# Quadratic functors and metastable homotopy 

Hans Joachim Baues

Max-Planck-Institut für Mathematik
Gotffried-Claren-Straße 26
D-5300 Bonn 3

Germany

# Quadratic functors and metastable homotopy 

Hans Joachim Baues

For the fiftieth birthday of Steve Halperin

## Contents:

§ 1. Modules
§ 2. Quadratic Z-modules
§ 3. Quadratic $\underline{\underline{R}}$-modules
§ 4. The quadratic tensor product
§ 5. The quadratic Hom functor
§ 6. The quadratic chain functors
§ 7. Quadratic functors induced by a quadratic Z-module
§ 8. Quadratic homotopy functors
§ 9. Homotopy groups of Moore spaces
$\S$ 10. Homology of Eilenberg-Mac Lane spaces
§ 11. Cohomology of Eilenberg-Mac Lane spaces

Appendix A: Quadratic derived functors
Appendix B: The cross effect of quadratic derived functors

In this paper we develop the quadratic homological algebra which is needed for the metastable range of homotopy theory. On the one hand we study quadratic functors and their derived functors (§ $1 \ldots \S 7$ and Appendix A, B); on the other hand we describe applications in homotopy theory (§ 8 ... § 11).
Let $\underline{\underline{\operatorname{Add}}}(\underline{\underline{R}})$ be the additive completion of a ringoid $\underline{\underline{R}}$ and let $\underline{\underline{A b}}$ be the category of abelian groups. We classify quadratic functors by "quadratic $\underline{\underline{R}}$-modules", see (3.1).
Theorem (3.7): There is a $1-1$ correspondence which carries a quadratic functor $F$ : $\underline{\underline{\text { Add }}(\underline{\underline{R}})} \rightarrow \underline{\underline{\text { Ab }}}$ to a quadratic $\underline{\underline{R}-m o d u l e ~} F\{\underline{\underline{R}\}}$. This correspondence yields an equivalence of categories.
We are especially interested in the case when $\underline{\underline{R}}$ is a ring $R$ (then $\underline{\underline{A d d}}(R)$ is the category of finitely generated free $R$-modules) or when $\underline{\underline{R}}$ is the ringoid $\underline{\underline{C y c}}$ which is the full subcategory of $\underline{\underline{A b}}$ consisting of cyclic groups $\mathbf{Z} / p^{i}$ of prime power order and $\mathbf{Z}$ (then $\underline{\text { Add }}(\underline{C y c})$ is the category of finitely generated abelian groups). But also the topological ringoid consisting of elementary Moore spaces $M(\mathbf{Z}, n)=S^{n}$ and $M\left(\mathbf{Z} / p^{i}, n\right)$ is important for the computation of homotopy groups of Moore spaces, see (9.3).
In case the ringoid $\underline{\underline{R}}$ is the ring $\mathbf{Z}$ of integers a quadratic $\mathbf{Z}$-module is the same as a $Q$ module where $Q$ is the ring described by generators and relations in (2.2). The quadratic
functor $\operatorname{Add}(\mathbf{Z}) \rightarrow \underline{\underline{A b}}$, corresponding to $Q$ by (3.7), is the direct sum of the tensor square $\otimes^{2}$ and the quadratic construction $P^{2}$ in (2.11).
For the proof of theorem (3.7) we use the quadratic tensor product $A \otimes_{\underline{\underline{R}}} M \in \underline{\underline{A b}}$ where $A$ is an $\underline{\underline{R}}^{o p}$-module and where $M$ is a quadratic $\underline{\underline{R}}$-module, we also introduce the quadratic Homfunctor for which $\operatorname{Hom}_{\underline{\underline{R}}}(B, M) \in \underline{\underline{A b}}$, see $\S 4$ and $\S 5$. For quadratic functors $F: \underline{\underline{A b}} \rightarrow \underline{\underline{A b}}$ and $G: \underline{\underline{A b}}^{o p} \rightarrow \underline{\underline{A b}}$ one has the quadratic approximations (4.7), (5.7)

$$
\begin{aligned}
& \lambda: A \otimes \mathbf{Z} F\{\mathbf{Z}\} \rightarrow F(A), \\
& \lambda^{\prime}: G(A) \rightarrow \operatorname{Hom}_{\mathbf{Z}}(A, G\{\mathbf{Z}\})
\end{aligned}
$$

which are natural in $A \in \underline{\underline{A b}}$. Here $F\{\mathbf{Z}\}$ and $G\{\mathbf{Z}\}$ are quadratic $\mathbf{Z}$-modules corresponding to $F$ and $G$ respectively. For the classical functors

$$
F=\otimes^{2}, P^{2}, \Lambda^{2}, S^{2}, \Gamma
$$

the quadratic approximation $\lambda$ is an isomorphism, see (2.13) and (4.8). We introduce derived functors of the quadratic tensor product $\otimes$ and the quadratic Hom-functor respectively in $\S$ 7 and in Appendix A and B. They only partially coincide with the derived functors in the sense of Dold-Puppe [15].
We need such quadratic derived functors of $\otimes$ and Hom for new natural six term exact sequences in homotopy theory. The sequences are useful for the computation of the homotopy groups $\pi_{m} M(A, n)$ of a Moore space and the homology $H_{m} K(A, n)$ and the cohomology $H^{m} K(A, n)$ of an Eilenberg-MacLane space in the meta stable range. In particular the naturality of these exact sequences yields insight in the functorial properties of these groups.

We now describe the exact sequence for $\pi_{m} M(A, n)$; the sequences for $H_{m} K(A, n)$ and $H^{m} K(A, n)$ are of a similar nature, see theorem (10.5) and theorem (10.6).
Theorem (9.5): For $m<3 n-2$ there is a natural exact sequence $(A \in \underline{\underline{A b}})$

$$
\begin{aligned}
0 \rightarrow A *^{\prime} \pi_{m}\left\{S^{n}\right\} \rightarrow \lambda \pi_{m+1} M(A, n) \rightarrow A *^{\prime \prime} \pi_{m-1}\left\{S^{n}\right\} \xrightarrow{\partial} \\
A \otimes \pi_{m}\left\{S^{n}\right\} \rightarrow \pi_{m} M(A, n) \rightarrow \lambda \pi_{m} M(A, n) \rightarrow 0
\end{aligned}
$$

Here $\lambda \pi_{m} M(A, n)$ is the cokernel of $i_{*}: \pi_{m} M(A, n)^{n} \rightarrow \pi_{m} M(A, n)$ where $i$ is the inclusion of the $n$-skeleton $M(A, n)^{n}$. Moreover $\pi_{m}\left\{S^{n}\right\}$ is the quadratic $\mathbf{Z}$-module given by homotopy groups of spheres

$$
\pi_{m}\left\{S^{n}\right\}=\left(\pi_{m}\left(S^{n}\right) \xrightarrow{H} \pi_{m}\left(S^{2 n-1}\right) \xrightarrow{P} \pi_{m}\left(S^{n}\right)\right) .
$$

The map $H$ is the Hopf invariant and $P=\left[i_{n}, i_{n}\right]_{*}$ is induced by the Whitehead square. The operators $*^{\prime}$ and $*^{\prime \prime}$ are derived from the quadratic tensor product, see (7.4).
Various examples of explicit computations of $\pi_{m} M(A, n)$ are given at the end of $\S 9$. Using the exact sequence in the theorem we obtain in (9.10) a new homotopy invariant

$$
\tau(M) \in H_{n}(M) *^{\prime} \pi_{2 n-1}\left\{S^{n}\right\}
$$

of an $(n-1)$-connected $(2 n+1)$-dimensional closed manifold $M$, or more generally Poincare complex $M$. The torsion invariant $\tau(M)$ is an analogue of the invariant

$$
\varepsilon(N) \in H_{n}(N) \otimes \pi_{2 n-1}\left\{S^{n}\right\}
$$

which determines the homotopy type of an ( $n-1$ )-connected ( $2 n$ )-dimensional Poincaré complex $N$ and which essentially was used by Kervaire-Milnor [20], see (9.9). In [10] we describe the connection of $\varepsilon(N)$ with the $\alpha$-invariant [35] of Wall which classifies $(n-1)$ connected ( $2 n$ )-dimensional manifolds.

For the curious functors $R$ and $\Omega$ of Eilenberg-MacLane [16] with $H_{5} K(A, 2) \cong R(A)$ and $H_{7} K(A, 3) \cong \Omega(A) \oplus(A \otimes \mathbf{Z} / 3)$ we get a new interpretation by the natural isomorphism (see (10.15) and (10.7))

$$
\begin{aligned}
& R A \cong A *^{\prime} \mathbf{Z}^{\Gamma}, \quad \text { and } \\
& \Omega A \cong A \otimes^{\prime} \mathbf{Z}^{\Gamma}
\end{aligned}
$$

Here $\mathbf{Z}^{\Gamma}=\pi_{3}\left\{S^{2}\right\}$ is the quadratic $\mathbf{Z}$-module $\mathbf{Z}^{\Gamma}=(\mathbf{Z} \xrightarrow{\mathbf{1}} \mathbf{Z} \xrightarrow{2} \mathbf{Z})$ for which $\Gamma(A)=A \otimes \mathbf{Z}^{\Gamma}$ is Whitehead's quadratic functor [37]. Also $\otimes^{\prime}$ is derived from the quadratic tensor product, see (7.4).
Further significant applications of the new quadratic algebra discussed in this paper are described in (II. § 7) of the book [8] and in [10]. We also use results of this paper in a crucial way for the classification of 2 -connected 6 -dimensional homotopy types.

## § 1 Modules

We fix some basic notations on categories, ringoids, rings and modules respectively, compare also [24]. A bold face letter like $\underline{\underline{C}}$ denotes a category, $O b(\underline{\underline{C}})$ and $M o r(\underline{C})$ are the classes of objects and morphisms respectively. We identify an object $A$ with its identity $1_{A}=1=A$. We also write $f \in \underline{\underline{C}}$ if $f$ is a morphism or an object in $\underline{\underline{C}}$. The set of morphisms $A \rightarrow B$ is $\underline{\underline{C}}(A, B)$. Surjective maps and injective maps are indicated by arrows $\rightarrow \rightarrow$ and $>\rightarrow$ respectively.

A ringoid $\underline{\underline{R}}$ is a category for which all morphism sets are abelian groups and for which composition is bilinear, (equivalently a ringoid is a category enriched over the monoidal category of abelian groups). A ringoid is called a 'pre additive category', or an $\underline{\underline{A b} \text {-category, }}$ see [22]. We prefer the notion 'ringoid' since in this paper a ringoid will play the role of a ring. In fact, a ringoid $\underline{\underline{R}}$ with a single object $e$ will be identified with the ring $R$ given by the morphism set $R=\underline{\underline{R}}(e, e)$. Recall that a biproduct (or a direct sum) in a ringoid $\underline{\underline{R}}$ is a diagram

$$
\begin{equation*}
X \underset{r_{1}}{\stackrel{i_{1}}{\rightleftarrows}} X \vee Y \underset{r_{2}}{\stackrel{i_{2}}{\leftrightarrows}} Y \tag{1.1}
\end{equation*}
$$

which satisfies $r_{1} i_{1}=1, r_{2} i_{2}=1$ and $i_{1} r_{1}+i_{2} r_{2}=1$. Sums and products in a ringoid are as well biproducts, see [22]. An additive category is a ringoid in which biproducts exist. Clearly the category $\underline{\underline{A b}}$ of abelian groups is an additive category with biproducts denoted by $X \oplus Y$. A functor $\bar{F}: \underline{\underline{R}} \rightarrow \underline{\underline{S}}$ between ringoids is additive if

$$
\begin{equation*}
F(f+g)=F(f)+F(g) \tag{1.2}
\end{equation*}
$$

for morphisms $f, g \in \underline{R}(X, Y)$. Moreover, we say that $F$ is quadratic if $\Delta$, with

$$
\begin{equation*}
\Delta(f, g)=F(f+g)-F(f)-F(g), \tag{1.3}
\end{equation*}
$$

is a bilinear function. A module with coefficients in a ringoid $\underline{\underline{R}}$ or equivalently an $\underline{\underline{R}}$-module is an additive functor

$$
\begin{equation*}
M: \underline{\underline{R}} \rightarrow \underline{\underline{A b}} . \tag{1.4}
\end{equation*}
$$

In case $\underline{R}$ has only one object $e$ we identify $M=M(e)$ with a module over a ring in the usual sense. An $\underline{R}$-module is also called a left $\underline{\underline{R}}$-module. A right $\underline{R}$-module $N$ is a contravariant additive functor $N: \underline{\underline{R}} \rightarrow \underline{\underline{A b}}$. For $f \in \underline{\underline{R}}(X, Y)$ we use the notation

$$
\left\{\begin{array}{lll}
M(f)(x)=f_{*}(x)=f \cdot x & \text { for } & x \in M(X),  \tag{1.5}\\
N(f)(y)=f^{*}(y)=y \cdot f & \text { for } & y \in N(Y) .
\end{array}\right.
$$

A right $\underline{\underline{R}}$-module is the same as an $\underline{\underline{R}}^{o p}$-module where $\underline{\underline{R}}^{o p}$ is the opposite category. In case $\underline{\underline{R}}$ is small (that is, if the class of objects in $\underline{\underline{R}}$ is a set) let $\underline{\underline{M}}(\underline{\underline{R}})$ be the category of $\underline{\underline{R}}$-modules. Morphisms in $\underline{\underline{M}}(\underline{\underline{R}})$ are natural transformations. The category $\underline{\underline{M}} \underline{\underline{R}})$ is an abelian category; as an example one has $\underline{\underline{M}}(\mathbf{Z})=\underline{A b}$. We now recall the definition of tensor products of modules.
(1.6) Defintion: Let $\underline{\underline{R}}$ be a small ringoid, let $A$ be an $\underline{\underline{R}}^{o p}$-module and let $B$ be an $\underline{\underline{R}}$-module. The tensor product $A \otimes_{\underline{R}} B$ is the abelian group generated by the elements $\bar{a} \otimes b, a \in A(X), b \in B(X)$ where $\overline{\bar{X}}$ is any object in $\underline{\underline{R}}$. The relations are

$$
\left\{\begin{array}{l}
\left(a+a^{\prime}\right) \otimes b=a \otimes b+a^{\prime} \otimes b \\
a \otimes\left(b+b^{\prime}\right)=a \otimes b+a \otimes b^{\prime} \\
\left(a^{\prime \prime} \cdot \varphi\right) \otimes b=a^{\prime \prime} \otimes(\varphi \cdot b)
\end{array}\right.
$$

for $a, a^{\prime} \in A(X), b, b^{\prime} \in B(X), \varphi: X \rightarrow Y \in \underline{\underline{R}}, a^{\prime \prime} \in A(Y)$. The tensor product is a biadditive functor $\otimes_{\underline{\underline{R}}}: \underline{\underline{M}}\left(\underline{\underline{R}}^{o p}\right) \times \underline{\underline{M}}(\underline{\underline{R}}) \rightarrow \underline{\underline{A b}}$.
(1.7) Definition: The tensor product $\underline{\underline{R}} \otimes \underline{\underline{S}}$ of ringoids $\underline{\underline{R}}, \underline{\underline{S}}$ is the following ringoid. Objects are pairs $(X, Y)$ with $X \in O b(\underline{\underline{R}}), \bar{Y} \in O b(\underline{\underline{S}})$ and the morphisms $(X, Y) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ are the elements of the tensor product of abelian groups $\underline{\underline{R}}\left(X, X^{\prime}\right) \otimes \mathbf{Z} \underline{\underline{S}}\left(Y, Y^{\prime}\right)$. Composition is defined by $(f \otimes g)\left(f^{\prime} \otimes g^{\prime}\right)=\left(f f^{\prime}\right) \otimes\left(g g^{\prime}\right)$. Any biadditive functor $F: \underline{\underline{R}} \times \underline{\underline{S}} \rightarrow \underline{\underline{A b}}$ has a unique additive factorization (as well denoted by $F$ ) $F: \underline{\underline{R}} \otimes \underline{\underline{S}} \rightarrow \underline{\underline{A b}}$ with $F(f \otimes g)=F(f, g)$. For example an $\underline{\underline{R}}$-module $A$ and an $\underline{\underline{S}}$-module $\underline{\underline{B}}$ yield the $\underline{\underline{R}} \otimes \underline{\underline{S}}$ module $A \otimes B$ given by $(A \otimes B)(f \otimes \bar{g})=A(f) \otimes \mathbf{z} B(g)$.

