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In this paper we develop the quadratic homol~gical algebra which is needed for the metastable
range of homotopy theory. On the one hand we study quadratic functors and their derived

functors (§ 1 ... § 7 and Appendix At B); on the other hand we describe applications in

homotopy theory (§ 8 ... § 11).

Let Add{ß) be the additive completion of a ringoid R and let Ab be the category of abelian

groups. We classify quadratic functors by "quadratic R-modules", see (3.1).

Theorem (3.7): There is a 1-1 correspondence which carries a quadratic functor F :

Add(ß) --+ Ab to a quadratic R-module F {R} . This correspondence yields an equivalence
of categories.

We are especially interested in the case when R is a ring R (tben Add(R) is the category of

finitely generated free R·modules) or when R is the ringoid Cye which is the full subcategory

of Ab consisting of cyclic groups Z/pi of prime power order and Z (then Add (Cy~) is the

category of finitely generated abelian groups). But also the topological ringoid conslsting of

elementary Moore spaces M(Z, n) = sn and M(Z/pi) n) is important for the computation

of homotopy groups of Moore spaces, see (9.3).

In case the ringoid R is the ring Z of integers a quadratic Z-module is the same as a Q

module where Q is the ring described by generators and relations in (2.2). The quadratic



functor Add(Z) -+ Ab , corresponding to Q by (3.7), is the direct surn of the tensor square
0 2 and the quadratic construction p2 in (2.11).

For the proof of theorem (3.7) we use the guadratic tensor product A 011. M E Ab where A is

an ROp -module and where M is a quadratic R-module, we also introduce the guadratic Hom

functor for which HOffiR(B, M) E Ab , see § 4 and § 5. For quadratic functors F : Ab -+ Ab
and G : Abop -+ Ab one has the quadratic approximations (4.7), (5.7)

~ : A 0z F{Z} -+ F(A) ,

~' : G(A) -+ Homz(A, C{Z})

which are natural in A E Ab . Here F{Z} and C{Z} are quadratic Z-modules corresponding

to F and G respectively. For the classical functors

F = 0 2 , p2, A2 , S2, r

the quadratic approximation ~ is an isomorphism, see (2.13) and (4.8). We introduce derived

functors of the quadratic tensor product ® and the quadratic Hom-functor respectively in §

7 and in Appendix A and B. They only partially coincide with the derived functors in the

sense of Dold-Puppe [15].

We need such quadratic derived functors of 0 and Horn for new natural six term exact

sequences in homotopy theory. The sequences are useful for the computation of the homotopy

groups 7rmM(A, n) of a Moore space and the homology HmK(A, n) and the cohomology

Hm K(A, n) of an Eilenberg-MacLane space in the meta stable range. In particular the

naturality of these exact sequences yields insight in the functorial properties of these groups.

We now describe the exact sequence for 7rm M(A, n) ; the sequences for HmK(A, n) and

H m j«A, n) are of a similar nature, see theorem (10.5) and theorem (10.6).

Theorem (9.5): For m < 3n - 2 there is a nntural exact sequence (A E Ab)

o-+ A *' 7rm {S"} -+ >,7rm+1M(A, n) -+ A *" 7rm -1 {sn} ~

A 0 7rm {S"} -+ 1l"m M(A, n) -+ >,7rm M(A, n) -+ 0

Here >.7rm M(A, n) is the cokemelofi. : 7rm M(A, n)" -+ 7rmM(A, n) where i is the inclusion
ofthe n-skeleton M(A, n)" . Moreover 7rm {S"} is the quadratic Z-module given by homotopy
groups of spheres

7rm {sn} = (7rm (S") ~ ?Tm (82"-1) ~ 7rm (S")) .

The map H is the Hopf invariant and P = [in, in]. is induced by the Whitehead square. The
operators *' and *" are derived /rom the quadratic tensor product, see (7.4).

Various examples of explicit computations of 7l"mM(A, n) are given at the end of § 9. Using

the exact sequence in the theorem we obtain in (9.10) a new homotopy invariant

of an (n - 1)-connected (2n +1)-dimensional closed manifold M, or more generally Poincar~

complex M. The torsion invariant r(M) is an analogue of the invariant
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which detennines the homotopy type of an (n - 1)-connected (2n )-dimensional Poincare

complex N and which essentially was used by Kervaire-Milnor [20], see (9.9). In [10] we

describe the connection of e(N) with the a-invariant [35] of Wall which classifies (n - 1)
connected (2n )-dimensional manifolds.

For the curious functors R and n of Eilenberg~MacLane[16] with H sK(A, 2) - R(A) and

H7I«(A, 3) ~ n(A) EB (A <9 Z/3) we get a new interpretation by the natural isomorphism
(see (10.15) and (10.7»

RA - A *' Zr, and

nA~A®'Zr .

Here Zr = 1r3 {S2} is the quadratic Z-module Zr = (Z ~ Z~ Z) for.which f(A) = A®Zr

is Whitehead' s quadratic functor [37]. Also &/ is derived from the quadratic tensor product,

see (7.4).

Further significant applications of the new quadratic algebra discussed in this paper are
described in (II. § 7) of the book [8] and in [10]. We also use results of this paper in a

crucial way for the classification of 2--connected 6-dimensional homotopy types.

§ 1 Modules

We fix some basic notations on categories, ringoids, rings and modules respectively, compare
also [24]. A bold face letter like C denotes a category, Ob(g) and M or(g) are the classes of

objects and morphisms respectively. We identify an object A with its identity lA = 1 = A .
We also write f E C if f is a morphism or an object in Q. . The set of morphisms A -+ B
is C(A, B) . Surjective maps and injective maps are indicated by arrows -+-+ and >~

respectively.

A ringoid R is a category for which all morphism sets are abelian groups and for which

composition is bilinear, (equivalently a ringoid is a category enriched over the monoidal
category of abelian groups). A ringoid is called a 'pre additive category', or an Ab-category,
see [22]. We prefer the notion 'ringoid' since in this paper a ringoid will play the role of

a ring. In fact, a ringoid R with a single object e will be identified with the ring R given·

by the morphism set R = R(e, e) . Recall that a biproduct (or a direct sum) in a ringoid

R is a diagram

(1.1)
I} •

X+=!XVY~Y
Tl

which satisfies rli1 = 1, r2i2 = 1 and i1rl + i2r2 = 1 . Sums and products in a ringoid
are as weil biproducts, see [22]. An additive category is a ringoid in which biproducts exist.

Clearly the category Ab of abelian groups is an additive category with biproducts denoted by

X EB Y . A functor F : R ~ s.. between ringoids is additive if

(1.2) F(f + g) = F(f) + F(g)

for morphisms f, 9 E R(X, Y) . Moreover, we say that F is guadratic if .6. , with

(1.3) .6.(f, g) = F(f +g) - F(f) - F(g) ,

3



is a bilinear function. A module with coefficients in a ringoid R or equivalently an R-module

is an additive functor

(1.4) M: R -+ Ab.
- -

In case R has only one object e we identify M = M( e) with a module over a ring in the usual

sense. An R-module is also called a left H-module. A right R·module N is a contravariant

additive funetor N ; R -+ Ab . For f E R(X, Y) we use the notation

(1.5) {
M(f)(x) = f*(x) = f· x für
N(/)(y) = f*(y) = y . / for

x E M(X) ,
Y E N(Y) .

A right R·module is the same as an ROP-moduie where ROp is the opposite category. In

case R i;-small (that is, if the class ofobjects in R is a set) let M{jJ) be the category of

R-modules. Morphisms in M(jjJ are natural transformations. The category M(Jj) is an

abelian eategory; as an example one has M(Z) = Ab . We now recall the definition of tensor

products of modules.

(1.6) Defintion: Let R be a small ringoid, let A be an ROP-moduie and let B be an

R-module. The tensor produet A ®R B is the abelian group generated by the elements

a ® b, a E A(X), b E B(X) where X is any object in R . The relations are

{

(a + a') ® b = a ® b+ a' ® b
a ® (b + b') = a ® b+ a ® b'
(a" . Cf') ® b = a" ® (Cf' . b)

for a, a' E A(X), b, b' E B(X), Cf' : X -+ Y E R, a" E A(Y) . The tensor product is a
biadditive functor ®R : M(JJ°P) x M(Jj) -+ Ab~

(1.7) Definition: The tensor product R®S- of ringoids R, S is the following ringoid. Objects

are pairs (X, Y) with X E Ob{jJ), Y E-Ob(g) and the morphisms (X, Y) -+ (X', V') are

the elements of the tensor product of ahelian groups R(X, X') ®z 3..(Y, V') . Composition is

defined by (I ® g)(/' ® g') = (//') ® (gg') . Any biadditive functor F : R x S -+ Ab

has a unique additive faetorization (as weIl denoted by F ) F : R 0 s.. -+ Ab with

F(I ® g) = F(/,g) . For example an R-module A and an S-module B yield the R ® S·
module A ® B given by (A 0 B)(f ® g) = A(f) 0z B(g) .

§ 2 Quadratic Z-modules

Let Add(Z) be the category of finitely generated free abelian groups. The additive functors

F : Add(Z) -+ Ab are in one-one correspondence with abelian groups. The correspondence is

given by F H- F(Z) . In this section we introduce quadratic Z-modules whieh are in one-one

correspondence with quadratic functors Add(Z) -+ Ab . In this sense a quadratic Z-module

is just the "quadratic analogue" of an abelian group.

(2.1) Defintion. A guadratic Z-module

M = (Me ~ Mee ~ Me)

is a pair of abelian groups Me, Mee together with homomorphisms H, P which satisfy

PHP = 2P and HPH = 2H . A morphism f : M -+ N between quadratic Z-modules
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is a pair of homomorphisms f : Me -J. Ne, f : Mee -J. Nee which commute with H
and P respectively. Let QM(Z) be the category of quadratic Z-modules. For a quadratic

Z-module M we define the involution T = HP - 1 : Mee -J. M ee . Then the equations

for H and P are equivalent toPT = P and T H = H . Moreover we get TT = 1 since

1 +T = HP = HPT = T +T 2 • We define für n E Z the function

{
n. : Me -J. Me
n.(x) = nx + (n(n - 1)/2)PH(x), X E Me

One can check that (n' m). = n.m. and that (n +m). = n. + m. + nmPH . Let

Z/n = Z/nZ, n 2: 0 , be the cyclic group of order n. We call M a guadratic Z/n-module

if n . M ee = 0 and n. Me = 0 .

We identify a quadratic Z-module M satisfying Mee = 0 with the abelian group Me, this

yields the full inclusion Ab = M(Z) c QM(Z) . Next we observe that there is a duality

functor D : QM(Z) -J. QM(Z) with D(M) given by the interchange of the roles of H

and P respectively, that is D(M) = ((DM). lf: (DM) •• ~ (DM).) with (DM). = M••

and (DM)ee = Me and HD = P and pD = H . Clearly DD(M) = M . Moreüver an

additive functor A : Ab -J. Ab induces a functor A : QM(Z) -J. QM(Z) . Here we define

the quadratic Z-module A(M) by A(M)e = A(Me) and A(M)ee = A(Mee ) with H and

P given by A(H) and A(P) respectively. For exarnple the functorA = ~z C, C E Ab ,
carries M to [M)0z C .

(2.2) Proposition: There is a ring Q together with an isomorphism X : QM(Z) .:: M(Q) oj
categories where M(Q) is the category of Q·modules. --

Proof: For M E QM(Z) we have inclusions and projections (T = e, ee)

(1)

They yield the following endomorphisms of the abelian group Me EB M ee

(2)

which satisfy the relations

(3)
{

a2 = a, b2 = b, ab = ba = 0 ,

a+b=l,
ah = 0, hb = 0, pa = 0, bp = 0 ,

php = 2p, hph = 2h .

Let Q be the ring generated by a, b, h, p such that the relations are satisfied. Then X in (2.2)

carries M to the Q-module Me EB Mee defined by (2). As a Z-module Q is given by Q = Z6
with basis (a, b, h, p, ph, hp) . Moreover the quadratic Z-module X-} (Q) , as well denoted

by Q, is given by

(4) {
Qe = a· Q = Z3 with basis (a, ap, aph) ,
Qee = b· Q = 13 with basis (b, bh, bhp) ,
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and by

(2.3) (000) (-1 00)
H=P= 1 02 ,T=HP-l= 0 1 0 .

o 1 0 1 0 1

The ring Q was obtained in a more general context by Pirashvili [26]. In fact Pirashvili

defines a ring Q(n) ~or which the category of Q(n )-modules is isomorphie to the category of

polynomial functors F from Add(Z) to Ab of degree n with F(O) = O. He does not give a

description of Q(2) = Q as in (3) above. Recently W. Dreckmann computed for small n the

following rank of the free abelian group Q (n), this rank is

1, 6,39, 320, 3281, 40558, 586751,

9719616, 181353777, 3762893750,

85934344775, 2141853777856, 57852105131809,

1683237633305502, 52483648929669119

for n = 1 ... 15. Many results on quadratic Z-modules in this paper should have generaliza

tions for Q(n )-modules.

q.e.d.

Recall that an object X in an additive category is indecomposable if X admits no isomorphism

X ;; A EB B with A =I 0 and B =I 0 . It is an interesting problem to classify all

finitely generated indecomposable quadratic Z-modules up to isomorphism. This leads to

the following examples. We say that a quadratic Z-module M is of cyclic type if Me and

Mee are cyclic groups. Let In E Z/n be the generator and let k : Z/n ---+ Z/rn be the

homomorphism with k(l n ) = k . 1m , k E Z, mJk· n . Then we obtain the following list

where C = Z or C = Z/pi, P = prime, s, t 2:: 1 .

