which essentially was used by Kervaire-Milnor [20], see (9.9). In [10] we
describe the connection of £(N) with the a-invariant [35] of Wall which classifies (n — 1)-
connected (2n)-dimensional manifolds.

For the curious functors R and  of Eilenberg-MacLane [16] with HsK(A,2) = R(A) and
H1K(A,3) = Q(A) @ (A®Z/3) we get a new interpretation by the natural isomorphism
(see (10.15) and (10.7))

RAZ A+'ZT | and
NQAZAQZT .

Here 27 = mg{ $?} i the quadratic Z-module 2" = (2 2 Z 2 Z) for which I'(4) = A®Z"
is Whitehead’s quadratic functor [37]. Also ®' is derived from the quédratic tensor product,
see (7.4).

Further significant applications of the new quadratic algebra discussed in this paper are
described in (II. § 7) of the book [8] and in [10]. We also use results of this paper in a
crucial way for the classification of 2—connected 6—dimensional homotopy types. ‘

§ 1 Modules

We fix some basic notations on categories, ringoids, rings and modules respectively, compare
also [24]. A bold face letter like C' denotes a category, Ob(g) and M or@ are the classes of
objects and morphisms respectively. We identify an object A with itsidentity 14 =1=A.
We also write f € C if f is a morphism or an object in {' . The set of morphisms A — B
is C(A, B) . Surjective maps and injective maps are indicated by arrows —— and >—
respectively.

A ringoid R is a category for which all morphism sets are abelian groups and for which
composition is bilinear, (equivalently a ringoid is a category enriched over the monoidal
category of abelian groups). A ringoid is called a ’pre additive category’, or an Ab-category,
see [22]. We prefer the notion ’ringoid’ since in this paper a ringoid will play the role of
a ring. In fact, a ringoid R with a single object e will be identified with the ring R given-
by the morphism set R = R(e,e) . Recall that a biproduct (or a direct sum) in a ringoid
R is a diagram

(1.1) X XVYay
N ] r2

which satisfies r12; = 1, rp13 = 1 and ¢;r; + 2272 = 1 . Sums and products in a ringoid
are as well biproducts, see [22]. An additive category is a ringoid in which biproducts exist.

Clearly the category Ab of abelian groups is an additive category with biproducts denoted by
X @Y . A functor F: B — S between ringoids is additive if

(1.2) F(f+9)=F(f)+ F(g)
for morphisms f,g € B(X,Y) . Moreover, we say that F' is guadratic if A , with
(1.3) Alf,9)=F(f+9)-F(f)-F(g),

3



is a bilinear function. A module with coefficients in a ringoid R or equivalently an é—modﬁlc
is an additive functor

(1.4) M:R— Ab.

In case A has only one object e we identify M = M(e) with a module over a ring in the usual
sense. An B-module is also called a left B-module. A right B-module N is a contravariant
additive functor N : B — Ab. For f € R(X,Y) we use the notation

{M(f)(a:)zf,.(x)zfx for € M(X),
NAW =) =y-f for yeN(Y).

A right B-module is the same as an R’’-module where R°? is the opposite category. In
case H is small (that is, if the class of objects in & is a set) let M. (§) be the category of
R-modules. Morphisms in M (R) are natural transformations. The category M(R) is an
abelian category; as an example one has M(Z) = Ab. We now recall the definition of tensor
products of modules. o

(1.6) Defintion: Let B be a small ringoid, let A be an R°P-module and let B be an
R-module. The tensor product A @ B is the abelian group generated by the elements
a®b, a € A(X), b€ B(X) where X is any object in R . The relations are

{(a+a')®b=a®b+a'®b

(1.5)

a®@b+)=ae@b+a®d

(a" ) ®b=d"®(p-b)
for a,a’ € A(X), bt € B(X), ¢ : X =Y € R, a" € A(Y) . The tensor product is a
biadditive functor ® g : M (B°") x M(R) — Ab .
(1.7) Definition: The tensor product R® .S of ringoids R, S is the following ringoid. Objects
are pairs (X,Y) with X € Ob(R), Y € 0b(S) and the morphisms (X,Y) — (X',Y') are
the elements of the tensor product of abelian groups R(X, X') ®z S(Y,Y") . Composition is
defined by (f @ 9)(f' ®d') = (ff') ® (g9¢') . Any biadditive functor F : B x S — Ab
has a unique additive factorization (as well denoted by FF ) F' : R ® S — Ab with
F(f®g) = F(f,9) . For example an R-module A and an S-module B yield the B ® S-
module A ® B given by (A® B)(f ® 9) = A(f) ®z B(g) .

§ 2 Quadratic Z-modules

Let Add(Z) be the category of finitely generated free abelian groups. The additive functors
F : Add(Z) — Ab are in one-one correspondence with abelian groups. The correspondence is
givem F— F_(Z) . In this section we introduce quadratic Z-modules which are in one-one
correspondence with quadratic functors Add(Z) — Ab . In this sense a quadratic Z-module
is just the “quadratic analogue” of an abelian group.

(2.1) Defintion. A quadratic Z-module

M= (Me LA VA M,,)

is a pair of abelian groups M., M., together with homomorphisms H, P which satisfy
PHP = 2P and HPH = 2H . A morphism f : M — N between quadratic Z-modules
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is a pair of homomorphisms f : M, — N,, f : M., — N, which commute with A
and P respectively. Let QM(Z) be the category of quadratic Z-modules. For a quadratic
Z-module M we define the involution T = HP — 1 : My, — M., . Then the equations
for H and P are equivalent toPT = P and TH = H . Moreover we get TT = 1 since
1+ T = HP = HPT = T + T? . We define for n € Z the function

{n,, M., - M,
ny(z) =nz + (n(n —1)/2)PH(z), z € M,

One can check that (n-m), = n.m, and that (n+m), = n, + m, + nmPH . Let
Z/n =12/nZ, n > 0, be the cyclic group of order n. We call M a quadratic Z/n-module
ifn-M,, =0and n,M, =0 .

We identify a quadratic Z-module M satisfying M., = 0 with the abelian group M., this
yields the full inclusion Ab = M(Z) C QM(Z) . Next we observe that there is a duality

functor D : QM(Z) — QM(Z) with D(M) given by the interchange of the roles of H

and P respectively, that is D(M) = ((DM)e 2 om),, B (DM)C) with (DM), = M,.

and (DM),, = M, and H? = P and PP = H . Clearly DD(M) = M . Moreover an
additive functor A : Ab — Ab induces a functor A : QM (Z) — QM(Z) . Here we define
the quadratic Z-module A(M) by A(M), = A(M,) and A(M),, = A(M..) with H and
P given by A(H) and A(P) respectively. For example the functorA = ®z C, C € Ab,
carries M to (M) ®z C .

(2.2) Proposition: There is a ring Q) together with an isomorphism x : QM(Z) = M(Q) of
categories where M(Q) is the category of Q-modules. T

Proof: For M € QM(Z) we have inclusions and projections (7 = e, ee)

) M %5 M, ® Mee 55 M,
They yield the following endomorphisms of the abelian group M, @ M.,
(2) a4 =1eTe, b=1eeTee, h = 1eeHre, p= 1 Pree

which satisfy the relations

a*=a, b®*=b, ab=ba=0,
a+b=1,

ah=0, hb=0,pa=0, bp=0,
php = 2p, hph = 2h .

(3

Let @) be the ring generated by a, b, h, p such that the relations are satisfied. Then x in (2.2)
carries M to the @Q-module M, ® M, defined by (2). As a Z-module Q is given by Q = 2°
with basis {a, b, h, p, ph, hp) . Moreover the quadratic Z-module x~1(Q) , as well denoted
by @, is given by

(4) Qe =a-Q =17° withbasis (a,ap,aph),
Qee = b-Q =1 with basis (b, bh, bhp) ,



and by

0 0 0 -1 0 0
(2.3) H=P=|1 0 2|, T=HP-1=| 0 1 01}.
010 I 01

The ring () was obtained in a more general context by Pirashvili [26]. In fact Pirashvili
defines a ring Q(n) for which the category of @(n)-modules is isomorphic to the category of
polynomial functors F from Add(Z) 10 Ab of degree n with F(0) = 0. He does not give a
description of Q(2) = @ as in (3) above. Recently W. Dreckmann computed for small n the
following rank of the free abelian group Q(n), this rank is

1, 6,39, 320, 3281, 40558, 586751,

9719616, 181353777, 3762893750,
85934344775, 2141853777856, 57852105131809,
1683237633305502, 52483648929669119

for n = 1.--15. Many results on quadratic Z-modules in this paper should have generaliza-
tions for Q{n)-modules.

q.e.d.

Recall that an object X in an additive category is indecomposable if X admits no isomorphism
X = A® B with A # 0and B # 0 . It is an interesting problem to classify all
finitely generated indecomposable quadratic Z-modules up to isomorphism. This leads to
the following examples. We say that a quadratic Z-module M is of cyclic type if M, and
M., are cyclic groups. Let 1, € Z/n be the generator and let k : Z/n — Z/m be the
homomorphism with k(1,) = k-1, k£ € Z, m|k - n . Then we obtain the following list
where C = Z or C = 1/p', p = prime, s,t > 1 .

M M, Me. H P

C C 0 0 0

cA 0 C 0 0

ct C C 1 2

cs C C 2 1

H(t) Z 7/2 2t-1 0
P(s) 7/2° Z 0 201
s+t>1, H(s,t) 2/2° 7/2 gt-1 0
s+t>1, P(s,t) 7/2¢ 7/2! 0 VA
s+t>1, M(s,t) 7/2° /2t 2t-1 2s-1
T(s) Z/2°1! 1/2¢ 1 2

S(s) 7/2° 7/25+1 2 1

s> 1, I'(s) Z/2:+1 7/2° 2°-1 41 2

s> 1, §'(s) Z/2° 7/2°+! 2 2=t 41



The isomorphic objects in the list are given by CT Z CS if C =1/¢' (q odd) . With the
notations in (2.1) we clearly have C' = [27] ®;C, C5 = [25] ®7C and C* = [74] ®:C .
We leave it to the reader to describe the dualities in the list. An elementary but somewhat
elaborate proof shows:

(2.5) Proposition: The quadratic Z-modules in (2.4) furnish a complete list of indecomposable
quadratic Z-modules of cyclic type.

Remark: It would be interesting to know a complete list of all indecomposable quadratic
Z-modules. However to finish such a list is an intricate problem of representation theory.
It might be helpful to consider the more general problem of finding indecomposable A-
representations of the quiver

o o,

compare for example Curtis-Reiner II § 77. Indeed if A = Z[Z/2] is the group ring of
the cyclic group Z/2 then a quadratic Z-module is a representation of this quiver given by
A-homomorphisms A : M, — M, p: M., — M, where A acts via T on M., and acts
trivially on M.. Here one can use the fact that the indecomposable Z[Z /2]-1attices are known,
see Curtis-Reiner I (34.31). Such lattices are part of quadratic Z-modules M for which
M, and M., are finitely generated free Z-modules like for eaxmple Z® and 7P in (2.10).
Compare the bocks “Methods of representation theory I, II” of C.W. Curtis and 1. Reiner
(1991), (1987) John Wiley.

(2.6) Definition: Let F': B — Ab be a quadratic functor and let X V Y be a biproduct in
R . The guadratic cross effect F(X|Y) is defined by the image group

(1) F(X1Y) = im{A(i1r1,42rm2) : F(XVY) = F(X VY)}

see (1.3) and (L.1). If R is an additive category we get by (1) the biadditive functor
@ F():Bx R Ab.

Moreover we have the isomorphism

3) UV:FX)e FY)® F(X|Y)~F(XVY)

which is given by F(i;), F(i;) and the inclusion ¢35 : F(X|Y) C F(X VY) . Let ry2 be the
retraction of 1,2 obtained by ¥~! and by projection to F(X|Y) . For the biproduct X vV X
onehasthemaps p =11+ 5: X = XvXandyy=r;+rp: XVX — X . They yield
homomorphisms H and P with

@ F{x} = (FOO) 5 Fx1X) S F(X0)

by H = ri9F(u) and P = F(¥)i12 . Moreover we derive from f + ¢ = 7(f V g)u the
formula

(5 F(f+g9)=F(f)+ Fl9)+ PF(flg)H

or equivalently A(f,g) = PF(flg)H , see (1.3).
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(2.7) Proposition: Let F' : R — Ab be a quadratic functor and assume R is an additive
category. Then F{X} is a quadratic Z-module and X — F{X} defines a functor R —

QM(Z) .
Proof of (2.7): We define the interchange map

(1) {t:XVX—rXVX

t =131 + 4172
Then we have tu = p and ¢t = 7 . Moreover ¢ induces a map
2) T: F(X|X)— F(X|X)

with F(t)i12 = 2127 and r12F(t) = Tr12 . Hence we get TH = H and PT = P. Moreover
we obtain HP =1+ T by applying F' to the commutative diagram in £

XVvX Yy x 4 XVX
3) pVpl lvvy
XVXVXVX o XVXVXVX.

Here we use the biadditivity of F(|) in (2.6) (2).