## § 2 Quadratic Z-modules

Let $\operatorname{Add}(\mathbf{Z})$ be the category of finitely generated free abelian groups. The additive functors $F: \underline{\operatorname{Add}}(\mathbf{Z}) \rightarrow \underline{A b}$ are in one-one correspondence with abelian groups. The correspondence is given by $F \mapsto \overline{F(\mathbf{Z})}$. In this section we introduce quadratic $\mathbf{Z}$-modules which are in one-one correspondence with quadratic functors $\underline{\operatorname{Add}}(\mathbf{Z}) \rightarrow \underline{\underline{A b}}$. In this sense a quadratic $\mathbf{Z}$-module is just the "quadratic analogue" of an abelian group.
(2.1) Defintion. A quadratic Z-module

$$
M=\left(M_{e} \xrightarrow{H} M_{e e} \xrightarrow{P} M_{e}\right)
$$

is a pair of abelian groups $M_{e}, M_{e e}$ together with homomorphisms $H, P$ which satisfy $P H P=2 P$ and $H P H=2 H$. A morphism $f: M \rightarrow N$ between quadratic Z-modules
is a pair of homomorphisms $f: M_{e} \rightarrow N_{e}, f: M_{c e} \rightarrow N_{e e}$ which commute with $H$ and $P$ respectively. Let $Q M(\mathbf{Z})$ be the category of quadratic $\mathbf{Z}$-modules. For a quadratic Z-module $M$ we define the involution $T=H P-1: M_{e e} \rightarrow M_{e e}$. Then the equations for $H$ and $P$ are equivalent to $P T=P$ and $T H=H$. Moreover we get $T T=1$ since $1+T=H P=H P T=T+T^{2}$. We define for $n \in \mathbf{Z}$ the function

$$
\left\{\begin{array}{l}
n_{*}: M_{e} \rightarrow M_{e} \\
n_{*}(x)=n x+(n(n-1) / 2) P H(x), x \in M_{e}
\end{array}\right.
$$

One can check that $(n \cdot m)_{*}=n_{*} m_{*}$ and that $(n+m)_{*}=n_{*}+m_{*}+n m P H$. Let $\mathbf{Z} / n=\mathbf{Z} / n \mathbf{Z}, n \geq 0$, be the cyclic group of order $n$. We call $M$ a quadratic $\mathbf{Z} / n$-module if $n \cdot M_{e e}=0$ and $n_{*} M_{e}=0$.
We identify a quadratic Z-module $M$ satisfying $M_{e e}=0$ with the abelian group $M_{e}$, this yields the full inclusion $\underline{\underline{A b}}=\underline{\underline{M}}(\mathbf{Z}) \subset \underline{Q M}(\mathbf{Z})$. Next we observe that there is a duality functor $D: \underline{\underline{Q M}}(\mathbf{Z}) \rightarrow \underline{\underline{Q M}}(\underline{\mathbf{Z})}$ with $\overline{\overline{(M)}}$ given by the interchange of the roles of $H$ and $P$ respectively, that is $D(M)=\left((D M)_{e} \xrightarrow{H^{D}}(D M)_{e e} \xrightarrow{p^{D}}(D M)_{e}\right)$ with $(D M)_{e}=M_{e e}$ and $(D M)_{e e}=M_{e}$ and $H^{D}=P$ and $P^{D}=H$. Clearly $D D(M)=M$. Moreover an additive functor $A: \underline{\underline{A b}} \rightarrow \underline{\underline{A b}}$ induces a functor $A: \underline{\underline{Q M}}(\mathbf{Z}) \rightarrow \underline{\underline{Q M}}(\mathbf{Z})$. Here we define the quadratic Z-module $A(\bar{M})$ by $A(M)_{e}=A\left(M_{e}\right)$ and $A(M)_{e e}=A\left(M_{e e}\right)$ with $H$ and $P$ given by $A(H)$ and $A(P)$ respectively. For example the functor $A=\otimes_{\mathbf{z}} C, C \in \underline{\underline{A b}}$, carries $M$ to $[M] \otimes_{\mathbf{Z}} C$.
(2.2) Proposition: There is a ring $Q$ together with an isomorphism $\chi: \underline{\underline{Q M}}(\mathbf{Z}) \cong \underline{\underline{M}}(Q)$ of categories where $\underline{\underline{M}}(Q)$ is the category of $Q$-modules.
Proof: For $M \in \underline{\underline{Q M}}(\mathbf{Z})$ we have inclusions and projections $(\tau=e, e e)$

$$
\begin{equation*}
M_{\tau} \xrightarrow{i_{\tau}} M_{e} \oplus M_{e e} \xrightarrow{r_{\tau}} M_{\tau} \tag{1}
\end{equation*}
$$

They yield the following endomorphisms of the abelian group $M_{e} \oplus M_{c e}$

$$
\begin{equation*}
a=i_{e} r_{e}, b=i_{e e} r_{e e}, h=i_{e e} H r_{e}, p=i_{e} P r_{e e} \tag{2}
\end{equation*}
$$

which satisfy the relations

$$
\left\{\begin{array}{l}
a^{2}=a, b^{2}=b, a b=b a=0  \tag{3}\\
a+b=1 \\
a h=0, h b=0, p a=0, b p=0 \\
p h p=2 p, h p h=2 h
\end{array}\right.
$$

Let $Q$ be the ring generated by $a, b, h, p$ such that the relations are satisfied. Then $\chi$ in (2.2) carries $M$ to the $Q$-module $M_{e} \oplus M_{e e}$ defined by (2). As a $\mathbf{Z}$-module $Q$ is given by $Q=\mathbf{Z}^{6}$ with basis ( $a, b, h, p, p h, h p$ ). Moreover the quadratic $\mathbf{Z}$-module $\chi^{-1}(Q)$, as well denoted by $Q$, is given by

$$
\begin{cases}Q_{e}=a \cdot Q=\mathbf{Z}^{3} \text { with basis } & (a, a p, a p h),  \tag{4}\\ Q_{e e}=b \cdot Q=\mathbf{Z}^{3} \text { with basis } & (b, b h, b h p),\end{cases}
$$

and by

$$
H=P=\left(\begin{array}{lll}
0 & 0 & 0  \tag{2.3}\\
1 & 0 & 2 \\
0 & 1 & 0
\end{array}\right), T=H P-1=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

The ring $Q$ was obtained in a more general context by Pirashvili [26]. In fact Pirashvili defines a ring $Q(n)$ for which the category of $Q(n)$-modules is isomorphic to the category of polynomial functors $F$ from $\underline{\underline{A d d}}(\mathbf{Z})$ to $\underline{\underline{A b}}$ of degree $n$ with $F(0)=0$. He does not give a description of $Q(2)=Q$ as in (3) above. Recently W. Dreckmann computed for small $n$ the following rank of the free abelian group $Q(n)$, this rank is

$$
\begin{aligned}
& 1,6,39,320,3281,40558,586751, \\
& 9719616,181353777,3762893750 \\
& 85934344775,2141853777856,57852105131809 \\
& 1683237633305502,52483648929669119
\end{aligned}
$$

for $n=1 \cdots 15$. Many results on quadratic Z-modules in this paper should have generalizations for $Q(n)$-modules.
q.e.d.

Recall that an object $X$ in an additive category is indecomposable if $X$ admits no isomorphism $X \cong A \oplus B$ with $A \neq 0$ and $B \neq 0$. It is an interesting problem to classify all finitely generated indecomposable quadratic $\mathbf{Z}$-modules up to isomorphism. This leads to the following examples. We say that a quadratic $\mathbf{Z}$-module $M$ is of cyclic type if $M_{e}$ and $M_{e e}$ are cyclic groups. Let $1_{n} \in \mathbf{Z} / n$ be the generator and let $k: \mathbf{Z} / n \rightarrow \mathbf{Z} / m$ be the homomorphism with $k\left(1_{n}\right)=k \cdot 1_{m}, k \in \mathbf{Z}, m \mid k \cdot n$. Then we obtain the following list where $C=\mathbf{Z}$ or $C=\mathbf{Z} / p^{i}, p=$ prime, $s, t \geq 1$.

| $M$ | $M_{e}$ | $M_{e e}$ | $H$ | $P$ |
| :---: | :---: | :---: | :---: | :---: |
| $C$ | $C$ | 0 | 0 | 0 |
| $C^{\Lambda}$ | 0 | $C$ | 0 | 0 |
| $C^{\Gamma}$ | $C$ | $C$ | 1 | 2 |
| $C^{S}$ | $C$ | $C$ | 2 | 1 |
| $H(t)$ | $\mathbf{Z}$ | $\mathbf{Z} / 2^{t}$ | $2^{t-1}$ | 0 |
| $P(s)$ | $\mathbf{Z} / 2^{s}$ | $\mathbf{Z}$ | 0 | $2^{s-1}$ |
| $s+t>1, H(s, t)$ | $\mathbf{Z} / 2^{s}$ | $\mathbf{Z} / 2^{t}$ | $2^{t-1}$ | 0 |
| $s+t>1, P(s, t)$ | $\mathbf{Z} / 2^{s}$ | $\mathbf{Z} / 2^{t}$ | 0 | $2^{s-1}$ |
| $s+t>1, M(s, t)$ | $\mathbf{Z} / 2^{s}$ | $\mathbf{Z} / 2^{\mathbf{t}}$ | $2^{t-1}$ | $2^{s-1}$ |
| $\Gamma(s)$ | $\mathbf{Z} / 2^{s+1}$ | $\mathbf{Z} / 2^{s}$ | 1 | 2 |
| $S(s)$ | $\mathbf{Z} / 2^{s}$ | $\mathbf{Z} / 2^{s+1}$ | 2 | 1 |
| $s>1, \Gamma^{\prime}(s)$ | $\mathbf{Z} / 2^{s+1}$ | $\mathbf{Z} / 2^{s}$ | $2^{s-1}+1$ | 2 |
| $s>1, S^{\prime}(s)$ | $\mathbf{Z} / 2^{s}$ | $\mathbf{Z} / 2^{s+1}$ | 2 | $2^{s-1}+1$ |

The isomorphic objects in the list are given by $C^{\Gamma} \cong C^{S}$ if $C=\mathbf{Z} / q^{i} \quad(q$ odd $)$. With the notations in (2.1) we clearly have $C^{\Gamma}=\left[\mathbf{Z}^{\Gamma}\right] \otimes_{\mathbf{Z}} C, C^{S}=\left[\mathbf{Z}^{S}\right] \otimes_{\mathbf{Z}} C$ and $C^{\Lambda}=\left[\mathbf{Z}^{\Lambda}\right] \otimes_{\mathbf{Z}} C$. We leave it to the reader to describe the dualities in the list. An elementary but somewhat elaborate proof shows:

## (2.5) Proposition: The quadratic Z-modules in (2.4) furnish a complete list of indecomposable

 quadratic $\mathbf{Z}$-modules of cyclic type.Remark: It would be interesting to know a complete list of all indecomposable quadratic Z-modules. However to finish such a list is an intricate problem of representation theory. It might be helpful to consider the more general problem of finding indecomposable $\Lambda$ representations of the quiver

compare for example Curtis-Reiner II § 77. Indeed if $\Lambda=\mathbf{Z}[\mathbf{Z} / 2]$ is the group ring of the cyclic group $\mathbf{Z} / 2$ then a quadratic $\mathbf{Z}$-module is a representation of this quiver given by $\Lambda$-homomorphisms $H: M_{e} \rightarrow M_{e e}, p: M_{e c} \rightarrow M_{e}$ where $\Lambda$ acts via $T$ on $M_{e e}$ and acts trivially on $M_{e}$. Here one can use the fact that the indecomposable $\mathbf{Z}[\mathbf{Z} / 2]$-lattices are known, see Curtis-Reiner I (34.31). Such lattices are part of quadratic Z-modules $M$ for which $M_{e}$ and $M_{e e}$ are finitely generated free $\mathbf{Z}$-modules like for eaxmple $\mathbf{Z}^{\otimes}$ and $\mathbf{Z}^{\boldsymbol{P}}$ in (2.10). Compare the books "Methods of representation theory I, II" of C.W. Curtis and I. Reiner (1991), (1987) John Wiley.
(2.6) Definition: Let $F: \underline{R} \rightarrow \underline{A b}$ be a quadratic functor and let $X \vee Y$ be a biproduct in $\underline{\underline{R}}$. The quadratic cross effect $\overline{F(X \mid Y) \text { is defined by the image group }}$

$$
\begin{equation*}
F(X \mid Y)=\operatorname{im}\left\{\Delta\left(i_{1} r_{1}, i_{2} r_{2}\right): F(X \vee Y) \rightarrow F(X \vee Y)\right\} \tag{1}
\end{equation*}
$$

see (1.3) and (1.1). If $\underline{\underline{R}}$ is an additive category we get by (1) the biadditive functor

$$
\begin{equation*}
F(\mid): \underline{\underline{R}} \times \underline{\underline{R}} \rightarrow \underline{\underline{A b}} . \tag{2}
\end{equation*}
$$

Moreover we have the isomorphism

$$
\begin{equation*}
\Psi: F(X) \oplus F(Y) \oplus F(X \mid Y) \simeq F(X \vee Y) \tag{3}
\end{equation*}
$$

which is given by $F\left(i_{1}\right), F\left(i_{2}\right)$ and the inclusion $i_{12}: F(X \mid Y) \subset F(X \vee Y)$. Let $r_{12}$ be the retraction of $i_{12}$ obtained by $\Psi^{-1}$ and by projection to $F(X \mid Y)$. For the biproduct $X \vee X$ one has the maps $\mu=i_{1}+i_{2}: X \rightarrow X \vee X$ and $\nabla=r_{1}+r_{2}: X \vee X \rightarrow X$. They yield homomorphisms $H$ and $P$ with

$$
\begin{equation*}
F\{X\}=(F(X) \xrightarrow{H} F(X \mid X) \xrightarrow{P} F(X)) \tag{4}
\end{equation*}
$$

by $H=r_{12} F(\mu)$ and $P=F(\nabla) i_{12}$. Moreover we derive from $f+g=\nabla(f \vee g) \mu$ the formula

$$
\begin{equation*}
F(f+g)=F(f)+F(g)+P F(f \mid g) H \tag{5}
\end{equation*}
$$

or equivalently $\Delta(f, g)=P F(f \mid g) H$, see (1.3).
(2.7) Proposition: Let $F: \underline{\underline{R}} \rightarrow \underline{\underline{A b}}$ be a quadratic functor and assume $\underline{\underline{R}}$ is an additive category. Then $F\{X\}$ is a quadratic Z-module and $X \mapsto F\{X\}$ defines a functor $\underline{\underline{R}} \rightarrow$ $\underline{Q M}(\mathbf{Z})$.
Proof of (2.7): We define the interchange map

$$
\left\{\begin{array}{l}
t: X \vee X \rightarrow X \vee X  \tag{1}\\
t=i_{2} r_{1}+i_{1} r_{2}
\end{array}\right.
$$

Then we have $t \mu=\mu$ and $\nabla t=\nabla$. Moreover $t$ induces a map

$$
\begin{equation*}
T: F(X \mid X) \rightarrow F(X \mid X) \tag{2}
\end{equation*}
$$

with $F(t) i_{12}=i_{12} T$ and $r_{12} F(t)=T r_{12}$. Hence we get $T H=H$ and $P T=P$. Moreover we obtain $H P=1+T$ by applying $F$ to the commutative diagram in $\underline{\underline{R}}$

$$
\begin{array}{ccccc}
X \vee X & \xrightarrow[\rightarrow]{\nabla} & X & \xrightarrow{\mu} & X \vee X \\
\mu \vee \mu \downarrow  \tag{3}\\
X \vee X \vee X \vee X & & & & \\
& \overrightarrow{1 \vee t \vee 1} & & X \vee X \vee \nabla \\
X \vee X \vee X .
\end{array}
$$

Here we use the biadditivity of $F(\mid)$ in (2.6) (2).
The significance of quadratic $\mathbf{Z}$-modules is described by the next result which is a special case
 free ( $\mathbf{Z} / n$ )-modules; $n \geq 0$, (for $n=0$ we set $\mathbf{Z} / 0=\overline{\mathbf{Z}}$ ).
(2.8) Theorem: There is a $1-1$ correspondence between quadratic functors $F: \underline{\underline{\text { Add }}(\mathbf{Z} / n) \rightarrow}$ $\underline{\underline{A b}}$ and quadratic $\mathbf{Z} / n$-modules $M, n \geq 0$. The correspondence carries $F$ to $\bar{F}\{\mathbf{Z} / n\}$, see (2.6) (4).

Here a' 1-1 correspondence' denotes a bijection which maps isomorphism classes to isomorphism classes. Hence any quadratic functor $F: \underline{\underline{A d d}}(\mathbf{Z} / n) \rightarrow \underline{\underline{A b}}$ is completely determined (up to isomorphism) by the fairly simple algebraic data of the quadratic $\mathbf{Z}$-module $F\{\mathbf{Z} / n\}$ which is actually a quadratic $\mathbf{Z} / n$-module. In addition to the correspondence in (2.8) we obtain in (3.7) below an equivalence of categories.
The next result shows that the universal quadratic $\mathbf{Z}$-module $Q$ in (2.3) is actually decomposable.
(2.9) Proposition: One has an isomorphism

$$
Q \cong \mathbf{Z}^{P} \oplus \mathbf{Z}^{\otimes}
$$

of quadratic Z-modules where

$$
\mathbf{Z}^{\otimes}=(\mathbf{Z} \rightarrow \mathbf{Z} \oplus \mathbf{Z} \rightarrow \mathbf{Z}) \quad \text { and } \quad \mathbf{Z}^{P}=(\mathbf{Z} \oplus \mathbf{Z} \rightarrow \mathbf{Z} \rightarrow \mathbf{Z} \oplus \mathbf{Z})
$$

are given by $H=(1,1)$ and $P=(1,1)$. Here $\mathbf{Z}^{P}$ is the dual of $\mathbf{Z}^{\otimes}$, that is $\mathbf{Z}^{P}=D \mathbf{Z}^{\otimes}$.
Proof: The isomorphism is given by the matrices

$$
\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \text { for } Q_{e} \text { and }\left(\begin{array}{ccc}
0 & -1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \text { for } Q_{e e}
$$

q.e.d.
(2.10) Remark: The quadratic $\mathbf{Z}$-modules $\mathbf{Z}^{\otimes}$ and $\mathbf{Z}^{P}$ are unique in the following sense. Up to isomorphism there is only one indecomposable quadratic $\mathbf{Z}$-module $M$ with $M_{e}=\mathbf{Z}$ and $M_{e e}=\mathbf{Z} \oplus \mathbf{Z}$, namely $M \stackrel{\sim}{\cong} \mathbf{Z}^{\otimes}$. Dually there is up to isomorphism only one indecomposable quadratic Z-module $N$ with $N_{e}=\mathbf{Z} \oplus \mathbf{Z}$ and $N_{e e}=\mathbf{Z}$, namely $N \cong \mathbf{Z}^{P}$. For example $\mathbf{Z}^{P}$ is isomorphic to the following two quadratic $\mathbf{Z}$-modules

$$
\begin{aligned}
& \mathbf{Z} \oplus \mathbf{Z} \xrightarrow{(1,0)} \mathbf{Z} \xrightarrow{(2,-1)} \mathbf{Z} \oplus \mathbf{Z}, \\
& \mathbf{Z} \oplus \mathbf{Z} \xrightarrow{(2,1)} \mathbf{Z} \xrightarrow{(1,0)} \mathbf{Z} \oplus \mathbf{Z} .
\end{aligned}
$$

The quadratic $\mathbf{Z}$-modules $\mathbf{Z}^{\otimes}$ and $\mathbf{Z}^{P}$ correspond to classical quadratic functors $\otimes^{2}$ and $P^{2}$ which we define as follows.
(2.11) Defintion: The tensor square $\otimes^{2}$ is the quadratic functor

$$
\otimes^{2}: \underline{\underline{A b}} \rightarrow \underline{\underline{A b}} \text { with } \otimes^{2}(A)=A \otimes_{\mathbf{Z}} A
$$

The quadratic construction $P^{2}$ is the functor

$$
P^{2}: \underline{A b} \rightarrow \underline{\underline{A b}} \text { with } P^{2}(A)=\Delta(A) / \Delta^{3}(A)
$$