M Me Mee H P

C C 0 0 0

CA 0 C 0 0

Cr C C 1 2

eS C C 2 1

H(t) Z Z/2 t 2t - 1 0

P(s) Z/2:J Z 0 2:J-l

S + t > 1, H( s, t) Z/2s Z/2t 2t - 1 0

s + t > 1, P( s, t) Z/2:J Z/2 t 0 2:J-l

s + t > 1, M(s, t) Z/2:J Z/2t 2t - 1 2:J-l

r(s) Z/2:J+l Z/2s 1 2

8(s) Z/2:J Z/2!1+1 2 1

s > 1, r'(s) Z/2!1+1 Z/2!1 2:J-l + 1 2

s > 1, 8'(s) Z/2!1 Z/2!1+1 2 2!1-1 + 1
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The isomorphie objects in the list are given by er "" eS if e = Z/qi (q odd) . With the

notations in (2.1) we clearly have er = [zr] ®zC, CS= [ZS] 0zC and CA = [zA] ®zC.
We leave it to the reader to describe the dualities in the list. An elementary but somewhat

elaborate proof shows:

(2.5) Proposition: The quadratic Z~modules in (2.4)jumish a complete list ofindecomposable

quadratic Z~modules 0/ cyclic type.

Remark: It would be interesting to know a complete list of all indecomposable quadratic

Z-modules. However to finish such a list is an intricate problem of representation theory.

It might be helpful to consider the more general. problem of finding indecomposable A·
representations of the quiver

.~ .,
compare for example Curtis-Reiner 11 § 77. Indeed if A = Z[Z/2] is the group ring of

the cyclic group Z/2 then a quadratic Z-module is a representation of this quiver given by

A-homomorphisms H : Me ---+ Mee , p : Mee ---+ Me where A acts via T on Mee and acts

triviallyon Me. Here one can use the fact that the indecomposable Z[Z/2]~lattices are known,

see Curtis-Reiner I (34.31). Such lattices are part of quadratic Z~modules M for which

Me and Mee are finitely generated free Z~modules like for eaxmple Z® and zp in (2.10).

Compare the books "Methods of representation theory I, If' of C.W. Curtis and I. Reiner

(1991), (1987) lohn Wiley.

(2.6) Definition: Let F : R ---+ Ab be a quadratic functor and let X V Y be a biproduct in

R . The guadratic cross effect F(XIY) is defined by the image group

(1)

see (1.3) and (1.1). If R is an additive category we get by (1) the biadditive functor

(2) F(I) : R x R ---+ Ab .

Moreover we have the isomorphism

(3) \lI : F(X) EB F(Y) EB F(XIY) ~ F(X V Y)

which is given by F(i l ), F(i2 ) and the inclusion i I 2 : F(XIY) C F(X V Y) . Let rI2 be the
retraction of i I2 obtained by \li-I and by projection to F(XIY) . For the biproduct X V X
one has the maps Jl = i l +i 2 : X ---+ X V X and \l = rl + r2 : X V X ---+ X . They yield

homomorphisms 1/ and P with

(4) F{X} = (F(X) !!. F(XIX) ~ F(X))

by H = r12F(p) and P = F(\])i I2 . Moreover we derive from / + 9 = \](/ V g)p the

formula

(5) F(/ +g) = F(/) +F(g) +PF(/lg)H

or equivalently 6.(/, g) = PF(/lg)H , see (1.3).
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(1)

(2.7) Proposition: Let F : R ---+ Ab be a quadratic junctor and assume R is an additive

category. Then F{X} is a quadratic Z-module and X ~ F{X} dejines a functor R ---+
QM(Z) .

Proof 01 (2..7): We define the interchange map

{
t:XVX---+XVX
t = i2rl + i1r2

Then we have tJl = J.L and \lt = \J . Moreover t induees a map

(2) T : F(XjX) ---+ F(XIX)

with F(t)iI2 = i 12T and rI2F(t) = Tr12 . Hence we get T H = H and PT = P. Moreover

we obtain HP = 1 + T by applying F to the eommutative diagram in R

(3)

xvx
/lVJll

XVXVXVX

x ~ XVX

l\JV\J
---+ XVXvXvX.

IvtVl

Here we use the biadditivity of F(I) in (2.6) (2).

The significance of quadratie Z-modules is described by the next result which is a special ease

of (3.7) below. Let Add(Z/n) be the full subcategory of Ab eonsisting of finitely generated

free (l/n )-modules; n ;::: 0 , (for n = 0 we set 1/0 = Z ).

(2.8) Theorem: There is a 1- 1 correspondence between quadratic functors F : Add(Z / n) ---+
Ab and quadratic Z/n-nwdules M, n ~ 0 . The correspondence carries F to F{Z/n} , see

(2.6) (4).

Here a ' 1 - 1 correspondence' denotes a bijection which maps isomorphism classes to

isomorphism classes. Hence any quadratie funetor F : Add(Z/n) ---+ Ab is completely

determined (up to isomorphism) by the fairly simple algebraie data of the quadratie Z-module

F {l/n} which is aetually a quadratic Z/n-module. In addition to the correspondence in (2.8)

we obtain in (3.7) below an equivalence of categories.

The next result shows that the universal quadratic Z-module Q in (2.3) is actually decom

posable.

(2.9) Proposition: One has an isomorphism

Q '" zP ffi Z0

0/ quadratic Z-modules where

Z0 = (Z ---+ Z ffi Z ---+ Z) and zP = (Z ffi Z ---+ Z ---+ Z EB Z)

are given by H = (1,1) and P = (1,1) . Here zP is the dual 0/Z0 , that is zP = DZ0 .

Proof: The isomorphism is given by the matrices

(~l ~ Dfor Qe and G~l Dfor Qee.
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q.e.d.

(2.10) Remark: The quadratie Z-modules Z0 and zP are unique in the following sense. Up
to isomorphism there is only one indecomposable quadratie Z-module M with Me = Z and

M ee = Z ffi Z , namely M ~ Z0 . Dually there is up to isomorphism only one indecomposable

quadratie Z-module N with Ne = Z ffi Z and Nee = Z , namely N :. zP . For example zP

is isomorphie to the following two quadratie Z-modules

Z ffi Z (~) Z (2~1) Z ffi Z ,

Z ffi Z (~) Z (~) Z ffi Z .

The quadratie Z-modules Z0 and zP eorrespond to classieal quadratie funetors 0 2 and p2

whieh we define as follows.

(2.11) Defintion: The tensor square (92 is the quadratie funetor

The quadratie construction p2 is the funetor

p2 : Ab -+ Ab with p2(A) = ~(A)/~3(A) .

Here ß(A) is the augmentation ideal in the group ring Z[A] and ß3(A) is the thied power.

(2.12) Remark: A funetion f : A -+ B between abelian groups is weak guadratic if

(1) [a, b]j = f(a + b) - f(a) - f(b)

is bilinear for a, b E A . Moreover / is guadratie if in addition f( -a) = /(a) . Tbe function

(2) 'f : A -+ p2 (A) ,

whieh earries aE A to the element represented by lai - 1 E ~(A) , is the universal weak

quadratie funetion. That is, eaeh weak quadratie funetion / admits a unique faetorization

/ = /0-::; where /0 : p2(A) -+ B is a homomorphism. Whitehead's quadratic funetor

f : Ab -t Ab is defined by the universal guadratic funetion

(3) , : A -+ f(A)

see [37]. Vsing the funetor r the functor p2 ean also be deseribed by the following natural

pull baek diagram in Ab whieh has short exaet rows (A E 4k)
.....

]0

0 S2(A) w p2(A) A 0-+ -+ -+ -+

(4) 11 ! ,0 ! q
! !

0 S2(A) w
f(A)

qD
A0Z/2 0-+ -+ -+ -+

(5)
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The map win (4) is defined by w{a 0 b} = ::Y(a + b) - ::Y(a) - ::Y(b) , see (1). We also shall

use the exterior square

(6)

which is part of a natural exact sequence

(7)

where H = hO is defined by h(a) = a 0 a and where q is the quotient map. Vsing (2.6)
(4) we obtain for each quadratic functor F : Ab --t L1.Q the quadratic Z-module F{Z} . As

special cases we now get, see (2.9) and (2.4):

(2.13) Lemma: One has isomorphisms of quadratic Z-modules

&;2 {Z} ~ Z0 = DZ P ,

p 2{Z} ~ zP = DZe> ,

A2{Z} ::: ZA = DZ ,

r{Z} ~ Zr = DZs ,
S2{Z} ~ ZS = DZr .

The basis of 0 2(ZIZ) ;; (Z0) ee = Z ffi Z is (eI ~ e2, e2 &; eI) where (e}, e2) is the canonical

basis of 1 ffi 1 . Moreover the basis of P2(Z) ~ (1P) e = 1 ffi Z is (::y( 1), &:1(1 (0 1) - ::Y(1))
where we use ::y and win (2.12).

Various results in this section are proved carefully in the Diplomarbeit of my student

V. Jeschonnek [19]. This Diplomarbeit contains also further interesting results on the

homological algebra of Q-modules where Q is the ring in (2.2).

§ 3 Quadratic R-modules

We consider quadratic R-modules where R is ringoid. For R = 1 they are just the quadratic

Z-modules discussed in § 2 above.

(3.1) Definition: Let R be a ringoid. A quadratic ~-modu]e M = (Me, Mee , T, H, P) is a

pair of functors Me : R --t Ab, M ee : R X R --t Ab (both as well denoted by M ) together

with natural transfonnations

T = Tx,Y : M(X, Y) --t M(Y, X) and M(X) & M(X, X) ~ M(X)

such that the following properties are satisfied

(1)

(2)

(3)

(4)

PT ="p,

TH = H,
T = HP - 1 on M(X, X) ,
TT = 1.

Moreover the functor M ee is biadditive and the functor Me is quadratic with

(5) M(f +g) ~ M(f) +M(g) + PM(f,g)H
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for /,9 : X --4 Y E R . We also write f. = M(/) and (/,9). = M(/,9) . A morphism

F : M --4 N between quadratic R-modules is a pair of natural transformations

(6)

which commute with T, H , and P respectively. Let QM (jjJ be the category of guadratic

~-modules for a small ringoid R . --

We identify a quadratic R-module, satisfying Mee = 0 , with an R-module. This yields

the full inclusion of abelian categories M(fjJ c QM(fjJ , see-(2.3). On the other

hand a quadratic R-module M with Me = 0 is the same as a pair (Mee , T) where Mee
abiadditive functor R x R -+ Ab and where T = Tx,Y : Mee(X, Y) ;; Mee(Y, X)
is a natural transformation with TT = 1 and Tx,x = -1, X, Y E Ob R . The direct

surn M EB N of quadratic R-modules is given by (M EB N)e(X) = Me(X) EB Ne(X) and

(M EB N)ee(X, Y) = Mee(X, Y) EB Nee(X, Y) .

(3.2) Remark: For the ringoid R = Z a quadratic R-module M is the same as a quadratic

I-module with Me = M(e), M ee = M(e) e) . In fac4 for n E R(e, e) = I the induced rnap

M (n) = n. is defined in (2.1) and T = Te,e in (3.1) is defined by T in (2.1). This also shows

that for the ring R = I/n a quadratic R-module is the same as a quadratic Z/n-module

defined in (2.1).

The equations (3.1) (1), (2), (3) for a quadratic R-module show that for X E Ob(fjJ

(3.3) M{X} = (M(X)!!. M(X,X) ~ M(X))

is a quadratic I-module. Hence M yields a functor M : R -+ QM(Z) which carries the

object X to M {X} . The quadratic R-module M, however, is not detennined by this functor

since for example Tx,Y in (3.1) is given for an pairs (X, Y) E Ob(jjJ x Ob(jf) . In case

R has a single object e, that is, if R = R is a ring, then a guadratic R-module M consists

of quadratic Z-module

(1)
H PM(e) --4 M(e, e) -+ M(e) .

Here M(e, e) is an R fl)z R-module and the multiplicative monoid of R acts on M(e) such

that H and P are equivariant with respect to the diagonal action on M(e, e) and such that

(2) (I + 9).(X) = f.(x) + 9.(X) + P((f ® 9) . (Hx)) .

Here f.(x) denotes the action of f E R on x E M(e) .

(3.4) Examples: Let R be a commutative ring. We define quadratic R-modules RA, RB ,

and R f as follows.

M M(e) M(e, e) H P

RA 0 R 0 0

RB R R 2 1

R f R R 1 2
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Here 1 E R acts on x E M(e) by I*(x) = 1 . 1 . x and 1 ~ 9 acts on y E M(e, e) by

(I ~ g) . y = 1 . 9 . Y .

(3.5) Example: Let R be a ringoid, let A be an additive category, and let i : R -+ A be an

additive functor. Often R is a subringoid of A and i is the inclusion, for example R = A .
Then any quadratic functor F : A -+ Ab yields a quadratic R-module

F{R} = i*F = (Fe,Fee,T,H,P)

as follows. The functors Fe = i* F and Fee = (i X i)* F( I) are the restrictions of the functors
F and F(I) , see (2.6). Moreover H, P and T are given as in (2.6) and in the proof of (2.7)

respectively. In case R is the subringoid generated by the identity Ix E Ob(4) than F{R}
is the same as the quadratic Z-module F{X} in (2.7).

We now are ready to describe the generalization of theorem (2.8) for quadratic E-modules;

for this we recall from (Vill, § 2) [22] the

(3.6) Definition: Let R be a ringoid. Then the free additive category

(1) i : R C Add(ß)

is given as follows. The objects of Add (ß) are the n-tuples X = (Xl," . ,Xn ) of objects

Xi in R, 0:::; n < 00 . The morphisms are the corresponding matrices of morphisms

in R . The inclusion i carries the object X to the corresponding tuple of length 1. Any

additive functor 1 : R -+ A (where A is an additive category) has a unique additive extension

7:Add(ß) -+ A which carries the tuple X to the n-fold biproduct f(X) = lXI V ... V 1X n

in A . Let Quad(ß) be the category of quadratic functors

(2)

morphisms are natural transformations.

(3.7) Theorem: There is an equivalence 0/ categories Quad(ß) .::. 9.!:!..-(ß) which carries

F to the restrietion F {R} in (3.5). . ----

For a ring R = R the category Add(R) coincides with the full subcategory of finitely generated

free R-modules in M(R) . Therefore (2.8) is readily obtained by (3.7) above. The inverse

of the equivalence (3.7) is given by the tensor producls defined in the next section; one gets
(3.7) as a corollary of (4.4) below.

§ 4 The guadratic tensor product

We introduce the tensor product of an ROp -module and a quadratic R-module. This is the

quadratic generalization of the tensor product defined in (1.6).