The significance of quadratic Z-modules is described by the next result which is a special case
of (3.7) below. Let Add(Z/n) be the full subcategory of Ab consisting of finitely generated
free (Z/n)-modules; n > 0, (for n = 0 we set Z/0 = Z ).

(2.8) Theorem: There is a 1 —1 correspondence between quadratic functors F : Add(Z [n) —
Ab and quadratic 1/n-modules M, n > 0 . The correspondence carries F to F{Z/n} , see
(2.6) (4).

Here a ° 1 — 1 correspondence’ denotes a bijection which maps isomorphism classes to
isomorphism classes. Hence any quadratic functor F' : Add(Z/n) — Ab is completely
determined (up to isomorphism) by the fairly simple algebraic data of the quadratic Z-module
F{Z/n} which is actually a quadratic Z/n-module. In addition to the correspondence in (2.8)
we obtain in (3.7) below an equivalence of categories.

The next result shows that the universal quadratic Z-module @ in (2.3) is actually decom-
posable.

(2.9) Proposition: One has an isomorphism
Q=1 91°
of quadratic I-modules where
1°=(1-181-1) and I' =101 -1-101)

are given by H = (1,1) and P = (1,1) . Here I is the dual of 1% | that is ¥ = DZ® .
Proof: The isomorphism is given by the matrices

-1 10 0 -1 1
0 0 1 for Q. and 1 0 0 for Qee .
1 0 0 0 1 0



q.e.d.

(2.10) Remark: The quadratic Z-modules Z® and Z” are unique in the following sense. Up
to isomorphism there is only one indecomposable quadratic Z-module M with M, = Z and
M, =I®1Z ,namely M = Z® . Dually there is up to isomorphism only one indecomposable
quadratic Z-module N with N, =Z @& Z and N,, = Z , namely N = Z¥ . For example Z°
is isomorphic to the following two quadratic Z-modules

20770V 71017,
10271707,

The quadratic Z-modules Z® and Z¥ correspond to classical quadratic functors ®? and P2
which we define as follows.

(2.11) Defintion: The tensor square ®? is the quadratic functor

®%: Ab— Ab with ®*(A)=A®zA.

The quadratic construction P? is the functor

P?: Ab— Ab with P%(4) = A(A)/A3(A).

Here A(A) is the augmentation ideal in the group ring Z[A] and A%(A) is the third power.
(2.12) Remark: A function f : A — B between abelian groups is weak quadratic if

1) la,b]f = f(a +b) — f(a) - f(b)
is bilinear for a,b € A . Moreover f is quadratic if in addition f(—a) = f(a) . The function

2) 7:A— PYA),

which carries a € A to the element represented by |a| — 1 € A(A) , is the universal weak
quadratic_function. That is, each weak quadratic function f admits a unique factorization
f = fY95 where fO : P2(A) - B is a homomorphism. Whitehead’s quadratic functor
T: g — A=b is defined by the universal quadratic function

3) v:A—-T(A)

see [37]. Using the functor ' the functor P2 can also be described by the following natural
pull back diagram in Ab which has short exact rows (A € Ab) :

led
8]
=
!

0 — 5%A) A - 0
4) I l'YD {q

(w]

0 - S%A) & T4 L A®Z/2 - 0

Here g is the quotient map which is a quadratic function so that ¢© is defined. Moreover the
symmetric square S* is the functor

2. N
5) {S : Ab— Ab

S2(A) =A@ A/{a®@b—b®a ~ 0}



The map @ in (4) is defined by &{a ® b} = F(a + b) — ¥(a) — F(b) , see (1). We also shall
use the exterior square

©) {A2:@"Q
A2A) = A® A/{a®a ~ 0}

which is part of a natural exact sequence
%) I(4) 2 22(4) % A%(4) - 0

where H = hU is defined by h(a) = a @ a and where ¢ is the quotient map. Using (2.6)
(4) we obtain for each quadratic functor F' : Ab — Ab the quadratic Z-module F{Z} . As
special cases we now get, see (2.9) and (2.4):

(2.13) Lemma: One has isomorphisms of quadratic I-modules

®! {1} =1®° =D1%,

P2} =27 = DZ°,

A{y=1r =Dz,

r{z} = 1° = pz~°,

$%(z} 2125 =D1" |
The basis of ®?(Z|Z) = (Z®)cc =2Z@®Zis (e1 ® e, e2 ® e1) where (e1, ez) is the canonical
basis of Z & Z . Moreover the basis of PX(Z) = (Z7), =Z @ is (7(1), 8(1 ® 1) — F(1))
where we use 7 and & in (2.12).

Various results in this section are proved carefully in the Diplomarbeit of my student
V. Jeschonnek [19]. This Diplomarbeit contains also further interesting results on the
homological algebra of (}-modules where @ is the ring in (2.2).

§ 3 Quadratic R-modules
We consider quadratic H-modules where R is ringoid. For R = Z they are just the quadratic
Z-modules discussed in § 2 above.

(3.1) Definition: Let R be a ringoid. A guadratic R-module M = (M., M., T, H, P) is a
pair of functors M, : B — Ab, Me. : B x R — Ab (both as well denoted by M ) together
with natural transformations :

T=Txy:M(X,Y)—> MY, X) and M(X) 23 p(x,x)5 M)

such that the following properties are satisfied

(1) PT =P,

(2) TH = H ,

(3) T=HP-1 on M(XX),
(4) TT =1 .

Moreover the functor M., is biadditive and the functor M, is quadratic with

(5) M(f +9) = M(f) + M(g) + PM(f,9)H
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for f,g: X = Y € R. We also write f, = M(f) and (f,g), = M(f,g) . A morphism
F : M — N between quadratic f£-modules is a pair of natural transformations

(6) Fe:Me_"Nc, Fec:M::_'Ncc

which commute with 7', H , and P respectively. Let QM (R) be the category of quadratic
R-modules for a small ringoid R .

We identify a quadratic f-module, satisfying M., = 0 , with an R-module. This yields
the full inclusion of abelian categories M M(RB) c QM (_) , see (2.3). On the other
hand a quadratic B-module M with M, = 0 is the same as a pair (Mee,T) where M.,
a biadditive functor R x B — Ab and where T = Txy : Me(X,Y) = M. (Y, X)
is a natural transformation with 77 = 1 and Tx,x = ~1,X,Y € Ob R . The direct
sum M @ N of quadratic R-modules is given by (M & N)G(X) M.(X) & Ne(X) and
(M D N) (X,Y) = Mee(X,Y) ® Nee( X,Y) .

(3.2) Remark: For the ringoid B = Z a quadratic R-module M is the same as a quadratic
Z-module with M, = M(e), M, = M(e,e) . In fact, for n € R(e,e) = 7 the induced map
M(n) = n, is defined in (2.1) and T' = T . in (3.1) is defined by T in (2.1). This also shows
that for the ring B = Z/n a quadratic B-module is the same as a quadratic Z/n-module
defined in (2.1).

The equations (3.1) (1), (2), (3) for a quadratic R-module show that for X € Ob@
(3.3) M{X}= (M(X) i pmx,x) b M(X))

is a quadratic Z-module. Hence M yields a functor M : B — QM(Z) which carries the
object X to M{X} . The quadratic R-module M, however, is not determined by this functor
since for example T,y in (3.1) is given for all pairs (X,Y) € Ob(R) x Ob(R) . In case
R has a single object e, that is, if £ = R is a ring, then a guadratic R-module M consists
of quadratic Z-module

(1) M(e) 3 M(e,e) B M(e) .

Here M(e,e) is an R ®z R-module and the multiplicative monoid of R acts on M(e) such
that H and P are equivariant with respect to the diagonal action on M(e, e) and such that

2 (f +9).(2) = fu(2) + 9.(2) + P((f ® 9) - (H=z)) .

Here f.(z) denotes the action of f € Ronz € M(e) .

(3.4) Examples: Let R be a commutative ring. We define quadratic R-modules R*, RS ,
and RT as follows.

M M(e) M(e,e) H P
RA 0 R 0 0
RS R R 2 1
RT R R 1 2

11



Here f € Ractsonz € M(e) by fu(z) = f-f -z and f® g acts on y € M(e,e) by
(f®g9) y=Ff-9-y.

(3.5) Example: Let R be a ringoid, let A be an additive category, and let ¢ : B — A be an
additive functor. Often R is a subringoid of A and : is the inclusion, for example R = A .
Then any quadratic functor F : A— Ab yieﬁs a quadratic R-module T

F{R} = i*F = (Fe, Fee, T, H, P)

as follows. The functors F, = i*F and F,, = (¢ x ¢)* F(|) are the restrictions of the functors
F and F(]), see (2.6). Moreover H, P and T are given as in (2.6) and in the proof of (2.7)
respectively. In case R is the subringoid generated by the identity 1x € Ob(A) than F{R}
is the same as the quadratic Z-module F{X} in (2.7).

We now are ready to describe the generalization of theorem (2.8) for quadratic ﬁ-modules;
for this we recall from (VIII, § 2) [22] the

(3.6) Definition: Let R be a ringoid. Then the free additive category
1) i B C Add(B)

is given as follows. The objects of Add(R) are the n-tuples X = (Xj, -+, X,) of objects
Xiin B, 0 <n < oo.The morphisms are the corresponding matrices of morphisms
in B . The inclusion : carries the object X to the corresponding tuple of length 1. Any
additive functor f : B — A (where A is an additive category) has a unique additive extension
f : Add(R) — A which carries the tuple X to the n-fold biproduct f(X) = fX1V---V fX,
in A . Let Quad(R) be the category of quadratic functors

@ F: Add(R) — Ab,

morphisms are natural transformations.

(3.7) Theorem: There is an equivalence of categories Quad(R) S QM (R) which carries
F to the restriction F{R} in (3.5).

Foraring B = R the category Add(R) coincides with the full subcategory of finitely generated
free R-modules in M(R) . Therefore (2.8) is readily obtained by (3.7) above. The inverse

of the equivalence (3.7) is given by the tensor products defined in the next section; one gets
(3.7) as a corollary of (4.4) below.

§ 4 The quadratic tensor product

We introduce the tensor product of an R°P-module and a quadratic R-module. This is the
quadratic generalization of the tensor product defined in (1.6).

(4.1) Definition: Let K be a small ringoid. We define the functor
®r : M(B”) x QM (B) — Ab

which carries the pair (A, M) to the tensor product A @p M . The abelian group A @p M
is generated by the symbols B -
[0,b]®@n, a € A(X), be A(Y), n€ M(X,Y)

12



where X,Y are objects in & . The relations are

((a+b)@m=a@m+bQ@m+[a,b ® H(m),
a@(m+m)=a@m+a®@m,

[a,d ®n =a® P(n),

(2) 4 [a,b]®n=[b,a]®T(n),

[2,5] ® n is linear in each variable a,b, and n,
((p‘a) @m=aQ® ((Ptm) )

( [p*a, Vb ® n = [a,b] ® (v, ¥),(n)

where ¢, ¥ are morphisms in £ and where q, b,m,m',n are appropriate elements as in (1).
(We point out that the last two equations of (2) are redundant if § = Z .) For morphisms
F:A- A e M(R*?)andG: M — M' € QM (R) we define the induced homomorphism

(3) F@G:A@gM—qA’@gM’

by the formulas

@) { (F ®G)(a®m) = (Fa) ® (Gem)

(F ® G)([a,b] @ n) = [Fa, Fb} @ (Gcen)
In case M., = 0 we see that A @ g M coincides with the tensor product (1.6).
(4.2) Proposition: The tensor product (4.1) yields an additive functor

g 4050 QU(E) - 2
for each A in g(ﬁ) and a quadratic functor

@ (g M : M(E?) — b

for each M in QM (R) . The quadratic cross effect of (2) is given by the formula

(3) (AIB) 8 M = (A® B) ®poR Mec

Here A and B are R°’-modules which yield the (B ® R)*"-module A ® B by (1.7) and the
L ® R-module M., is given by M. The right hand side of (3) is a tensor product in the sense
of (1.6). The isomorphism (3) is obtained by the inclusion

@ i12: (A® B) ®gep Mee >— (A® B)®g M

which carries a ®@ b @ n to [i1a,126) ® n for a € A(X), be B(Y), n€ M(X,Y) . By (3.5)
the quadratic functor F' = () ® g M is as well a quadratic M (R)-module. Here the structure
maps T, H, P are given by the natural transformations

©) (A® B) ®por Mee = (B ® A) @R Mer

P
©) A®rM 5 (A® A) ®per Mee 5 AR M

13



defined by the formulas

Ha®m)=(a®a)® H(m)
H([a,b]@n)=(a®@b)®n+(b®a)®T(n),
T((e®b)®@n)=(b®a)@T(n),
P((a®b)®n)=[a,b]®n.

M

We point out that the tensor product (4.1) is compatible with direct limits in M (R°?) and
QM (§) respectively.

Let A be an additive category and let F' : A — Ab be a quadratic functor. For a small
subrmgmd R C A the quadratic E-module F{R} is defined by (3.5). On the other hand
each objcct U in é gives us the g’”-module

(B.U): B - gb
which carries X € R to A(X,U) = [X,U] . We now define a map
(4.3) X:[RU])®r F{R} — F(U)

by A(a®@m) = F(a)(m) for a € [X,U], m € F(X) and A([a,b] ® n) = PF(a|b)(n) for
b e [Y,U] and n € F(X|Y) .