Here $\Delta(A)$ is the augmentation ideal in the group ring $\mathbf{Z}[A]$ and $\Delta^{3}(A)$ is the third power.
(2.12) Remark: A function $f: A \rightarrow B$ between abelian groups is weak quadratic if

$$
\begin{equation*}
[a, b]_{f}=f(a+b)-f(a)-f(b) \tag{1}
\end{equation*}
$$

is bilinear for $a, b \in A$. Moreover $f$ is quadratic if in addition $f(-a)=f(a)$. The function

$$
\begin{equation*}
\tilde{\gamma}: A \rightarrow P^{2}(A) \tag{2}
\end{equation*}
$$

which carries $a \in A$ to the element represented by $|a|-1 \in \Delta(A)$, is the universal weak quadratic function. That is, each weak quadratic function $f$ admits a unique factorization $f=f^{\square} \tilde{\gamma}$ where $f^{\square}: P^{2}(A) \rightarrow B$ is a homomorphism. Whitehead's quadratic functor $\Gamma: \underline{\underline{A b}} \rightarrow \underline{\underline{A b}}$ is defined by the universal quadratic function

$$
\begin{equation*}
\gamma: A \rightarrow \Gamma(A) \tag{3}
\end{equation*}
$$

see [37]. Using the functor $\Gamma$ the functor $P^{2}$ can also be described by the following natural pull back diagram in $\underline{\underline{A b}}$ which has short exact rows $(A \in \underline{\underline{A b}})$ :

$$
\begin{array}{ccccccc}
0 & \rightarrow & S^{2}(A) & \xrightarrow{\tilde{\omega}} & P^{2}(A) & \xrightarrow{口^{\square}} & A  \tag{4}\\
& & & \rightarrow & 0 \\
& & \downarrow \gamma^{\square} & & \downarrow q & & \\
0 & \rightarrow & S^{2}(A) & \xrightarrow{\omega} & \Gamma(A) & \xrightarrow{q^{\square}} & A \otimes \mathbf{Z} / 2
\end{array} \rightarrow
$$

Here $q$ is the quotient map which is a quadratic function so that $q^{\square}$ is defined. Moreover the symmetric square $S^{2}$ is the functor

$$
\left\{\begin{array}{l}
S^{2}: \underline{A b} \rightarrow \underline{A b}  \tag{5}\\
S^{2}(\bar{A})=A \otimes A /\{a \otimes b-b \otimes a \sim 0\}
\end{array}\right.
$$

The map $\widetilde{\omega}$ in (4) is defined by $\widetilde{\omega}\{a \otimes b\}=\tilde{\gamma}(a+b)-\tilde{\gamma}(a)-\tilde{\gamma}(b)$, see (1). We also shall use the exterior square

$$
\left\{\begin{array}{l}
\Lambda^{2}: \underline{A b} \rightarrow \underline{A b}  \tag{6}\\
\Lambda^{2}(A)=A \otimes A /\{a \otimes a \sim 0\}
\end{array}\right.
$$

which is part of a natural exact sequence

$$
\begin{equation*}
\Gamma(A) \xrightarrow{H} \otimes^{2}(A) \xrightarrow{q} \Lambda^{2}(A) \rightarrow 0 \tag{7}
\end{equation*}
$$

where $H=h^{\square}$ is defined by $h(a)=a \otimes a$ and where $q$ is the quotient map. Using (2.6) (4) we obtain for each quadratic functor $F: \underline{\underline{A b}} \rightarrow \underline{\underline{A b}}$ the quadratic $\mathbf{Z}$-module $F\{\mathbf{Z}\}$. As special cases we now get, see (2.9) and (2.4):
(2.13) Lemma: One has isomorphisms of quadratic $\mathbf{Z}$-modules

$$
\begin{aligned}
& \otimes^{2}\{\mathbf{Z}\} \cong \mathbf{Z}^{\otimes}=D \mathbf{Z}^{P} \\
& P^{2}\{\mathbf{Z}\} \cong \mathbf{Z}^{P}=D \mathbf{Z}^{\otimes}, \\
& \Lambda^{2}\{\mathbf{Z}\} \cong \mathbf{Z}^{\Lambda}=D \mathbf{Z} \\
& \Gamma\{\mathbf{Z}\} \cong \mathbf{Z}^{\Gamma}=D \mathbf{Z}^{S}, \\
& S^{2}\{\mathbf{Z}\} \cong \mathbf{Z}^{S}=D \mathbf{Z}^{\Gamma}
\end{aligned}
$$

The basis of $\otimes^{2}(\mathbf{Z} \mid \mathbf{Z}) \cong\left(\mathbf{Z}^{\otimes}\right)_{e c}=\mathbf{Z} \oplus \mathbf{Z}$ is $\left(e_{1} \otimes e_{2}, e_{2} \otimes e_{1}\right)$ where $\left(e_{1}, e_{2}\right)$ is the canonical basis of $\mathbf{Z} \oplus \mathbf{Z}$. Moreover the basis of $P^{2}(\mathbf{Z}) \cong\left(\mathbf{Z}^{P}\right)_{e}=\mathbf{Z} \oplus \mathbf{Z}$ is $(\widetilde{\gamma}(1), \tilde{\omega}(1 \otimes 1)-\tilde{\gamma}(1))$ where we use $\tilde{\gamma}$ and $\widetilde{\omega}$ in (2.12).
Various results in this section are proved carefully in the Diplomarbeit of my student V. Jeschonnek [19]. This Diplomarbeit contains also further interesting results on the homological algebra of $Q$-modules where $Q$ is the ring in (2.2).

## § 3 Quadratic $\underline{\underline{R} \text {-modules }}$

We consider quadratic $\underline{\underline{R}}$-modules where $\underline{\underline{R}}$ is ringoid. For $\underline{\underline{R}}=\mathbf{Z}$ they are just the quadratic Z-modules discussed in § 2 above.
(3.1) Definition: Let $\underline{\underline{R}}$ be a ringoid. A quadratic $\underline{R}$-module $M=\left(M_{e}, M_{e e}, T, H, P\right)$ is a pair of functors $M_{e}: \underline{\underline{R}} \rightarrow \underline{\underline{A b}}, M_{e e}: \underline{\underline{R}} \times \underline{\underline{R}} \rightarrow \underline{\underline{A b}}$ (both as well denoted by $M$ ) together with natural transformations

$$
T=T_{X, Y}: M(X, Y) \rightarrow M(Y, X) \text { and } M(X) \xrightarrow{H} M(X, X) \xrightarrow{P} M(X)
$$

such that the following properties are satisfied

$$
\begin{align*}
& P T=P  \tag{1}\\
& T H=H \\
& T=H P-1 \quad \text { on } \quad \mathrm{M}(\mathrm{X}, \mathrm{X}) \\
& T T=1
\end{align*}
$$

Moreover the functor $M_{e e}$ is biadditive and the functor $M_{e}$ is quadratic with

$$
\begin{equation*}
M(f+g)=M(f)+M(g)+P M(f, g) H \tag{5}
\end{equation*}
$$

for $f, g: X \rightarrow Y \in \underline{\underline{R}}$. We also write $f_{*}=M(f)$ and $(f, g)_{*}=M(f, g)$. A morphism $F: M \rightarrow N$ between quadratic $\underline{R}$-modules is a pair of natural transformations

$$
\begin{equation*}
F_{e}: M_{e} \rightarrow N_{e}, F_{e e}: M_{e e} \rightarrow N_{e e} \tag{6}
\end{equation*}
$$

which commute with $T, H$, and $P$ respectively. Let $\underline{\underline{Q M}}(\underline{\underline{R}})$ be the category of quadratic $\underline{R}$-modules for a small ringoid $\underline{\underline{R}}$.
We identify a quadratic $\underline{R}$-module, satisfying $M_{e e}=0$, with an $\underline{R}$-module. This yields the full inclusion of abelian categories $\underline{\underline{M}}(\underline{\underline{R}}) \subset \underline{Q M}(\underline{\underline{R}})$, see (2.3). On the other hand a quadratic $\underline{R}$-module $M$ with $M_{e}=0$ is the same as a pair ( $M_{e e}, T$ ) where $M_{e e}$ a biadditive functor $\underline{\underline{R}} \times \underline{\underline{R}} \rightarrow \underline{\underline{A b}}$ and where $T=T_{X, Y}: M_{e c}(X, Y) \cong M_{e e}(Y, X)$ is a natural transformation with $T T=1$ and $T_{X, X}=-1, X, Y \in O b \underline{\underline{R}}$. The direct sum $M \oplus N$ of quadratic $\underline{\underline{R}}$-modules is given by $(M \oplus N)_{e}(X)=M_{e}(X) \oplus N_{e}(X)$ and $(M \oplus N)_{e e}(X, Y)=M_{e e}(X, Y) \oplus N_{e e}(X, Y)$.
(3.2) Remark: For the ringoid $\underline{\underline{R}}=\mathbf{Z}$ a quadratic $\underline{\underline{R}}$-module $M$ is the same as a quadratic Z-module with $M_{e}=M(e), M_{e e}=M(e, e)$. In fact, for $n \in \underline{R}(e, e)=\mathbf{Z}$ the induced map $M(n)=n_{*}$ is defined in (2.1) and $T=T_{e, e}$ in (3.1) is defined by $T$ in (2.1). This also shows that for the ring $\underline{\underline{R}}=\mathbf{Z} / n$ a quadratic $\underline{\underline{R}}$-module is the same as a quadratic $\mathbf{Z} / n$-module defined in (2.1).
The equations (3.1) (1), (2), (3) for a quadratic $\underline{\underline{R}}$-module show that for $X \in O b(\underline{\underline{R}})$

$$
\begin{equation*}
M\{X\}=(M(X) \xrightarrow{H} M(X, X) \xrightarrow{P} M(X)) \tag{3.3}
\end{equation*}
$$

is a quadratic Z-module. Hence $M$ yields a functor $M: \underline{\underline{R}} \rightarrow \underline{Q M}(\mathbf{Z})$ which carries the object $X$ to $M\{X\}$. The quadratic $\underline{\underline{R}}$-module $M$, however, is not determined by this functor since for example $T_{X, Y}$ in (3.1) is given for all pairs $(X, Y) \in O b(\underline{\underline{R}}) \times O b(\underline{\underline{R}})$. In case $\underline{\underline{R}}$ has a single object $e$, that is, if $\underline{\underline{R}}=R$ is a ring, then a quadratic $R$-module $M$ consists of quadratic $\mathbf{Z}$-module

$$
\begin{equation*}
M(e) \xrightarrow{H} M(e, e) \xrightarrow{P} M(e) \tag{1}
\end{equation*}
$$

Here $M(e, e)$ is an $R \otimes \mathbf{z} R$-module and the multiplicative monoid of $R$ acts on $M(e)$ such that $H$ and $P$ are equivariant with respect to the diagonal action on $M(e, e)$ and such that

$$
\begin{equation*}
(f+g)_{*}(x)=f_{*}(x)+g_{*}(x)+P((f \otimes g) \cdot(H x)) \tag{2}
\end{equation*}
$$

Here $f_{*}(x)$ denotes the action of $f \in R$ on $x \in M(e)$.
(3.4) Examples: Let $R$ be a commutative ring. We define quadratic $R$-modules $R^{\Lambda}, R^{S}$, and $R^{\Gamma}$ as follows.

| $M$ | $M(e)$ | $M(e, e)$ | $H$ | $P$ |
| :---: | :---: | :---: | :---: | :---: |
| $R^{\Lambda}$ | 0 | $R$ | 0 | 0 |
| $R^{S}$ | $R$ | $R$ | 2 | 1 |
| $R^{\Gamma}$ | $R$ | $R$ | 1 | 2 |

Here $f \in R$ acts on $x \in M(e)$ by $f_{*}(x)=f \cdot f \cdot x$ and $f \otimes g$ acts on $y \in M(e, e)$ by $(f \otimes g) \cdot y=f \cdot g \cdot y$.
(3.5) Example: Let $\underline{\underline{R}}$ be a ringoid, let $\underline{\underline{A}}$ be an additive category, and let $i: \underline{\underline{R}} \rightarrow \underline{\underline{A}}$ be an additive functor. Often $\underline{\underline{R}}$ is a subringoid of $\underline{\underline{A}}$ and $i$ is the inclusion, for example $\underline{\underline{R}}=\underline{\underline{A}}$. Then any quadratic functor $F: \underline{\underline{A}} \rightarrow \underline{\underline{A b}}$ yields a quadratic $\underline{\underline{R}}$-module

$$
F\{\underline{\underline{R}}\}=i^{*} F=\left(F_{e}, F_{e e}, T, H, P\right)
$$

as follows. The functors $F_{e}=i^{*} F$ and $F_{e e}=(i \times i)^{*} F(\mid)$ are the restrictions of the functors $F$ and $F(\mid)$, see (2.6). Moreover $H, P$ and $T$ are given as in (2.6) and in the proof of (2.7) respectively. In case $\underline{\underline{R}}$ is the subringoid generated by the identity $1_{X} \in O b(\underline{\underline{A}})$ than $F\{\underline{\underline{R}}\}$ is the same as the quadratic $\mathbf{Z}$-module $F\{X\}$ in (2.7).
We now are ready to describe the generalization of theorem (2.8) for quadratic $\underline{\underline{R}}$-modules; for this we recall from (VIII, § 2) [22] the
(3.6) Definition: Let $\underline{\underline{R}}$ be a ringoid. Then the free additive category

$$
\begin{equation*}
i: \underline{\underline{R}} \subset \underline{\underline{\operatorname{Add}}}(\underline{\underline{R}}) \tag{1}
\end{equation*}
$$

is given as follows. The objects of $\underline{\underline{\operatorname{Add}}} \underline{\underline{R}})$ are the $n$-tuples $X=\left(X_{1}, \cdots, X_{n}\right)$ of objects $X_{i}$ in $\underline{\underline{R}}, \quad 0 \leq n<\infty$. The morphisms are the corresponding matrices of morphisms in $\underline{\underline{R}}$. The inclusion $i$ carries the object $X$ to the corresponding tuple of length 1 . Any additive functor $f: \underline{\underline{R}} \rightarrow \underline{\underline{A}}$ (where $\underline{\underline{A}}$ is an additive category) has a unique additive extension $\bar{f}: \underline{\underline{A d d}}(\underline{\underline{R}}) \rightarrow \underline{\underline{A}}$ which carries the tuple $X$ to the $n$-fold biproduct $\bar{f}(X)=f X_{1} \vee \cdots \vee f X_{n}$ in $\underline{A}$. Let $\underline{\underline{Q u a d}}(\underline{R})$ be the category of quadratic functors

$$
\begin{equation*}
F: \underline{\underline{A d d}}(\underline{\underline{R}}) \rightarrow \underline{\underline{A b}}, \tag{2}
\end{equation*}
$$

morphisms are natural transformations.
(3.7) Theorem: There is an equivalence of categories $\underline{\underline{Q u a d}}(\underline{\underline{R}}) \xrightarrow{\sim} \underline{\underline{Q M}}(\underline{\underline{R}})$ which carries $F$ to the restriction $F\{\underline{\underline{R}}\}$ in (3.5).
For a ring $\underline{\underline{R}}=R$ the category $\underline{\underline{\operatorname{Add}}(R)}$ coincides with the full subcategory of finitely generated free $R$-modules in $\underline{\underline{M}}(R)$. Therefore (2.8) is readily obtained by (3.7) above. The inverse of the equivalence (3.7) is given by the tensor products defined in the next section; one gets (3.7) as a corollary of (4.4) below.

## § 4 The quadratic tensor product

We introduce the tensor product of an $\underline{\underline{R}}^{o p}$-module and a quadratic $\underline{\underline{R}}$-module. This is the quadratic generalization of the tensor product defined in (1.6).
(4.1) Definition: Let $\underline{\underline{R}}$ be a small ringoid. We define the functor

$$
\otimes_{\underline{\underline{R}}}: \underline{\underline{M}}\left(\underline{\underline{R^{o p}}}\right) \times \underline{\underline{Q M}}(\underline{\underline{R}}) \rightarrow \underline{\underline{A b}}
$$

which carries the pair $(A, M)$ to the tensor product $A \otimes_{\underline{\underline{R}}} M$. The abelian group $A \otimes_{\underline{\underline{R}}} M$ is generated by the symbols

$$
\left\{\begin{array}{l}
a \otimes m, a \in A(X), m \in M(X)  \tag{1}\\
{[a, b] \otimes n, a \in A(X), b \in A(Y), n \in M(X, Y)}
\end{array}\right.
$$

where $X, Y$ are objects in $\underline{\underline{R}}$. The relations are

$$
\left\{\begin{array}{l}
(a+b) \otimes m=a \otimes m+b \otimes m+[a, b] \otimes H(m)  \tag{2}\\
a \otimes\left(m+m^{\prime}\right)=a \otimes m+a \otimes m^{\prime} \\
{[a, a] \otimes n=a \otimes P(n),} \\
{[a, b] \otimes n=[b, a] \otimes T(n),} \\
{[a, b] \otimes n \text { is linear in each variable } a, b, \text { and } n,} \\
\left(\varphi^{*} a\right) \otimes m=a \otimes\left(\varphi_{*} m\right), \\
{\left[\varphi^{*} a, \Psi^{*} b\right] \otimes n=[a, b] \otimes(\varphi, \Psi)_{*}(n)}
\end{array}\right.
$$

where $\varphi, \Psi$ are morphisms in $\underline{\underline{R}}$ and where $a, b, m, m^{\prime}, n$ are appropriate elements as in (1). (We point out that the last two equations of (2) are redundant if $\underline{R}=\mathbf{Z}$.) For morphisms $F: A \rightarrow A^{\prime} \in \underline{\underline{M}}\left(\underline{\underline{R}}^{o p}\right)$ and $G: M \rightarrow M^{\prime} \in \underline{\underline{Q M}}(\underline{\underline{R}})$ we define the induced homomorphism

$$
\begin{equation*}
F \otimes G: A \otimes_{\underline{\underline{R}}} M \rightarrow A^{\prime} \otimes_{\underline{\underline{R}}} M^{\prime} \tag{3}
\end{equation*}
$$

by the formulas

$$
\left\{\begin{array}{l}
(F \otimes G)(a \otimes m)=(F a) \otimes\left(G_{e} m\right)  \tag{4}\\
(F \otimes G)([a, b] \otimes n)=[F a, F b] \otimes\left(G_{e e} n\right)
\end{array}\right.
$$