(4.1) Definition: Let R be a small ringoid. We define the fun~tor

~l! : M{jJ°P) x QM(ß) -+ Ab

which carries the pair (A, M) to the tensor product A ~l! M . Tbe abelian group A ®R M
is generated by the symbols - -

{
a ® m, a E A(X), m E M(X)

(1) [a, b] Q9 n, a E A(X), bE A(Y), n E M(X, Y)

12



where X, Y are objects in R . The relations are

(2)

(a + b) ~ m = a ~ m +b~ m + [a,b] ~ H(m) ,
a@(m+m')=a~m+a®m' ,
[a,a] ~ n = a @ P(n) ,
[a,b] ~n = [b,a] ®T(n) ,
[a, b] 0 n is linear in each variable a, b, and n,
('P*a) ® rn = a ® ('P*rn) ,
['P*a, W*b] ® n = [a, b] @ (<p, W)*(n)

where 'P, Waremorphisms in R and where a, b, m, rn', n are appropriate elements as in (1).

(We point out that the last two equations of (2) are redundant if Jl = Z .) For morphisms
F : A ~ A' E M(jJ°P) and G : M ~ M' E QM(ß) we define the induced homomorphism

(3)

by the formu]as

(4) {
(F @ G)(a ® m) = (Fa) fl) (Gem)
(F ® G)([a, b] ~ n) = [Fa, Fb] @ (Gun)

In case M ee = 0 we see that A 0R M coincides with the tensor product (1.6).

(4.2) Proposition: The tensor produet (4.1) yields an additive junetor

(1)

for eaeh A in M(jjJ and a quadratie Junetor

(2)

for eaeh M in Q M (ß) . The quadratie cross effect of (2) is given by the formula

(3)

Here A and B are ROp-modules which yield the (jJ~mop-module A fl) B by (1.7) and the

R ~ R-module M ee is given by M. Tbe right hand side of (3) is a tensor product in the sense

of (1.6). Tbe isomorphism (3) is obtained by the inclusion

(4)

which carries a ~ b® n to lila, i2b] ® n for a E A(X), b E B(Y), n E M(X, Y) . By (3.5)
the quadratic functor F = 0 ®.E. M is as weH a quadratic M(J1)-module. Here the structure

maps T, H, P are given by thenatural transformations

(5)

(6)
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defined by the fonnulas

(7) I
H(a®m) = (a®a)0 H (m)
B([a, b] 0 n) = (a 0 b) 0 n + (b 0 a) 0 T(n) ,
T((a0 b) 0n) = (b0 a)0T(n) ,
P((a0b)0n) = (a,b]0 n .

We point out that the tensor product (4.1) is compatible with direct limits in M (lltP) and

QM~ respectively.

Let A be an additive category and let F : A ---t Ab be a quadratic functor. For a small
subringoid R C A the quadratic R-module F {R}i; defined by (3.5). On the other hand

each object U in A gives us the ~P-module

~, u] : ROp ---t Ab

which carries X E R to A(X, U) = [X, U] . We now define a map

(4.3) A : ~, U] 0E F{R} ---t F(U)

by A(a®m) = F(a)(m) for a E [X,U], m E F(X) and A([a,b] 0n) = PF(alb)(n) for

b E [Y, U] and n E F(XIY) .

(4.4) Proposition: The homonwrphism A in (4.3) is weIl dejined and natural. Moreover A is
an isomorphism if U = XIV ... V X r is a finite biproduct with Xi E R for i = 1,' .. rand
if R is a Juli subringoid of A .

This is a crucial property of the tensor product (4.1) which shows that definition (4.1) is

naturally derived from the notion of a quadratic functor. The proposition shows that a
quadratic functor F : Add(!JJ ---t Ab is completely detennined by the quadratic R-module
F{ R} = i* F . This proves theorem (3.7); in fact, the inverse of the functor (3.7) carries

M E QM~ to the quadratic functor ~,] 0 E M .

The next corollary illustrates proposition (4.4). Let Cye be the full subcategory of Ab

consisting of cyclic groups Z/n where n = 0 or where n is a prime power. Then we

have the equivalence of categories

(4.5)

where F Ab is the full category of Ab consisting of finitely generated abelian groups. Since
each abelian group is the limit of its finitely generated subgroups we get the

(4.6) Corollsry: Let F : Al! ---t Ab be a quadratic functor which convnutes with direct limits.

Then F is completely determined by the quadratic Cyc·module F{ Cyc} ,see (3.5). In jact,

we have the natural isomorphism [Cyc,A] ®Cyc F{ Cye} ~ F(A)for A in Ab.

We now consider examples of the natural transfonnation A in (4.3). A commutative ring R
satisfies ROp = R . Therefore we get for any quadratic functor F : M(R) ---t Ab the natural
homomorphism (A E Ob M(R)) - -

(4.7) A : A 0R F{R} ---t F(A) .
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Here the quadratic R-module F {R} is essentially given by the homomorphisms in Ab

F(R) !! F(RIR) ~ F(R) ,

see (2.6) (4) and (3.3) (1), and A is defined as follows. For a E A let a : R -. A be

the map in M(R) with a(l) = a . Then we get for m E F(R) and n E F(RjR) the

fonnulas A(a0m) = F(a)(m) and A([a,b]0n) = PF(alb)(n). By (4.4) the map Ais an

isomorphism if A is a finitely generated free R-module. We call A the tensor approximation

of the quadratic functor F. For R = Z we have the following examples for which the tensor

approximation is actually a natural isomorphism.

(4.8) Proposition: The quadratic functors F = 0 2, p2, A2 , f, S2 in (2.12) satisfy
A 0z F{Z} ""' F(A) for A E Ab , hence one has natural isomorphisms

0 2 (A);; A0Z0 ,

p2 (A) ;; A 0 ZP ,

A2(A);;A0Z A ,

f(A) ;; A 0 Zr ,

S2 (A) ;; A 0 ZS .

The torsion functor F : Ab -. Ab with F(A) = A * A , however, is a quadratic functor

for which the tensor approximation is no isomorphism, in fac~ F{Z} = 0 in this case. One

can check (4.8) by the definition of the relations in (4.1). Finally we observe the next result

where we use the notation [M] 0z C in (2.1).

(4.9) Proposition: For M E QM(Z) and A, C E Ab we have the natural isomorphism

A0z ([M] 0z C) ~ (A0z M) 0z C.

§ 5 The guadratic Horn functor

Let R be a small ringoid. For R-modules A, B one has the abelian group Hom,g( A, B)
which consists of all natural transformations A -. B . We now extend this Horn functor for

the case that B is a quadratic R-module.

(5.1) Definitions: We define the functor

which carries the pair (A, M) to the abelian group HomR(A, M) , the elements of which

are called guadratic forms A -t M over R . A quadratic form Q : A -t M is given by

functions (X, Y E Ob(j{») -

(1) ax : A(X) -t M(X), O'x,Y : A(X) x A(Y) -t M(X, Y)

such that the following properties are satisfied; (they are analogous to the corresponding

properties in (4.1) (2) and they as weIl define the surn a +ß of quadratic forms).

15



ax(a + b) = ax(a) + ox(b) + POX,x(a, b)
(0 + ß)x = ax + ßx
oX,x(a, a) = Hox(a)
ax,y(a, b) = Toy,x(b, a)
aX,y is bilinear and (a + ß)x,y = aX,Y + ßx,y
Me(<p)ax = aXIA(<p)
Mee(<p, W)ax,y = ax1,Yi(A(<p) X A(W))

Here a, b are appropriate elements in A(X) or A(Y) and <p : X -+ X}, \lf: Y -+ Y1

are morphisms in R . The last two equations describe the "naturality" of the quadratic form

a , (these equations are redundant if R = Z ). For morphisms F : A' -+ A in M(J{) and
G : M -+ M' E QM(J{) we define the induced homomorphisms

(3) Hom(F, G) : HomE(A, M) -+ Hom~(A',M')

by the formulas Hom(F, G)(a) = ß with

(4) ßx = Geo:x F, ßx,Y = Geeo:x,y(F x F) .

In case Mee = 0 we see that HOffiR(A, M) coincides with the usual group of natural

transformations A -+ M , hence the functor (5.1) extends canonically the classical functor
HOffiR for R-modules.

(5.2) Proposition: The Hom-jUnctor (5.1) yields an additive jUnctor

(1)

fOT each A in M(J{) and a quadratic functor

(2)

for each M in QM (J{) . The quadratic cross effect of (2) is given by the formula

(3)

Compare (4.2) where we describe the corresponding result for quadratic tensor products. The

isomorphism in (3) is obtained by the projection

(4)

which carries 0: to the natural transformation ß : A(X)®B(Y) -+ Mee(X, Y) with ß(a ® b) =

o:x,y(ila, i 2b) . By (3.5) the quadratic functor F = HomEJ, M) is a quadratic M(J{)°P
module; the structure maps T, H, P are given by the following natural transformations

(5)

(6) H P
HomR(A, M) -? HomE0E(A ® B, Mee ) -+ HomE(A, M)

- - - -
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defined by

(7)
{

(Tß)(a 0 b) = Tß(b 0 a) ,
(Ha)(a®b) = a(a,b)+Ta(b,a) ,
(Pß)(a) = Hß(a C3' a) and (Pß)(a, b) = ß(a 0 b) .

(5.3) Exarnples: Let R be a commutative ring and eonsider the quadratie R-modules RA, R S

and Rf defined in (3.4). Moreover let A be an R-module.

(1) A quadratie fonn a : A -+ RA can be identified with an R-bilinear map a : A x A -+ R

satisfying a(a, a) = 0 . Hence a is just an alternating bilinear fonn.

(2) A quadratic fonn a : A -+ RS ean be identified with a function a : A -+ R which satisfies

a(A . a) = A2 . a(a) for A E R, a E A and for which the function

ß a : A x A -+ R, ßa(a, b) = a(a + b) - a(a) - a(b)

is R-bilinear. Thus a is the same as a guadratie fonn on A in the classical sense, see for

example [1], [29].

(3) A quadratie fonn a : A -+ Rf can be identified with a pair of functions a : A -+ R, ß :
A x A --+ R for which a(Aa) = A2a(a) and for which 6 is symmetrie R-bilinear with

26(a, b) = a(a + b) - a(a) - a(b) and 6(a, a) = a(a) . If R is uniquely 2-divisible a is a
special quadratic fonn as in (2) since in this case 6 is detennined by a .

(5.4) Lemma: Let R be a ring anti let F be a finitely generated free R-module. Then

HOffiR(F, R) is an ROP-moduie such that

for any quadratic R-module M.

Proof: We define the natural isomorphsim X as folIows. Let a, b E HomR(F, R), m E
M(e), n E M(e, e) . Then x(a f!) m) = a is given by a(x) = Me(a(x))(m) and a(x, y) =
Mee(a(x),a(y))H(m) for x,y E F . Moreover x((a,b] <9n) = ß is given by ß(x) =
PMee(a(x}, b(x))(n) and ß(x,y) = Mee(a(x),b(y))(n) + Mee(a(y),b(x))(n) .

q.e.d.

Let A be an additive category and let F : AOP --+ Ab be a quadratic functor. For a small
subringoid R C A the quadratic JrP.modul~F {ROP}is defined as iq (3.5) by ROP c AOP .

On the other hand eaeh object U in A gives the ROP·module ~, U] as in (4.3). We now

define the map

(5.5)

as folIows. For ~ E F(U) let A(~) be given by the functions ax, ax,Y (X, Y E J(lP) with

ax(a) = a*(e) = F(a)(e), a E (X, U] and ax,y(a, b) = F(alb)H(e), b E [Y, U] .

(5.6) Proposition: The homomorphism A is an isomorphism if U = XIV· .. V X r is a finite

biproduct with Xi E R for i = 1,' .. , rand if R is a Jull subringoid of A .

This result is a erueial property of the Hom-group (5.l) which shows that definition (5.1)

is again naturally derived from the notion of a quadratic funetor. We leave it to the reader
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to fonnulate a corollary of (5.6) cOITesponding to (4.6). Moreover we get as in (4.7) the

following example. Let R be a commutative ring and let F : M(R)OP --Jo Ab be a quadratic

functor. Then the quadratic R-module F{R} is defined and we derive from (5.5) the natural

transfonnation

(5.7) A : F(A) --Jo HOffiR(A, F{R})

where A E M(R) , cornpare (4.7). By (5.6) this rnap is an isomorphism if A is a finitely

generated free R-module. We call (5.7) the Horn-approximation of the quadratic functor F .

.§. 6 The guadratic chain functors

In this section we associate with each quadratic R-module M quadratic chain functors M* and

M* . The definition of M* and M* is rnotivated by the applications in homotopy theory below.

The quadratic chain functors as weil fonn a first step for the construction of derived functors.

Let R be a ringoid with a zero object denoted by O. A chain complex X* = (X*, d) in R
is a sequence of maps in R

(6.1)
d d

••• --Jo X n --Jo X n - l --Jo ••• (n E Z)

with dd = O. A chain map F : X* --Jo Y* is given by maps F = Fn : X n --Jo Yn with
dF = Fd and achain homotopy Q' : F ~ G is given by maps Q' = Q'n : X n - l --Jo Yn with

- Fn + Gn = Q'nd + dQ'n+1 . The chain complex X* is positive (negative) if Xi = 0 for

i < 0 ( Xi = 0 for i > 0 ). A negative chain complex is also called a cochain complex X*

where we write X n = X- n , d: X" --Jo X n+l
. Let ~ (jJ*) be the category of positive

(negative) chain complexes and let Ä / ~ (jJ* / ~) be its homotopy category.

We also need the category Pair{fjJ of pairs in R ; objects are morphisms d in R and maps

F : d --Jo d', F = (FA, FR) , are commutative diagrams

(6.2)
A

dl
B

A'
ld'
B'

A homotopy Q' : F ~ G is a map Q' : B --Jo A with -FA + GA = ad, -FB + GB = d'Q' .
We have full inclusions of Pair(!lJ/ ~ into R*/ ~ and R* / ~ which carry d to the chain

complex d : A = Xl --Jo B = X o and to the cochain complex d : A = X O
--t B = Xl

respectively.