(4.4) Proposition: The homomorphism A in (4.3) is well defined and natural. Moreover ) is
an isomorphism if U = Xy V - -V X, is a finite biproduct with X; € Rfori=1,---r and
if B is a full subringoid of A .

This is a crucial property of the tensor product (4.1) which shows that definition (4.1) is
naturally derived from the notion of a quadratic functor. The proposition shows that a
quadratic functor F' : _A_ﬂ@ — Ab is completely determined by the quadratic B-module
F{é} = ¢*F . This proves theorem (3.7); in fact, the inverse of the functor (3.7) carries
M € QM(R) to the quadratic functor [R,] ®r M .

The next corollary illustrates proposition (4.4). Let Cyc be the full subcategory of Ab
consisting of cyclic groups Z/n where n = 0 or where n is a prime power. Then we
have the equivalence of categories

(4.5) Add(Cyc) & FAb

where F Ab is the full category of Ab consisting of finitely generated abelian groups. Since
each abelian group is the limit of its finitely generated subgroups we get the

(4.6) Corollary: Let F': A__Ig — g be a quadratic functor which commutes with direct limits.
Then F is completely determined by the quadratic Cyc-module F { %} , see (3.5). In fact,

we have the natural isomorphism [.g_EE’ A] ®cyc F{ %} >~ F(A) for Ain Ab.

We now consider examples of the natural transformation A in (4.3). A commutative ring R
satisfies R°” = R . Therefore we get for any quadratic functor F': M(R) — Ab the natural
homomorphism (A € Ob M(R))

4.7) A: AQg F{R} - F(A).

14



Here the quadratic R-module F{R} is essentially given by the homomorphisms in Ab
F(R) 2 F(RIR) S F(R),

see (2.6) (4) and (3.3) (1), and X is defined as follows. Fora € Aleta : R — A be
the map in M(R) with @1) = a . Then we get for m € F(R) and n € F(R|R) the
formulas M(a ® m) = F(@)(m) and A([a,b] @ n) = PF(a|b)(n) . By (4.4) the map ) is an
isomorphism if A is a finitely generated free R-module. We call A the tensor approximation
of the quadratic functor F. For R = Z we have the following examples for which the tensor
approximation is actually a natural isomorphism.

(4.8) Proposition: The quadratic functors F = ®2, P2, A% T, 5% in (2.12) satisfy
A ®z F{I} = F(A) for A € Ab, hence one has natural isomorphisms

®*(A)= AR 1%,

PYHA)ZAQTF,

AN (A2 AT,

T(A)ZAQZT,

S2A) = AR1°.
The torsion functor F' : Ab — Ab with F(A) = A x A | however, is a quadratic functor
for which the tensor approximation is no isomorphism, in fact, F'{Z} = 0 in this case. One

can check (4.8) by the definition of the relations in (4.1). Finally we observe the next result
where we use the notation {M] ®z C in (2.1).

(4.9) Proposition: For M € QM(Z) and A,C € Ab we have the natural isomorphism

ARz ((M]®1C)~(A®1M)®1C.

§ 5 The quadratic Hom functor

Let R be a small ringoid. For R—modules A, B one has the abelian group Homg(A, B)
which consists of all natural transformations A — B . We now extend this Hom functor for
the case that B is a quadratic K-module.

(5.1) Definitions: We define the functor

o=

Homyz : M(E)” x QM (B) —

which carries the pair (A, M) to the abelian group Homg(A, M) , the elements of which
are called quadratic forms A — M over B . A quadratic form a : A — M is given by
functions (X,Y € Ob(R))

(1) ax : A(X) = M(X), axy : A(X) x A(Y) - M(X,Y)

such that the following properties are satisfied; (they are analogous to the corresponding
properties in (4.1) (2) and they as well define the sum « + 3 of quadratic forms).
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-

ax(a+b) = ax(a) + ax(b) + Pox, x(a,b)

(a+B)x =ax +Bx

ax x(a,a) = Hax(a)

4 ax,y(a, b) = Tay,x(b,a)

ay,y isbilinear and (a+ B)yy = axy + Bxy

M.(p)ax = ax, A(p)

Mee(p, ¥)ax,y = ax, v, (A(p) x A(Y))

Here «a,b are appropriate elements in A(X) or A(Y)and ¢ : X — X;, ¥:Y = Y]
are morphisms in R . The last two equations describe the “naturality” of the quadratic form
o , (these equations are redundant if R = Z ). For morphisms F : A" - A in M(R) and
G:M—-MecQM (@) we define the induced homomorphisms

”~

(3) Hom(F,G) : Homg(A, M) — Homg (A', M)
by the formulas Hom(F,G)(a) = S with
4 Bx = GeaxF, ﬂX,Y = GccQ’X,Y(F X F) .

In case M. = 0 we sece that Hompg(A, M) coincides with the usual group of natural
transformations A — M , hence the functor (5.1) extends canonically the classical functor
Homp for fi-modules.

(5.2)_Proposition: The Hom-functor (5.1) yields an additive functor

(1) Hom‘_}i(A,):Q=M(£) — Ab

for each A in M (_ﬁi) and a quadratic functor

(2) Homp(, M) : M(B)™ — Ab

for each M in Q__A_/f (_§) . The quadratic cross effect of (2) is given by the formula

(3) Homg(A|B, M) = Hom g (A ® B, M..)

Compare (4.2) where we describe the corresponding result for quadratic tensor products. The
isomorphism in (3) is obtained by the projection

4) r12 : Homg(A @ B, M) —— Hompgr(A ® B, M,.)

which carries « to the natural transformation 8 : A(X)@B(Y) = M (X,Y) with f(a ® b) =
ax,y(i1a,i2b) . By (3.5) the quadratic functor F = Homg(, M) is a quadratic M(R)"*-
module; the structure maps 7', H, P are given by the followﬁg natural transformations

5) Hompgp(A ® B, Mee) = Hompgr(B ® A, M,,)

(6) Homp(A, M) A Hompgr(A ® B, M) A Hompg(A, M)
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defined by

¥)) (Ha)(a ®b) = ala,b) + Ta(b,a)

{ (Th)(a®b) =TH(b®a),

(PB)(a) = HB(a®a) and (PP)(a,d) =fa®b).

(5.3) Examples: Let R be a commutative ring and consider the quadratic R-modules R, RS
and RT defined in (3.4). Moreover let A be an R-module.

(1) A quadratic form a: A — RA can be identified with an R-bilinear map a: Ax A —» R
satisfying a(a,a) = 0 . Hence « is just an alternating bilinear form.

(2) A quadratic forma : A — R* can be identified with a function & : A — R which satisfies
(A a) = A% - afa) for A € R, a € A and for which the function

Ag: AX A— R, Aqla,bd) = ala+b) — afa) — a(b)

is R-bilinear. Thus « is the same as a quadratic form on A in the classical sense, see for
example [1], [29].

(3) A quadratic form « : A — RT can be identified with a pair of functions @ : 4 - R, A:
A x A = R for which a(Aa) = Ma(e) and for which A is symmetric R-bilinear with
2A(a,b) = a(a+ b) — a{e) — a(b) and A(a,a) = afa) . If R is uniquely 2-divisible « is a
special quadratic form as in (2) since in this case A is determined by o .

(5.4) Lemma: Let R be a ring and let F be a finitely generated free R-module. Then
Homp(F, R) is an R°P-module such that

x : Homg(F,R)®@r M = Hompg(F, M)

for any quadratic R-module M.
Proof: We define the natural isomorphsim x as follows. Let a,b € Hompg(F, R}, m €
M(e), n € M(e,e) . Then x(a @ m) = a is given by a(z) = M.(a(z))(m} and o(z,y) =
Mee(a(z),a{y))H(m) for z,y € F . Moreover x([a,b]®@n) = g is given by B(z) =
PMee(a(z), b(z))(n) and B(z,y) = Mee(a(z), b(y))(n) + Mee(a(y), b(z))(n) .

q-e.d.
Let A be an additive category and let F : A°? — Ab be a quadratic functor. For a small
subringoid B C A the quadratic R””-module F{R"} is defined as in (3.5) by R C A" .
On the other hand each object U in A gives the R°”-module [R,U ] as in (4.3). We now
define the map

(5.5) \: F(U) — Hompgor([B, U], F{B?})
as follows. For £ € F(U) let A(€) be given by the functions ax,ax,y (X,Y € R°?) with
ax(a) = a*(§) = F(a)(¢), ¢ € [X,U] and ax,y(a,b) = F(a|b)H(£), be [Y,U].

(5.6) Proposition: The homomorphism A is an isomorphism if U = X; V --- V X, is a finite
biproduct with X; € Rfori =1,---,r and if R is a full subringoid of A .

This result is a crucial property of the Hom-group (5.1) which shows that definition (5.1)
is again naturally derived from the notion of a quadratic functor. We leave it to the reader
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to formulate a corollary of (5.6) corresponding to (4.6). Moreover we get as in (4.7) the
following example. Let R be a commutative ring and let F': M(R)"® — Ab be a quadratic
functor. Then the quadratic R-module F'{ R} is defined and we derive from (5.5) the natural
transformation

5.7 A: F(A) - Hompg(A, F{R})

where A € M(R) , compare (4.7). By (5.6) this map is an isomorphism if A is a finitely
generated free R-module. We call (5.7) the Hom-approximation of the quadratic functor F' .

§ 6 The quadratic chain functors

In this section we associate with each quadratic E-module M quadratic chain functors M, and
M?* . The definition of M, and M* is motivated by the applications in homotopy theory below.
The quadratic chain functors as well form a first step for the construction of derived functors.

Let R be a ringoid with a zero object denoted by 0. A chain complex X, = (X,,d) in B
is a sequence of maps in R

(6.1) o X S Xan S (el

with dd = 0. A chain map F : X, — Y, is given by maps F' = F, : X, — Y; with
dF = Fd and a chain homotopy « : F' ~ G is given by maps a = a, : Xp—1 — Y, with
—Fy + Gn = and + dagz4+1 .- The chain complex X, is positive (negative) if X; = 0 for
t <0 (X;=0forz>0). A negative chain complex is also called a cochain complex X*
where we write X™® = X_, , d: X" — X"t | Let __@*(é‘) be the category of positive
(negative) chain complexes and let B / ~ (R*/ ~) be its homotopy category.

We also need the category Pair(R) of pairs in R ; objects are morphisms d in R and maps
F :d - d', F = (F4,Fp) , are commutative diagrams

A 5w
(6.2) d| \d
B B p

A homotopy a: F~Gisamapa: B - Awith —F4+Ga=ad, —-Fg+Gg =da.
We have full inclusions of Pair(R)/ ~ into R,/ ~ and R*/ ~ which carry d to the chain
complex d : A = X; — B = Xj and to the cochain complex d : A = X% —» B = X!
respectively.

(6.3) Definition: Let M be a quadratic Q-module. The quadratic chain functors associated
to M are functors

(1) M, : Pair@ — Ab, M* :Pair@ — Ab*

which are defined as follows. For an object d : X; — Xo in Pair(R) we define the chain
complex M,(d) by M;(d) = 0 for i > 2 and by

o mx, xS moxy e M, xRN Mixe)
| | I
M3 (d) M(d) My(d)
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On the other hand we define for an object d : X® — X! in Pair(R) the cochain complex
M*(d) by M*(d) = 0 for i > 2 and by

m(xty G oy g e, x0) TSN o, X
® || n

M°(d) M(d) M*(d)
Foramap F :d — d' in Pair(R) the induced chain maps M,(F) and M*(F) are defined in
the obvious way. One readily checks that the composition of maps in (2) and (3) respectively
is the trivial map 0 . The definition of M,, M* is motivated by the examples in [9].

We point out that the definition of M* above is dual to the definition of M, ; here duality is
obtained by reversing arrows and by the interchange of H and P.

(6.4) Theorem. The quadratic chain functors (6.3) induce functors
M, : Pair(R)/ ~— Ab [ ~, M*: Pair(R)/ ~— Ab*/ ~

between homotopy categories.

Proof: Let f = (f1, fo) and g = (g1,90) be maps d — d' in Pair(R) and let o : f ~ g be
a homotopy. We can define a homotopy

(1) B M.(f) = M,(g)
by the matrices (2) and (3).
_ By . By =oa.

(2) B = (32) with {Bz — (a, fo).H

_ . Al = (ada fl)*H
@ po= () i {402 O e,
For the proof of (1) we have to check the following equations (4)......(9).
4) —fos + gos = du. By + P(d,1),B;
(5) —(fl? fl)* + (glagl)* = AIP - Ag(l,d)*
(6) —fix + 91 = PA1 + Bid,
(7) _(fh.fo)t + (91,9‘0), = —(l,d)*Ag + B2P(d1 1):
® 0=PA; + B1P(d,1),
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9) 0= —(l,d)‘Al + Bod, .

Originally we found the formulas in (2) and (3) as a solution of the system of equations
(4)....(9). We now check (4).

.o + P(d,1),(d, fo), H = (da), + P(da, fo) H
= (da), + (da + fo)y — (da), — foe = gou — fou .