In case $M_{c e}=0$ we see that $A \otimes_{\underline{R}} M$ coincides with the tensor product (1.6).
(4.2) Proposition: The tensor product (4.1) yields an additive functor

$$
\begin{equation*}
A \otimes_{\underline{\underline{R}}}(): \underline{\underline{Q M}}(\underline{\underline{R}}) \rightarrow \underline{\underline{A b}} \tag{1}
\end{equation*}
$$

for each $A$ in $\underline{\underline{M}(\underline{R}) \text { and a quadratic functor }}$

$$
\begin{equation*}
() \otimes_{\underline{\underline{R}}} M: \underline{\underline{M}}\left(\underline{\underline{R}}^{o p}\right) \rightarrow \underline{\underline{A b}} \tag{2}
\end{equation*}
$$

for each $M$ in $\underline{\underline{Q M}}(\underline{R})$. The quadratic cross effect of $(2)$ is given by the formula

$$
\begin{equation*}
(A \mid B) \otimes_{\underline{\underline{R}}} M=(A \otimes B) \otimes_{\underline{\underline{R}} \otimes \underline{\underline{R}}} M_{c e} . \tag{3}
\end{equation*}
$$

Here $A$ and $B$ are $\underline{\underline{R}}^{o p}$-modules which yield the $(\underline{\underline{R}} \otimes \underline{\underline{R}})^{o p}$-module $A \otimes B$ by (1.7) and the $\underline{\underline{R}} \otimes \underline{\underline{R}}$-module $M_{e e}$ is given by $M$. The right hand side of (3) is a tensor product in the sense of (1.6). The isomorphism (3) is obtained by the inclusion

$$
\begin{equation*}
i_{12}:(A \otimes B) \otimes_{\underline{\underline{R}} \otimes \otimes_{\underline{\underline{R}}}} M_{e c}>\rightarrow(A \oplus B) \otimes_{\underline{\underline{R}}} M \tag{4}
\end{equation*}
$$

which carries $a \otimes b \otimes n$ to $\left[i_{1} a, i_{2} b\right] \otimes n$ for $a \in A(X), b \in B(Y), n \in M(X, Y)$. By (3.5) the quadratic functor $F=() \otimes_{\underline{\underline{R}}} M$ is as well a quadratic $\underline{\underline{M}}(\underline{\underline{R}})$-module. Here the structure maps $T, H, P$ are given by the natural transformations

$$
\begin{equation*}
(A \otimes B) \otimes_{\underline{\underline{R}} \otimes} \otimes{ }_{\underline{\underline{R}}} M_{e e}^{T}(B \otimes A) \otimes_{\underline{\underline{R}} \otimes \underline{\underline{R}}} M_{e e} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
A \otimes_{\underline{\underline{R}}} M \xrightarrow{H}(A \otimes A) \otimes_{\underline{\underline{R}}}^{\underline{\underline{R}}} \underline{\underline{\underline{R}}} M_{\mathrm{ee}} \xrightarrow{P} A \otimes_{\underline{\underline{R}}} M \tag{6}
\end{equation*}
$$

defined by the formulas

$$
\left\{\begin{array}{l}
H(a \otimes m)=(a \otimes a) \otimes H(m)  \tag{7}\\
H([a, b] \otimes n)=(a \otimes b) \otimes n+(b \otimes a) \otimes T(n) \\
T((a \otimes b) \otimes n)=(b \otimes a) \otimes T(n), \\
P((a \otimes b) \otimes n)=[a, b] \otimes n
\end{array}\right.
$$

We point out that the tensor product (4.1) is compatible with direct limits in $\underline{\underline{M}}\left(\underline{\underline{R}}^{o p}\right)$ and $\underline{\underline{Q M}}(\underline{\underline{R}})$ respectively.
Let $\underline{\underline{A}}$ be an additive category and let $F: \underline{\underline{A}} \rightarrow \underline{\underline{A b}}$ be a quadratic functor. For a small subringoid $\underline{\underline{R}} \subset \underline{\underline{A}}$ the quadratic $\underline{\underline{R}}$-module $\bar{F}\{\underline{\underline{R}}\}$ is defined by (3.5). On the other hand each object $U$ in $\underline{\underline{A}}$ gives us the $\underline{\underline{R}}^{o p}$-module

$$
[\underline{\underline{R}}, U]: \underline{\underline{R}}^{o p} \rightarrow \underline{\underline{A b}}
$$

which carries $X \in \underline{\underline{R}}$ to $\underline{\underline{A}}(X, U)=[X, U]$. We now define a map

$$
\begin{equation*}
\lambda:[\underline{\underline{R}}, U] \otimes_{\underline{\underline{R}}} F\{\underline{\underline{R}}\} \rightarrow F(U) \tag{4.3}
\end{equation*}
$$

by $\lambda(a \otimes m)=F(a)(m)$ for $a \in[X, U], m \in F(X)$ and $\lambda([a, b] \otimes n)=P F(a \mid b)(n)$ for $b \in[Y, U]$ and $n \in F(X \mid Y)$.
(4.4) Proposition: The homomorphism $\lambda$ in (4.3) is well defined and natural. Moreover $\lambda$ is an isomorphism if $U=X_{1} \vee \cdots \vee X_{r}$ is a finite biproduct with $X_{i} \in \underline{\underline{R}}$ for $i=1, \cdots r$ and if $\underline{\underline{R}}$ is a full subringoid of $\underline{\underline{A}}$.
This is a crucial property of the tensor product (4.1) which shows that definition (4.1) is naturally derived from the notion of a quadratic functor. The proposition shows that a quadratic functor $F: \underline{\underline{\operatorname{Add}}}(\underline{R}) \rightarrow \underline{\underline{A b}}$ is completely determined by the quadratic $\underline{\underline{R}}$-module $F\{\underline{\underline{R}}\}=i^{*} F$. This proves theorem (3.7); in fact, the inverse of the functor (3.7) carries $M \in \underline{\underline{Q M}}(\underline{\underline{R}})$ to the quadratic functor $[\underline{\underline{R}},] \otimes_{\underline{\underline{R}}} M$.
The next corollary illustrates proposition (4.4). Let $\underline{\underline{C y c}}$ be the full subcategory of $\underline{\underline{A b}}$ consisting of cyclic groups $Z / n$ where $n=0$ or where $n$ is a prime power. Then we have the equivalence of categories

$$
\begin{equation*}
\underline{\underline{A d d}}(\underline{\underline{C y c}}) \stackrel{\sim}{\rightarrow} \underline{\underline{F A b}} \tag{4.5}
\end{equation*}
$$

where $\underline{\underline{F A b}}$ is the full category of $\underline{\underline{A b}}$ consisting of finitely generated abelian groups. Since each abelian group is the limit of its finitely generated subgroups we get the
(4.6) Corollary: Let $F: \underline{\underline{A b}} \rightarrow \underline{\underline{A b}}$ be a quadratic functor which commutes with direct limits. Then $F$ is completely determined by the quadratic Cyc-module $F\{\underline{\underline{C y c}\}}\}$, see (3.5). In fact, we have the natural isomorphism $[\underline{\underline{C y c}}, A] \otimes_{\underline{C y c}} F\{\underline{\underline{C y c}}\} \simeq F(A)$ for $A$ in $A b$.
We now consider examples of the natural transformation $\lambda$ in (4.3). A commutative ring $R$ satisfies $R^{o p}=R$. Therefore we get for any quadratic functor $F: \underline{\underline{M}}(R) \rightarrow \underline{\underline{A b}}$ the natural homomorphism $(A \in O b \underline{\underline{M}}(R))$

$$
\begin{equation*}
\lambda: A \otimes_{R} F\{R\} \rightarrow F(A) \tag{4.7}
\end{equation*}
$$

Here the quadratic $R$-module $F\{R\}$ is essentially given by the homomorphisms in $\underline{\underline{A b}}$

$$
F(R) \xrightarrow{H} F(R \mid R) \xrightarrow{P} F(R),
$$

see (2.6) (4) and (3.3) (1), and $\lambda$ is defined as follows. For $a \in A$ let $\bar{a}: R \rightarrow A$ be the map in $\underline{\underline{M}}(R)$ with $\bar{a}(1)=a$. Then we get for $m \in F(R)$ and $n \in F(R \mid R)$ the formulas $\lambda(a \otimes m)=F(\bar{a})(m)$ and $\lambda([a, b] \otimes n)=P F(\bar{a} \mid \bar{b})(n)$. By (4.4) the map $\lambda$ is an isomorphism if $A$ is a finitely generated free $R$-module. We call $\lambda$ the tensor approximation of the quadratic functor $F$. For $R=\mathbf{Z}$ we have the following examples for which the tensor approximation is actually a natural isomorphism.
(4.8) Proposition: The quadratic functors $F=\otimes^{2}, P^{2}, \Lambda^{2}, \Gamma, S^{2}$ in (2.12) satisfy $A \otimes \mathbf{Z} F\{\mathbf{Z}\} \cong F(A)$ for $A \in \underline{\underline{A b}}$, hence one has natural isomorphisms

$$
\begin{aligned}
& \otimes^{2}(A) \cong A \otimes \mathbf{Z}^{\otimes} \\
& P^{2}(A) \cong A \otimes \mathbf{Z}^{P} \\
& \Lambda^{2}(A) \cong A \otimes \mathbf{Z}^{\Lambda} \\
& \Gamma(A) \cong A \otimes \mathbf{Z}^{\Gamma} \\
& S^{2}(A) \cong A \otimes \mathbf{Z}^{S}
\end{aligned}
$$

The torsion functor $F: \underline{\underline{A b}} \rightarrow \underline{\underline{A b}}$ with $F(A)=A * A$, however, is a quadratic functor for which the tensor approximation is no isomorphism, in fact, $F\{\mathbf{Z}\}=0$ in this case. One can check (4.8) by the definition of the relations in (4.1). Finally we observe the next result where we use the notation $[M] \otimes_{\mathbf{Z}} C$ in (2.1).


$$
A \otimes_{\mathbf{z}}\left([M] \otimes_{\mathbf{z}} C\right) \simeq\left(A \otimes_{\mathbf{z}} M\right) \otimes_{\mathbf{z}} C .
$$

## § 5 The quadratic Hom functor

Let $\underline{\underline{R}}$ be a small ringoid. For $\underline{\underline{R}}$-modules $A, B$ one has the abelian group $\operatorname{Hom}_{\underline{\underline{R}}}(A, B)$ which consists of all natural transformations $A \rightarrow B$. We now extend this Hom functor for the case that $B$ is a quadratic $\underline{\underline{R}}$-module.
(5.1) Definitions: We define the functor

$$
\operatorname{Hom}_{\underline{\underline{R}}}: \underline{\underline{M}}(\underline{\underline{R}})^{o p} \times \underline{\underline{Q M}}(\underline{\underline{R}}) \rightarrow \underline{\underline{A b}}
$$

which carries the pair $(A, M)$ to the abelian group $\operatorname{Hom}_{\underline{\underline{R}}}(A, M)$, the elements of which are called quadratic forms $A \rightarrow M$ over $\underline{\underline{R}}$. A quadratic form $\alpha: A \rightarrow M$ is given by functions ( $X, Y \in O b(\underline{\underline{R}})$ )

$$
\begin{equation*}
\alpha_{X}: A(X) \rightarrow M(X), \alpha_{X, Y}: A(X) \times A(Y) \rightarrow M(X, Y) \tag{1}
\end{equation*}
$$

such that the following properties are satisfied; (they are analogous to the corresponding properties in (4.1) (2) and they as well define the sum $\alpha+\beta$ of quadratic forms).

$$
\left\{\begin{array}{l}
\alpha_{X}(a+b)=\alpha_{X}(a)+\alpha_{X}(b)+P \alpha_{X, X}(a, b) \\
(\alpha+\beta)_{X}=\alpha_{X}+\beta_{X} \\
\alpha_{X, X}(a, a)=H \alpha_{X}(a) \\
\alpha_{X, Y}(a, b)=T \alpha_{Y, X}(b, a) \\
\alpha_{X, Y} \text { is bilinear and }(\alpha+\beta)_{X, Y}=\alpha_{X, Y}+\beta_{X, Y} \\
M_{e}(\varphi) \alpha_{X}=\alpha_{X_{1}} A(\varphi) \\
M_{c e}(\varphi, \Psi) \alpha_{X, Y}=\alpha_{X_{1}, Y_{1}}(A(\varphi) \times A(\Psi))
\end{array}\right.
$$

Here $a, b$ are appropriate elements in $A(X)$ or $A(Y)$ and $\varphi: X \rightarrow X_{1}, \quad \Psi: Y \rightarrow Y_{1}$ are morphisms in $\underline{\underline{R}}$. The last two equations describe the "naturality" of the quadratic form $\alpha$, (these equations are redundant if $\underline{\underline{R}}=\mathbf{Z}$ ). For morphisms $F: A^{\prime} \rightarrow A$ in $\underline{\underline{M}} \underline{\underline{R}}$ ) and $\left.G: M \rightarrow M^{\prime} \in \underline{\underline{Q M}} \underline{\underline{R}}\right)$ we define the induced homomorphisms

$$
\begin{equation*}
\operatorname{Hom}(F, G): \operatorname{Hom}_{\underline{\underline{R}}}(A, M) \rightarrow \operatorname{Hom}_{\underline{\underline{\mathrm{R}}}}\left(\mathrm{~A}^{\prime}, \mathrm{M}^{\prime}\right) \tag{3}
\end{equation*}
$$

by the formulas $\operatorname{Hom}(F, G)(\alpha)=\beta$ with

$$
\begin{equation*}
\beta_{X}=G_{e} \alpha_{X} F, \beta_{X, Y}=G_{e e} \alpha_{X, Y}(F \times F) \tag{4}
\end{equation*}
$$

In case $M_{\text {ee }}=0$ we see that $\operatorname{Hom}_{\underline{\underline{R}}}(A, M)$ coincides with the usual group of natural transformations $A \rightarrow M$, hence the functor (5.1) extends canonically the classical functor $\operatorname{Hom}_{\underline{\underline{R}}}$ for $\underline{\underline{R}}$-modules.
(5.2) Proposition: The Hom-functor (5.1) yields an additive functor

$$
\begin{equation*}
\left.\operatorname{Hom}_{\underline{\underline{R}}}(A,): \underline{\underline{Q M}} \underline{\underline{R}}\right) \rightarrow \underline{\underline{A b}} \tag{1}
\end{equation*}
$$

for each $A$ in $\underline{\underline{M}}(\underline{\underline{R}})$ and a quadratic functor

$$
\begin{equation*}
\operatorname{Hom}_{\underline{\underline{R}}}(, M): \underline{\underline{M}}(\underline{\underline{R}})^{o p} \rightarrow \underline{A b} \tag{2}
\end{equation*}
$$

for each $M$ in $\underline{\underline{Q M}}(\underline{\underline{R}})$. The quadratic cross effect of (2) is given by the formula

$$
\begin{equation*}
\operatorname{Hom}_{\underline{\underline{R}}}(A \mid B, M)=\operatorname{Hom}_{\underline{\underline{\underline{R}}} \otimes}^{\underline{\underline{R}}}\left(A \otimes B, M_{e e}\right) \tag{3}
\end{equation*}
$$

Compare (4.2) where we describe the corresponding result for quadratic tensor products. The isomorphism in (3) is obtained by the projection

$$
\begin{equation*}
r_{12}: \operatorname{Hom}_{\underline{\underline{R}}}(A \oplus B, M) \rightarrow \rightarrow \operatorname{Hom}_{\underline{\underline{R}} \otimes \underline{\underline{R}}}\left(A \otimes B, M_{e e}\right) \tag{4}
\end{equation*}
$$

which carries $\alpha$ to the natural transformation $\beta: A(X) \otimes B(Y) \rightarrow M_{e e}(X, Y)$ with $\beta(a \otimes b)=$ $\alpha_{X, Y}\left(i_{1} a, i_{2} b\right)$. By (3.5) the quadratic functor $F=\operatorname{Hom}_{\underline{\underline{R}}}(, M)$ is a quadratic $\underline{\underline{M}}(\underline{\underline{R}})^{o p}$ module; the structure maps $T, H, P$ are given by the following natural transformations

$$
\begin{equation*}
\operatorname{Hom}_{\underline{\underline{R}} \otimes \underline{\underline{R}}}\left(A \otimes B, M_{e e}\right) \xrightarrow{T} \operatorname{Hom}_{\underline{\underline{R}} \otimes \underline{\underline{R}}}\left(B \otimes A, M_{e e}\right) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Hom}_{\underline{\underline{R}}}(A, M) \xrightarrow{H} \operatorname{Hom}_{\underline{\underline{R}} \otimes \underline{\underline{R}}}\left(A \otimes B, M_{e e}\right) \xrightarrow{P} \operatorname{Hom}_{\underline{\underline{R}}}(A, M) \tag{6}
\end{equation*}
$$

defined by

$$
\left\{\begin{array}{l}
(T \beta)(a \otimes b)=T \beta(b \otimes a)  \tag{7}\\
(H \alpha)(a \otimes b)=\alpha(a, b)+T \alpha(b, a) \\
(P \beta)(a)=H \beta(a \otimes a) \text { and }(P \beta)(a, b)=\beta(a \otimes b)
\end{array}\right.
$$

(5.3) Examples: Let $R$ be a commutative ring and consider the quadratic $R$-modules $R^{\Lambda}, R^{S}$ and $R^{\Gamma}$ defined in (3.4). Moreover let $A$ be an $R$-module.
(1) A quadratic form $\alpha: A \rightarrow R^{\Lambda}$ can be identified with an $R$-bilinear map $\alpha: A \times A \rightarrow R$ satisfying $\alpha(a, a)=0$. Hence $\alpha$ is just an alternating bilinear form.
(2) A quadratic form $\alpha: A \rightarrow R^{S}$ can be identified with a function $\alpha: A \rightarrow R$ which satisfies $\alpha(\lambda \cdot a)=\lambda^{2} \cdot \alpha(a)$ for $\lambda \in R, a \in A$ and for which the function

$$
\Delta_{\alpha}: A \times A \rightarrow R, \Delta_{\alpha}(a, b)=\alpha(a+b)-\alpha(a)-\alpha(b)
$$

is $R$-bilinear. Thus $\alpha$ is the same as a guadratic form on $A$ in the classical sense, see for example [1], [29].
(3) A quadratic form $\alpha: A \rightarrow R^{\Gamma}$ can be identified with a pair of functions $\alpha: A \rightarrow R, \Delta$ : $A \times A \rightarrow R$ for which $\alpha(\lambda a)=\lambda^{2} \alpha(a)$ and for which $\Delta$ is symmetric $R$-bilinear with $2 \Delta(a, b)=\alpha(a+b)-\alpha(a)-\alpha(b)$ and $\Delta(a, a)=\alpha(a)$. If $R$ is uniquely 2-divisible $\alpha$ is a special quadratic form as in (2) since in this case $\Delta$ is determined by $\alpha$.
(5.4) Lemma: Let $R$ be a ring and let $F$ be a finitely generated free $R$-module. Then $\operatorname{Hom}_{R}(F, R)$ is an $R^{o p}$-module such that

$$
\chi: \operatorname{Hom}_{R}(F, R) \otimes_{R} M \cong \operatorname{Hom}_{R}(F, M)
$$

for any quadratic $R$-module $M$.
Proof: We define the natural isomorphsim $\chi$ as follows. Let $a, b \in \operatorname{Hom}_{R}(F, R), m \in$ $M(e), n \in M(e, e)$. Then $\chi(a \otimes m)=\alpha$ is given by $\alpha(x)=M_{e}(a(x))(m)$ and $\alpha(x, y)=$ $M_{e e}(a(x), a(y)) H(m)$ for $x, y \in F$. Moreover $\chi([a, b] \otimes n)=\beta$ is given by $\beta(x)=$ $P M_{e e}(a(x), b(x))(n)$ and $\beta(x, y)=M_{e e}(a(x), b(y))(n)+M_{e e}(a(y), b(x))(n)$.
q.e.d.