(6.3) Definition: Let M be a quadratic R-module. Tbe guadratic chain functors associated

to M are functors

(I)

(2)

which are defined as folIows. For an object d : Xl --Jo Xo in Pair{fjJ we define the chain

complex M*(d) by Mi(d) = 0 for i > 2 and by

(P,-(l,d).)
--Jo M(XI) EB M(XI, Xo)

11

MI(d)
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(H,-(l,d).) (1 1)
-+ M X ,X

11

M 2(d)

(3)

On the other hand we define für an übject d : X O -+ Xl in Pair{fJ) the cochain cümplex

M*(d) by Mi(d) = 0 für i > 2 and by

( 0) (d.,(d,l).H) (1) (1 0)MX -+ MX ffiMX,X

11 11

MO(d) MI (d)

For a map F : d -+ cf in PairU!) the induced chain maps M*(F) and M*(F) are defined in

the obviüus way. One readily checks that the composition of maps in (2) and (3) respectively

is the trivial map 0 . The definition of M*, M* is motivated by the examples in [9].

We point out that the definition of M* above is dual to the definition of M* j here duality is

obtained by reversing arrows and by the interchange of H and P.

(6.4) Theorem. The quadratie ehain funetors (6.3) induee funetors

between homotopy categories.

Proof: Let / = (/l, /0) and 9 = (gl, 90) be maps d -+ cl' in Pair (JJ) and let a : f ~ 9 be

a homotopy. We can define a homotopy

(1)

(2)

by the matrices (2) and (3).

ßI = (~:) with

(3) ß ( ) . {A 1 =(O:d,fl)*H
2 = Al, A2 wlth A - _ ( ) T(/ )

2 - 91, 0: * + 1 ,0: * .

For the proof of (1) we have to check the following equations (4) (9).

(4)

(5)

(6)

(7)

(8)
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(9)

(10)

Originally we found the formulas in (2) and (3) as a solution of the system of equations

(4).....(9). We now check (4).

d.a. +P(d, l).(d, !o).H = (da). +P(da, !o).H

= (da). + (da + /0)0 - (da). - /0. = go. - /0•.

Here we use (3.1) (5) and da = - 10 + gO . Next we obtain (5) by ad = - fl +gl and
by (3.1) (3):

(11)

(ad, /1 ).HP + (gI, a).(I, d). - T(/I, a).(I, d). =

(ad, Il ).T + (ad, /1). + (gI, ad). - T(fl, ad). =

(ad, /1). + (gI, ad). = (-/1 + gI, /1). + (gI, - 11 +gJ).

= -(/1, 11). + (gI, gl)•.

In the last equation we use the biadditivity of the functor M ee in (3.1). For equation (6)

we consider

(12) P(ad, fd.H + a.d. = (ad +/l). - (ad). - /1+ + (ad). = - fh + g1+ .

Next equation (7) follows from

(13)

- (1, d). (gI, a). - (1, d).T(/I, a). + (a, fo).H P(d, 1). =

(gI, da). - (Ci, d/1 ).T + (ad, 10). + (Ci, /od).T =

(91, - /0 + 90). + (-/1 + g], /0). = (91, 90). - (/], 10)•.

(14)

Moreover we obtain (8) by

- P(g], 0:). +PT(fI, a). + Ci.P(d, I). =

- P(gI, 0:). +P(fI, a). + P(ad, a). = 0

In the last equation we use ad = - Il +gl . Finally we obtain (9) by

(15) -(I,d).(ad,/l).H + (Ci,/o).Hd. = -(o:d,dld.H + (ad,/od).H = 0

Here we use d/l = Iod. This completes the proof of theorem (6.4) for M• . The proof for

M· uses the 'dual' arguments. Let f = (fa, /1), 9 = (ga, gl) be maps cl -+ d in Pair(jJ)
and let 0: : I ~ 9 be a homotopy. Then we define a homotopy

(16) ß : M·(f) ~ M·(g)

(17)

by the matrices (17) and (18).

ßO = (BI, B2) with {::: ;.(a,/o).
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(18) with

One can check as above that (16) is satisfied.

q.e.d.

(6.5) Remark: The Dold-Kan theorem shows that positive chain complexes X. in an abelian

categary A are in 1 - 1 correspondence with simplicial objects X o : ~op ~ A in A . Here

~ is the simplicial category. The correspondence is given by the functors K and N with

N K(X.) - X. and K N(Xo ) - Xo l see for example § 3 in Dold-Puppe [15]. Now let

.R. be a ringoid and let

F : Add (Jf) -+ Ab

be a quadratic functor. Then F is detennined by the quadratic E.-module M = F {E} as
in (3.7). Each positive chain complex X. in R detennines the simplicial object 1«X.) :
ß op -+ Add (Jf) as above since for the definitio;;-of the functor K the category A needs only

to be additive. The functor F yields the simplicial object F K (X.) : ~op -+ Ab so that the

chain complex NFK(X.) in Ab is defined. If X. = (d: Xl -+ X o) is given by a map d

in R with Xi = 0 for i > 1 one can show that there is a natural homotopy equivalence of
chain complexes in Ab

N F J«d : Xl -+ Xo) ~ M.(d) .

Here the right hand side is defined as in (6.3) with M = F{R} . We da, however, not see
that the dual complex M·(d) in (6.3) as weIl has such a property.

§ 7 Quadratic functors induced hI ! guadratic Z-module

For a Z-module M one has the functors which carry an abelian group A to the group

A ® M, A * M, Hom(A, M) and Ext(A, M)

respectively. We now introduce for a quadratic Z-module M twelve quadratic functors which

generalize these classical functors. Using short free resolutions we obtain functors

as follows. For each abelian group A we choose a short exact sequence

G >~ F ~-+ A

where G and F are free abelian groups and we set i(A) = dA . For a homomorphism

c.p : A -+ B we can choose a map I : dA -+ dB in Pair(Ab) which induces c.p • The

homotopy dass {/l of t is weIl defined by c.p and we set i(c.p) = {tl . The functor i is
actually full and faithful. The functor iOP is induced by i .

A quadratic Z-module M yields the quadratic functoes

(7.2) () ®z M : Ab -+ Ab and Hom(, M) : Abop
~ Ab
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which as weIl yield a quadratic Ab-rnodule {} ®z M and a quadratic AboP-rnodule Horn{, M}
respectively, cornpare (4.2) (5), (6) and (5.2) (5), (6). We now use (6.4) and (7.1) for the

definition of the guadratic chain functors

(7.3)

({} ®z M).i : Ab -+ ~/ ::: ,

({} ~z M).i: Ab -+ Ab· /:::,

(Horn{, M} ).iop
: Abop

-+ All.../ ::: ,
(Horn{,M})·i op

: Abop
-+ Ab·/::: .

groups

The (co)hornology groups of these four quadratic chain functors yield six functors Ab -+ Ab
and six functors Abop

-+ Ab which we denote as follows where dA = i(A) as in (7.1) and

where j = 0,1 ,resp. 2 .

Hj( {} ®z M).dA = A®M, A*'M resp. A *" M ,,
Hi({} ®z M)*dA = A*M, Arj9' M, resp. A rj9" M ,

(7.4)
Hj(Horn{, M} ).tf] Ext(A, M) , Horn'(A,M) , resp. Horn"(A, M) ,
Hi(Horn{, M} )*cf] - Horn(A,M) , Ext'(A, M) , resp. Ext" (A, M) .

For the convenience of the reader we now describe explicitly the chain cornplexes used in
(7.4). For this we choose d = dA : G -+ F as in (7.1).

(1) The chain cornplex ({} ~z M)*dA is given by

(P,-d.) G (d.,Pd.)
G ® G ® M ee -+ ®z M EB G ® F ® M ee -+ F ®z M .

(2) The cochain cornplex ({} ®z MrdA is given by

(H,-d.) (d.,d.H)
F ~ F ® Mee f- F ®z M EB F ® G rj9 Mee f- G ®z M .

(3) The chain cornplex (Horn{, M} )*cfl is given by

(P -d·) (d· Pd·)
Horn(F®F,Mee ) ~ Homz(F,M) EBHom(F 0 G,Mee ) ~ Homz(G,M).

(4) The cochain complex (Horn{, M})* cf; is given by

(H -d·) (d· d· H)
Hom(C ® C, Mee ) ~ Horn z(G, M) EB Hom(C ® F, Mee ) +- Horn z(F, M) .

Here d., d* denote the rnaps induced by d and the formulas for H and P are described in

(4.2) (7) and (5.2) (7) respectively. The degrce of the group at the right hand side in each

sequence above ~ o.
The notation in (7.4) is chosen since there is the following compatibility with classical

functors. Assurne M is a Z-module, that is Mee = 0 , then one readily verifies that the

A ~ M = A &;' M, A * M = A *' M ,

Hom(A, M) = Hom'(A, M), Ext(A, M) = Ext'(A, M)

are given by the corresponding classical functors for abelian groups. Moreover all groups

A*" M, A~" M, Hom"(A,M) and Ext"(A,M) withj = 2 in (7.4) are trivial for Mee = o.
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(7.5) Remark. Six of the functors in (7.4) are actually derived functors in the sense of Dold

Puppe [15]. For this let T = 00z M and T' = Hom(, M) be the functors in (7.2). Then the

derived functors LiT : Ab -+ Ab and RiT' : Abop
-+ Ab are defined by

LiT(A) = HiNT ]«(X.) and' RiT'(A) = HiNT' K(X.)

respectively where X. = (dA: F -+ G) is given by a presentation of A as in (7.1). Now one

can show that one has natural isomorphisms

LiT(A) = A 0 M, A *' M, resp. A *" M ,

RiT'(A) = Hom(A, M), Ext'(A, M), resp. Ext"(A, M)

for i = 0,1 , resp. 2. For LiT(A) this is a direct consequence of the equivalence in (6.5).
Since T and T' are quadratic the derived functors above are trivial for i > 2 .

(7.6) Proposition: One has natural isomorphisms A 0 M = A 0z M and Hom(A, M) =
Hom z(A, M) where the right hand side is defined by (4.1) and (5.1) respectively. Compare
also (B.I0).

(7.7) Proposition: All functors in (7.4) are additive in M and quadratic in A. The quadratic
cross effects are naturally given by

(AlB) 0 M = A ~ B ~ M ee = (AlB) 0" M

(AlB) * M = A * B * M ee = (AlB) *" M

Ext(AIB,M) = Ext(A *B,Mee ) = Ext"(AIB,M)

Hom(AjB, M) = Hom(A ~ B, Mee ) = Hom"(AIB, M)

(AlB) *' M = H1(dA 0 dB , Mee ) = (AlB) 0' M

Hom'(AIB, M) = H1(dA 0 dB , Mee ) = Ext'(AIB, M) .

Here dA denotes as weil the chain complex (X., d) with d = dA ; Xl = G -+ Xo = F, Xi =
o for i ~ 2 . The KUnneth formula yields natural exact sequences

(1)

(2)
Ext(A 0 B, Mee ) >--+ HI(dA 0 dB, M ee ) ---+---+ Hom(A * B, M ee )

These sequences are split, the splitting however is.not natural. There is a natural isomorphism

(4)
HI (dA ~ dB, Mee ) = Trip(A, B, Mee )

where the right hand side is the tripIe torsion product of Mac Lane [21].

prooe oe (7.7): We consider for N = {} 0z M the functor N. : Pair(Ab)/ ~-+ Ab./ ~,

see (7.3). This functor is quadratic and its quadratic cross effect admits a weak equivalence

\l1 : N.(dAldB) ~ dA 0 dB 0 Mee

of chain complexes. For dA : Xl --t Xo and dB : Y1 -+ Yo and C. = N.(dAldB) we have

Co = Xo 0 Yo 0 M ee

Cl = Xl ® Yi 0 Mee ffi Xl ® Yo 0 Mee EB Yi ® X 0 ® Mee

C2 = Xl ® YI ® M ee ffi YI ® Xl 0 M ee
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(1)

The differential di : Ci -+ Ci-l is given by

d2(X10 YI (9n) = xl(9YI 0n - xl (9 dBYI (9 n

d2(YI (9 Xl (9 n) = Xl (9 YI (öl Tn - YI (9 dAXI (öl n

dl(XI (9 YI (9 n) = dAXI (9 dBYl (9 n

dl (Xl (9 Yo (9 n) = dAXI (9 Yo (9 n

dl(YI 0 Xo 0 n) = Xo 0 dRYI 0 Tn

where Yi E Yi, Xi E Xi, n E Mee . The map \l1 is given by the identity in degreeO and by

W2(XI0YI(9n) = 0

W2(Y10 x I0n) =x10Y10Tn

WI(XI 0 YI 0 n) = Xl 0 dBYl 0 n

\l1 1(Xl 0 Yo 0 n) = Xl (9 Yo (9 n

W1(YI 0 xo 0 n) = Xo 0 YI 0 Tn

Since HjN.(dAldB) is the cross effect in HjN.(dA ffi dB) we obtain (AIB)0M, (AIB)*' M
and (AlB) *" M by the weak equivalence W and by the Künneth formule. In a similar way
one obtains the other cross effects in (7.7).

q.e.d.

(7.8) Proposition: There are natural inclusions and projections of abelian groups

A *" M >-+ A * A * Mee ,

A0" M f-f- A0A(ölMee ,

Hom"(A, M) >-+ Hom(A 0 A, M ee ) ,

Ext"(A, M) f-+- Ext(A * A, Mee ) .

Proof: We only consider the first inclusion. For this we see by (7.4) (1), that A *" M is
the intersection (d. = 1 <9 d 0 1)

ker(p)nker(-d.) C G®(A*Mee ) C G0G0Mee

where ker (-d.) = G 0 (A *M ee ) . We have to show (d fl) 1 0 l)(A *" M) = 0 . Then the

first indusion in (7.8) is given. Let T : G 0 G 0 M ee -+ G 0 G 0 M ee be the interchange

map with T(x <9 Y ® n) = Y 0 X ® Tn . Since HP = 1 + T we see that T restricted to

ker (P) is -1 . Whence we get for X E A *" M (d ® 1 01)(x) = -(d 0 1 01)T(x) =
-T(10d01)(x) = o.

q.e.d.