Here we use (3.1) (5) and da = —fo + go . Next we obtain (5) by ed = —f1 + ¢1 and
by (3.1) (3):

(10)

(ad, f1),HP + (91,0),(1,d), - T'(f1,),(1,d), =

(ad, 1), T + (ed, f), + (91,ad), = T(f1,ad), =

(ad, f1), + (g1,2d), = (= fr + g1, fi), + {91, =L + 01).
=—(f1, fi). + (91, 91), -

In the last equation we use the biadditivity of the functor M., in (3.1). For equation (6)
we consider

(11)

(12) Pad, fi),H + a,dy = (ad + f1), — (ad), = fis + (ad), = = f1. + 914 -
Next equation (7) follows from

. - (17d)t(gl’a)t - (]"d)tT(fl’a)t + (a! fo)tHP(d’ 1)¢ =
(13) (9’1, da)t - (Ot, dfy )tT + (O.’d, fﬂ)- + (aa f(]d)tT =
(91, =fo + 90), + (—f1 + g1, fo), = (91,90), — (f1, fo). -

Moreover we obtain (8) by

—P(gl,a)* +PT(f1,a)* +a*P(d,1)* =

14
4 — P(g1,a), + P(fi,a), + Plad,a), = 0

In the last equation we use ad = —f; + ¢; . Finally we obtain (9) by
(15) —(1,d),(ad, f1),H + (e, fo) Hde = —(ad,df1),H + (ad, fod),H =0

Here we use df; = fod . This completes the proof of theorem (6.4) for M, . The proof for
M* uses the *dual’ arguments. Let f = (f°, f'), ¢ = (¢°,¢') be maps & — d in Pair(R)
and let o : f o~ g be a homotopy. Then we define a homotopy

(16) B:M*(f) ~ M*(g)

by the matrices (17) and (18).

1 0 (By,By) with {1
(17) 8" = (B, B2) wit {BQ___.P(Q,,fO)*

20



L (A _ Ay = P(ad, f1),
(18) d —(AJ with {Az=—(gaa>.+f<faa).-

One can check as above that (16) is satisfied.

q.e.d.
(6.5) Remark: The Dold-Kan theorem shows that positive chain complexes X, in an abelian
category A are in 1 — 1 correspondence with simplicial objects X, : A°? — 4 in A . Here
A is the simplicial category. The correspondence is given by the functors K and N with
NK(X,) = X, and KN(X,) = X, , see for example § 3 in Dold-Puppe [15]. Now let
R be a ringoid and let

F: Add(E) — Ab

be a quadratic functor. Then F is determined by the quadratic B-module M = F{R} as
in (3.7). Each positive chain complex X, in B determines the simplicial object K(X,) :
A% — Add @ as above since for the definition of the functor K the category A needs only
to be additive. The functor F' yields the simplicial object F K(X,) : A°? — Ab so that the
chain complex NFK(X,) in Ab is defined. If X, = (d: X; — Xo) is given by a map d
in R with X; = 0 for z > 1 one can show that there is a natural homotopy equivalence of
chain complexes in Ab

NFK(d: X1 — Xo) ~ M.(d) .
Here the right hand side is defined as in (6.3) with M = F{R} . We do, however, not see
that the dual complex M*(d) in (6.3) as well has such a property.

§ 7 Quadratic functors induced by a quadratic Z-module

For a Z-module M one has the functors which carry an abelian group A to the group
AQM, Ax M, Hom(A,M) and Ext(A, M)

respectively. We now introduce for a quadratic Z-module M twelve quadratic functors which
generalize these classical functors. Using short free resolutions we obtain functors

(7.1) i:Ab— Pair@)/ ~ and % : AP — Pair@o‘u)/ o~
as follows. For each abelian group A we choose a short exact sequence
G >i&> FL LA

where G and F are free abelian groups and we set :(A) = d4 . For a homomorphism
w: A — B we can choose a map f : d4 — dp in g@ which induces ¢ . The
homotopy class {f} of f is well defined by ¢ and we set i(¢) = {f} . The functor 7 is
actually full and faithful. The functor :°7 is induced by 1 .

A quadratic Z-module M yields the quadratic functors

o

(7.2) ()®z M : Ab— Ab and Hom(, M) : Ab? —
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which as well yield a quadratic Ab-module {} ®z M and a quadratic A6°”-module Hom{, M}
respectively, compare (4.2) (5), (6) and (5.2) (5), (6). We now use (6.4) and (7.1) for the
definition of the guadratic chain functors

({} ®2 M),2: Ab— Ab [ ~,

({} ®z M),2: Ab— Ab"/ =,
(7.3) (Hom{, M}),:% : Ab® — Ab [ ~,

(Hom{, M})*i%? : AP? — Ab*/ ~ .

The (co)homology groups of these four quadratic chain functors yield six functors Ab — Ab
and six functors Ab°” — Ab which we denote as follows where d4 = i(A) as in (7.1) and
where 7 = 0,1 , resp. 2 .

Hi({}®@zM),da = AR M, A+ M, resp. A" M |
qay O Mydy = AxM, AR M, resp. A®"M ,
) H;(Hom{,M}),d? = Ext(A,M), Hom'(A,M), resp. Hom"(A4, M),

Hi(Hom{,M})*'d? = Hom(A,M), Ext'(A,M), resp. Ext"(4,M).

For the convenience of the reader we now describe explicitly the chain complexes used in
(7.4). For this we choose d = d4 : G — F as in (7.1).

(1) The chain complex ({} ®z M),da is given by

(P,—d.)

GRGC® M., CRIMBGRF® M, 5% Fos M.

(2) The cochain complex ({} ®z M)*d, is given by

(H,~d.)

FoFeM. """ Fre; Mo Frece M, “E

G M.
(3) The chain complex (Hom{, M}),d’F is given by

(P,—d*

Hom(F ® F, M..) P=") Hom 7(F, M) @ Hom(F ® G, M..) “* 5%

Hom z(G, M) .

(4) The cochain complex (Hom{, M})"'d’} is given by

(H —d") (d*, d‘H)

Hom(G' @ G, M) Hom (G, M) ® Hom(G ® F, M,.) Hom z(F, M) .

Here d,,d* denote the maps induced by d and the formulas for H and P are described in
(4.2) (7) and (5.2) (7) respectively. The degree of the group at the right hand side in each
sequence above is 0.

The notation in (7.4) is chosen since there is the following compatibility with classical
functors. Assume M is a Z-module, that is M,. = 0 , then one readily verifies that the

groups
AQM=AQ M, AxM=Ax M,

Hom(A, M) = Hom'(A, M), Ext(A, M) = Ext'(4, M)

are given by the corresponding classical functors for abelian groups. Moreover all groups
A*"M, AQ" M, Hom"(A, M) and Ext"(A, M) with j = 2 in (7.4) are trivial for M., =0 .
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(7.5) Remark. Six of the functors in (7.4) are actually derived functors in the sense of Dold-
Puppe [15]. For this let T = () ®z M and T' = Hom(, M) be the functors in (7.2). Then the
derived functors L;T : Ab — Aband R'T' : Ab® — Ab are defined by

LiT(A) = H;NTK(X,) and R'T'(A)= H'NT'K(X,)

respectively where X, = (d4 : F — G) is given by a presentation of A as in (7.1). Now one
can show that one has natural isomorphisms

LiT(A)=A®M, A¥ M, resp. A¥" M,

R'T'(A) = Hom(A, M), Ext'(A, M), resp. Ext"(A, M)
for: = 0,1, resp. 2. For L;T(A) this is a direct consequence of the equivalence in (6.5).
Since 7" and T" are quadratic the derived functors above are trivial for : > 2.

(7.6) Proposition: One has natural isomorphisms AQ M = A®z M and Hom(A, M) =
Hom 7( A, M) where the right hand side is defined by (4.1) and (5.1) respectively. Compare
also (B.10).

(7.7) Proposition: All functors in (7.4) are additive in M and quadratic in A. The quadratic
cross effects are naturally given by

(AIBB)@M =AQ® B®M..=(A|B)®" M

(AIB)*M =A*Bx M, = (AB)+" M

Ext(A|B, M) = Ext(A * B, M,.) = Ext"(A|B, M)

Hom(A|B, M) = Hom(A ® B, M,.) = Hom" (A|B, M)

(A|B)¥ M = Hi(d4 ® dg, M,.) = (A|B)®' M

Hom!(A|B, M) = H'(ds ® dp, M,.) = Ext'(A|B, M) .
Here d 4 denotes as well the chain complex (X,,d) withd=d4: X, =G - Xo=F, X; =
0 for 2 > 2 . The Kiinneth formula yields natural exact sequences

(1)
(A*BY® Mce >— Hi(da ®dp, Mee) >— (A® B) * M, ,

2
Ext(A ® B, M..) >— H'(ds ® dg, M..) »— Hom(A + B, M..)

These sequences are split, the splitting however is.not natural. There is a natural isomorphism
@
Hi(da ® dp, Mee) = Trip(A, B, Me.)
where the right hand side is the triple torsion product of Mac Lane [21].

Proof of (7.7): We consider for N = {} ®z M the functor N, : Pair(Ab)/ ~— Ab,/ ~,
see (7.3). This functor is quadratic and its quadratic cross effect admits a weak equivalence

¥ : N.(daldp) = da®@ dp ® Mee

of chain complexes. For d4 : X; — Xp and dp : Y1 — Yj and C, = N,(da|dp) we have
Co=Xo® Yo ® M.
C1=X19Y1OMe X1 QY9 @ Mee @Y1 @ Xo @ Meee
Co=X10Y1Q@ M. ®Y1® X1 ® M.
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The differential d; : C; — C;_, is given by

H(z1Q@y®n)=t1Q®ynO®n—z1Qdgy1®n
d2(1n®21@n) =211 @Tn—y1 @daz1 @n
di(z1 @Y1 @n) =dsr; ®dpy1 @n
di(z1 @y ®n) =dsz1 QYo ®n

di(y1 ® zo @ n) =90 ®dpy1 @ Tn

where y; € Y;, z; € X;, n € M., . The map ¥ is given by the identity in degree0 and by

Uz ®y1®n) =0

V(1 ®z10n) =01 ®@Tn
Ui (z1@y1@n) =21 0dpy1 ®n
Ui(z1: @y ®@®n)=z1 @y ®n
U1(y1@z0@®n)=z0@y1 @ Tn

Since H;N.(d4|dp) is the cross effect in H;N,(d4 @ dp) we obtain (A|B)®@ M, (A|B)+ M
and (A|B) " M by the weak equivalence ¥ and by the Kiinneth formule. In a similar way
one obtains the other cross effects in (7.7).

q.e.d.
(7.8) Proposition: There are natural inclusions and projections of abelian groups

A" M >0 AxAx M., ,

AR'"M —— AR AR M., ,
Hom"(A, M) >— Hom(A ® A, M,.) ,
Ext"(A, M) e« Ext(A* A, M,,) .

Proof: We only consider the first inclusion. For this we see by (7.4) (1), that A ¥ M is
the intersection (d, =1 Q@d® 1)

ker (P) nker(—d,) CGQ(A* M) CGRG Q@ M,

where ker (—d,) = G ® (A * M,.) . We have to show (d® 1 ® 1)(A +" M) = 0. Then the
first inclusion in (7.8) is given. Let T : G @ G @ M,. — G ® G ® M, be the interchange
map with T(z®y®n) = y@z ® IT'n . Since HP = 1 4+ T we see that T restricted to
ker (P) is —1 . Whence we get forz € A" M (d®11l)(z)=-dR1®1)T(z) =
-T1®d®1l)(z) =0 .

g.e.d.

(7.9) Remark: Using (7.7) it is easy to compute the functors (7.4) for finitely generated
abelian groups A. For this we need only to consider cyclic groups Z/n = A with the
presentation dy = n : Z = G — Z = F . In this case we have Z @7 M = M, and
Homgz(Z, M) = M, ; therefore the chain complexes (7.4) (1).....(4) can be expressed in terms
of H, P in the quadratic Z-module M. In particular (7.4) (1), resp. (2), is given ford4 = n by

(D M, S MM, S ) e , TESP.



@) M. P M, @ M, 8T M,

where n, is defined in (2.1). In addition we can use the following formulas for the
computation.

(7.10) Proposition: Let A be a finite abelian group and let A = Ext(A,Z) .

Then one has the natural isomorphisms

Ext(A4, M) = A @ M, Hom(A, M) = AP » M,

Hom'(A,M)= AP ¥ M,  Ext'(4,M)= AP @ M,

Hom" (A, M) = AE " M, Ext"(A,M)=AFQ"M.

There is a non natural isomorphism Af = A .

Proof: Since A is finite we obtain a presentation of Ext(A,Z) by d* : F# = Hom(F,Z) —
G# = Hom(G,Z) . Using (5.5) we can replace Homz(F, M) by F# ®z M . This way the
chain complex (7.4) (3) for d4 is the same as the chain complex (7.4) (1) for d‘;,‘ . This
proves the left hand side of equations in (7.10)

(7.11) Remark: The 12 functors in (7.4) evaluated on A = Z are given by the table

LoM=M, Z+xM=0 Zx'"M=0
ZxM=0 @ M =ker H ZQR"M =cok H
Ext(Z,M)=0 Hom'(Z, M) = cok P Hom"(Z, N) = ker P
Hom(Z, M) = M, Ext(Z,M) =0 Ext"(Z,M) =0.