Let $\underline{\underline{A}}$ be an additive category and let $F: \underline{\underline{A}}^{o p} \rightarrow \underline{\underline{A b}}$ be a quadratic functor. For a small subringoid $\underline{\underline{R}} \subset \underline{\underline{A}}$ the quadratic $\underline{\underline{R}}^{o p}$-module $F\left\{\underline{\underline{R}}^{o p}\right\}$ is defined as in (3.5) by $\underline{\underline{R}}^{o p} \subset \underline{\underline{A}}^{o p}$. On the other hand each object $U$ in $\underline{\underline{A}}$ gives the $\underline{\underline{R}}^{o p}$-module $[\underline{\underline{R}}, U]$ as in (4.3). We now define the map

$$
\begin{equation*}
\lambda: F(U) \rightarrow \operatorname{Hom}_{\underline{\underline{R^{\circ p}}}}\left([\underline{\underline{R}}, U], F\left\{\underline{\underline{R}}^{o p}\right\}\right) \tag{5.5}
\end{equation*}
$$

as follows. For $\xi \in F(U)$ let $\lambda(\xi)$ be given by the functions $\alpha_{X}, \alpha_{X, Y}\left(X, Y \in \underline{\underline{R}}^{o p}\right)$ with $\alpha_{X}(a)=a^{*}(\xi)=F(a)(\xi), a \in[X, U]$ and $\alpha_{X, Y}(a, b)=F(a \mid b) H(\xi), b \in[Y, U]$.
(5.6) Proposition: The homomorphism $\lambda$ is an isomorphism if $U=X_{1} \vee \cdots \vee X_{\mathrm{r}}$ is a finite biproduct with $X_{i} \in \underline{\underline{R}}$ for $i=1, \cdots, r$ and if $\underline{\underline{R}}$ is a full subringoid of $\underline{\underline{A}}$.
This result is a crucial property of the Hom-group (5.1) which shows that definition (5.1) is again naturally derived from the notion of a quadratic functor. We leave it to the reader
to formulate a corollary of (5.6) corresponding to (4.6). Moreover we get as in (4.7) the following example. Let $R$ be a commutative ring and let $F: \underline{\underline{M}}(R)^{o p} \rightarrow \underline{A b}$ be a quadratic functor. Then the quadratic $R$-module $F\{R\}$ is defined and we derive from (5.5) the natural transformation

$$
\begin{equation*}
\lambda: F(A) \rightarrow \operatorname{Hom}_{R}(A, F\{R\}) \tag{5.7}
\end{equation*}
$$

where $A \in \underline{\underline{M}}(R)$, compare (4.7). By (5.6) this map is an isomorphism if $A$ is a finitely generated free $R$-module. We call (5.7) the Hom-approximation of the quadratic functor $F$.

## \& 6 The quadratic chain functors

In this section we associate with each quadratic $\underline{R}$-module $M$ quadratic chain functors $M_{*}$ and $M^{*}$. The definition of $M_{*}$ and $M^{*}$ is motivated by the applications in homotopy theory below. The quadratic chain functors as well form a first step for the construction of derived functors.
Let $\underline{\underline{R}}$ be a ringoid with a zero object denoted by 0 . A chain complex $X_{*}=\left(X_{*}, d\right)$ in $\underline{\underline{R}}$ is a sequence of maps in $\underline{\underline{R}}$

$$
\begin{equation*}
\cdots \rightarrow X_{n} \xrightarrow{d} X_{n-1} \xrightarrow{d} \cdots \quad(n \in \mathbf{Z}) \tag{6.1}
\end{equation*}
$$

with $d d=0$. A chain map $F: X_{*} \rightarrow Y_{*}$ is given by maps $F=F_{n}: X_{n} \rightarrow Y_{n}$ with $d F=F d$ and a chain homotopy $\alpha: F \simeq G$ is given by maps $\alpha=\alpha_{n}: X_{n-1} \rightarrow Y_{n}$ with $-F_{n}+G_{n}=\alpha_{n} d+d \alpha_{n+1}$. The chain complex $X_{*}$ is positive (negative) if $X_{i}=0$ for $i<0\left(X_{i}=0\right.$ for $\left.i>0\right)$. A negative chain complex is also called a cochain complex $X^{*}$ where we write $X^{n}=X_{-n}, d: X^{n} \rightarrow X^{n+1}$. Let $\underline{\underline{R}}_{*}\left(\underline{\underline{R}}^{*}\right)$ be the category of positive (negative) chain complexes and let $\underline{\underline{R}} / \simeq \quad\left(\underline{R}^{*} / \simeq\right)$ be its homotopy category.
We also need the category $\left.\underline{\underline{P_{\text {air }}}} \underline{\underline{R}}\right)$ of pairs in $\underline{\underline{R}}$; objects are morphisms $d$ in $\underline{\underline{R}}$ and maps $F: d \rightarrow d^{\prime}, F=\left(F_{A}, F_{B}\right)$, are commutative diagrams

| $A$ | $\xrightarrow{F_{A}}$ | $A^{\prime}$ |
| :---: | :---: | :---: |
| $d \downarrow$ |  | $\downarrow d^{\prime}$ |
| $B$ | $\xrightarrow{F_{B}}$ | $B^{\prime}$ |

A homotopy $\alpha: F \simeq G$ is a map $\alpha: B \rightarrow A$ with $-F_{A}+G_{A}=\alpha d,-F_{B}+G_{B}=d^{\prime} \alpha$. We have full inclusions of $\underline{\underline{\operatorname{Pair}}}(\underline{\underline{R}}) / \simeq$ into $R_{*} / \simeq$ and $R^{*} / \simeq$ which carry $d$ to the chain complex $d: A=X_{1} \rightarrow B=X_{0}$ and to the cochain complex $d: A=X^{0} \rightarrow B=X^{1}$ respectively.
(6.3) Definition: Let $M$ be a quadratic $\underline{\underline{R}}$-module. The quadratic chain functors associated to $M$ are functors

$$
\begin{equation*}
M_{*}: \underline{\underline{\operatorname{Pair}}}(\underline{\underline{R}}) \rightarrow \underline{\underline{A b}}, M^{*}: \underline{\underline{\text { Pair }}}(\underline{\underline{R}}) \rightarrow \underline{\underline{A b^{*}}} \tag{1}
\end{equation*}
$$

which are defined as follows. For an object $d: X_{1} \rightarrow X_{0}$ in $\underline{\underline{\text { Pair }}}(\underline{\underline{R}})$ we define the chain complex $M_{*}(d)$ by $M_{i}(d)=0$ for $i>2$ and by


On the other hand we define for an object $d: X^{0} \rightarrow X^{1}$ in $\underline{\underline{\operatorname{Pair}}}(\underline{\underline{R}})$ the cochain complex $M^{*}(d)$ by $M^{i}(d)=0$ for $i>2$ and by


For a map $F: d \rightarrow d^{\prime}$ in Pair $(\underline{R})$ the induced chain maps $M_{*}(F)$ and $M^{*}(F)$ are defined in the obvious way. One readily checks that the composition of maps in (2) and (3) respectively is the trivial map 0 . The definition of $M_{*}, M^{*}$ is motivated by the examples in [9].
We point out that the definition of $M^{*}$ above is dual to the definition of $M_{*}$; here duality is obtained by reversing arrows and by the interchange of $H$ and $P$.
(6.4) Theorem. The quadratic chain functors (6.3) induce functors

$$
M_{*}: \underline{\underline{\operatorname{Pair}}}(\underline{\underline{R}}) / \simeq \rightarrow \underline{\underline{A b}} / \simeq, M^{*}: \underline{\underline{\operatorname{Pair}}}(\underline{\underline{R}}) / \simeq \rightarrow \underline{\underline{A b^{*}}} / \simeq
$$

between homotopy categories.
Proof: Let $f=\left(f_{1}, f_{0}\right)$ and $g=\left(g_{1}, g_{0}\right)$ be maps $d \rightarrow d^{\prime}$ in $\left.\underline{\underline{\operatorname{Pair}}} \underline{\underline{R}}\right)$ and let $\alpha: f \simeq g$ be a homotopy. We can define a homotopy

$$
\begin{equation*}
\beta: M_{*}(f) \simeq M_{*}(g) \tag{1}
\end{equation*}
$$

by the matrices (2) and (3).

$$
\beta_{1}=\binom{B_{1}}{B_{2}} \text { with }\left\{\begin{array}{l}
B_{1}=\alpha_{*}  \tag{2}\\
B_{2}=\left(\alpha, f_{0}\right)_{*} H
\end{array}\right.
$$

$$
\beta_{2}=\left(A_{1}, A_{2}\right) \text { with }\left\{\begin{array}{l}
A_{1}=\left(\alpha d, f_{1}\right)_{*} H  \tag{3}\\
A_{2}=-\left(g_{1}, \alpha\right)_{*}+T\left(f_{1}, \alpha\right)_{*} .
\end{array}\right.
$$

For the proof of (1) we have to check the following equations (4)......(9).

$$
\begin{equation*}
-f_{0 *}+g_{0 *}=d_{*} B_{1}+P(d, 1)_{*} B_{2} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
-\left(f_{1}, f_{1}\right)_{*}+\left(g_{1}, g_{1}\right)_{*}=A_{1} P-A_{2}(1, d)_{*} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
-f_{1_{*}}+g_{1 *}=P A_{1}+B_{1} d_{*} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
-\left(f_{1}, f_{0}\right)_{*}+\left(g_{1}, g_{0}\right)_{*}=-(1, d)_{*} A_{2}+B_{2} P(d, 1)_{*} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
0=P A_{2}+B_{1} P(d, 1)_{*} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
0=-(1, d)_{*} A_{1}+B_{2} d_{*} . \tag{9}
\end{equation*}
$$

Originally we found the formulas in (2) and (3) as a solution of the system of equations (4).....(9). We now check (4).

$$
\begin{align*}
& d_{*} \alpha_{*}+P(d, 1)_{*}\left(d, f_{0}\right)_{*} H=(d \alpha)_{*}+P\left(d \alpha, f_{0}\right)_{*} H  \tag{10}\\
& =(d \alpha)_{*}+\left(d \alpha+f_{0}\right)_{0}-(d \alpha)_{*}-f_{0_{*}}=g_{0 *}-f_{0_{*}}
\end{align*}
$$

Here we use (3.1) (5) and $d \alpha=-f_{0}+g_{0}$. Next we obtain (5) by $\alpha d=-f_{1}+g_{1}$ and by (3.1) (3):

$$
\begin{align*}
& \left(\alpha d, f_{1}\right)_{*} H P+\left(g_{1}, \alpha\right)_{*}(1, d)_{*}-T\left(f_{1}, \alpha\right)_{*}(1, d)_{*}= \\
& \left(\alpha d, f_{1}\right)_{*} T+\left(\alpha d, f_{1}\right)_{*}+\left(g_{1}, \alpha d\right)_{*}-T\left(f_{1}, \alpha d\right)_{*}=  \tag{11}\\
& \left(\alpha d, f_{1}\right)_{*}+\left(g_{1}, \alpha d\right)_{*}=\left(-f_{1}+g_{1}, f_{1}\right)_{*}+\left(g_{1},-f_{1}+g_{1}\right)_{*} \\
& =-\left(f_{1}, f_{1}\right)_{*}+\left(g_{1}, g_{1}\right)_{*} .
\end{align*}
$$

In the last equation we use the biadditivity of the functor $M_{e e}$ in (3.1). For equation (6) we consider

$$
\begin{equation*}
P\left(\alpha d, f_{1}\right)_{*} H+\alpha_{*} d_{*}=\left(\alpha d+f_{1}\right)_{*}-(\alpha d)_{*}-f_{1_{*}}+(\alpha d)_{*}=-f_{1_{*}}+g_{1_{*}} . \tag{12}
\end{equation*}
$$

Next equation (7) follows from

$$
\begin{align*}
& -(1, d)_{*}\left(g_{1}, \alpha\right)_{*}-(1, d)_{*} T\left(f_{1}, \alpha\right)_{*}+\left(\alpha, f_{0}\right)_{*} H P(d, 1)_{*}= \\
& \left(g_{1}, d \alpha\right)_{*}-\left(\alpha, d f_{1}\right)_{*} T+\left(\alpha d, f_{0}\right)_{*}+\left(\alpha, f_{0} d\right)_{*} T=  \tag{13}\\
& \left(g_{1},-f_{0}+g_{0}\right)_{*}+\left(-f_{1}+g_{1}, f_{0}\right)_{*}=\left(g_{1}, g_{0}\right)_{*}-\left(f_{1}, f_{0}\right)_{*} .
\end{align*}
$$

Moreover we obtain (8) by

$$
\begin{align*}
& -P\left(g_{1}, \alpha\right)_{*}+P T\left(f_{1}, \alpha\right)_{*}+\alpha_{*} P(d, 1)_{*}=  \tag{14}\\
& -P\left(g_{1}, \alpha\right)_{*}+P\left(f_{1}, \alpha\right)_{*}+P(\alpha d, \alpha)_{*}=0
\end{align*}
$$

In the last equation we use $\alpha d=-f_{1}+g_{1}$. Finally we obtain (9) by

$$
\begin{equation*}
-(1, d)_{*}\left(\alpha d, f_{1}\right)_{*} H+\left(\alpha, f_{0}\right)_{*} H d_{*}=-\left(\alpha d, d f_{1}\right)_{*} H+\left(\alpha d, f_{0} d\right)_{*} H=0 \tag{15}
\end{equation*}
$$

Here we use $d f_{1}=f_{0} d$. This completes the proof of theorem (6.4) for $M_{*}$. The proof for $M^{*}$ uses the 'dual' arguments. Let $f=\left(f^{0}, f^{1}\right), g=\left(g^{0}, g^{1}\right)$ be maps $d^{\prime} \rightarrow d$ in $\underline{\underline{\text { Pair }}}(\underline{\underline{R}})$ and let $\alpha: f \simeq g$ be a homotopy. Then we define a homotopy

$$
\begin{equation*}
\beta: M^{*}(f) \simeq M^{*}(g) \tag{16}
\end{equation*}
$$

by the matrices (17) and (18).

$$
\beta^{0}=\left(B_{1}, B_{2}\right) \text { with }\left\{\begin{array}{l}
B_{1}=\alpha_{*}  \tag{17}\\
B_{2}=P\left(\alpha, f^{0}\right)_{*}
\end{array}\right.
$$

$$
\beta^{1}=\binom{A_{1}}{A_{2}} \text { with }\left\{\begin{array}{l}
A_{1}=P\left(\alpha d^{\prime}, f^{1}\right)_{*}  \tag{18}\\
A_{2}=-\left(g^{1}, \alpha\right)_{*}+T\left(f^{1}, \alpha\right)_{*}
\end{array}\right.
$$

One can check as above that (16) is satisfied.
q.e.d.
(6.5) Remark: The Dold-Kan theorem shows that positive chain complexes $X_{*}$ in an abelian category $\underline{\underline{A}}$ are in 1-1 correspondence with simplicial objects $X_{0}: \Delta^{o p} \rightarrow \underline{\underline{A}}$ in $\underline{\underline{A}}$. Here $\Delta$ is the simplicial category. The correspondence is given by the functors $\bar{K}$ and $N$ with $N K\left(X_{*}\right) \cong X_{*}$ and $K N\left(X_{\circ}\right) \cong X_{\circ}$, see for example $\S 3$ in Dold-Puppe [15]. Now let $\underline{R}$ be a ringoid and let

$$
F: \underline{\underline{A d d}}(\underline{\underline{R}}) \rightarrow \underline{\underline{A b}}
$$

be a quadratic functor. Then $F$ is determined by the quadratic $\underline{\underline{R}}$-module $M=F\{\underline{R}\}$ as in (3.7). Each positive chain complex $X_{*}$ in $\underline{\underline{R}}$ determines the simplicial object $K\left(X_{*}\right)$ : $\Delta^{o p} \rightarrow \underline{\underline{\operatorname{Add}}}(\underline{\underline{R}})$ as above since for the definition of the functor $K$ the category $\underline{\underline{A}}$ needs only to be additive. The functor $F$ yields the simplicial object $F K\left(X_{*}\right): \Delta^{o p} \rightarrow \underline{\underline{A b}}$ so that the chain complex $N F K\left(X_{*}\right)$ in $\underline{\underline{A b}}$ is defined. If $X_{*}=\left(d: X_{1} \rightarrow X_{0}\right)$ is given by a map $d$ in $\underline{\underline{R}}$ with $X_{i}=0$ for $i>1$ one can show that there is a natural homotopy equivalence of chain complexes in $\underline{\underline{A b}}$

$$
N F K\left(d: X_{1} \rightarrow X_{0}\right) \simeq M_{*}(d)
$$

Here the right hand side is defined as in (6.3) with $M=F\{\underline{\underline{R}}\}$. We do, however, not see that the dual complex $M^{*}(d)$ in (6.3) as well has such a property.