(7.9) Remark: Using (7.7) it is easy to compute the functors (7.4) for finitely generated

abelian groups A. For this we need only to consider cyclic groups Z/ n = A with the

presentation dA = n : Z = G -+ Z = F . In this case we have Z 0z M = Me and
Homz(Z, M) = Me ; therefore the chain complexes (7.4) (1)..... (4) can be expressed in tenns

of H, P in the quadratic Z-module M. In particular (7.4) (1), resp. (2), is given for dA = n by

(P,-n) (n.,nP)
Mee -+ Me EB Mee -+ Me, resp.
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(2) M
(H,-n) M M (n.,nH) M

ee +-- e EB ee +-- e

where n* is defined in (2.1). In addition we can use the following fonnulas for the

computation.

(7.10) Proposition: Let A be afinite abelian group and let AE = Ext(A, Z) .

Then one has the natural isorrwrphisms

Ext(A, M) = AE 0 M, Hom(A, M) = AE * M,

Hom/(A,M) = AE *1 M, Ext'(A,M) = AE 0' M,

Homll(A,M) = AE
*11 M, Ext"(A,M) = AE 0 11 M .

There is a non natural isomorphism AE ~ A .

Proof: Since A is finite we obtain a presentation of Ext(A, Z) by dA : F# = Hom(F, Z) --+

G# = Hom(G, Z) . Using (5.5) we can replace Homz(F, M) by F# 0z M . This way the

chain complex (7.4) (3) for dA is the same as the chain complex (7.4) (1) for dA . This

proves the left hand side of equations in (7.10)

(7.11) Remark: The 12 functors in (7.4) evaluated on A = Z are given by the table

Z 0M = Me

Z*M= 0

Ext(Z, M) = 0

Hom(Z, M) = Me

Z *' M = 0

Z 0 1 M = ker H

Hom'(Z,M) = eok P

Ext' (Z, M) = 0

Z *11 M = 0

Z 0" M = cok H

Homll(Z, N) = ker P

Ext"(Z, M) = 0 .

Here H, P are the maps of the quadratic Z-module M .

(7.12) Theorem: A short exact sequence

i qo --+ !( --+ M --+ N --+ 0

oJ quadratic Z-rrwdules in QM(Z) induces the Jollowing Jour types oJ natural 9~term excat
sequences.

(1)

(2)

(3)

0 A *" !(
I. A*II M

q.
A *" N--+ --+ --+ --+

A *I!{ --+ A*IM --+ A*' N --+

A0!{ --+ A®M --+ A®N --+ 0

0 --+ A* !( --+ A*M --+ A*N --+

A0'K --+ A (1)' M --+ Arg,'N --+

Arg," K --+ A011 M --+ A rg," N --+ 0

0 --+ Hom"(A, K) --+ Hom"(A, M) --+ Hom"(A, N) --+

Homl(A,K) --+ Hom'(A,M) --+ Hom'(A,N) --+

Ext(A, K) --+ Ext(A, M) --+ Ext(A, N) --+ 0
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o ---+ Hom(A, K) ---+ Hom(A, M) ---+ Hom(A, N) ---+

(4) Ext'(A, K) ---+ Ext'(A, M) ---+ Ext'(A, N) ---+

Ext" (A, K) ---+ Ext" (A, M) ---+ Ext" (A, N) ---+ 0

If the quadratic Z-modules K, M, N are actually abelian groups, that is, if the short exact
sequence in (7.12) lies in the subcategory Ab of QM(Z), see (2.1), then the terms with an

index" above vanish so that in this case the 9-term exact sequences above coincide with the
corresponding classical 6-term exact sequences of homological algebra.

(7.13) Example: One has the short exact sequences

(2)

o---+ 1 5 ~ zP ---+ Z ---+ 0

o---+ Z5 .i, Zr ---+ 1/2 ---+ 0

(1)

with i e = (1,1), i ee = 1 and je = 2 and jee = 1. Hence we obtain by (7.12) (1) via (1) the

isomorphism A *' 1 5 = A *' ZP and the short exact sequences

o ---+ A ® 18
---+ A ® zP ---+ A ® 1 ---+ 0

which coincides with the top row of (2.12) (4). Moreover by (2) we get the exact sequence

(A *" 1/2 = 0)

o ---+ A *' Z8 ---+ A *' Zr ~ A * Z/2 ~
A ® Z5 ---+ A ~ Zr ~ A (8J Z/2 ---+ 0

which is a union of two short exact sequences. The second part coincides with the bottom
row of (2.12) (4) and A *' Zr = R(A) is given by Eilenberg-Mac Lane's functor R. Compare
the exact sequence in (10.7) below. There are indeed many further interesting applications
of the 9-tenns exact sequences above.

Proof oe (7.12): We first prove (7.12) (1). For this we observe that the short exact sequence
of quadratic I-modules in (7.12) induces a short exact sequence of chain complexes

(*)

Indeed this is short exact since F and G in (7.4) (1) are free abelian. To see this we use (2.6)

(3), (7.7) and (7.11). Now the long exact Backstein sequence of homology groups applied to
(*) yields (7.12) (1). In a similar way we obtain the other 9-tenn exact sequences.

q.e.d.

(7.14) Remark: It is also of interest to consider the natural quadratic cross effect sequences
derived from the 9-tenn exact sequences abovc. For example (7.12) (1) and (7.7) yield the
natural exact sequence

o ---+ A * B *K ee ---+ A * B * M ee ---+ A * B * Nee ---+

Trp(A, B, Ku) ---+ Trp(A, B, Mee ) ---+ Trp(A, B, Nee ) ---+

A (8J B ® !(ee ---+ A 0 B 0 Mee ---+ A 0 B (9 Nee ---+ 0

A short exact sequence of abelian groups induces as weH certain exact sequences for quadratic
tensor products, this is discussed in the Appendix below, see (B.l0).
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§ 8 Quadratic homotopy functors

We introduce additive categories of homotopy abelian co- H -groups and H -groups respec

tively and we describe quadratic functors on these categories. The functors are given by

homotopy groups, homology groups, and cohomology groups respectively.

Let CW - spaces* / ~ be the homotopy category of CW-spaces with basepoint * ; the

set of morphisms X -+ Y in this category is the set of homotopy classes [X, Y] . We write

dirn (Y) ::::; rn if there is a homotopy equivalence Y ~ X where X is an rn-dimensional

CW-complex. Moreover we write hodim(Y) ::::; rn if 1ri(Y) = 0 for i > m . Let 4: ' resp.

Bk be the full subcategories of C W - spaces· / :::::: consisting of (n - 1)-connected spaces X
=n
with dirn(X) ~ n + k , resp. hodim(X) ~ n + k . Let G be an abelian group. An Eilenberg-
MacLane space K(G, n) is a CW-space with 1rn (K(G) n)) = G and 1fjK(G, n) = 0 for
j =f:. n . A Moore space M (G, n) is a simply connected CW -space with homology groups

HnM(G, n) = G and HjM(G, n) = 0, n f= j ~ 1 . We clearly have hodirn K(G, n) ~ n
and dirn M(G,n) ~ n + 1 .

(8.1) Definition: Let HA and coHA be the following subcategories of CW - spaces* / ~ .

Objects in HAare homotopy abelian H -groups and morphism are H -maps. The objects in
coHA are homotopy abelian co- H-groups and morphisms are co- H -maps. Let HA,

n

resp. coH A be the full subcategories consisting of (n - 1)-connected objects.
fi

For example a double loop space f22 y and a double suspension ~2y are objects in HA and

coHA respectively. This shows that one has full inclusions

(8.2) AkccoHA and BkCHA for k<n-1.
=n Il ==n =n

All categories in (8.2) are additive categories; the biproduct in coHA is given by the one

point union X V Y of spaces and the biproduct in HAis given by the product X x Y of

spaces. For a CW ·space 1( let 7r~ and 1rJ( be the homotopy functors defined by

(8.3)

As usual we have 1r~(X) = 1rm (X) if K = SO is the O-sphere and we have 1rj«(X) =
Hk(X, G) if K = 1«(G, rn + k) . The sets in (8.3) are groups, resp. abelian groups, for

m = 1) resp. m ~ 2 . Using the homotopy functors (8.3) and the homology and cohomology

functors we obtain the following four functors

(8.4)

1r::: : coH A -+ Ab with dirn (~mK) < 3n - 2 ,
,a. -

1r}( : H AOP -+ Ab with hodim(omK) < 3n ,
n -

Hm(,G) : HA -+ Ab with m < 3n.
n -
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The functor (3) is a special case of (2) when we set K = !((G, m + k) . The conditions

on the right hand side describe the meta stable range of these functors. It is weH known

that in this range the functors are quadratic. In the stable range (given by dim(Effl !() <
2n - 1, hodim(Offl !() < 2n, resp. m < 2n ) the functors are additive.

We now consider the cross effects and the structure maps H, P, T in (2.6) for the quadratic

functors in (8.4). For suspensions X = ~X', Y = ~Y' the Hilton-Milnor theorem shows

(8.5)

(8.6)

Here the isomorphism is induced by the injection 1t"~ ([i}, i2]) where [il, i 2] : ~X' A Y' -+

X V Y is the Whitehead product map. Using (8.5) as an identification the map T coincides

with -(~T21). where T21 : X' A y' -+ Y' A X' is the interchange map. Moreover the maps

1t"~{EX'} = (1ft:; (~X') !! 1r~ (EX' A X') ~ 1r~ (EX')) ,

given by (8.4), coincide wilh the James-Hopf invariant H = ,2 and the Whitehead product

map P = [1,1]. where 1 = Ix is the identity. These maps H and P are exactly the operators

which appear in the classical EHP-sequence of homotopy theory. Next we obtain the cross

effects of the functors (8.4) (2) (3) (4) by canonical isomorphisms

1fJ((X A Y) =1rJ((XlY) ,
Hm(X A Y, G) ;; Hm(XIY, G) ,

Hm(X A Y, G) =Hm(XIY, G)

which are readily obtained by the cofiber sequence X V Y -+ X x Y -+ X A Y . For

(8.4) (2) (3) the maps H,P,T correspond to H = (H/-l)*, P = ~*, T = (T2I)* where

~ : X -+ X A X is the reduced diagonal and where H /-l : EX A X -+ EX is the

Hopf-construction of the H -space multiplication /-l = rl + r2 : X X X -+ X . In (8.4)
(4) we get H = ~., P = (H/-l). and T = (T2I) • . For the definition of HJl see for

exampie (11 15.15) [5]. For (HJl ). and (HJl ). we use the canonical suspension isomorphisms

1t"K-1(EX) = 1rj((X) and Hm+l(EX, G) = Hm(X, G) .

§ 9 Homotopy groups oe Moore spaces

We describe a six tenn exact sequence for the homotopy groups of Moore spaces which

is useful for computation in the metastable range of these groups. As an application we

obtain a new homotopy invariant r(X) of an (n - l)-eonnected (2n + 1)-dimensional closed

manifold X.

Let R C coHA be a small subringoid consisting of suspensions X = EX' . A CW-space
- n

U gives us the ROP-moduie (= additive functor)

~,U] : ROp -+ Ab

which carries X E R to the abelian group [X, U] . The quadratic R-module 1r~ {R}
associated to (8.4) (I) and thc tensor product (3.1) can be used for the natural homomorphism

(dirn EmK < 3n - 2)

(9.1)
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which we call a tensor approximation of 7r~(U) . For a E [EX', U], b E

{EY', U], (EX', EY' E!JJ ' and for a E [Erny, EX'], ß E [Erny, EX' 1\ Z'] we define

Aby A(a ® a) = a 0 a and A([a, b] ® ß) = [a, b] 0 ß where [a, b] is the Whitehead producl

The image of A is the subgroup generated by all compositions

Erny ~ Xl V ... V XI; ~ U

with Xi E R, k ~ 1 . The map a is in the metastable range. The composition a 0 a ,
however, needs not to be in the metastable range.

(9.2) Lemma: A in (9.1) is a well dejined natural homomorphism. Moreover A is an

isonwrphism ifU = Xl V· .. V XI.: with Xi E Rand if[X, Xi] C R(X, X;) for all i = 1,' .. ,k

andXER.

The lemma is a consequence of the distributivity laws [4] and of (4.4).

(9.3) Remark: A natural description of the homotopy group 7r~M(A,n) of the Moore space

M( A, n) can be obtained by the tensor approximation (9.1). For this we need to consider

elementary Moore spaces M(Z, n) = sn or M (Z / pi , n), p =prime. Let E. be the full

homotopy category consisting of elementary Moore spaces. Then (9.1) yields the natural

homomorphism, n ~ 3 ,

A: ~, M(A, n)] ®ß. 7r~ {R} -+ 7r~M(A,n)

which is an isomorphism if A is finitely generated. This follows from (9.2).

We now consider an example of A in (9.1) where R ;;;; Z is the full subcategory consisting only

of the sphere sn and where U = M(A, n) . The~ 7r~ {R} is just the quadratic Z-module

7r~{sn} = (7r~(sn) ~ 7r~(s2n-l) ~ 7r~(sn))

which is defined by F = 7r~0 as in (8.4) (3); here Histhe Hopf invariant and P = [1, 1] +

as in (8.5). Now (9.1) gives us the natural homomorphism

(9.4) A : A 0z 7r:;: {sn} -+ 7r~M(A,n}

which is an isomorphism if Ais a free abelian group (here A needs not to be finitely generated).

It is an old result of Hopf that 7r3 { S2} ;;;; Zr = (Z ..1 Z~ z) .Therefore we derive from

(9.3) the natural homomorphism A : r(A) = A ® Zr ;;;; 7r3M(A,2) which is actually an
isomorphism for all abelian groups A, see [37] and (2.11), (4.8). In general the map A

in (9.4) is not an isomorphism. Let S C 7r~M(A, n} be the subgroup generated by all

compositions Ern K -+ sn V ... V sn -+ M(A, n) and let

K K
,\7rmM(A, n) = 7rrnM(A, n}/S

be the quotient group. For dirn Ern!( < 3n - 2 this is the cokemel of A in (9.4). Now A is

embedded in the following exact sequence which shows the relevance of the corresponding

derived functors in (7.4).