Here H, P are the maps of the quadratic Z-module M .
(7.12) Theorem: A short exact sequence

0 KSMINoO

of quadratic Z-modules in QM (L) induces the following four types of natural 9-term excat
sequences.

A¥'N —
A¥ N —
A@N —- 0

0 o A" K 2 A«"M
(1) A¥ K — A« M
ARK —» AQM

Llle

l
!

0 - AxK Ax M
(2) AQY'K — AQ'M
A®HK A@HM

AxN —
AR'N —
AR"N - 0

l

1
!

0 — Hom'"(A,K) — Hom'(A,M) — Hom'(A,N) —
(3) Hom!/(A,K) — Hom'(A,M) — Hom'(A,N) —
Ext(A,K) — Ext(A,M) — Ext(A,N) — 0
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0 — Hom(A,K) — Hom(A,M) — Hom(A,N) —
(4) Ext'(A,K) — Ext'(4,M) — Ext'(4,N) -
Ext"(A,K) — Ext"(A,M) — Ext"(4,N) — 0

If the quadratic Z-modules K, M, N are actually abelian groups, that is, if the short exact
sequence in (7.12) lies in the subcategory Ab of _Q_Ai(l), see (2.1), then the terms with an
index " above vanish so that in this case the 9-term exact sequences above coincide with the
corresponding classical 6-term exact sequences of homological algebra.

(7.13) Example: One has the short exact sequences

0-25572P 57150 (1)

) 0525527 52/250

with 7, = (1,1), % = 1 and j. = 2 and j.. = 1. Hence we obtain by (7.12) (1) via (1) the
isomorphism A ¥’ Z5 = A+ ZP and the short exact sequences

02 ARZI - ARZIF - AQZ -0

which coincides with the top row of (2.12) (4). Moreover by (2) we get the exact sequence
(A+"Z/2 = 0)
0 — A¥ZS o AXZ" 3 Axz)2 >
ARIS — AQI' IS A®1Z/2 — 0

which is a union of two short exact sequences. The second part coincides with the bottom
row of (2.12) (4) and A+’ Z¥ = R(A) is given by Eilenberg-Mac Lane’s functor R. Compare
the exact sequence in (10.7) below. There are indeed many further interesting applications
of the 9-terms exact sequences above.

Proof of (7.12): We first prove (7.12) (1). For this we observe that the short exact sequence
of quadratic Z-modules in (7.12) induces a short exact sequence of chain complexes

*) 0— ({} ®2 K),da — ({} ®2 M),ds = ({} @2 N),ds = 0

Indeed this is short exact since F' and G in (7.4) (1) are free abelian. To see this we use (2.6)
(3), (7.7) and (7.11). Now the long exact Bockstein sequence of homology groups applied to
(*) yields (7.12) (1). In a similar way we obtain the other 9-term exact sequences.

q.e.d.

(7.14) Remark: It is also of interest to consider the natural quadratic cross effect sequences
derived from the 9-term exact sequences above. For example (7.12) (1) and (7.7) yield the
natural exact sequence

0 - A*xBxK,, — AxBxM,, — AxBxN,, —
Trp(A, B,Kee) — Trp(A,B,Me) — Trp(A,B,Nee) —
AQBR®K.e — A®B®Mee — AQ®B@Ne — 0
A short exact sequence of abelian groups induces as well certain exact sequences for quadratic
tensor products, this is discussed in the Appendix below, see (B.10).
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§ 8 Quadratic homotopy functors

We introduce additive categories of homotopy abelian co- H -groups and H-groups respec-
tively and we describe quadratic functors on these categories. The functors are given by
homotopy groups, homology groups, and cohomology groups respectively.

Let CW —spaces’/ ~ be the homotopy category of C'W-spaces with basepoint * ; the
set of morphisms X — Y in this category is the set of homotopy classes [X, Y] . We write
dim (Y) < m if there is a homotopy equivalence ¥ ~ X where X is an m-dimensional
CW -complex. Moreover we write hodim(Y) < m if m;(Y) = 0 for 7 > m . Let éﬁ , Tesp.
gﬁ be the full subcategories of CW — spaces*/ ~ consisting of (n — 1)-connected spaces X
with dim(X) < n+%, resp. hodim(X) < n+ k. Let G be an abelian group. An Eilenberg-
MacLane space K(G,n) is a CW-space with m,(K(G,n)) = G and m;K(G,n) = 0 for
7 # n . A Moore space M(G,n) is a simply connected CW -space with homology groups
H,M(G,n) = G and H;M(G,n) =0, n # 3 > 1. We clearly have hodim K(G,n) < n
and dim M(G,n) < n+1.

(8.1) Definition: Let HA and coH A be the following subcategories of CW — spaces*/ ~ .
Objects in HA are homotopy abelian H-groups and morphism are H-maps. The objects in
coH A are homotopy abelian co- H-groups and morphisms are co- H-maps. Let HA4
resp. col{A_ be the full subcategories consisting of (n — 1)-connected objects.

For example a double loop space 22Y and a double suspension £2Y are objects in HA and
col{ A respectively. This shows that one has full inclusions

k k
(8.2) AnCcoHA and %CH=A,1 for k<n-1.

All categories in (8.2) are additive categories; the biproduct in coH A is given by the one
point union X V'Y of spaces and the biproduct in HA is given by the product X x Y of
spaces. For a CW-space K let #X and n be the homotopy functors defined by

(8.3) 2E(X) = [E™K, X] and #T(X) = [X,Q"K].

As usual we have 7K (X) = 7,,(X) if K = S° is the 0-sphere and we have 7(X) =
H*(X,G) if K = K(G,m+k) . The sets in (8.3) are groups, resp. abelian groups, for
m =1, resp. m > 2. Using the homotopy functors (8.3) and the homology and cohomology
functors we obtain the following four functors

75X .coHA — Ab with dim(S™K)<3n—-2, (1)
—_—n —_—
myx : HA® — Ab with hodim(1™K) < 3n, (2)
(8.4)
H™(,G): HA” — Ab with m < 3n, 3
Hu(,G): HA_ — Ab with m < 3n . @)



The functor (3) is a special case of (2) when we set K = K(G,m + k) . The conditions
on the right hand side describe the meta stable range of these functors. It is well known
that in this range the functors are quadratic. In the stable range (given by dim(E™K) <
2n — 1, hodim(Q™K) < 2n, resp. m < 2n ) the functors are additive.

We now consider the cross effects and the structure maps H, P, T in (2.6) for the quadratic
functors in (8.4). For suspensions X = X', Y = XY’ the Hilton-Milnor theorem shows

(8.5) EEX AY) EK(X]Y).

Here the isomorphism is induced by the injection 7% ([41,%3]) where [i1,i2] : ZX' AY' —
X VY is the Whitehead product map. Using (8.5) as an identification the map 7" coincides
with —(X7s1), where To; : X' AY' — Y’ A X' is the interchange map. Moreover the maps

K{sx'} = (K (2x) & 2K (mx A X) B oK (X))

given by (8.4), coincide with the James-Hopf invariant // = +, and the Whitehead product
map P = [1,1], where 1 = 1y is the identity. These maps H and P are exactly the operators
which appear in the classical EHP-sequence of homotopy theory. Next we obtain the cross
effects of the functors (8.4) (2) (3) (4) by canonical isomorphisms

TR(X AY) = rR(X]Y),
(8.6) H™X AY,G) = HMX|Y,G),

Hn(X AY,G) = H,(X|Y,G)
which are readily obtained by the cofiber sequence X VY — X xY —- X AY . For
(8.4) (2) (3) the maps H,P,T correspond to H = (Hp)*, P = A*, T = (Tz1)® where
A : X — X AX is the reduced diagonal and where Hu : £X A X — EX is the
Hopf-construction of the H-space multiplication g = r1 +r; : X x X — X . In (84)
4) we get H = A,, P = (Hp), and T = (T21), . For the definition of Hyu see for
example (IT 15.15) [5]. For (Hp)* and (Hp), we use the canonical suspension isomorphisms
R N EX) = R(X) and Hm41(EX,G) = Hn(X,G) .

§ 9 Homotopy groups of Moore spaces

We describe a six term exact sequence for the homotopy groups of Moore spaces which
is useful for computation in the metastable range of these groups. As an application we
obtain a new homotopy invariant 7(X) of an (n — 1)-connected (2n + 1)-dimensional closed
manifold X.

Let R C coHA be a small subringoid consisting of suspensions X = X’ . A CW -space
= —n
U gives us the ﬁ”’-module (= additive functor)

[B,U): 7 - Ab

which carries X € R to the abelian group [X,U] . The quadratic R-module rX{R}
associated to (8.4) (1) and the tensor product (3.1) can be used for the natural homomorphism
(dim £™K < 3n — 2)

©.1) A:[B,U] @gmm{R} = 7 (U)
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which we call a tensor approximation of =Y (U) . For « € [EX'\U], b €
[EY", U], (EX',2Y' € R) , and for o € [E™Y,EX'], B € [E™Y,ZX' A Z'] we define
A by AMa®a) =aoaand M[a,b] ® B) = [a,b] o § where [a,b] is the Whitehead product.

The image of A is the subgroup generated by all compositions

LY S X3V VX S U

with X; € R, k > 1 . The map « is in the metastable range. The composition a 0 o ,
however, needs not to be in the metastable range.

(9.2) Lemma: X in (9.1) is a well defined natural homomorphism. Moreover A is an
isomorphism if U = X,V -+ -V X3 with X; € Randif [X, X;] C R(X, X;) foralli =1,---,k
and X € R .

The lemma is a consequence of the distributivity laws {4] and of (4.4).

(9.3) Remark: A natural description of the homotopy group 7% M(A, n) of the Moore space
M(A,n) can be obtained by the tensor approximation (9.1). For this we need to consider
elementary Moore spaces M(Z,n) = S™ or M(Z/p",n), p =prime. Let R be the full
homotopy category consisting of elementary Moore spaces. Then (9.1) yields the natural
homomorphism, n > 3 ,

A (R, M(An)] ®§w£{§} — X M(A,n)

which is an isomorphism if A is finitely generated. This follows from (9.2).

We now consider an example of A in (9.1) where B = 7 is the full subcategory consisting only
of the sphere 5™ and where U = M(A,n) . Then w,’,f{ g} is just the quadratic Z-module
n ny H n-1y P
nk{sm) = (nk(sm) B nk(s21) L xf(sm)
which is defined by F = xX() as in (8.4) (3); here H is the Hopf invariant and P = [1,1],
as in (8.5). Now (9.1) gives us the natural homomorphism
(9.4) A Az rE{s™) - K M(A,n)

which is an isomorphism if A is a free abelian group (here A needs not to be finitely generated).
Itis an old result of Hopf that w3 {$?} = 2 = (Z 12 % Z) . Therefore we derive from

(9.3) the natural homomorphism A : T'(A) = A ® ZT = 73M(A,2) which is actually an
isomorphism for all abelian groups A, see [37] and (2.11), (4.8). In general the map A
in (9.4) is not an isomorphism. Let S C 7XM(A,n) be the subgroup generated by all

compositions ™K — S*V... v §" — M(A,n) and let
amEM(A,n) = nEM(A,n)/S

be the quotient group. For dim ¥™K < 3n — 2 this is the cokernel of A in (9.4). Now A is
embedded in the following exact sequence which shows the relevance of the corresponding
derived functors in (7.4).

(9.5) Theorem: For dim(X™K) < 3n — 2 there is a natural exact sequences
0~ A+ 7K(5"} - x7K  M(An) » Ax" 7K_ {57} 5

A®7r,1n({S"} A wﬂ}fM(A,n) 4 ,\'rrgM(A,n) —0
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where q is the quotient map.

Proof of (9.5): Theorem (9.5) is a special case of (2.7) in [9]. For this let X; 4, Xog—-— A
be a short free resolution of the abelian group A and let g : M(X;,n) — M(Xo,n) be a
map which induces d . The mapping cone of g is the Moore space M(A,n) = C, . Using
the isomorphism A in (9.4) (where we replace A by X; and Xp respectively) we obtain
isomorphisms

Ho{xk} ()= A@ (5"},

#{xk} ()= a ¥ zk{s"),

Hz{ﬂ',},f}*(g) = A" zE(s"}.
Compare the definition in (7.4). Now it is easy to see that ¢ in (2.7) [9] corresponds to A in
(9.5). Therefore (9.5) is just a special case of (2.7) [9].

g.e.d.
(9.6) Corollary: For m < min(2n,3n — 3) one has the natural short exact sequence

0= AR mm{S"} 2 TmM(A,n) - A¥ 7 _1{S"} = 0

and the isomorphism \Tymi 1 M(A,n) = A+ 1,{S"} .