## § 7 Quadratic functors induced by a quadratic Z-module

For a $\mathbf{Z}$-module $M$ one has the functors which carry an abelian group $A$ to the group

$$
A \otimes M, A * M, \operatorname{Hom}(A, M) \quad \text { and } \operatorname{Ext}(A, M)
$$

respectively. We now introduce for a quadratic Z-module $M$ twelve quadratic functors which generalize these classical functors. Using short free resolutions we obtain functors

$$
\begin{equation*}
i: \underline{\underline{A b}} \rightarrow \underline{\underline{P a i r}} \underline{\underline{A b}}) / \simeq \text { and } i^{o p}: \underline{\underline{A b}}^{o p} \rightarrow \underline{\underline{\operatorname{Pair}}}\left(\underline{\underline{A b}}^{b^{p}}\right) / \simeq \tag{7.1}
\end{equation*}
$$

as follows. For each abelian group $A$ we choose a short exact sequence

$$
G>\xrightarrow{d_{A}} F \xrightarrow{q} \rightarrow A
$$

where $G$ and $F$ are free abelian groups and we set $i(A)=d_{A}$. For a homomorphism $\varphi: A \rightarrow B$ we can choose a map $f: d_{A} \rightarrow d_{B}$ in $\underline{\underline{\operatorname{Pair}}} \underline{\underline{A b}}$ ) which induces $\varphi$. The homotopy class $\{f\}$ of $f$ is well defined by $\varphi$ and we set $i(\varphi)=\{f\}$. The functor $i$ is actually full and faithful. The functor $i^{o p}$ is induced by $i$.
A quadratic Z -module $M$ yields the quadratic functors

$$
\begin{equation*}
() \otimes_{\mathbf{Z}} M: \underline{\underline{A b}} \rightarrow \underline{\underline{A b}} \text { and } \operatorname{Hom}(, M): \underline{\underline{A b}}^{o p} \rightarrow \underline{\underline{A b}} \tag{7.2}
\end{equation*}
$$

which as well yield a quadratic $A b$-module $\left\} \otimes \mathbf{Z} M\right.$ and a quadratic $\underline{A b^{o p}}$-module Hom $\{, M\}$ respectively, compare (4.2) (5), (6) and (5.2) (5), (6). We now use (6.4) and (7.1) for the definition of the quadratic chain functors

$$
\begin{align*}
& \left(\left\} \otimes_{\mathbf{z}} M\right)_{*} i: \underline{\underline{A b}} \rightarrow \underline{\underline{A b}} / \simeq\right. \\
& \left(\} \otimes \mathbf{Z} M)_{*} i: \underline{\underline{A b}} \rightarrow \underline{\underline{A b^{*}}} / \simeq\right. \\
& (\operatorname{Hom}\{, M\})_{*^{\circ}} i^{* p}: \underline{\underline{A b^{o p}}} \rightarrow \underline{A b} / \simeq  \tag{7.3}\\
& (\operatorname{Hom}\{, M\})^{*} i^{o p}: \underline{\underline{A b^{o p}}} \rightarrow \underline{\underline{A b}} / \simeq
\end{align*}
$$

The (co)homology groups of these four quadratic chain functors yield six functors $\underline{\underline{A b}} \rightarrow \underline{\underline{A b}}$ and six functors $\underline{\underline{A b^{o p}}} \rightarrow \underline{\underline{A b}}$ which we denote as follows where $d_{A}=i(A)$ as in (7.1) and where $j=0,1$, resp. 2 .

$$
\begin{array}{rlccc}
H_{j}(\{ \} \otimes \mathbf{Z} M)_{*} d_{A} & = & A \otimes M, & A *^{\prime} M, & \text { resp. } A *^{\prime \prime} M \\
H^{j}(\{ \} \otimes \mathbf{Z} M)^{*} d_{A} & = & A * M, & A \otimes^{\prime} M, & \text { resp. } A \otimes^{\prime \prime} M, \\
H_{j}(\operatorname{Hom}\{, M\})_{*} d_{A}^{o p} & = & \operatorname{Ext}(A, M), & \operatorname{Hom}^{\prime}(A, M), & \text { resp. } \operatorname{Hom}^{\prime \prime}(A, M),  \tag{7.4}\\
H^{j}(\operatorname{Hom}\{, M\})^{*} d_{A}^{o p} & = & \operatorname{Hom}(A, M), & \operatorname{Ext}^{\prime}(A, M), & \text { resp. } \operatorname{Ext}^{\prime \prime}(A, M) .
\end{array}
$$

For the convenience of the reader we now describe explicitly the chain complexes used in (7.4). For this we choose $d=d_{A}: G \rightarrow F$ as in (7.1).
(1) The chain complex $\left(\left\} \otimes_{\mathbf{Z}} M\right)_{*} d_{A}\right.$ is given by

$$
G \otimes G \otimes M_{e e} \xrightarrow{\left(P,-d_{.}\right)} G \otimes_{\mathbf{Z}} M \oplus G \otimes F \otimes M_{e e} \xrightarrow{\left(d_{*}, P d .\right)} F \otimes_{\mathbf{Z}} M .
$$

(2) The cochain complex $\left(\} \otimes \mathbf{Z} M)^{*} d_{A}\right.$ is given by

$$
F \otimes F \otimes M_{e e} \stackrel{\left(H_{1}-d_{.}\right)}{\leftarrow} F \otimes_{\mathbf{Z}} M \oplus F \otimes G \otimes M_{e e} \stackrel{\left(d ., d_{0}, H\right)}{\leftarrow} G \otimes_{\mathbf{Z}} M .
$$

(3) The chain complex $(\operatorname{Hom}\{, M\})_{*} d_{A}^{o_{P}}$ is given by

$$
\operatorname{Hom}\left(F \otimes F, M_{e e}\right) \xrightarrow{\left(P,-d^{*}\right)} \operatorname{Hom}_{\mathbf{z}}(F, M) \oplus \operatorname{Hom}\left(F \otimes G, M_{e e}\right) \xrightarrow{\left(d^{*}, P d^{*}\right)} \operatorname{Hom}_{\mathbf{z}}(G, M)
$$

(4) The cochain complex $(\operatorname{Hom}\{, M\})^{*} d_{A}^{o p}$ is given by

$$
\operatorname{Hom}\left(G \otimes G, M_{e e}\right) \stackrel{\left(H,-d^{*}\right)}{\leftarrow} \operatorname{Hom}_{\mathbf{z}}(G, M) \oplus \operatorname{Hom}\left(G \otimes F, M_{e e}\right) \stackrel{\left(d^{*}, d^{*} H\right)}{\leftarrow} \operatorname{Hom} \mathbf{z}(F, M)
$$

Here $d_{*}, d^{*}$ denote the maps induced by $d$ and the formulas for $H$ and $P$ are described in (4.2) (7) and (5.2) (7) respectively. The degree of the group at the right hand side in each sequence above is 0 .
The notation in (7.4) is chosen since there is the following compatibility with classical functors. Assume $M$ is a Z-module, that is $M_{e e}=0$, then one readily verifies that the groups

$$
\begin{aligned}
& A \otimes M=A \otimes^{\prime} M, A * M=A *^{\prime} M \\
& \operatorname{Hom}(A, M)=\operatorname{Hom}^{\prime}(A, M), \operatorname{Ext}(A, M)=\operatorname{Ext}^{\prime}(A, M)
\end{aligned}
$$

are given by the corresponding classical functors for abelian groups. Moreover all groups $A *^{\prime \prime} M, A \otimes^{\prime \prime} M, \operatorname{Hom}^{\prime \prime}(A, M)$ and $\operatorname{Ext}^{\prime \prime}(A, M)$ with $j=2$ in (7.4) are trivial for $M_{e e}=0$.
(7.5) Remark. Six of the functors in (7.4) are actually derived functors in the sense of DoldPuppe [15]. For this let $T=() \otimes_{\mathbf{Z}} M$ and $T^{\prime}=\operatorname{Hom}(, M)$ be the functors in (7.2). Then the derived functors $L_{i} T: \underline{\underline{A b}} \rightarrow \underline{\underline{A b}}$ and $R^{i} T^{\prime}: \underline{\underline{A b}}{ }^{o p} \rightarrow \underline{\underline{A b}}$ are defined by

$$
L_{i} T(A)=H_{i} N T K\left(X_{*}\right) \text { and } R^{i} T^{\prime}(A)=H^{i} N T^{\prime} K\left(X_{*}\right)
$$

respectively where $X_{*}=\left(d_{A}: F \rightarrow G\right)$ is given by a presentation of $A$ as in (7.1). Now one can show that one has natural isomorphisms

$$
\begin{aligned}
& L_{i} T(A)=A \otimes M, A *^{\prime} M, \text { resp. } A *^{\prime \prime} M, \\
& R^{i} T^{\prime}(A)=\operatorname{Hom}(A, M), \operatorname{Ext}^{\prime}(A, M), \operatorname{resp} . \operatorname{Ext}^{\prime \prime}(A, M)
\end{aligned}
$$

for $i=0,1$, resp. 2. For $L_{i} T(A)$ this is a direct consequence of the equivalence in (6.5). Since $T$ and $T^{\prime}$ are quadratic the derived functors above are trivial for $i>2$.
(7.0) Proposition: One has natural isomorphisms $A \otimes M=A \otimes_{\mathbf{z}} M$ and $\operatorname{Hom}(A, M)=$ $\operatorname{Hom}_{\mathrm{Z}}(A, M)$ where the right hand side is defined by (4.1) and (5.1) respectively. Compare also (B.10).
(7.7) Proposition: All functors in (7.4) are additive in $M$ and quadratic in $A$. The quadratic cross effects are naturally given by

$$
\begin{aligned}
& (A \mid B) \otimes M=A \otimes B \otimes M_{e e}=(A \mid B) \otimes^{\prime \prime} M \\
& (A \mid B) * M=A * B * M_{e e}=(A \mid B) *^{\prime \prime} M \\
& \operatorname{Ext}(A \mid B, M)=\operatorname{Ext}\left(A * B, M_{e e}\right)=\operatorname{Ext}^{\prime \prime}(A \mid B, M) \\
& H o m(A \mid B, M)=H o m\left(A \otimes B, M_{e e}\right)=\operatorname{Hom}^{\prime \prime}(A \mid B, M) \\
& (A \mid B) *^{\prime} M=H_{1}\left(d_{A} \otimes d_{B}, M_{e e}\right)=(A \mid B) \otimes^{\prime} M \\
& \operatorname{Hom}^{\prime}(A \mid B, M)=H^{1}\left(d_{A} \otimes d_{B}, M_{e e}\right)=\operatorname{Ext}^{\prime}(A \mid B, M) .
\end{aligned}
$$

Here $d_{A}$ denotes as well the chain complex $\left(X_{*}, d\right)$ with $d=d_{A}: X_{1}=G \rightarrow X_{0}=F, X_{i}=$ 0 for $i \geq 2$. The Künneth formula yields natural exact sequences

$$
\begin{equation*}
(A * B) \otimes M_{e e}>\rightarrow H_{1}\left(d_{A} \otimes d_{B}, M_{e e}\right) \rightarrow \rightarrow(A \otimes B) * M_{e e}, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Ext}\left(A \otimes B, M_{e e}\right)>\rightarrow H^{1}\left(d_{A} \otimes d_{B}, M_{e c}\right) \rightarrow \rightarrow \operatorname{Hom}\left(A * B, M_{e c}\right) \tag{2}
\end{equation*}
$$

These sequences are split, the splitting however is not natural. There is a natural isomorphism

$$
\begin{equation*}
H_{1}\left(d_{A} \otimes d_{B}, M_{e e}\right)=\operatorname{Trip}\left(A, B, M_{e e}\right) \tag{4}
\end{equation*}
$$

where the right hand side is the triple torsion product of Mac Lane [21].
Proof of (7.7): We consider for $N=\{ \} \otimes_{\mathbf{z}} M$ the functor $N_{*}: \underline{\underline{\text { Pair }}}(\underline{\underline{A b}}) / \simeq \rightarrow \underline{A b} * / \simeq$, see (7.3). This functor is quadratic and its quadratic cross effect admits a weak equivalence

$$
\Psi: N_{*}\left(d_{A} \mid d_{B}\right) \xrightarrow{\sim} d_{A} \otimes d_{B} \otimes M_{e e}
$$

of chain complexes. For $d_{A}: X_{1} \rightarrow X_{0}$ and $d_{B}: Y_{1} \rightarrow Y_{0}$ and $C_{*}=N_{*}\left(d_{A} \mid d_{B}\right)$ we have

$$
\begin{aligned}
& C_{0}=X_{0} \otimes Y_{0} \otimes M_{e e} \\
& C_{1}=X_{1} \otimes Y_{1} \otimes M_{e e} \oplus X_{1} \otimes Y_{0} \otimes M_{e e} \oplus Y_{1} \otimes X_{0} \otimes M_{e e} \\
& C_{2}=X_{1} \otimes Y_{1} \otimes M_{e e} \oplus Y_{1} \otimes X_{1} \otimes M_{c e}
\end{aligned}
$$

The differential $d_{\mathbf{i}}: C_{\mathbf{i}} \rightarrow C_{\mathbf{i}-1}$ is given by

$$
\begin{aligned}
& d_{2}\left(x_{1} \otimes y_{1} \otimes n\right)=x_{1} \otimes y_{1} \otimes n-x_{1} \otimes d_{B} y_{1} \otimes n \\
& d_{2}\left(y_{1} \otimes x_{1} \otimes n\right)=x_{1} \otimes y_{1} \otimes T n-y_{1} \otimes d_{A} x_{1} \otimes n \\
& d_{1}\left(x_{1} \otimes y_{1} \otimes n\right)=d_{A} x_{1} \otimes d_{B} y_{1} \otimes n \\
& d_{1}\left(x_{1} \otimes y_{0} \otimes n\right)=d_{A} x_{1} \otimes y_{0} \otimes n \\
& d_{1}\left(y_{1} \otimes x_{0} \otimes n\right)=x_{0} \otimes d_{B} y_{1} \otimes T n
\end{aligned}
$$

where $y_{i} \in Y_{i}, x_{i} \in X_{i}, n \in M_{c e}$. The map $\Psi$ is given by the identity in degree 0 and by

$$
\begin{aligned}
& \Psi_{2}\left(x_{1} \otimes y_{1} \otimes n\right)=0 \\
& \Psi_{2}\left(y_{1} \otimes x_{1} \otimes n\right)=x_{1} \otimes y_{1} \otimes T n \\
& \Psi_{1}\left(x_{1} \otimes y_{1} \otimes n\right)=x_{1} \otimes d_{B} y_{1} \otimes n \\
& \Psi_{1}\left(x_{1} \otimes y_{0} \otimes n\right)=x_{1} \otimes y_{0} \otimes n \\
& \Psi_{1}\left(y_{1} \otimes x_{0} \otimes n\right)=x_{0} \otimes y_{1} \otimes T n
\end{aligned}
$$

Since $H_{j} N_{*}\left(d_{A} \mid d_{B}\right)$ is the cross effect in $H_{j} N_{*}\left(d_{A} \oplus d_{B}\right)$ we obtain $(A \mid B) \otimes M,(A \mid B) *^{\prime} M$ and $(A \mid B) *^{\prime \prime} M$ by the weak equivalence $\Psi$ and by the Künneth formule. In a similar way one obtains the other cross effects in (7.7).
q.e.d.
(7.8) Proposition: There are natural inclusions and projections of abelian groups

$$
\begin{aligned}
& A *^{\prime \prime} M>\rightarrow A * A * M_{e e}, \\
& A \otimes M \leftarrow \leftarrow A \otimes A \otimes M_{e e}, \\
& \operatorname{Hom}^{\prime \prime}(A, M)>\rightarrow \operatorname{Hom}\left(A \otimes A, M_{e e}\right), \\
& \operatorname{Ext}^{\prime \prime}(A, M) \leftarrow \leftarrow \operatorname{Ext}\left(A * A, M_{e e}\right) .
\end{aligned}
$$

Proof: We only consider the first inclusion. For this we see by (7.4) (1), that $A *^{\prime \prime} M$ is the intersection $\left(d_{*}=1 \otimes d \otimes 1\right)$

$$
\operatorname{ker}(P) \cap \operatorname{ker}\left(-d_{*}\right) \subset G \otimes\left(A * M_{e e}\right) \subset G \otimes G \otimes M_{e e}
$$

where $\operatorname{ker}\left(-d_{*}\right)=G \otimes\left(A * M_{c c}\right)$. We have to show $(d \otimes 1 \otimes 1)\left(A *^{\prime \prime} M\right)=0$. Then the first inclusion in (7.8) is given. Let $T: G \otimes G \otimes M_{e c} \rightarrow G \otimes G \otimes M_{e c}$ be the interchange map with $T(x \otimes y \otimes n)=y \otimes x \otimes T n$. Since $H P=1+T$ we see that $T$ restricted to $\operatorname{ker}(P)$ is -1 . Whence we get for $x \in A *^{\prime \prime} M \quad(d \otimes 1 \otimes 1)(x)=-(d \otimes 1 \otimes 1) T(x)=$ $-T(1 \otimes d \otimes 1)(x)=0$.
q.e.d.
(7.9) Remark: Using (7.7) it is easy to compute the functors (7.4) for finitely generated abelian groups $A$. For this we need only to consider cyclic groups $\mathbf{Z} / n=A$ with the presentation $d_{A}=n: \mathbf{Z}=G \rightarrow \mathbf{Z}=F$. In this case we have $\mathbf{Z} \otimes_{\mathbf{Z}} M=M_{e}$ and $\operatorname{Hom}_{\mathbf{Z}}(\mathbf{Z}, M)=M_{e}$; therefore the chain complexes (7.4) (1).....(4) can be expressed in terms of $H, P$ in the quadratic $\mathbf{Z}$-module $M$. In particular (7.4) (1), resp. (2), is given for $d_{A}=n$ by

$$
\begin{equation*}
M_{e e} \xrightarrow{(P,-n)} M_{e} \oplus M_{e e} \xrightarrow{(n \cdot, n P)} M_{e}, \text { resp. } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
M_{e e} \stackrel{\left(H_{,}, n\right)}{\leftarrow} M_{e} \oplus M_{e e} \stackrel{\left(n_{e}, n H\right)}{\leftarrow} M_{e} \tag{2}
\end{equation*}
$$

where $n_{*}$ is defined in (2.1). In addition we can use the following formulas for the computation.
(7.10) Proposition: Let $A$ be a finite abelian group and let $A^{E}=\operatorname{Ext}(A, Z)$.