(9.5) Theorem: For dimp~rnK) < 3n - 2 there is a natural exact sequences

o-+ A *' 7r~ {sn} -+ ,\7r~+IM(A,n) -+ A *" 7r~_1 {sn} ~

A ® 7r~ {sn} ~ 7r:f;M(A, n) ~ ,\7r:f;M(A, n) -+ 0

29



Ho{ 7r~}. (9) = A ® 1r~{sn} ,

H I {7r~}. (9) = A *' 1r~ {sn} ,

H2 {1r~}. (9) = A *" 1r~ {sn} .

Compare the definition in (7.4). Now it is easy to see that i in (2.7) [9] corresponds to A in

(9.5). Therefore (9.5) is just a special case of (2.7) [9].

where q is the quotient rnap.

Proof of (9.5): Theorem (9.5) is a special case of (2.7) in [9]. For this let Xl ~ Xo~~ A
be a short free resolution of the abelian group A and let 9 : M (Xl, n) ~ M (X0, n) be a

map which induces d . The mapping cone of 9 is the Moore space M(A, n) = Cg • Using

the isomorphism A in (9.4) (where we replace A by Xl and X o respectively) we obtain

isomorphisms

q.e.d.

(9.6) Corollary: For m ~ min(2n, 3n - 3) one has the natural short exact sequence

o~ A ® 1rm {sn} Ä 1rm M(A, n) ~ A *' 7rm -I {sn} ~ 0

and the isonwrphism .\1rm+IM(A, n) ;;;; A *' 1rm {sn} .

Proof: Since 1r2n -1 s2n-I = Z we see that A *" 1rm-I { sn} = 0 for m ~ 2n , compare (7.8).

Whence (9.6) is a consequence of (9.5). In the stable range m < 2n - 1 the sequence (9.6)

is wen known (see for example [2]; in this case we have A (9 1rm {sn} = A ® 1rm Sn and

A *' 1rm -I {sn} = A * 1rm _ISn , see (7.5).

q.e.d.

Next consider the cross effects of the exact sequence in (9.5). For this let

K K ,M(AIB,n) = M(A,n) 1\ M(B,n -1) and let ,\1rm (A]B,n) = 7rm M(AIB,n)jS

where S' is the subgroup generated by all compositions r.m [( ~ s2n-I ~ M(AIB, n) .

(9.7) Corollary: For dirn (Em K) < 3n - 2 there is a natural exact sequence

o---+ Trp ( A, B, 7l"~S2n-l) ---+ A7l"~+1 M(AIB, n) ---+ A * B * 7l"~_1 s2n-l

~ A®B®1r~s2n-I~ 1r~M(AIB,n)~ ,\1r:;M(AIB,n) ~ 0

Here Trp is the tripie torsion product of Mac Lane [21], see also (7.7) (3). Corollary (9.7) is

the 'cross effect sequence' of (9.5) obtained by the fonnulas (7.7). It is an interesting problem

to compute the boundary operators a in (9.5) and (9.7) only in tenns of 'some structure' of

the homotopy groups 1rt<(Si) of spheres, in particular if K = SO .

(9.8) Remark: There are many papers in the literature concerning the homotopy groups

of Moore' spaces 1rm M(A, n) , see for example [33] and [13], [27]. We here are mainly

interested in the functorial properties of 1rm M(A, n), m < 3n - 2 , wbich are not so weH

understood; an early approach in tbis direction is due to Barratt [2] for m < 2n - 1 .

The functorial properties of the groups 1rm M(A, n) are of special interest for the homotopy

classification of manifolds and Poincare-complexes respectively. Let P: be the class of

(n - 1)Mconnected (2n + k)-dimensional Poincare-complexes.
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(9.9) Examples: Let n ~ 2 . For X E p~ there is a homotopy invariant

where HnX is a finitely generated free abelian group. In fact, X is the mapping cone X ~ Cf
of a map / : s2n-l -+ M(HnX, n) and e(X) = )..-1(/) is given by the isomorphism A
in (9.4). Whence e(X) is a complete homotopy invariant of X , that is for X, Y E P~

there is an orientation preserving homotopy equivalence X ~ Y iff there is an isomorphism

r.p : HnX ;; HnY witb (r.p 0 l)e(X) = e(Y) . We can write the invariant e(X) in tenns
of the cohomology Hn(x) as follows. Since Hn(X) = Hom(Hn(X); Z) we have by (5.5)

the isomorphism

Therefore Xe(X) = (oe, aee) is a quadratic fonn with Oe : nn (X) -+ 1r2n-l sn and with
0ce : Hn(X) X Hn(X) ----+ 1r2n_1S2n-l ;; Z . Here 0ee is just the cup product pairing in X.

Moreover O'e = 'l1 is exact1y the cohomology operation considered by Kervaire-Milnor in 8.2

[20]; (tbe fonnula there is equivalent to the fact that (O'el Qee) is a quadratic fonn, compare
the first equation in (5.l) (2)).

(9.10) Example: For X E P~ (n 2:: 2) we define a new homotopy invariant

which we call the torsion-invariant of X. We obtain r(X) by a homotopy equivalence X ~ Cf
where f : s2n -+ M(Hn+1X, n + 1) V M(HnX, n) . Let r2! E 1r2nM(HnX, n) be given by
the retraction r2 and let r(X) be the image of r2! under the homomorphism

1r2nM(HnX, n) -+-+ >.1r2nM(HnX, n) f'V Hn(X) *' 1r2n-l {sn}

given by (9.6). One can check that an orientation preserving map v : X -+ Y with X, Y E P~

satisfies

(Hn(v) *' 1)(r(X)) = r(Y)

so that r(X) is a weil defined homotopy invariant. For n ;::: 3 the exact sequence (9.6) can

be used for the computation of all possible ! which yield the same torsion invariant This

yields a kind of homotopy classification 'of objects in P~ , (using different invarlants such a
classification is intensively studied in [30], [31], [28], [17], [36]).

(9.11) Examples oe computations: The following list shows some examples of the quadratic
Z-modules 1rm { sn} where we use the notation for indecomposable quadratic Z-modules in
(2.4), (2.11). These exampIes can be deduced from Toda's computations [34]. In the list we

denote a cyclic group Z/n simply by n and we denote a direct sum Z/n EB Z/m by n EB m .
Moreover (n, m) and (n, m, r) are the greatest common divisors.

n,m

2,3

3,5

(k2, 2k)

(k,2)
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3,6 H(2, 1) EB 3 (k,12) (k, 12) EB (k, 2) (k,2)

4,7 Zf EB 3 (k2 ,2k)EB ck (k,24) 0

EB(k,3)

4,8

UID2
0 0 k =1(2)

} (Z/2)P 2 0 k =2(4)
4,9 2EB2 0 k =0(4)

5,9 P(I) (k,2) (k 2 ,2k) 0

5,10 (Z/2)8 (k,2) (k,2) 0

5,11 (Z/2)A EB 2 (k,2) (k, 2) EB (k, 2) (k,2)

5,12 H(I, 3) EB 15 (k,2) EB (k, 15) (k,2) EB (k, 3) (k, 3) EB (k, 8)

EB (Z/3)A EB (k, 8) EB (k, 15)

6,11 Z8 k 0 0

6,12 (Z/2)A EB 2 (k,2) (k, 2) EB (k, 2) (k,2)

6,13 H(2, 1) EB 15 (k,60) (k, 60) EB (k, 2) (k,2)

6,14 (Z/8)f EB 2 (k,2) (k, 2) EB (k, 2) (k,2)

EB (Z/3)8 EB(k2, 2k, 24) EB(k2 , 2k, 24)

6,15 2EB2EB2 (k, 2) EB (k, 2) (k, 2) EB (k, 2) 0

EB (k, 2) EB (k, 2)

The quadratic Z-module zf (see (n, m) = (4,7) ) is given by

zf = (z 0 Z/4 (~) Z (2:.:::;1) Z ElJ Z/4)

and CI. in this line is

{

2 k =0(4), k =F 0(8) ,
CI. = 4 k =0(8) ,

o otherwise.

Moreover für (n, m) = (4,8), (4,9) we use (Z/2)P = [ZP] (?) Z/2 as defined in (2.1).

The computation of the groups in this list is readily obtained by (7.9). Combining the groups
in the list with the exact sequence (9.5), (9.6) we immediately get the füllowing shürt exact
sequences.

(1) Z/ (k, 12) >~ 7r6M(Z/k, 3) ~~ Z( k, 2) ffi Z/k

k =1(2) 0
(2) k =2(4) Z/2 } >~ 7rsM(Z/k,4) ~~ Z/(k,24)

k =0(4) Z/2 EB Z/2
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(3)
k =1(2) 0
k = 2(4) Z/2
k=O(4) Z/2ffiZ/2

}>~ 1rgM(Z/k,4) ~~ { ~/2
Z/2 ffi Z/2

(4)

(5)

Z/(k, 2) >~ 1rlO M(Z/k, 5) ~~ Z/ (2k, k2
)

Z/(k, 2) >~ 1rllM(Z/k; 5) ~~ Z/(k, 2)

By a result of Sasao [27] the sequence (1) is non Splil only far k =0(2) and k/(k, 12) =1(2) ;
in this case ane has 1r6M(Z/k, 3) = 1/2 ffi Z/2k Ei) Z/(k, 12)/2 . Moreover TIpple [33]
showed that (3) is splil and that (4) is non split only for k =2(4) . Finally we deduce

7r12M(Z/k,6) = Z/(k, 12) from the list above. We leave it to the reader to describe further
exampies for the exact sequences (9.5).

§ 10 Homology oe Eilenberg-Mac Lane spaces

We describe a six tenn sequence for the metastable homology groups of Eilenberg-Mac
Lane camplexes. This sequence is a kind of Eckmann-Hilton dual of the corresponding
exact sequence for metastable homotopy groups of Moore spaces in § 9. Moreover we use

the oPerators in Whitehead's certain exact sequence for a map which carries the homolopy
groups of Moore spaces to the homology groups of Eilenberg-Mac Lane spaces.

Let R c H An be a small subringoid, see (8.1). A homotopy abelian H -space U, U E HA ,
gives us the JtOP -module

~,U]' : ROp ~ Ab

which carries X E R to the abelian group of H-maps [X, Ul' = H A(X, U) which is a
subgroup of [X, U] ~The quadratic R-module Hm {E, G} associated to (8.4) (4) and the

tensor product (3.1) yield the natural homomorphism (m < 3/n)

(10.1)

as follows. Für a E [X, Ur, b E [Y, ur, a E Hm(X, G), ß E Hm(X A Y, G) let

A(a C9 a) = a.(a) and A([a, b] C9 ß) = H(p.).(a 1\ b).(ß) , cümpare (8.6). The image of A is

the subgrüup of Hm(U, G) generated by all elements a.(a) where a : Xl x ... X XI; ~ U
is an H-map, Xi E R, k 2: 1 , and where a E Hm(XI x ... X XI;, G) .

(10.2) Lemma: A in (10.1) is a weil defined natural homonwrphism. Moreover A is an

isomorphism if U = Xl X .. , X X k , Xi E 11for i = 1,"', k and if R is afull subringoid
of HA .

n

Similarly as in (9.2) the lemma is a cansequence of (4.4).

(10.3) Remark: A natural description of Hm(I«(A, n), G), m < 3n , can be obtained by .
(10.1). For this let R be the full homotopy category consisting of elementary Eilenberg-Mac
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Lane spaces K(1, n) or K (Z/pi, n), p =prime. Then (10.1) yields the natural homomorphism

(n ~ 2) -
A : [ß, K(A, n)] 0R Hm{R, c} ~ Hm(K(A, n), C)

which is an isomorphism for all A E Ab. This follows essentially from (10.2), compare (4.6).

We clearly have [ß, K(A, n)] = [ß, [«(A, n)]' .

We now consider a special case of A in (10.1). For this let R ;; Z be the full subcategory

consisting only of [«(I, n) and let U = K(A, n) . Then Hm {R, C} is the quadratic Z

module (see (8.6»)

H;;{n} = (Hm(K(Z,n),G)!! Hm([«(Z,n),G) ~ Hm(K(Z,n),G))

and we get by (10.1) the natural homomorphism

(10.4) A: A 0z H~{n} ~ Hm(I«(A, n), G)

which is an isomorphism if A is free abelian; here A needs not to be finitely generated. In fact

A is the tensor approximation of the functor Ab ~ Ab which carries A to Hm(K(A, n), G) ,

compare (4.8). For G = Z we set Hm{n} = H~{n} . Since K(Z,2) = CPoo we

readily see that H4{2} ;; Zr. Therefore we derive from (10.4) the natural homomorphism

A : r(A) = A 0 Zr ;; H4 K(A,2) which is actually an isomorphism for all A , compare

[16]. The following list shows some examples of quadratic Z-mcxlules Hm{n} . We use in

this list the notation for indecomposable quadratic Z-modules in (2.4), (2.12); the examples

can be deduced from the computations in [16].

m n Hm{n} Hm(K(A, n))

3 2 0 0

4 2 Zr r(A)

5 2 0 R(A)

5 3 Z/2 Z/2 C9 A

6 3 ZA Z/2 * A ffi A2(A)

7 3 Z/3 Z/3 ® A EB f2(A)

8 3 (Z/2)0 1/3 * A ffi (®2 A) 0 1/2

7 4 0 Z/2 * A

8 4 Zr EB Z/3 Z/3 0 A ffi f(A)

9 4 0 Z/3 * A EB R(A)

9 5 Z/2 ffi Z/3 (1/2 ffi Z/3) 0 A

10 5 ZA (Z/2 ffi Z/3) * A EB A2(A)

In general the map A in (10.4) is not an isomorphism. As an analogue of theorem (9.5) we

abatin the following result. Again we use the derived functors in (7.4).
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(10.5) Theorem: Let m ~ 3n - 3 . Then there is a natural map K, : Hm(K(A, n - 1), G) ~

A *H~ {n} such that Ko Hm (K (A, n - 1), G) = kernel (K,) is embedded in the natural exact
sequence

o+- A @' H~{n} +- ,.Hm-I(K(A, n - 1), G) +- A @" H;;+l {n} +

A *H~ {n} t- Hm(K(A, n - 1), G) J- ,.Hm(K(A, n - 1), G) +- 0

where i is the inclusion.