Proof: Since mo,—152" 1 = Z we see that A *" 7,,_1{S™} = 0 for m < 2n , compare (7.8).
Whence (9.6) is a consequence of (9.5). In the stable range m < 2n — 1 the sequence (9.6)
is well known (see for example [2); in this case we have A @ 7, {5"} = A ® 7, S™ and
A¥ 1 1{8"} = Ax1p_1S" , see (7.5).

g.e.d.

Next consider the cross effects of the exact sequence in (9.5). For this let
M(A|B,n) = M(A,n) A M(B,n—1) and let z7X(A|B,n) = 7EXM(A|B,n)/S

where S’ is the subgroup generated by all compositions E™K — S**~! — M(A|B,n).
(9.7) Corollary: For dim (£™K) < 3n — 2 there is a natural exact sequence

0 — Trp( A, B,rkS™ 1) = 7K, M(AIB,n) » Ax Brrli_ 5™
% A9 B® K51 L x K M(A|B,n) = arEM(A]B,n) = 0

Here T'rp is the triple torsion product of Mac Lane [21], see also (7.7) (3). Corollary (9.7) is
the ’cross effect sequence’ of (9.5) obtained by the formulas (7.7). It is an interesting problem
to compute the boundary operators J in (9.5) and (9.7) only in terms of 'some structure’ of
the homotopy groups 7 (S7) of spheres, in particular if K = S° .

(9.8) Remark: There are many papers in the literature concerning the homotopy groups
of Moore spaces 7, M(A,n) , see for example [33] and [13], [27]. We here are mainly
interested in the functorial properties of 7, M(A,n), m < 3n — 2, which are not so well
understood; an early approach in this direction is due to Barratt [2] for m < 2n —1 .

The functorial properties of the groups 7, M(A,n) are of special interest for the homotopy
classification of manifolds and Poincaré-complexes respectively. Let P,’f be the class of
(n — 1)-connected (2n + k)-dimensional Poincaré-complexes.
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(9.9) Examples: Letn > 2. For X € P? there is a homotopy invariant
e(X) € Hy(X) ® 790-1{S™}

where H, X is a finitely generated free abelian group. In fact, X is the mapping cone X =~ Cy
of a map f : S ! — M(H,X,n) and ¢(X) = A~!(f) is given by the isomorphism A
in (9.4). Whence ¢(X) is a complete homotopy invariant of X , that is for X,Y € P?
there is an orientation preserving homotopy equivalence X ~ Y iff there is an isomorphism
¢ H, X = H,Y with (¢ ®1)e(X) = €(Y) . We can write the invariant £(X) in terms
of the cohomology H"(X) as follows. Since Hn(X) = Hom(H™(X);Z) we have by (5.5)
the isomorphism

X : Ho(X) ® 72n-1{S"} = Hom(H™(X), m32-1{S"})

Therefore xe(X) = (ae,ace) is a quadratic form with o, : H*(X) — 72,-15™ and with
Qee 1 HYX) x H*X) — m3,15?"~1 = 7 . Here a.. is just the cup product pairing in X.
Moreover a. = WV is exactly the cohomology operation considered by Kervaire-Milnor in 8.2
[20]; (the formula there is equivalent to the fact that (., ac.) is a quadratic form, compare
the first equation in (5.1) (2)).

(9.10) Example: For X € P,} (n > 2) we define a new homotopy invariant
7(X) € Ho(X) # mon_1{S™}

which we call the torsion-invariant of X. We obtain 7(X') by a homotopy equivalence X =~ Cy
where f: S — M(Hp1X,n+ 1)V M(H,X,n). Let rof € moa M(H, X, n) be given by
the retraction r2 and let 7(X) be the image of rz f under the homomorphism

TanM(Ho X, n) == smoaM(H,X,n) = Ho(X) # m30_1{S"}

given by (9.6). One can check that an orientation preserving map v : X — Y with X, Y € P}
satisfies
(Ha(v) # 1)(r(X)) = 7(Y)

so that 7(X) is a well defined homotopy invariant. For n > 3 the exact sequence (9.6) can
be used for the computation of all possible f which yield the same torsion invariant. This
yields a kind of homotopy classification of objects in P! | (using different invariants such a
classification is intensively studied in [30], [31], [28], [17], [36]).

(9.11) Examples of computations: The following list shows some examples of the quadratic
Z-modules 7,,,{S"} where we use the notation for indecomposable quadratic Z-modules in
(2.4), (2.11). These examples can be deduced from Toda’s computations [34]. In the list we
denote a cyclic group Z/n simply by n and we denote a direct sum Z/n @ Z/m by n®m .
Moreover (n,m) and (n,m,r) are the greatest common divisors.

nm | wm{S") 1/k ® m{S"} Z/k+ 7m{S™Y  Z/k+" 7 {S")
2,3 |zr (k2,2k) (k,2) 0
3,5 Ir o2 (k,2) (k,2)® k 0
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3,6 H2,1)®3 (k12 (k,12) & (k,2) (k,2)
4,7 (1 o3 (K, 2k) @ ek (k,24) 0
® (k,3)
4,8 0 0 0 k=102
Yl (@/2) { 2 P 0 k=2(4)
4,9 202 22 0 k=0(4)
5,9 P(1) (k,2) (K2, 2k) 0
5,10 (1/2)3 (k,2) (k,2) 0
511 fz/)te2  (k2) (k,2) @ (k,2) (k,2)
512 | H1,3) @15  (k,2) @ (k,15) (k,2) @ (k,3) (k,3) & (k,8)
® (2/3)" ® (,8) @ (k,15)
6,11 |zS k 0 0
6,12 l@z/2)te2 (k2) (k,2) @ (£,2) (k,2)
6,13 |H(2,1)®15 (k,60) (k,60) & (k,2) (k,2)
6,14 t@z/iye2 (52 (k,2) @ (k,2) (k,2)
®(1/3)° & (k?%, 2k, 24) ea(kz 2k 24)
6,15 |2@2@2 (k,2) ® (k,2) (k,2) @ (k,2) 0
@ (k,2) @ (k,2)

The quadratic Z-module Z£' (see (n,m) = (4,7) ) is given by
7P = (z 02/t 7% 74 2/4)

and e in this line is

4 k=0(8),
0 otherwise.

{2 k=0(4), k # 0(8),
€ =

Moreover for (n,m) = (4,8), (4,9) we use (Z/Z)P = [ZP] ® 2/2 as defined in (2.1).
The computation of the groups in this list is readily obtained by (7.9). Combining the groups
in the list with the exact sequence (9.5), (9.6) we immediately get the following short exact

sequences.

(1) Z/(k,12) >— 7 M(Z/k,3) »—> Z(k,2) D Z/k
k=1(2) 0

@) k=2(4) 2/2 } > g M(Z/k,4) —— Z/(k,24)
k=04) Z/2@1/2
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k=1(2) 0 0
(3) k=2(4) Z/2 } >— mgM(Z/k,4) - { 7/2
k=04) Z/201/2 1/261/2
(4) Z/(k,2) >— moM(Z[k,5) »— Z/(2k, k*)
(5) Z/(k,2) >— T M(Z/k;5) —»— Z/(k,2)

By a result of Sasao [27] the sequence (1) is non split only for £ = 0(2) and k/(k,12) = 1(2) ;
in this case one has m¢M(Z/k,3) = Z/2 ® Z/2k & Z/(k,12)/2 . Moreover Tipple [33]
showed that (3) is split and that (4) is non split only for k£ = 2(4) . Finally we deduce
m12M(Z/k,6) = Z/(k,12) from the list above. We leave it to the reader to describe further
examples for the exact sequences (9.5).

§ 10 Homology of Eilenberg-Mac Lane spaces

We describe a six term sequence for the metastable homology groups of Eilenberg-Mac
Lane complexes. This sequence is a kind of Eckmann-Hilton dual of the corresponding
exact sequence for metastable homotopy groups of Moore spaces in § 3. Moreover we use
the operators in Whitehead’s certain exact sequence for a map which carries the homotopy
groups of Moore spaces to the homology groups of Eilenberg-Mac Lane spaces.

Let R C HA be a small subringoid, see (8.1). A homotopy abelian H-space U, U € HA,
gives us the A°P-module

B,V BT — Ab

which carries X € R to the abelian group of H-maps [X, Ul = HA(X,U) which is a
subgroup of [X,U] . The quadratic R-module Hp, {Q,G } associated to (8.4) (4) and the

tensor product (3.1) yield the natural homomorphism (m < 3/n)
(10.1) A:[B,U] ®r Hn{R,G} — Hu(U,G)

as follows. For a € [X,U], b € [V,U], @ € Hn(X,G), B € H (X AY,G) let
Ma ® ) = a.(a) and A([a,b] @ 8) = H(p),(a A D),(B) , compare (8.6). The image of A is
the subgroup of H,,(U,G) generated by all elements a,(a) where o : Xy x -+ x Xp = U
is an H-map, X; € B, k > 1, and where a € Hy (X1 X -+ X X, G) .

(10.2) Lemma: A in (10.1) is a well defined natural homomorphism. Moreover X is an
isomorphism if U = Xy x --- x Xy, X; € Bfori =1,k and if R is a full subringoid
of HA .

Similarly as in (9.2) the lemma is a consequence of (4.4).

(10.3) Remark: A natural description of Hn{K(A,n),G),m < 3n , can be obtained by .
(10.1). For this let & be the full homotopy category consisting of elementary Eilenberg-Mac
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Lane spaces K (Z,n) or K (Z/ P, n), p =prime. Then (10.1) yields the natural homomorphism
(n22)

A: (B, K(A,n)] @k Hn{B, G} S Ha(K(A,n),G)

which is an isomorphism for all A € Ab. This follows essentially from (10.2), compare (4.6).
We clearly have [R, K(4,n)] = [&, K(A,n)]" .

We now consider a special case of A in (10.1). For this let R = 7 be the full subcategory
consisting only of K(Z,n) and let U = K(A,n) . Then Hn{R,G} is the quadratic Z-
module (see (8.6))

HE{n} = (Ha(K(Z,7),G) b Ha(K(Z,7),6) & Hu(K(Z,1),G))
and we get by (10.1) the natural homomorphism
(10.4) A: A®z HS {n} - Hn(K(A,n),G)

which is an isomorphism if A is free abelian; here A needs not to be finitely generated. In fact
A is the tensor approximation of the functor Ab — Ab which carries A to Hin(K(A,n),G),
compare (4.8). For G = Z we set Hp{n} = HL{n} . Since K(Z,2) = CP, we
readily see that Hy{2} = Z' . Therefore we derive from (10.4) the natural homomorphism
A:T(A) = A®ZF = HyK(A,2) which is actually an isomorphism for all A , compare
[16]). The following list shows some examples of quadratic Z-modules Hp,{n} . We use in
this list the notation for indecomposable quadratic Z-modules in (2.4), (2.12); the examples
can be deduced from the computations in [16).

m n Hp{n} Hp(K(A,n))

3 2 0 {o

4 2 zr T(A)

5 2 0 R(A)

5 3 Z/2 /2@ A

6 3 yAL Z/2x ADAL(A)

7 3 /3 7/30 A® Q(A)

8 3 (2/2)® 2/3x A0 (R24) ®Z/2
7 4 0 1/2% A

8 4 'a1/3 /30 AQT(A)

9 4 0 2/3* A® R(A)

9 5 1/201/3 (Z/202/3)® A

10 5 zA (Z/20Z/3)« A A%(A)

In general the map A in (10.4) is not an isomorphism. As an analogue of theorem (9.5) we
obatin the following result. Again we use the derived functors in (7.4).
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(10.5) Theorem: Let m < 3n — 3 . Then there is a natural map « : Hp,(K(A,n —1),G) —
A * HS{n} such that Hn(K(A,n—1),G) = kernel(x) is embedded in the natural exact
sequence

0 A®' HE{n} — wHun-1(K(A,n~1),G) — AQ" HS, {n} «
A+xHG{n} & Hp(K(An —1),G) & Hn(K(A,n~1),G) « 0

where 1 is the inclusion.

In the stable range m < 2n — 2 this yields just the short exact sequence
(10.6) AxHnp(K(Z,n),G) —& Hp(K(An—1),G) «< A® Hpp(K(Z,n),G)

which is a kind of Eckmann-Hilton dual of (9.6). Using the formulas in (7.7) it is easy to
obtain the exact “cross effect sequence” of (10.5), this is a sequence of a similar nature as
in (9.7).

Proof of (10.5): The theorem is a special case of (3.12) in [9]. For this let X, LA Xg—— A
be a short free resolution of A and let ¢ : K(X;,n) — K(Xo,n) be a map which induces
d. Then the fiber of g is the Eilenberg-Mac Lane space K(A,n —1) = P, . Therefore we
can apply (3.12) [9]. Using the isomorphism A in (10.4) (where we replace A by X, and
X1 respectively) we get the isomorphisms

H{HG},(9) = AxHS{n},
HYHS} (9) = AQ HE{n},
HY{HG} (9) = AQ®"HG{n}.

Compare the definition in (7.4). Whence (10.5) is just a special case of (3.12) [9].