Then one has the natural isomorphisms
$\operatorname{Ext}(A, M)=A^{E} \otimes M, \quad \operatorname{Hom}(A, M)=A^{E} * M$,
$\operatorname{Hom}^{\prime}(A, M)=A^{E} *^{\prime} M, \quad \operatorname{Ext}^{\prime}(A, M)=A^{E} \otimes^{\prime} M$,
$\operatorname{Hom}^{\prime \prime}(A, M)=A^{E} *^{\prime \prime} M, \quad \operatorname{Ext}^{\prime \prime}(A, M)=A^{E} \otimes M$.
There is a non natural isomorphism $A^{E} \cong A$.
Proof: Since $A$ is finite we obtain a presentation of $\operatorname{Ext}(A, \mathbf{Z})$ by $d_{A}^{*}: F^{\#}=\operatorname{Hom}(F, \mathbf{Z}) \rightarrow$ $G^{\#}=\operatorname{Hom}(G, \mathbf{Z})$. Using (5.5) we can replace $\operatorname{Hom}_{\mathbf{Z}}(F, M)$ by $F^{\#} \otimes_{\mathbf{Z}} M$. This way the chain complex (7.4) (3) for $d_{A}$ is the same as the chain complex (7.4) (1) for $d_{A}^{*}$. This proves the left hand side of equations in (7.10)
(7.11) Remark: The 12 functors in (7.4) evaluated on $A=\mathbf{Z}$ are given by the table

$$
\begin{array}{lll}
\mathbf{Z} \otimes M=M_{e} & \mathbf{Z} *^{\prime} M=0 & \mathbf{Z} *^{\prime \prime} M=0 \\
\mathbf{Z} * M=0 & \mathbf{Z} \otimes^{\prime} M=\operatorname{ker} H & \mathbf{Z} \otimes^{\prime \prime} M=\operatorname{cok} H \\
\operatorname{Ext}(\mathbf{Z}, M)=0 & \operatorname{Hom}^{\prime}(\mathbf{Z}, M)=\operatorname{cok} P & \operatorname{Hom}^{\prime \prime}(\mathbf{Z}, N)=\operatorname{ker} P \\
\operatorname{Hom}(\mathbf{Z}, M)=M_{e} & \operatorname{Ext}^{\prime}(\mathbf{Z}, M)=0 & \operatorname{Ext}^{\prime \prime}(\mathbf{Z}, M)=0 .
\end{array}
$$

Here $H, P$ are the maps of the quadratic $\mathbf{Z}$-module $M$.
(7.12) Theorem: A short exact sequence

$$
0 \rightarrow K \xrightarrow{i} M \xrightarrow{q} N \rightarrow 0
$$

of quadratic $\mathbf{Z}$-modules in $Q M(\mathbf{Z})$ induces the following four types of natural 9-term excat sequences.

$$
\begin{align*}
& 0 \rightarrow A *^{\prime \prime} K \xrightarrow{\text { i. }} A *^{\prime \prime} M \xrightarrow{\text { q. }} A *^{\prime \prime} N \rightarrow \\
& A *^{\prime} K \rightarrow A *^{\prime} M \rightarrow A *^{\prime} N \rightarrow  \tag{1}\\
& A \otimes K \rightarrow A \otimes M \rightarrow A \otimes N \rightarrow 0
\end{align*}
$$

$$
\begin{align*}
0 \rightarrow A * K & \rightarrow A * M
\end{align*} \rightarrow A * N \rightarrow 子, ~ 子 A \otimes^{\prime} M \rightarrow A \otimes^{\prime} N \rightarrow 0
$$

$$
\begin{align*}
0 \rightarrow \operatorname{Hom}^{\prime \prime}(A, K) & \rightarrow \operatorname{Hom}^{\prime \prime}(A, M)
\end{align*} \rightarrow \operatorname{Hom}^{\prime \prime}(A, N) \rightarrow+\quad \rightarrow \operatorname{Hom}^{\prime}(A, N) \rightarrow \operatorname{Ext}(A, N) \rightarrow 0
$$

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Hom}(A, K) \rightarrow \operatorname{Hom}(A, M) \rightarrow \operatorname{Hom}(A, N) \rightarrow \\
& \operatorname{Ext}^{\prime}(A, K) \rightarrow \operatorname{Ext}^{\prime}(A, M) \rightarrow \operatorname{Ext}^{\prime}(A, N) \rightarrow \\
& \operatorname{Ext}^{\prime \prime}(A, K) \rightarrow \operatorname{Ext}^{\prime \prime}(A, M) \rightarrow \operatorname{Ext}^{\prime \prime}(A, N) \rightarrow 0
\end{aligned}
$$

If the quadratic Z-modules $K, M, N$ are actually abelian groups, that is, if the short exact sequence in (7.12) lies in the subcategory $\underline{\underline{A b}}$ of $\underline{\underline{Q M}}(\mathbf{Z})$, see (2.1), then the terms with an index " above vanish so that in this case the 9 -term exact sequences above coincide with the corresponding classical 6 -term exact sequences of homological algebra.
(7.13) Example: One has the short exact sequences

$$
\begin{equation*}
0 \rightarrow \mathbf{Z}^{S} \xrightarrow{i} \mathbf{Z}^{P} \rightarrow \mathbf{Z} \rightarrow 0 \tag{1}
\end{equation*}
$$

(2)

$$
0 \rightarrow \mathbf{Z}^{S} \xrightarrow{j} \mathbf{Z}^{\Gamma} \rightarrow \mathbf{Z} / 2 \rightarrow 0
$$

with $i_{e}=(1,1), i_{e e}=1$ and $j_{e}=2$ and $j_{e e}=1$. Hence we obtain by (7.12) (1) via (1) the isomorphism $A *^{\prime} \mathbf{Z}^{S}=A *^{\prime} \mathbf{Z}^{P}$ and the short exact sequences

$$
0 \rightarrow A \otimes \mathbf{Z}^{S} \rightarrow A \otimes \mathbf{Z}^{P} \rightarrow A \otimes \mathbf{Z} \rightarrow 0
$$

which coincides with the top row of (2.12) (4). Moreover by (2) we get the exact sequence ( $A *^{\prime \prime} \mathbf{Z} / 2=0$ )

$$
\begin{array}{rllllll}
0 \rightarrow A *^{\prime} \mathbf{Z}^{S} & \rightarrow A *^{\prime} \mathbf{Z}^{\mathrm{\Gamma}} & \xrightarrow{\sigma} & A * \mathbf{Z} / 2 & \xrightarrow{\rightarrow} & \\
& A \otimes \mathbf{Z}^{S} & \rightarrow A \otimes \mathbf{Z}^{\Gamma} & \xrightarrow{\boldsymbol{\sigma}} & A \otimes \mathbf{Z} / 2 & \rightarrow & 0
\end{array}
$$

which is a union of two short exact sequences. The second part coincides with the bottom row of (2.12) (4) and $A *^{\prime} \mathbf{Z}^{\Gamma}=R(A)$ is given by Eilenberg-Mac Lane's functor $R$. Compare the exact sequence in (10.7) below. There are indeed many further interesting applications of the 9 -terms exact sequences above.
Proof of (7.12): We first prove (7.12) (1). For this we observe that the short exact sequence of quadratic $\mathbf{Z}$-modules in (7.12) induces a short exact sequence of chain complexes

$$
\begin{equation*}
0 \rightarrow\left(\left\} \otimes_{\mathbf{Z}} K\right)_{*} d_{A} \rightarrow\left(\{ \} \otimes_{\mathbf{Z}} M\right)_{*} d_{A} \rightarrow\left(\{ \} \otimes_{\mathbf{Z}} N\right)_{*} d_{A} \rightarrow 0\right. \tag{*}
\end{equation*}
$$

Indeed this is short exact since $F$ and $G$ in (7.4) (1) are free abelian. To see this we use (2.6) (3), (7.7) and (7.11). Now the long exact Bockstein sequence of homology groups applied to $\left(^{*}\right)$ yields (7.12) (1). In a similar way we obtain the other 9-term exact sequences.

> q.e.d.
(7.14) Remark: It is also of interest to consider the natural quadratic cross effect sequences derived from the 9 -term exact sequences above. For example (7.12) (1) and (7.7) yield the natural exact sequence

$$
\begin{array}{rllll}
0 & \rightarrow A * B * K_{e e} & \rightarrow A * B * M_{e e} & \rightarrow A * B * N_{e e} & \rightarrow \\
\operatorname{Trp}\left(A, B, K_{e e}\right) & \rightarrow \operatorname{Trp}\left(A, B, M_{e e}\right) & \rightarrow \operatorname{Trp}\left(A, B, N_{e c}\right) & \rightarrow \\
A \otimes B \otimes K_{e e} & \rightarrow A \otimes B \otimes M_{e e} & \rightarrow A \otimes B \otimes N_{e e} & \rightarrow 0
\end{array}
$$

A short exact sequence of abelian groups induces as well certain exact sequences for quadratic tensor products, this is discussed in the Appendix below, see (B.10).

## § 8 Quadratic homotopy functors

We introduce additive categories of homotopy abelian co- $H$-groups and $H$-groups respectively and we describe quadratic functors on these categories. The functors are given by homotopy groups, homology groups, and cohomology groups respectively.
Let $C W$ - spaces ${ }^{*} / \simeq$ be the homotopy category of $C W$-spaces with basepoint $*$; the set of $\overline{\overline{\text { morphisms } X}} \rightarrow Y$ in this category is the set of homotopy classes $[X, Y]$. We write $\operatorname{dim}(Y) \leq m$ if there is a homotopy equivalence $Y \simeq X$ where $X$ is an $m$-dimensional $C W$-complex. Moreover we write $\operatorname{hodim}(Y) \leq m$ if $\pi_{i}(Y)=0$ for $i>m$. Let $\underline{A}_{n}^{k}$, resp. $\underline{\underline{B}}_{n}^{k}$ be the full subcategories of $C W-$ spaces $^{*} / \simeq$ consisting of $(n-1)$-connected spaces $X$ with $\operatorname{dim}(X) \leq n+k$, resp. hodim $(X) \leq n+k$. Let $G$ be an abelian group. An EilenbergMacLane space $K(G, n)$ is a $C W$-space with $\pi_{n}(K(G, n))=G$ and $\pi_{j} K(G, n)=0$ for $j \neq n$. A Moore space $M(G, n)$ is a simply connected $C W$-space with homology groups $H_{n} M(G, n)=G$ and $H_{j} M(G, n)=0, n \neq j \geq 1$. We clearly have hodim $K(G, n) \leq n$ and $\operatorname{dim} M(G, n) \leq n+1$.
(8.1) Definition: Let $\underline{\underline{H A}}$ and $\underline{\underline{c o H A}}$ be the following subcategories of $C W$ - spaces ${ }^{*} / \simeq$. Objects in $\underline{\underline{H A}}$ are homotopy abelian $H$-groups and morphism are $H$-maps. The objects in $\underline{\underline{c o H A}}$ are homotopy abelian co- $H$-groups and morphisms are co- $H$-maps. Let $\underline{\underline{H A}}_{n}$, resp. $\underline{\underline{\text { coHA }}} n$ be the full subcategories consisting of $(n-1)$-connected objects.
For example a double loop space $\Omega^{2} Y$ and a double suspension $\Sigma^{2} Y$ are objects in $\underline{\underline{H A}}$ and $\underline{\underline{c o H A}}$ respectively. This shows that one has full inclusions

$$
\begin{equation*}
\underline{\underline{A}}_{n}^{k} \subset \underline{\underline{c o H A}}_{n} \text { and } \quad \underline{\underline{B}}_{n}^{k} \subset \underline{\underline{H A}}_{n} \quad \text { for } \quad k<n-1 \tag{8.2}
\end{equation*}
$$

All categories in (8.2) are additive categories; the biproduct in $\underline{\underline{c o H A}}$ is given by the one point union $X \vee Y$ of spaces and the biproduct in $\underline{\underline{H A}}$ is given by the product $X \times Y$ of spaces. For a $C W$-space $K$ let $\pi_{m}^{K}$ and $\pi_{K}^{m}$ be the homotopy functors defined by

$$
\begin{equation*}
\pi_{m}^{K}(X)=\left[\Sigma^{m} K, X\right] \text { and } \pi_{K}^{m}(X)=\left[X, \Omega^{m} K\right] \tag{8.3}
\end{equation*}
$$

As usual we have $\pi_{m}^{K}(X)=\pi_{m}(X)$ if $K=S^{0}$ is the 0 -sphere and we have $\pi_{K}^{m}(X)=$ $H^{k}(X, G)$ if $K=K(G, m+k)$. The sets in (8.3) are groups, resp. abelian groups, for $m=1$, resp. $m \geq 2$. Using the homotopy functors (8.3) and the homology and cohomology functors we obtain the following four functors

$$
\begin{gather*}
\pi_{m}^{K}: \underline{\underline{c o H A}} \rightarrow \underline{\underline{A b}} \text { with } \operatorname{dim}\left(\Sigma^{m} K\right)<3 n-2  \tag{1}\\
\pi_{K}^{m}: \underline{\underline{H A}}{ }^{o p} \rightarrow \underline{\underline{A b}} \text { with } \operatorname{hodim}\left(\Omega^{m} K\right)<3 n \tag{2}
\end{gather*}
$$

$$
\begin{gather*}
H^{m}(, G): \underline{\underline{H A}}_{n}^{o p} \rightarrow \underline{\underline{A b}} \text { with } m<3 n  \tag{8.4}\\
H_{m}(, G): \underline{\underline{H A}}_{n} \rightarrow \underline{\underline{A b}} \text { with } m<3 n
\end{gather*}
$$

The functor (3) is a special case of (2) when we set $K=K(G, m+k)$. The conditions on the right hand side describe the meta stable range of these functors. It is well known that in this range the functors are quadratic. In the stable range (given by $\operatorname{dim}\left(\Sigma^{m} K\right)<$ $2 n-1$, hodim $\left(\Omega^{m} K\right)<2 n$, resp. $\left.\mathrm{m}<2 \mathrm{n}\right)$ the functors are additive.
We now consider the cross effects and the structure maps $H, P, T$ in (2.6) for the quadratic functors in (8.4). For suspensions $X=\Sigma X^{\prime}, Y=\Sigma Y^{\prime}$ the Hilton-Milnor theorem shows

$$
\begin{equation*}
\pi_{m}^{K}\left(\Sigma X^{\prime} \wedge Y^{\prime}\right) \cong \pi_{m}^{K}(X \mid Y) \tag{8.5}
\end{equation*}
$$

Here the isomorphism is induced by the injection $\pi_{m}^{K}\left(\left[i_{1}, i_{2}\right]\right)$ where $\left[i_{1}, i_{2}\right]: \Sigma X^{\prime} \wedge Y^{\prime} \rightarrow$ $X \vee Y$ is the Whitehead product map. Using (8.5) as an identification the map $T$ coincides with $-\left(\Sigma T_{21}\right)_{*}$ where $T_{21}: X^{\prime} \wedge Y^{\prime} \rightarrow Y^{\prime} \wedge X^{\prime}$ is the interchange map. Moreover the maps

$$
\pi_{m}^{K}\left\{\Sigma X^{\prime}\right\}=\left(\pi_{m}^{K}\left(\Sigma X^{\prime}\right) \stackrel{H}{\rightarrow} \pi_{m}^{K}\left(\Sigma X^{\prime} \wedge X^{\prime}\right) \xrightarrow{P} \pi_{m}^{K}\left(\Sigma X^{\prime}\right)\right),
$$

given by (8.4), coincide with the James-Hopf invariant $H=\gamma_{2}$ and the Whitehead product map $P=[1,1]_{*}$ where $1=1_{X}$ is the identity. These maps $H$ and $P$ are exactly the operators which appear in the classical EHP-sequence of homotopy theory. Next we obtain the cross effects of the functors (8.4) (2) (3) (4) by canonical isomorphisms

$$
\begin{align*}
& \pi_{K}^{m}(X \wedge Y) \cong \pi_{K}^{m}(X \mid Y) \\
& H^{m}(X \wedge Y, G) \cong H^{m}(X \mid Y, G)  \tag{8.6}\\
& H_{m}(X \wedge Y, G) \cong H_{m}(X \mid Y, G)
\end{align*}
$$

which are readily obtained by the cofiber sequence $X \vee Y \rightarrow X \times Y \rightarrow X \wedge Y$. For (8.4) (2) (3) the maps $H, P, T$ correspond to $H=(H \mu)^{*}, P=\Delta^{*}, T=\left(T_{21}\right)^{*}$ where $\Delta: X \rightarrow X \wedge X$ is the reduced diagonal and where $H \mu: \Sigma X \wedge X \rightarrow \Sigma X$ is the Hopf-construction of the $H$-space multiplication $\mu=r_{1}+r_{2}: X \times X \rightarrow X$. In (8.4) (4) we get $H=\Delta_{*}, P=(H \mu)_{*}$ and $T=\left(T_{21}\right)_{*}$. For the definition of $H \mu$ see for example (II 15.15) [5]. For $(H \mu)^{*}$ and $(H \mu)_{*}$ we use the canonical suspension isomorphisms $\pi_{K}^{m-1}(\Sigma X)=\pi_{K}^{m}(X)$ and $H_{m+1}(\Sigma X, G)=H_{m}(X, G)$.

## § 9 Homotopy groups of Moore spaces

We describe a six term exact sequence for the homotopy groups of Moore spaces which is useful for computation in the metastable range of these groups. As an application we obtain a new homotopy invariant $\tau(X)$ of an $(n-1)$-connected $(2 n+1)$-dimensional closed manifold $X$.