In the stable range m < 2n - 2 this yields just the short exact sequence

(10.6) A * Hm(K(Z, n), G) +-t... Hm(K(A, n - 1), G) +-< A ® H m+l (K(Z, n), G)

which is a kind of Eckmann-Hilton dual of (9.6). Using the fonnulas in (7.7) it is easy to
obtain the exact "cross effect sequence" of (10.5), this is a sequence of a similar nature as
in (9.7).

Proor of (10.5): Tbe theorem is a special case of (3.12) in [9]. For this let Xl ~ X o~~ A

be a short free resolution of A and let 9 : K (X1, n) ~ K (X0, n) be a map which induces
d. Then the fiber of 9 is the Eilenberg-Mac Lane space K(A, n - 1) = Pg • Therefore we
can apply (3.12) [9]. Using the isomorphism .,\ in (10.4) (where we replace A by Xo and

Xl respectively) we get the isomorphisms

HO {H~} *(g) '"oJ A *H~{n} ,
HI{H,;{}*(g) '"oJ A0' H~{n} ,
H2{ H~} *(g) '"oJ A~" H~{n} .

Compare the definition in (7.4). Whence (10.5) is just a special case of (3.12) [9].

(10.7) Examples: We describe some applications of (l0.5) where we use the list in (10.4).
Since H7{4} = 0 we obtain the isomorphism

A 0' Zr ffi A &; Z/3 = A 0' H s(4)
'"oJ

"H7 ]«A, 3)
= H7K(A,3):: OA ffi A 0 1/3

which corresponds to the isomorphism A rg/ Zr ;; OA . Since H7 {3} = 1/3 we have

A (6)" H7 {3} = 0 so that ,.HsK(A, 2) ;; A ®' ZA where ZA = H6{3} . Moreover we have

H4{3} = 0 so that KoH4I«A,2) = H4K(A,2) ;; r(A) . Therefore we derive from (l0.5)
the exact sequence

A CO Z/2 +-+- r(A) +-< A 0" ZA /!- A *Z/2 +-t... R(A) +-< A 0' ZA

which is the union of two natural short exact sequences. By (2.12) (4) this shows that there
are natural isomorphisms A @" ZA ;; 8 2(A) ;; A &; Zs .

(10.8) Remark: 1. Decker got a fonnula for HmK(A, n), m < 3n , in tenns of a list of
homology operations Q' , see m (4.3) [14]. This list of homology operations (based on results

of Cartan [11]) allows in principle the computation of HmI«A, n) as a functor and hence

we can derive the quadratic Z-module Hm {n} . The exact sequence (10.5) still is helpful for

understanding the somewhat intricate functors nq and Rq which appear in Decker's fonnula.
They generalize the functors n and R of Eilenberg-Mac Lane [16], that is 0 0 = fl, Ro = R .
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We now describe a connection between homotopy groups of Moore spaces and homology

groups of Eilenberg-Mac Lane spaces. To this end recall that the Hurewicz homomorphism

h is embedded in a long exact sequence [37]

which is natural for simply connected spaces X. For an abelian group A we have the canonical

map (n ~ 2)

k : M(A, n) -Jo K(A, n)

which induces the identity Hn(k) = lA of A. This map induces the natural homomorphism

(10.9)

where we use i and b in the exact sequence above. I.H.C. Whitehead [37] showed that

Q1 is an isomorphism for m = n + 1. In the metastable range Q1 is part of the following
commutative diagram where we use~M(A,n - 1) = M(A, n), m < 3n - 2 .

7t"mM(A, n) ~ 7t"mM(A, n) 1\ M(A, n - 1) ~ 7t"mM(A, n)
(10.10) 1 Q1 1 Q2 1 Q1

Hm+1K(A, n) ~ Hm+1K(A, n) 1\ K(A, n) ~ Hm+1K(A, n)

The maps H and P are defined as in (8.5) and (8.6) respectively. The map Q2 is defined by

Q2 = h7t"m+1(k 1\ k)~ where ~ is the suspension operator and where h is the Hurewicz map.

Whence Q2 is an isomorphism for m = 2n - 1 . The commutativity of the diagram shows
that Q = (Q1, Q2) is a map between quadratic Z-modules. We obtain the commutativity of
(10.10) by the homotopy commutativity of

(10.11)
M(A,n)

1 k
j«A, n)

~' v
-+ M(A, u) V M(A, n) -+

1 k'
j«(A, n) x ]«A, n)

M(A,n)
1 k

K(A, n)

Here /-L' and p are the comultiplication and multiplication respectively and k' is given by k V k
and the inclusion. By applying the functor r m to (10.11) we essentially get (10.10).

For any (n - l)-connected space X with HnX ;;; A we have maps

(10.12)
k' 1."

k : M(A, n) -Jo X -Jo K(A, n)

which induce isomorphisms in homology Hn . Here the homotopy dass of k" is unique, the

homotopy class of k' , however, is not' unique. From (10.10) we derive for m < 3n - 2

the commutative diagrarn

A®7t"m{sn} -+ A®Hm+1{n}

(10.13)
1). 1).

7t"m M (A,n) k~l fmX b-lk~
Hm+1K(A,n)--+

Ql

which shows that r mX is non trivial if Q1 is non trivial. The following lemma gives

information on part of the kernel of Q1 .
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(11.1)

(11.4)

(10.14) Lemma: Let Q' E 1rm (M(A, n)) be a map which admits afactorization Q' : sm ~

y ~ M(A, n) where Y is n-connected and dim(Y) :::; m - 1 . Then we have Q}(a) = 0 . In

particular we have Q 1([e, 11]) = 0 for all Whitehead products [~, 11] with ~ E 1rtM(A, n), t >
n .

(10.15) Example: All arrows in (10.13) are isomorphisms for n = 2, m = 3 . Moreover

the map

QI : 1r4M(A,2) ~ HsK(A, 2) ;;;; R(A)

is surjective and its kernel is the subgroup S in (9.5). Hence we have the natural isomor

phisms
A.' Zr ;; >.7r4M(A,2) .:: HsK(A, 2) ;;;; R(A) ,

compare (9.6).

§ 11 Cohomology oe EileDberg-Mac LaDe spaces

Here we obtain a six tenn exact sequence for the cohomology groups of Eilenberg-Mac Lane

spaces in the metastable range.

Let ReHA be a small ringoid, see (8.I). A homotopy abelian H -space gives us the
- n

ROP-moduie ~,Ur as in (10.1). Now the quadratic ROP-moduies Hm{R,G} and 1rj({R}
associated to the functors (8.4) (3) and (8.4) (2) resPeCtively yield the natural homomorphisms
(m < 3n, resp. hodim(flmK) < 3n)

A: Hm(U, C) ~ Hom~op (~, ur, H m
{ R, c}) ,

A: 1rj((U) ~ Hom~op (~, ur, 1rj({ R})

Compare (5.5). By (5.6) we know

(11.2) Proposition: The homomorphisms A in (11.1) are isomorphisms ifU = Xl x··· X X r

is a finite product with Xi E R for i = 1,· .. , r and if R is a Jull subringoid of HA.
- - n

(11.3) Remark: Let R be the ringoid of elementary Eilenberg-Mac Lane spaces as in (10.3).

Then (11.1) yields the natural homomorphism

A: 1rj((K(A, n), C) ~ Hom~op (~, K(A, n)], 1rj({ R})

which is an isomorphism if A is finitely generated.

We now consider a special case of A in (11.1). For this let R ;; Z be the full subcategory

consisting only of f«(Z,n) and let U = K(A,n) . Then Hm{H,G} and 1rK{R} are the

quadratic Z-modules

Ha{n} = (Hm(K(Z, n), C) ~ Hm(K(Z, n) 1\ K(Z, n), G) 1: Hm(K(Z, n), C)) ,

1rK{n} = (1rKK (Z, n) .& 1rKK (Z, n) 1\ !((Z, n) ~ 1rKK (Z, n))

respectively defined as in (8.6). Now (11.1) yields the natural homomorphisms

A: Hm(K(A,n),G) ~ Homz(A, Hc{n})

A: 1rj((K(A,n)) ~ Homz(A,1rK{n})

37



which are isomorphisms if A is a free abelian group (here A needs not to be finitely generated).

In the next result we use the derived functors in (7.4).

(11.5) Theorem: Let m ::; 3n - 2 . Then there is a natural map I\, : Ext(A, He{n}) -+

Hm(I«(A,n -1),G) such that ,..Hm(I«(A,n -1),G) = cokernel(lC) is embedded in the
natural exact sequence

0-+ Hom'(A,Hc{n}) -+ ,..Hm-1(K(A,n -l),G) -+ Hom"(A,Hc+l{n}) -+

Ext(A,Ho{n}) ~ Hm(K(A,n-1),G) ~ ,..Hm(K(A,n-1),G) -+ 0

where q is the quotient map.

In the stable range m < 2n - 2 this sequence is equivalent 10 the short exact sequence

(11.6) 0 -+ Ext(A,Hc{n}) -+ Hm(K(A,n -1),G) -+ Hom(A,Hc+l{n}) -+ 0

where He {n} = H m (K (Z, n), G) is an abelian group. Theorem (11.5) is a special case of

the next result

(11.7) Theorem: Let hodim (nmK) ::; 3n - 2 . Then there is a natural map I\, :

Ext(A,1rK{n}) -+ 'TrKK(A,n -1) such that ,..1rKK(A,n -1) = cokernel(K) is embedded
in the natural exact sequence

0-+ Hom'(A,'Trj({n}) -+ ,..1rK+IK(A,n -1) -+ Hom"(A,1rK-1{n}) -+

Ext(A,1rK{n}) ~ 'Trj(I«(A,n -1) ~ ,..1rj(K(A,n -1) -+ 0

where q is the quotient map.

Again it is obvious how to describe the "cross effect sequence" of (11.7) by the fonnulas

in (7.7).

Proor of (11.7): The theorem is a special case of (3.7) in [9]. For this let 9 be given as in

the proof of (10.5) with Pg = K(A, n - 1) . Using the isomorphism " in (11.4) (where we
replace A by X o and Xl respectively) we get the isomorphisms

Ho {'Trj(}(gOP) = Ext(A,1rj({n}),
HI{1rj(}(gOP) = Hom'(A,1rj({n}) ,
H2 {1rj(} (gOP) = Hom"(A,1rj({n}).

Compare the definition in (7.4). Now i in (3.7) [9] yields the homomorphism K in (11.7).
Therefore (11.7) and also (11.5) is just a special case of (3.7) [9].

q.e.d.

Appendix A: Quadratic derived functors

In this appendix we associate with a quadratic R-module. Machain functor and a cochain

functor. If we apply these functors to a projective (resp. injective) resolution we get the

quadratic derived functors which coincide with the classical derived functors in case Mee = 0 .

We understand that Dold-Puppe [15] obtained derived functors of non additive functors which

as weil generalized the c1assical derived functors of an additive functor; the construction of the

quadratic derived functors below is different and reHes on the structure of a quadratic module.
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Let R be a ringoid with a zero object. An R-module M yields the foHowing chain functors

which are as weH denoted by M

(A.I) M : !LI ~--t Ab.1 ~ and M: R· I ~--t Ab •I ~ ,

(2)

compare the notation in (6.1). For a chain complex X* in!L we define M(X*) simply by
setting M(X.)n = M(Xn) . The differential d. in M(X.) is induced by the differential d in
X., d. = M(d) . Similarly we get induced chain maps M(F) with M(F)n = M(Fn) and

induced chain homotopies M(a) with M(a)n = M(an) . Since M is an additive functor one
readily observes that this chain functor is weH defined. In the same way one gets the cochain

functor M which carries X· E R* to the cochain complex M(X·) .

Now let M be a quadratic R-module. We associate with M the guadratic chain functors M

as in (A.I) which again are simply denoted by M , see (A.2) and (A.3). In fact, if Mee = 0
these chain functors coincide with the additive functors above.

(A.2) Definition: For X. in R. the chain complex C. = M(X.) is given by the abelian

groups (n ~ 2)

{

Co = M(Xo)
(1) Cl = cok{(P, -(1, d).) : M(XI, Xl) --t M(Xd EI1 M(XI, Xo)}

Cn = cok{P EI1 (1, d). : M(Xn , X n ) tl1 M(Xn,XI) --t M(Xn) ffi M(Xn , Xo)}

Tbe differential d = dn : Cn --t Cn - l is induced by the maps

{
dl = (d., P(d, I).) ,
dn =d.E9(d,l)., n~2.

For achain map F : X. --t Y. we get the induced chain map M(F) : MX. --t MY: by

(3)

Finally achain homotopy a : F ~ C, an : X n- l --t Yn in R yields achain homotopy
=+

Mo: : MF ~ MG by

(4) {
(Mah = ((ad., (al, Fo).H) ,
(Ma)n = (an). EB (an, Fo)., n ;;::: 2 .

Tbe next definition is dual to (A.2).

(A.3) Definition: For X· in R· the cochain complex C· = MX· is given by the abelian

groups (n ~ 2)

Tbe differential d = dn : on --t cn+l is induced by the maps

(2) dl = (d., (d, l).H), a,n = d* EB (d, 1)*, n ~ 2 .
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For achain map F : X· ~ Y· we get the induced chain map M(F) : MX· ~ MY· by

(3)

Finally achain homotopy 0' : F ~ G (0'": Xn+l ~ Y") in R· yields achain homotopy

MO' MF ~ MG by

(4) (Ma)o = ((aO).,P(aO,FO).), (Ma)" = (0'")* El1 (a",FO)., n ~ 1 .

(A.4) Proposition: The definitions (A.2) and (A.3) yield weIl defined functors M : 111 ~~
Ab.1 ~ and M : R·1 ~~ Ab· / ~ respectively.

The functors M in (AA) are quadratic, the eross effect of these functors is described below.

The proof of (A.4) is similar to the proof of (6.4), in fact (6.4) can be used for the 1

dimensional part of the proposition, compare (A.5) below.