(10.7) Examples: We describe some applications of (10.5) where we use the list in (10.4).
Since H;{4} = 0 we obtain the isomorphism

AQ I AR1/3 A® Hs(4)
HK(A3)=QADARL/3

ne i

1l

which corresponds to the isomorphism A ® Z' = QA . Since H7{3} = Z/3 we have
AQ®" H7{3} = 0 so that (HsK(A,2) = A®' Z" where Z» = Hg{3} . Moreover we have
H4{3} = 0 so that «Hy4K(A,2) = HiK(A,2) = I'(A) . Therefore we derive from (10.5)
the exact sequence

ARZL/2 ——T(A) < AQ"I* & Ax1/2 —& R(A) —< AQ'TH

which is the union of two natural short exact sequences. By (2.12) (4) this shows that there
are natural isomorphisms A ®" ZA = S?(A) = A® 15 .

(10.8) Remark: J. Decker got a formula for Hn K(A,n), m < 3n , in terms of a list of
homology operations « , see III (4.3) [14]. This list of homology operations (based on results
of Cartan [11]) allows in principle the computation of Hn K (A,n) as a functor and hence
we can derive the quadratic Z-module H,,{n} . The exact sequence (10.5) still is helpful for
understanding the somewhat intricate functors ; and R, which appear in Decker’s formula.
They generalize the functors 2 and R of Eilenberg-Mac Lane [16], thatis Qo =2, Ro = R.
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We now describe a connection between homotopy groups of Moore spaces and homology
groups of Eilenberg-Mac Lane spaces. To this end recall that the Hurewicz homomorphism
h is embedded in a long exact sequence [37]

S Hop1 X DT X S X B HX AT X o

which is natural for simply connected spaces X. For an abelian group A we have the canonical
map (n > 2)

k:M(A,n) — K(A,n)
which induces the identity H,(k) = 14 of A. This map induces the natural homomorphism
(10.9) Q1 =0T (k)i™!: 7aM(A,n) = Hp 1 K(A)n)

where we use ¢ and b in the exact sequence above. J.H.C. Whitehead [37] showed that
@, is an isomorphism for m = n + 1. In the metastable range (); is part of the following
commutative diagram where we useZM(A,n —1) = M(A,n), m < 3n —2.

tmM(A,n) 4 TmM(A,n) A M(A,n—1) L TaM(A,n)
(10.10) 1@ u 1 Q2 , L@
HanK(An) = mi1K(A,n)AK(An) = HpuK(An)

The maps H and P are defined as in (8.5) and (8.6) respectively. The map @ is defined by
@2 = hmpme1(k A k) where  is the suspension operator and where A is the Hurewicz map.
Whence () is an isomorphism for m = 2n — 1 . The commutativity of the diagram shows
that @ = (G, Q2) is a map between quadratic Z-modules. We obtain the commutativity of
(10.10) by the homotopy commutativity of

M(A,n) 5 MAWVMAR % MAn
(10.11) lk LK Lk

K(An) 5 K(An)xK(An 5 Kn)
Here u' and  are the comultiplication and multiplication respectively and ' is given by kVk
and the inclusion. By applying the functor I'y, to (10.11) we essentially get (10.10).

For any (n — 1)-connected space X with H,X = A we have maps
(10.12) kM4 S X B KA

which induce isomorphisms in homology H,, . Here the homotopy class of k" is unique, the
homotopy class of k' , however, is not unique. From (10.10) we derive for m < 3n — 2
the commutative diagram

A®mm{S"} — A® Hpy1{n}
A A
(10.13) ! v - !
TmM(A,n) 5 TpX =" HppK(A)n)
@1

which shows that I';; X is non trivial if ¢}; is non trivial. The following lemma gives
information on part of the kernel of @, .
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(10.14) Lemma: Let o € npn(M(A,n)) be a map which admits a factorization o : S™ —
Y — M(A,n) where Y is n-connected and dim(Y) < m — 1 . Then we have Qi(a) =0 . In
particular we have Q1([¢,n]) = 0 for all Whitehead products [€,9] with § € m¢M(A,n), t >

n .

(10.15) Example: All arrows in (10.13) are isomorphisms for n = 2, m = 3 . Moreover
the map

Ql : 7T4M(A,2) — H5K(A,2) = R(A)

is surjective and its kernel is the subgroup S in (9.5). Hence we have the natural isomor-
phisms
ATV = \xyM(A,2) £ HsK(A,2) £ R(A),

compare (9.6).

§ 11 Cohomology of Eilenberg-Mac Lane spaces

Here we obtain a six term exact sequence for the cohomology groups of Eilenberg-Mac Lane
spaces in the metastable range.

Let R C HA be a small ringoid, see (8.1). A homotopy abelian H-space gives us the
R°P-module {R, U] as in (10.1). Now the quadratic R°P-modules H™{R,G} and 2{R}
associated to the functors (8.4) (3) and (8.4) (2) respectively yield the natural homomorphisms
(m < 3n, resp. hodim()™ K) < 3n)

A H™U,G) - Hom-_}_g—w(@,U]’,Hm{ﬁ,G}) ;
Amg(U) - Homgop(@, U]’,'rrl"(‘{g})

Compare (5.5). By (5.6) we know

(11.2) Proposition: The homomorphisms A in (11.1) are isomorphisms if U = X; x --- x X,
is a finite product with X; € R for1 = 1,---,r and if R is a full subringoid of HA .

(11.3) Remark: Let R be the ringoid of elementary Eilenberg-Mac Lane spaces as in (10.3).
Then (11.1) yields the natural homomorphism

(11.1)

A rR(K(A,n),G) — Homg"’(@a K(A,n)],?r?{_@})

which is an isomorphism if A is finitely generated.

We now consider a special case of A in (11.1). For this let B = 7 be the full subcategory
consisting only of K(Z,n) and let U = K(A,n) . Then H™{R,G} and n2{R} are the
quadratic Z-modules
Hg{n} = (H™(K(Z,n),6) & H™(K(Z,n) A K(Z,n),G) & H™(K(Z, n),G)) ,
T {n} = (ng(z,n) L aRK(Zn) AK(Zn) 5 rRK(Z, 7))
respectively defined as in (8.6). Now (11.1) yields the natural homomorphisms
A: H®(K(A,n),G) — Homz(A, HF{n})

(11.4) A: TR (K(A,n)) = Homz(A, 7 {n})
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which are isomorphisms if A is a free abelian group (here A needs not to be finitely generated).
In the next result we use the derived functors in (7.4).

(11.5) Theorem: Let m < 3n — 2 . Then there is a natural map « : Ext(A, HZ{n}) —
H™(K(A,n—1),G) such that (H™(K(A,n~1),G) = cokernel(x) is embedded in the
natural exact sequence

0 — Hom'(A4, HZ {n}) = (H™ (K (A,n—1),G) - Hom" (4, HZ*'{n}) —
Ext(A, H?{n}) & H™(K(A,n—-1),G) % (H™(K(A,n—1),G) > 0

where q is the quotient map.

In the stable range m < 2n — 2 this sequence is equivalent to the short exact sequence
(11.6) 0 — Ext(A, HF{n}) - H™(K(A,n —1),G) — Hom (4, H3*'{n}) - 0
where H{{n} = H™(K(Z,n),G) is an abelian group. Theorem (11.5) is a special case of

the next result.
(11.7) Theorem: Let hodim (Q™K) < 3n — 2 . Then there is a natural map k :
Ext(A,7%{n}) — nRK(A,n —1) such that ;wPK(A,n —1) = cokernel(x) is embedded
in the natural exact sequence
0 — Hom'(A,72{n}) = (7" K(A,n—1) - Hom".(A,ﬁ'rK_]{n}) —
Ext(A,72{n}) 5 xBK(A,n-1) D aRK(A,n—1) >0

where q is the quotient map.
Again it is obvious how to describe the ‘“‘cross effect sequence” of (11.7) by the formulas
in (7.7).

Proof of (11.7): The theorem is a special case of (3.7) in [9]. For this let ¢ be given as in
the proof of (10.5) with P, = K(A,n — 1) . Using the isomorphism A in (11.4) (where we
replace A by Xy and X; respectively) we get the isomorphisms

Hy{nZ}g") = Ext(A,xR{n}),

Hl{fr}\’i}(g‘"’) = Hom'(A,fr?{n}) ,

Hy{zx}(¢°?) = Hom"(A,7}{n}).
Compare the definition in (7.4). Now 2 in (3.7) [9] yields the homomorphism « in (11.7).
Therefore (11.7) and also (11.5) is just a special case of (3.7) [9].

q-e.d.

Appendix A: Quadratic derived functors

In this appendix we associate with a quadratic R-module M a chain functor and a cochain
functor. If we apply these functors to a projective (resp. injective) resolution we get the
quadratic derived functors which coincide with the classical derived functors in case M., = 0 .
We understand that Dold-Puppe [15] obtained derived functors of non additive functors which
as well generalized the classical derived functors of an additive functor; the construction of the
quadratic derived functors below is different and relies on the structure of a quadratic module.
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Let B be a ringoid with a zero object. An B-module M yields the following chain functors
which are as well denoted by M

(A.1) M:R [~ Ab,/~ and M: R/ ~— Ab*[/ ~,

compare the notation in (6.1). For a chain complex X, in B we define M(X.) simply by
setting M(X,), = M(X,) . The differential d, in M(X,) is induced by the differential d in
X., d. = M(d) . Similarly we get induced chain maps M(F) with M(F), = M(F,) and
induced chain homotopies M («) with M(a), = M(ax,) . Since M is an additive functor one
readily observes that this chain functor is well defined. In the same way one gets the cochain
functor M which carries X* € R* to the cochain complex M(X*) .

Now let M be a quadratic E-module. We associate with M the guadratic chain functors M
as in (A.1) which again are simply denoted by M | see (A.2) and (A.3). In fact, if M,. =0
these chain functors coincide with the additive functors above.

(A.2) Definition: For X, in R _the chain complex Cx = M(X.) is given by the abelian
groups (n > 2)

Co = M(Xo)
(1) {

Ci = COk{(P,—(l,d)*) : M(X],X]) — M(X]) o) M(X],Xo)}
Cp = cok{P & (1,d), : M(X,., X)) ® M(X,, X1) = M(X,) ® M(X,, Xo)}

The differential d = d,, : C;, — Cr—; is induced by the maps

{d] = (dt,P(dvl)t) )

@ do=do&®(d1), n>2.

For a chain map F : X, — Y, we get the induced chain map M(F): MX, — MY, by

{(MF)o = (Fo), ,

3) (MF)RZ(Fn)*@(Fﬂ:FO)ﬂ nz1

Finally a chain homotopy a : F' ~ G, ap : Xp—1 — Y, in & yields a chain homotopy
Ma : MF ~ MG by

@ { (Ma), = (), (a1, Fo), H)

(Ma) = (O‘n)* ® (a"!FO)H n2x2.

n

The next definition is dual to (A.2).

(A.3) Definition: For X* in R* the cochain complex C* = MX* is given by the abelian
groups (n > 2)

C' = M(X")

C! = ker{(H,—(1,d),) : M(X)) ® M(X',X°) - M(X!,X")}

C" = ker{H & (1,d), : M(X™) d M(X", X") - M(X", X™)d M(X",X°)}
The differential d = d® : C* — C"*! is induced by the maps
(2) d' = (d,,(d,1),H), d"=d. H(d,1),,n>2.
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For a chain map F : X* — Y* we get the induced chain map M(F): MX* - MY* by
3) (MF)" = (F%),, (MF)" = (F"), ® (F",F%),,n>1.

Finally a chain homotopy a : F ~ G (o : X"*! - Y™) in R* yields a chain homotopy
Ma : MF ~ MG by

(4) (Ma) = ((00)*’10(&0,};0)*), (Ma)" = ("), ® (a”,FO)‘, n>1.

(A.d4) Proposition: The definitions (A.2) and (A.3) yield well defined functors M : R_ | ~—
Ab./ ~and M : R*| ~— Ab*/ = respectively.

The functors M in (A.4) are quadralic, the cross effect of these functors is described below.
The proof of (A.4) is similar to the proof of (6.4), in fact (6.4) can be used for the 1-
dimensional part of the proposition, compare (A.5) below.

We point out that the definition of the quadratic chain functors relies on the structure maps
H and P of the quadratic B-module M ; a functor R — Ab which is merely quadratic is not
appropriate for the definition of the functors in (A.4).

(A.5) Remark: The quadratic chain functors M, and M* in (6.3) are related to the quadratic
chain functors M in (A.4) as follows. Let d; : X; — Xp and d° : X® — X! be given by
X, and X* respectively. Then the 1-dimensional part of M X, | resp. of M X* | coincides
with the map

M, (d1)/boundaries — My(d;), resp. M®(d°) — cycles ¢ M*(d°),

compare the definition in (6.3) and (A.2), (A.3). This shows that for X; = 0, X' =0 , 122,
one has isomorphic homology groups H;M X, = H;M.(d\) , H'MX* = H'M*(d") for
i = 0,1. The homology HzM.(d;) and H*M*(d’) , however, cannot be obtained by M X,
and M X" respectively. .