We point out that the definition of the quadratic chain functors reHes on the structure maps

H and P of the quadratic R-module M ; a functor R ~ Ab which is merely quadratic is not

appropriate for the definition of the functors in (AA).

(A.5) Remark: The quadratic chain functors M. and M· in (6.3) are related to the quadratic

chain functors M in (AA) as folIows. Let dl : Xl ~ X o and cJÜ : XO ~ Xl be given by

X* and X· respectively. Then the I-dimensional part of MX. , resp. of M X* , coineides

with the map

M1(dl)/boundaries ~ Mo(dl ), resp. MO(lf) --t cycles C MI (cf) ,

compare the definition in (6.3) and (A.2), (A.3). This shows that for Xi = 0, Xi = 0 , i ~ 2 ,

one has isomorphie homology groups Bi MX. = H iM*(d1), Bi MX· = BiM· (tfJ) for

i = 0,1. The homology BzM.(d1 ) and BZM·(JJ) ,however, cannot be obtained by MX*
and MX· respectively.

We now assume that the additive category A is an abelian category with enough projectives

and injectives respectively, for example A - M (jJJ . The homology of chain complexes

in A is defined. We say that X. is a projective resolution of X E Ob(4) if achain map

c; : X. --t X in 4,. is given (which induce an isomorphism in homology) where all Xi of

X* are projective in· A and where X is the chain complex concentrated in degree 0 . On the

other hand X· is an injective resolution of X if achain map c : X --t X· in A* is given

(which induees an isomorphism in cohomology) where all Xi of X· are injective in A . It
is weIl known that the choice of res01utions X., X* yields functors i : A --t A· / ~ and

j : A --t A. / ~ which are weIl defined up to canonical isomorphisms.

(A.6) Definition: Let A be an abelian category as above and let M : A --t Ab be a quadratic

functor. Then (3.5) shows that M yields a quadratic A-module M = M {A} as weH denoted

by M. Using the resolution functors i,j above and using (A.4) one gets functors

(1)

The n - th (co)homology of these functors yields the guadratic derived functors L"M : A ~
Ab , Rn M : L1--t Ab respectively, n ~ 0 . Für X E Ob(4) one has -

(2)
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where X*l X* are resolution as above. The chain complexes MX*l MX* are defined as
in (A.2), (A.3).

(A.7) Remark: In case M in (A.6) is an additive functor, that is M ee = 0 l the derived
functors coincide with the classical derived functors of M, see for example [12], [18]. For

a quadratic functor M Dold-Puppe [15] as weil defined derived functors; their construction,
however, is different to the one in (A.6) and is available for any non additive functor A --t M ,
see (6.5) and (7.5). Dur definition in (A.6) is adapted especially to quadratic functors. In
degree n = 0,1 the derived functors above coincide with the derived functors of Dold-Puppe.

(A.8) Definition: Let A be an abelian category and let M : A --+ Ab be a quadratic functor.

We say that M is guadratic right exact if each exact sequence Xl ~ Xo .i.t X --+ 0 in A

induces an exact sequence

(d. P(d 1) )
M(X1 ) EB M(XIIXo) '--+'. M(Xo)~ M(X) --+ 0 .

We say that M is quadratic left exact if each exact sequence 0 --+ X ~ X o ~ Xl in A
induces an exact sequence

The definitions immediately imply as in the classical case:

(A.8) Lemma: Let M : A --+ Ab be quadratic right exact then one has the natural isomorphism

M ,... Lo M . Dually ifM is quadratic left exact one has the natural isomorphism M ;; RO M .

As examples of quadratic derived functors we obtain the following quadratic Tor and Ext
functors for a small ringoid R, n ~ 0 .

(A.9)
ToJ : M (fJ) op x QM (JJ) --+ Ab

ExtE:M(fjJ°P x QM{JjJ --+ Ab .

For M in QM(fjJ these functors are derived from the quadratic functors

(1)

(2)

that is, for a projective resolution X* of X in M (JrP) and for a projective resolution X.
of Y in M (JJ) we set

(3)

(4)
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In (4) we consider Y. as an injective resolution in M(jJJ°P and we use (8.3). Clearly the

grüups (3), (4) are trivial für n ~ I in case X and Y are projective objects in A . Tbe functors

(A.9) are quadratic in the first variable and additive in the second variable.

(A.I0) Proposition: The functor fZ)R M is quadratic right exact and the junctor HOffi,E(, M)
is quadratic left exact so that we häVe natural isomorphisms (see (A.8)) -

R 0
TOrQ(X, M) = X ®,E M and Ext,E(Y' M) = HOffiR(Y, M) .

In case M is an R-module, that is M ee = 0 , the Tor and Ext groups above coincide with

the classical groups, see [18].

(A.ll) Example: Let R = Z be the ring of integers and let M be a quadratic Z-module. For an

abelian group A one gets (see (7.4)) Torf(A, M) = A *' M and Exti(A, M) = Ext'(A, M) .
This follows since dA in (7.4) is a projective resolution of A , see (A.5). Clearly Tor~ = 0 =
Extz for n ~ 2 since the chain complex dA is I-dimensional.

Appendix B: The cross efTect oe guadratic derived functors

We introduce biderived functors which describe the cross effects of the quadratic derived

functors above. Moreover we discuss various exact sequences for these functors. We assume

that R is a ringoid with a zero object

(8.1) Definition: Let M be an R x R-module, see (1.7). Then we define the additive functor

(as weIl denoted by M ) as foIlows. For chain complexes X., Y. in !1 we get G. =
M(X., Y.) by (n ~ 2)
(1)

{

Co = M(Xo, Yo)
Cl = cok{((l, d).; -Cd, 1).) : M(X}, Yi) ~ M(X}, Yo) E9 M(Xo,Yd}
Gn = cok{(l, d). EB (d, 1). : M(Xn, Yi) EB M(X}, Yn) ~ M(Xn,Yo) EB M(Xo,Yn)}

The differential d = dn : Cn ~ Cn-I is i.ndu~ by the maps

(2) {
d1 = ((d, I)., (1, d).) ,
dn = (d, 1). EB (1, d). , n ~ 2 .

(3)

For chain maps F : X. ~ X;, G: Y. ~ Y: we get the induced chain map M(F ® G) :
M(X., Y.) ~ M (x;, V:) by

{
M(F &J G)o = (Fo, Go).
M(F, G)n = (Fn,Go). EB (Fo, Gn)., n ~ 1 .

Finally, chain homotopies a : F ~ F', ß : G ~ G' yield achain homotopy M(a,ß)
M(F ® G) ~ M(F' fZ) G') by

(4) {M(a,ßh = ((a}, Go)., (FO,ßI).) ,
M(o:, ß)n = (an, Go). EB (Fa, ßn)., n ~ 2

The next definition is dual to (B.I).
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(2)

(B.2) Definition: We associate with an R &; R-module M the additive functor
- -

(as well denoted by M ) as follows. For cochain complexes X·, Y· in R· we get

C· = M(X·, Y·) by (n ~ 2)
(I)

{

Co = M(XO,YO)
Cl = ker{ «1, d)., -(d, 1).) : M(X I, y O) ~ M(XO, y I) ~ M(XI, yI)}
on = ker{ (1) d). ffi (d, 1). : M (Xn, yO) ffi M (xO, yn) ---7 M (Xn, yI) ffi M (X 1 , yn) }

The differential d = dn : on ---7 C n+I is induced by the maps

{
dl = «d, 1)., (1, d).) )
dn = (d, 1). EB (1, d). , n ~ 2 .

For chain maps F : X· ---7 X'·, G: Y· ---7 y'. we get the induced chain map

M(F 0 C) : M(X·, Y·) ---7 M (X'·, yl.) by

{
M(F &; C)o = (FO, CO). '

(3) M(F, C)n = (Fn, CO). ffi (FO, cn)., n ~ 1 .

Finally chain homotopies a : F ~ F I
, ß : C ~ GI yield achain homotopy M(a, ß)

M(F &; G) ~ M(F I ® G') by

(4) {M(a,ß)O = ((oO,CO)., (Fo,ßO).) ,
M(o,ß)n = (an, CO). EB (Fo,ß)., n ~ 1 .

As in (8.4) one can readily check:

(8.3) Proposition: The functors in (B.I) and (B.2) are well defined and additive.

The crucial property of the functors (B.I) and (B.2) is described by the next result.

(B.4) Theorem: Let M be a quadratic R-module and let M(X.IY.) antI M(X·IY·) be cross

effects 01 the quadratic functors M in (A.2) anti (A.3) respectively. Then there are natural

isomorphism

olchain complex. Here M ee is the R® R·module given by M, see (3.1) and (1.7), and

Mee(X., Y.) and Mee(X·, Y·) are defined by (B.I) and (B.2) respectively.

Similarly as in (A.6) we can use the functors in (B.l), (B.2) for the definitions of derived

functors. Let A be an abelian category with enough projective and injectives.

(B.5) Definition: Let M be an A &; A-module. Using the resolution functors i : A ---7 4./ ~
and j : A ---7 A· / ~ one gets the additive functors

The n - th (co)homology of these functors yields the biderived functors
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respectively, n 2:: 0 . For X, Y E Ob(4) one has

(2) { (LnM)(X, Y) = HnM(X., Y.) ,
(Rn M)(X, Y) = Hn M(X·, Y·)

where X., Y. (resp. X·, Y· ) are projective (resp. injective) resolutions of X, Y. The ehain
eomplexes M(X., Y.), M(X·, Y·) are defined in (B.I), (B.2).

As a eorollary of (B.4) one gets immediately.

(B.6) Corollary: Let M be a quadratic A-module. Then the quadratic derivedfunctors (A.6)

have the cross effects

(LnM)(XIY) = (LnMee)(X, Y)

(Rn M)(XIY) = (Rn Mee)(X, Y)

where M ee is the A X A-module given by M.

In addition to (B.6) one gets the following natural exact sequenees for quadratic derived
funetors, they correspond to the classical exaet sequences for derived funetors in ease
Mee = 0 . To this end we consider a short exact sequenee

(B.?)

in A and maps S -t S' between such sequences.

(B.8) Theorem: Let M be a quadratic A·module. Then S in (B.7) yields thefollowing natural
commutative diagram in which the rows and columns are long exact sequences (n E Z) .

! 1
Ln+1Mee (X, Y) LnMee(X, Z)

18 1
Ln+l M q5 ~ LnMX .s LnMY

a
Ln-1MX-+ -+ LnMq5 -+ -+

1 1 11 1 1
a LnMi 5 -+ LnMY

q: a Ln_1Miß-+ Ln+IMZ -+ -+ LnMZ -+ -+

1 18
LnMee(X, Z) Ln-1Mee(X, Z)

1 1
We leave it to the reader to write down the dual diagram for right derived functors Rn j for this

we simply replace L. by R*. in such a way that 8 raises the degree by 1 . If Mee = 0 we see
that the rows of the diagram are isomorphie, in this ease the row eoineide with the classieal

exaet sequence for left derived functors, see IV § 6 [18]. In ease the sequence S is split all
boundaries 8 are trivial and the remaining short exact sequences are splil, this yields (B.6).

Proof of (B.8): We can choose a short exact sequence of projective resolutions

(1)

of S, compare the proof of (IV. 6.1) [18]. As a module we have Yn = X n EB Zn . The
differential of ~ is given by

(2)
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Here d denotes the differential of X. and Y. respectively. We now derive from (1) the

following commutative diagram in which rows and columns are short exact sequences of

chain complexes

MX.
v
!

ker(q.)

!
!

M(X., Z.)

I. Y
>-t M.

11
11

>-t MY.

M(X., Z.)
V

~j

-t-t cok(i.)
!
!

-t-t MZ.
q.

The maps j are weil defined chain maps since we have (2) for the boundary in Y* . We
now set

(4)

Now (B.8) is obtained by the long exact sequ~nces associated to short exact sequences of
chain complexes.

There are the following examples of biderived functors. We associate with M in M (lJ:. @!J)
the additive functors

(B.9)

(1)

which carry the object (X, Y) to (X C$ Y) tS.!10.!1 M and HOffiR@R(X ® Y, M) respectively,
compare (4.2) (3) and (5.2) (3). The biderived functors of (B.9) are denoted by

R@R ()To~ =(X, Y, M) = Ln ®!Jf~R M (X, Y) ,

(2)

Using (9.6) Olle obtains for a quadratic R-module M the cross effects (n 2:: 0)

(3)

(4)

R R®R
To~(XIY,M) = To~ =(X, V, Mee ) ,

As an example of (1) we get for R = Z the tripie torsion product of Mac Lane [21]

(5) Tor~(X, Y, M) = Trp(X, Y, M) = BI (dx @ dy, M) ,

compare (7.7) (3). We can also apply theorem (B.8) for the functors in (3), (4); this leads for

R = Z to the following results on the functors in (7.4), see (A.II).
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(B.IO) Theorem: Let M be a quadratic Z·module and let S : 0 -. X ~ Y ~ Z -. 0 be

an exact sequence oj ahelian groups. Then one has the jollowing conunutative diagrams in
which the rows and the rectangle sequences oj broken arrows are exact sequences oj ahelian
groups. Moreover these diagrams are natural in S.

Hl(dx 0 dz, M ee )

r
o-. i *' M -. Y *' M

r
X*' M

____8 __ -.

q. Z 'M 8
-4 * -4

f- - - -0 f- - - -

X0M

!
i0M -+ Y0M.!=. Z0M -+ 0

!
X 0 Z 0Mee

H1(dX 0 dz, M ee )

!
o~ Ext(i, M) f

. !
Ext(X,M)

f- - _a - - - - - Hom(X,M)

r
q. 8 q

Ext(Y,M) ~ Ext(Z,M) f- Hom(i,M) f- Hom(Y,M) ~ Hom(Z,M) f- 0

r
- - -- -+ 0 - - - - -+ Hom(X 0 Z, M ee )

In case M ee = 0 the diagram above correspond exactly to the classical six tenn exact

sequences. We can apply these exact sequences for example if M is the quadratic Z-module

M = Zr . In this case the torsion product Y *' Zr = R(Y) corresponds to the functor R
of Eilenberg-Mac Lane, see (10.15).
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