We now assume that the additive category A is an abelian category with enough projectives
and injectives respectively, for example é—= M (é) . The homology of chain complexes
in é is defined. We say that X, is a projective resolution of X € Ob(é) if a chain map
e: X, — X in 4 is given (which induce an isomorphism in homology) where all X; of
X, are projective inA and where X is the chain complex concentrated in degree 0 . On the
other hand X* is an injective resolution of X if a chain map e : X — X* in 4" is given
(which induces an isomorphism in cohomology) where all X* of X* are injective in ATt
is well known that the choice of resolutions X,, X* yields functors i : A — A"/ ~ and
7:A— A,/ ~ which are well defined up to canonical isomorphisms.

(A.6) Definition: Let A be an abelian category as above and let M : A — Ab be a quadratic
functor. Then (3.5) shows that M yields a quadratic A-module M = M{A} as well denoted
by M. Using the resolution functors ¢, j above and using (A.4) one gets functors

(1) Mi:A— Ab,/~ and Mj:A— A/~ .

The n —th (co)homology of these functors yields the quadratic derived functors L, M : A —
Ab , R"M : A — Ab respectively, n > 0. For X € Ob(é) one has

) (LaM)X = H,MX, and (R"M)X = H"MX*
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where X,, X* are resolution as above. The chain complexes M X,, MX* are defined as
in (A.2), (A.3).

(A.7) Remark: In case M in (A.6) is an additive functor, that is M., = 0 , the derived
functors coincide with the classical derived functors of M, see for example [12], [18]. For
a quadratic functor M Dold-Puppe [15] as well defined derived functors; their construction,
however, is different to the one in (A.6) and is available for any non additive functor A — Ab,
see (6.5) and (7.5). Our definition in (A.6) is adapted especially to quadratic functors. In
degree n = 0, 1 the derived functors above coincide with the derived functors of Dold-Puppe.

(A.8) Definition: Let A be an abelian category and let M : A — Ab be a quadratic functor.

. _ . d .
We say that M is quadratic right exact if each exact sequence X; = Xp > X — 0 in A
induces an exact sequence

M (de,P(d,1),) 2
(X))@ M(X1|Xe) ™ — 7 M(Xo) > M(X)—0.

We say that M is quadratic left exact if each exact sequence 0 — X - X° 4 X1 in A
induces an exact sequence

; da,(d,1) H
0 — M(X)> M(X°) Sl M(X") e M(X'X°).
The definitions immediately imply as in the classical case:

(A.8) Lemma: Let M : A — Abbe quadratic right exact then one has the natural isomorphism
M = LoM . Dually if M is quadratic left exact one has the natural isomorphism M = R'M .

As examples of quadratic derived functors we obtain the following quadratic Tor_and Ext
functors for a small ringoid g, n>0.

5]I:u

: M(B)” x QM(R) — Ab

(A9) >
 M(B)” x QM (B) — 4b .

o 9
(™

For M in QM @ these functors are derived from the quadratic functors

)] ®£M:£@°P)—>ﬂ,

2) Hompg(, M) : g@” — Ab,

that is, for a projective resolution X, of X in M (RB°?) and for a projective resolution Y,
of Y in M(R) we set

3) Tors (X, M) = Ln ( ©n M)(X)
4 Extgh(Y, M) = R”Homg(, M)(Y)
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In (4) we consider Y, as an injective resolution in M @OP and we use (8.3). Clearly the
groups (3), (4) are trivial for n > 1 in case X and Y are projective objects in A . The functors
(A.9) are quadratic in the first variable and additive in the second variable.

(A.10) Proposition: The functor ®gr M is quadratic right exact and the functor HomR( M)
is quadratic left exact so that we have natural isomorphisms (see (A.8))

Tora_—(X,M) X ®gM and Extj (Y, M) = Homp(Y, M) .

In case M is an R-module, that is Me. = 0, the Tor and Ext groups above coincide with
the classical groups, see [18].

(A.11) Example: Let B = Z be the ring of integers and let M be a quadratic Z-module. For an
abelian group A one gets (see (7.4)) Torf (A, M) = A+' M and Ext}(A4, M) = Ext'(4, M) .
This follows since d 4 in (7.4) is a projective resolution of A , see (A.S5). Clearly Torg =0=
Extz for n > 2 since the chain complex d4 is 1-dimensional.

Appendix B: The cross effect of quadratic derived functors

We introduce biderived functors which describe the cross effects of the quadratic derived
functors above. Moreover we discuss various exact sequences for these functors. We assume
that R is a ringoid with a zero object.

(B.1) Definition: Let M be an B x R-module, see (1.7). Then we define the additive functor
M:R[~QR /[~ Ab [~

(as well denoted by M ) as follows. For chain complexes X,, Y, in B we get C, =
M(X.,,Y.) by (n 2 2)
(1)
Co = M(Xo, Yo)
{ C1= COk{((l,d)‘,—(d,l)*) ; M(XI?H) - M(X],)/G) ® M(X[)a}/l)}
Cn = cok{(1,d), ® (d,1), : M(Xn, Y1) ® M(X1,Yn) = M(X,,Yo) ® M(Xy,Ya)}

The differential d = d, : Cp, - Cyp-1 i i_nduced by the maps

{dl = ((dxl)u(l’d)t) 3
d, =(d, 1), ®(1,d),, n>

For chain maps F' : X, — X., G:Y. > Y, we get the induced chain map M(F @ G) :
M(X.,Y.) — M(X.,Y]) by

2

3) { M(F ® G), = (F, Go),

M(F)G)n = (Fﬂ7G0)¢®(F0’Gn)¢, n 2 1.

Finally, chain homotopies a : F >~ F', 8 : G ~ G yield a chain homotopy M(e, ) :
M(FRG) ~ M(F' ®G'") by

)] { M(a’ﬂ)l = ((O’I,Go)*,(Fg, ﬂl)t) )
M(aaﬁ)n = (Ofn, GO). &b (Fo, ﬂn)‘, n>2.

The next definition is dual to (B.1).
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(B.2) Definition: We associate with an £ ® E-module M the additive functor
M:R'/~Q®R[~> Ab/~ .

(as well denoted by M ) as follows. For cochain complexes X*, Y* in R* we get
C* = M(X*,Y*) by (n22)
(1
CY = M(XO,YD)
{ Cl= ker{((l,d)*, (d,1),) : M(X?', Y“) - M(X% YY) - M(X1 Y}
C™ = ker{(1,d), ® (d,l), M(X* YY) o M(X%Y") > M(X*Y) e M(X', Y™}

The differential d = d, : C® — C™*! is induced by the maps

(4,1),,(1,d),)
@ {d"=(d,1).e(1,d)., n22.

For chain maps F : X* — X*, G Y* - Y™ we get the induced chain map
M(F®G) : M(X*,Y*) > M( )

- { M(F®G)" = (F°,GY),

M(F,G)" = (F",G"), & (F”,G")*, n>1.

Finally chain homotopies « : F ~ F', 8 : G ~ @' yield a chain homotopy M(e,f) :
M(F®G) ~ M(F'®G") by

@ = ((a",6),, (F,7),)
= (",G°), ® (F°,8),, n2>1.
As in (8.4) one can readily check:
(B.3) Proposition: The functors in (B.1) and (B.2) are well defined and additive.
The crucial property of the functors (B.1) and (B.2) is described by the next result.

(B.4) Theorem: Let M be a quadratic R-module and let M(X,|Y,) and M(X*|Y™) be cross
effects of the quadratic functors M in (A.2) and (A.3) respectively. Then there are natural
isomorphism

¥ M(X.|Y,) = Meo(X,,Ys) and x: M (X*,Y*) = M(X*|Y?)
of chain complex. Here M. is the B ® R-module given by M, see (3.1) and (1.7), and
Mce(X,,Ys) and M .(X*,Y™*) are defined by (B.1} and (B.2) respectively.

Similarly as in (A.6) we can use the functors in (B.1), (B.2) for the definitions of derived
functors. Let A be an abelian category with enough projective and injectives.

(B.5) Definition: Let M be an A ® A-module. Using the resolution functors i : 4 — A / =~
and j : A — A’/ ~ one gets the additive functors

(1) ME®i):ARA— Ab />~ and M(jQj): A®A— AV [~ .

The n — th (co)homology of these functors yields the biderived functors

LaM:A®A— Ab and R"M: A®A— Ab
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respectively, n > 0 . For X,Y € Ob(A) one has
(L. M)(X,Y)= H.M(X.,Y.),
(R*"MYX,Y)= H"M(X*,Y*)
where X,, Y, (resp. X*, Y* ) are projective (resp. injective) resolutions of X, Y. The chain
complexes M(X,,Y,), M(X*, Y*) are defined in (B.1), (B.2).
As a corollary of (B.4) one gets immediately.

(B.6) Corollary: Let M be a quadratic A-module. Then the quadratic derived functors (A.6)
have the cross effects

(2)

(LaM)(X[Y) = (LnMee)(X,Y)
(R*M)(X]Y) = (R"M..)(X,Y)
where M., is the A X A-module given by M.

In addition to (B.6) one gets the following natural exact sequences for quadratic derived
functors, they correspond to the classical exact sequences for derived functors in case
M.. = 0 . To this end we consider a short exact sequence

(B.7) S=(0—>X5Y1'>Z—»O)

in A and maps S — S’ between such sequences.

(B.8) Theorem: Let M be a quadratic A-module. Then S in (B.7) yields the following natural
commutative diagram in which the rows and columns are long exact sequences (n € 1) .

! !
Ln+lMee(X7Y) LnMee(XaZ)
1o !
— LouM¢ 3 LMXE LMY - LM 3 LMX -
l l | l l
= LoaMZ3 LM~ LMY S LMZS LM o
! 1o
LnMec(X:Z) Ln—lMee(X’Z)
! !

We leave it to the reader to write down the dual diagram for right derived functors R™ ; for this
we simply replace L, by R* in such a way that 0 raises the degree by 1 . If M., = 0 we see
that the rows of the diagram‘ are isomorphic, in this case the row coincide with the classical
exact sequence for left derived functors, see IV § 6 [18]. In case the sequence S is split all
boundaries @ are trivial and the remaining short exact sequences are split, this yields (B.6).

Proof of (B.8): We can choose a short exact sequence of projective resolutions
(0 0= X, 5Y, 52 -0

of S, compare the proof of (IV. 6.1) [18]. As a module we have Y; = X, & Z, . The
differential of Y, is given by

(2) (d@ d) + ilé"?  Xa @ Zn =Y, — Xn—l D Zp-1= Yn—l
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Here d denotes the differential of X, and Y, respectively. We now derive from (1) the
following commutative diagram in which rows and columns are short exact sequences of
chain complexes

M(X., Z,)
V
: 1J
MX, >3 MY, 55—  cok(i,)
v I i
l I} l
ker(g.) >— MY, --— M2Z,
'
i
}
M(X.,Z.))

The maps j are well defined chain maps since we have (2) for the boundary in Y, . We
now set

(C)) LaM® = Hyker(q.), L,.Mq"_ = Hycok(iy) .
Now (B.8) is obtained by the long exact sequenceé associated to short exact sequences of

chain complexes.

There are the following examples of biderived functors. We associate with M in M (R ® R)
the additive functors

B9 ®rop M : M(E”) ® M(E™) — Ab
(B9 Homﬂgﬁ(,M) :g@o“'@g@op _4“4;2

which carry the object (X,Y) to (X ® Y) ®rgr M and Hompgr(X ® Y, M) respectively,
compare (4.2) (3) and (5.2) (3). The biderived functors of (B.9) are denoted by

M Tora (X, Y, M) = L ©peg M) (X,Y)
@) Exthop(X,Y, M) = R" (Hom§® £ M)(X, Y)) .

Using (9.6) one obtains for a quadratic B-module M the cross effects (n > 0)

R ReR
3) Tors(X|Y, M) = Tors "=(X,Y, M,.) ,
@) Ext}(X|Y, M) = Ext}er(X,Y, M..)

As an example of (1) we get for é = Z the triple torsion product of Mac Lane [21]
(5) Torf(X,Y, M) = Trp(X,Y, M) = Hi(dx ® dy, M),
compare (7.7) (3). We can also apply theorem (B.8) for the functors in (3), (4); this leads for

R = 7 to the following results on the functors in (7.4), see (A.11).
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(B.10) Theorem: Let M be a quadratic Z-module and let S : 0 —» X SY L Z500be
an exact sequence of abelian groups. Then one has the following commutative diagrams in
which the rows and the rectangle sequences of broken arrows are exact sequences of abelian
groups. Moreover these diagrams are natural in S.

Hyi(dx ® dz, M,.) ———-— XoM
7 l
0—i¥ Mo Y¥M Lze ML iQM > YQM B Z@M —0
1 !
X+ M ——=—-0VDe—-——- XQRZ® M,
HY(dx ® dz, M) — -9 _ Hom(X, M)
! . T
0 — Ext(i, M) — Ext(Y,M) & Ext(z,M) & Hom(i, M) — Hom(Y, M) & Hom(Z, M) — 0
l T
Ext(X,M)  ———-=—0-———— Hom(X®Z M)

In case M,. = 0 the diagram above correspond exactly to the classical six term exact
sequences. We can apply these exact sequences for example if M is the quadratic Z-module
M = ZT . In this case the torsion product Y «' Z' = R(Y) corresponds to the functor R
of Eilenberg-Mac Lane, see (10.15).
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