Let $\underline{\underline{R}} \subset \underline{\underline{\text { coHA }}}$ be a small subringoid consisting of suspensions $X=\Sigma X^{\prime}$. A $C W$-space $U$ gives us the $\underline{R}^{o p}$-module (= additive functor)

$$
[\underline{\underline{R}}, U]: \underline{\underline{R}}^{o p} \rightarrow \underline{\underline{A b}}
$$

which carries $X \in \underline{\underline{R}}$ to the abelian group $[X, U]$. The quadratic $\underline{\underline{R}}$-module $\pi_{m}^{K}\{\underline{\underline{R}}\}$ associated to (8.4) (1) and the tensor product (3.1) can be used for the natural homomorphism $\left(\operatorname{dim} \Sigma^{m} K<3 n-2\right)$

$$
\begin{equation*}
\lambda:[\underline{\underline{R}}, U] \otimes_{\underline{\underline{R}}} \pi_{m}^{K}\{\underline{\underline{R}}\} \rightarrow \pi_{m}^{K}(U) \tag{9.1}
\end{equation*}
$$

which we call a tensor approximation of $\pi_{m}^{Y}(U)$. For $a \in\left[\Sigma X^{\prime}, U\right], b \in$ $\left[\Sigma Y^{\prime}, U\right],\left(\Sigma X^{\prime}, \Sigma Y^{\prime} \in \underline{\underline{R}}\right)$, and for $\alpha \in\left[\Sigma^{m} Y, \Sigma X^{\prime}\right], \beta \in\left[\Sigma^{m} Y, \Sigma X^{\prime} \wedge Z^{\prime}\right]$ we define $\lambda$ by $\lambda(a \otimes \alpha)=a \circ \alpha$ and $\lambda([a, b] \otimes \beta)=[a, b] \circ \beta$ where $[a, b]$ is the Whitehead product. The image of $\lambda$ is the subgroup generated by all compositions

$$
\Sigma^{m} Y \xrightarrow{\alpha} X_{1} \vee \cdots \vee X_{k} \xrightarrow{a} U
$$

with $X_{i} \in \underline{\underline{R}}, k \geq 1$. The map $\alpha$ is in the metastable range. The composition $a \circ \alpha$, however, needs not to be in the metastable range.
(9.2) Lemma: $\lambda$ in (9.1) is a well defined natural homomorphism. Moreover $\lambda$ is an isomorphism if $U=X_{1} \vee \cdots \vee X_{k}$ with $X_{i} \in \underline{\underline{R}}$ and if $\left[X, X_{i}\right] \subset \underline{\underline{R}}\left(X, X_{i}\right)$ for all $i=1, \cdots, k$ and $X \in \underline{\underline{R}}$.
The lemma is a consequence of the distributivity laws [4] and of (4.4).
(9.3) Remark: A natural description of the homotopy group $\pi_{m}^{K} M(A, n)$ of the Moore space $M(A, n)$ can be obtained by the tensor approximation (9.1). For this we need to consider elementary Moore spaces $M(\mathbf{Z}, n)=S^{n}$ or $M\left(\mathbf{Z} / p^{i}, n\right), p=$ prime. Let $\underline{R}$ be the full homotopy category consisting of elementary Moore spaces. Then (9.1) yields the natural homomorphism, $n \geq 3$,

$$
\lambda:[\underline{\underline{R}}, M(A, n)] \otimes_{\underline{\underline{R}}} \pi_{m}^{K}\{\underline{\underline{R}}\} \rightarrow \pi_{m}^{K} M(A, n)
$$

which is an isomorphism if $A$ is finitely generated. This follows from (9.2).
We now consider an example of $\lambda$ in (9.1) where $\underline{\underline{R}} \cong \mathbf{Z}$ is the full subcategory consisting only of the sphere $S^{n}$ and where $U=M(A, n)$. Then $\pi_{m}^{K}\{\underline{\underline{R}}\}$ is just the quadratic Z-module

$$
\pi_{m}^{K}\left\{S^{n}\right\}=\left(\pi_{m}^{K}\left(S^{n}\right) \xrightarrow{H} \pi_{m}^{K}\left(S^{2 n-1}\right) \xrightarrow{P} \pi_{m}^{K}\left(S^{n}\right)\right)
$$

which is defined by $F=\pi_{m}^{K}()$ as in (8.4) (3); here $H$ is the Hopf invariant and $P=[1,1]_{*}$ as in (8.5). Now (9.1) gives us the natural homomorphism

$$
\begin{equation*}
\lambda: A \otimes \mathbf{z} \pi_{m}^{K}\left\{S^{n}\right\} \rightarrow \pi_{m}^{K} M(A, n) \tag{9.4}
\end{equation*}
$$

which is an isomorphism if $A$ is a free abelian group (here $A$ needs not to be finitely generated). It is an old result of Hopf that $\pi_{3}\left\{S^{2}\right\} \cong \mathbf{Z}^{\Gamma}=(\mathbf{Z} \xrightarrow{1} \mathbf{Z} \xrightarrow{2} \mathbf{Z})$. Therefore we derive from (9.3) the natural homomorphism $\lambda: \Gamma(A)=A \otimes \mathbf{Z}^{\Gamma} \cong \pi_{3} M(A, 2)$ which is actually an isomorphism for all abelian groups $A$, see [37] and (2.11), (4.8). In general the map $\lambda$ in (9.4) is not an isomorphism. Let $S \subset \pi_{m}^{K} M(A, n)$ be the subgroup generated by all compositions $\Sigma^{m} K \rightarrow S^{n} \vee \cdots \vee S^{n} \rightarrow M(A, n)$ and let

$$
\lambda \pi_{m}^{K} M(A, n)=\pi_{m}^{K} M(A, n) / S
$$

be the quotient group. For $\operatorname{dim} \Sigma^{m} K<3 n-2$ this is the cokernel of $\lambda$ in (9.4). Now $\lambda$ is embedded in the following exact sequence which shows the relevance of the corresponding derived functors in (7.4).
(9.5) Theorem: For $\operatorname{dim}\left(\Sigma^{m} K\right)<3 n-2$ there is a natural exact sequences

$$
\begin{gathered}
0 \rightarrow A *^{\prime} \pi_{m}^{K}\left\{S^{n}\right\} \rightarrow \lambda \pi_{m+1}^{K} M(A, n) \rightarrow A *^{\prime \prime} \pi_{m-1}^{K}\left\{S^{n}\right\} \xrightarrow{\partial} \\
A \otimes \pi_{m}^{K}\left\{S^{n}\right\} \xrightarrow{\lambda} \pi_{m}^{K} M(A, n) \xrightarrow{q} \lambda \pi_{m}^{K} M(A, n) \rightarrow 0
\end{gathered}
$$

where $q$ is the quotient map.
Proof of (9.5): Theorem (9.5) is a special case of (2.7) in [9]. For this let $X_{1} \xrightarrow{d} X_{0} \rightarrow \rightarrow A$ be a short free resolution of the abelian group $A$ and let $g: M\left(X_{1}, n\right) \rightarrow M\left(X_{0}, n\right)$ be a map which induces $d$. The mapping cone of $g$ is the Moore space $M(A, n)=C_{g}$. Using the isomorphism $\lambda$ in (9.4) (where we replace $A$ by $X_{1}$ and $X_{0}$ respectively) we obtain isomorphisms

$$
\begin{aligned}
& H_{0}\left\{\pi_{m}^{K}\right\}_{*}(g)=A \otimes \pi_{m}^{K}\left\{S^{n}\right\} \\
& H_{1}\left\{\pi_{m}^{K}\right\}_{*}(g)=A *^{\prime} \pi_{m}^{K}\left\{S^{n}\right\} \\
& H_{2}\left\{\pi_{m}^{K}\right\}_{*}(g)=A *^{\prime \prime} \pi_{m}^{K}\left\{S^{n}\right\}
\end{aligned}
$$

Compare the definition in (7.4). Now it is easy to see that $i$ in (2.7) [9] corresponds to $\lambda$ in (9.5). Therefore (9.5) is just a special case of (2.7) [9].

> q.e.d.
(9.6) Corollary: For $m \leq \min (2 n, 3 n-3)$ one has the natural short exact sequence

$$
0 \rightarrow A \otimes \pi_{m}\left\{S^{n}\right\} \xrightarrow{\lambda} \pi_{m} M(A, n) \rightarrow A *^{\prime} \pi_{m-1}\left\{S^{n}\right\} \rightarrow 0
$$

and the isomorphism $\lambda^{\pi_{m+1}} M(A, n) \cong A *^{\prime} \pi_{m}\left\{S^{n}\right\}$.
Proof: Since $\pi_{2 n-1} S^{2 n-1}=\mathbf{Z}$ we see that $A *^{\prime \prime} \pi_{m-1}\left\{S^{n}\right\}=0$ for $m \leq 2 n$, compare (7.8). Whence (9.6) is a consequence of (9.5). In the stable range $m<2 n-1$ the sequence (9.6) is well known (see for example [2]; in this case we have $A \otimes \pi_{m}\left\{S^{n}\right\}=A \otimes \pi_{m} S^{n}$ and $A *^{\prime} \pi_{m-1}\left\{S^{n}\right\}=A * \pi_{m-1} S^{n}$, see (7.5).
q.e.d.

Next consider the cross effects of the exact sequence in (9.5). For this let

$$
M(A \mid B, n)=M(A, n) \wedge M(B, n-1) \text { and let } \lambda \pi_{m}^{K}(A \mid B, n)=\pi_{m}^{K} M(A \mid B, n) / S^{\prime}
$$

where $S^{\prime}$ is the subgroup generated by all compositions $\Sigma^{m} K \rightarrow S^{2 n-1} \rightarrow M(A \mid B, n)$.
(9.7) Corollary: For $\operatorname{dim}\left(\Sigma^{m} K\right)<3 n-2$ there is a natural exact sequence

$$
\begin{aligned}
0 \rightarrow & \operatorname{Tr} p\left(A, B, \pi_{m}^{K} S^{2 n-1}\right) \rightarrow \lambda \pi_{m+1}^{K} M(A \mid B, n) \rightarrow A * B * \pi_{m-1}^{K} S^{2 n-1} \\
& \stackrel{\partial}{\rightarrow} A \otimes B \otimes \pi_{m}^{K} S^{2 n-1} \rightarrow \pi_{m}^{K} M(A \mid B, n) \rightarrow \lambda \pi_{m}^{K} M(A \mid B, n) \rightarrow 0
\end{aligned}
$$

Here $\operatorname{Tr} p$ is the triple torsion product of Mac Lane [21], see also (7.7) (3). Corollary (9.7) is the 'cross effect sequence' of (9.5) obtained by the formulas (7.7). It is an interesting problem to compute the boundary operators $\partial$ in (9.5) and (9.7) only in terms of 'some structure' of the homotopy groups $\pi_{i}^{K}\left(S^{j}\right)$ of spheres, in particular if $K=S^{0}$.
(9.8) Remark: There are many papers in the literature concerning the homotopy groups of Moore spaces $\pi_{m} M(A, n)$, see for example [33] and [13], [27]. We here are mainly interested in the functorial properties of $\pi_{m} M(A, n), m<3 n-2$, which are not so well understood; an early approach in this direction is due to Barratt [2] for $m<2 n-1$.
The functorial properties of the groups $\pi_{m} M(A, n)$ are of special interest for the homotopy classification of manifolds and Poincare-complexes respectively. Let $P_{n}^{k}$ be the class of ( $n-1$ )-connected $(2 n+k)$-dimensional Poincare-complexes.
(9.9) Examples: Let $n \geq 2$. For $X \in P_{n}^{0}$ there is a homotopy invariant

$$
\varepsilon(X) \in H_{n}(X) \otimes \pi_{2 n-1}\left\{S^{n}\right\}
$$

where $H_{n} X$ is a finitely generated free abelian group. In fact, $X$ is the mapping cone $X \simeq C_{f}$ of a map $f: S^{2 n-1} \rightarrow M\left(H_{n} X, n\right)$ and $\varepsilon(X)=\lambda^{-1}(f)$ is given by the isomorphism $\lambda$ in (9.4). Whence $\varepsilon(X)$ is a complete homotopy invariant of $X$, that is for $X, Y \in P_{n}^{0}$ there is an orientation preserving homotopy equivalence $X \simeq Y$ iff there is an isomorphism $\varphi: H_{n} X \cong H_{n} Y$ with $(\varphi \otimes 1) \varepsilon(X)=\varepsilon(Y)$. We can write the invariant $\varepsilon(X)$ in terms of the cohomology $H^{n}(X)$ as follows. Since $H_{n}(X)=\operatorname{Hom}\left(H^{n}(X) ; \mathbf{Z}\right)$ we have by (5.5) the isomorphism

$$
\chi: H_{n}(X) \otimes \pi_{2 n-1}\left\{S^{n}\right\} \cong \operatorname{Hom}\left(H^{n}(X), \pi_{2 n-1}\left\{S^{n}\right\}\right)
$$

Therefore $\chi \varepsilon(X)=\left(\alpha_{\varepsilon}, \alpha_{e e}\right)$ is a quadratic form with $\alpha_{e}: H^{n}(X) \rightarrow \pi_{2 n-1} S^{n}$ and with $\alpha_{e e}: H^{n}(X) \times H^{n}(X) \rightarrow \pi_{2 n-1} S^{2 n-1} \cong \mathbf{Z}$. Here $\alpha_{e e}$ is just the cup product pairing in $X$. Moreover $\alpha_{e}=\Psi$ is exactly the cohomology operation considered by Kervaire-Milnor in 8.2 [20]; (the formula there is equivalent to the fact that ( $\alpha_{e}, \alpha_{e c}$ ) is a quadratic form, compare the first equation in (5.1) (2)).
(9.10) Example: For $X \in P_{n}^{1} \quad(n \geq 2)$ we define a new homotopy invariant

$$
\tau(X) \in H_{n}(X) *^{\prime} \pi_{2 n-1}\left\{S^{n}\right\}
$$

which we call the torsion-invariant of $X$. We obtain $\tau(X)$ by a homotopy equivalence $X \simeq C_{f}$ where $f: S^{2 n} \rightarrow M\left(H_{n+1} X, n+1\right) \vee M\left(H_{n} X, n\right)$. Let $r_{2} f \in \pi_{2 n} M\left(H_{n} X, n\right)$ be given by the retraction $r_{2}$ and let $\tau(X)$ be the image of $r_{2} f$ under the homomorphism

$$
\pi_{2 n} M\left(H_{n} X, n\right) \rightarrow \lambda_{2 n} M\left(H_{n} X, n\right) \cong H_{n}(X) *^{\prime} \pi_{2 n-1}\left\{S^{n}\right\}
$$

given by (9.6). One can check that an orientation preserving map $v: X \rightarrow Y$ with $X, Y \in P_{n}^{1}$ satisfies

$$
\left(H_{n}(v) *^{\prime} 1\right)(\tau(X))=\tau(Y)
$$

so that $\tau(X)$ is a well defined homotopy invariant. For $n \geq 3$ the exact sequence (9.6) can be used for the computation of all possible $f$ which yield the same torsion invariant. This yields a kind of homotopy classification of objects in $P_{n}^{1}$, (using different invariants such a classification is intensively studied in [30], [31], [28], [17], [36]).
(9.11) Examples of computations: The following list shows some examples of the quadratic Z-modules $\pi_{m}\left\{S^{n}\right\}$ where we use the notation for indecomposable quadratic Z-modules in (2.4), (2.11). These examples can be deduced from Toda's computations [34]. In the list we denote a cyclic group $\mathbf{Z} / n$ simply by $n$ and we denote a direct sum $\mathbf{Z} / n \oplus \mathbf{Z} / m$ by $n \oplus m$. Moreover ( $n, m$ ) and ( $n, m, r$ ) are the greatest common divisors.

| $n, m$ | $\pi_{m}\left\{S^{n}\right\}$ | $\mathbf{Z} / k \otimes \pi_{m}\left\{S^{n}\right\}$ | $\mathbf{Z} / k *^{\prime} \pi_{m}\left\{S^{n}\right\}$ | $\mathbf{Z} / k *^{\prime \prime} \pi_{m}\left\{S^{n}\right\}$ |
| :--- | :--- | :--- | :--- | :--- |
| 2,3 | $\mathbf{Z}^{\Gamma}$ | $\left(k^{2}, 2 k\right)$ | $(k, 2)$ | 0 |
| 3,5 | $\mathbf{Z}^{\Lambda} \oplus 2$ | $(k, 2)$ | $(k, 2) \oplus k$ | 0 |


| 3,6 | $H(2,1) \oplus 3$ | $(k, 12)$ | $(k, 12) \oplus(k, 2)$ | $(k, 2)$ |
| :---: | :---: | :---: | :---: | :---: |
| 4,7 | $\mathbf{Z}_{2}^{P} \oplus 3$ | $\begin{aligned} & \left(k^{2}, 2 k\right) \oplus \varepsilon_{k} \\ & \oplus(k, 3) \end{aligned}$ | $(k, 24)$ | 0 |
| 4,8 |  | $\left\{\begin{array}{l}0 \\ 2\end{array}\right.$ | 0 | $\begin{array}{ll}0 & k \equiv 1(2) \\ 0 & k \equiv 2(4)\end{array}$ |
| 4,9 ${ }^{\text {a }}$ | $(\mathbf{Z} / 2)^{P}$ | $\left\{\begin{array}{l}2 \\ 2 \oplus 2\end{array}\right.$ | $\begin{aligned} & 2 \\ & 2 \oplus l^{2} \end{aligned}$ | $\begin{array}{ll} 0 & k \equiv 2(4) \\ 0 & k \equiv 0(4) \end{array}$ |
| 5,9 | $P(1)$ | $(k, 2)$ | ( $\left.k^{2}, 2 k\right)$ | 0 |
| 5,10 | $(\mathbf{Z} / 2)^{S}$ | $(k, 2)$ | $(k, 2)$ | 0 |
| 5,11 | $(\mathbf{Z} / 2)^{\Lambda} \oplus 2$ | $(k, 2)$ | $(k, 2) \oplus(k, 2)$ | $(k, 2)$ |
| 5,12 | $\begin{aligned} & H(1,3) \oplus 15 \\ & \oplus(\mathbf{Z} / 3)^{\Lambda} \end{aligned}$ | $(k, 2) \oplus(k, 15)$ | $\begin{aligned} & (k, 2) \oplus(k, 3) \\ & \oplus(k, 8) \oplus(k, 15) \end{aligned}$ | $(k, 3) \oplus(k, 8)$ |
| 6,11 | $\mathbf{z}^{S}$ | $k$ | 0 | 0 |
| 6,12 | $(\mathbf{Z} / 2)^{\Lambda} \oplus 2$ | $(k, 2)$ | $(k, 2) \oplus(k, 2)$ | $(k, 2)$ |
| 6,13 | $H(2,1) \oplus 15$ | $(k, 60)$ | $(k, 60) \oplus(k, 2)$ | $(k, 2)$ |
| 6,14 | $\begin{aligned} & (\mathbf{Z} / 8)^{\Gamma} \oplus 2 \\ & \oplus(\mathbf{Z} / 3)^{S} \end{aligned}$ | $\begin{aligned} & (k, 2) \\ & \oplus\left(k^{2}, 2 k, 24\right) \end{aligned}$ | $\begin{aligned} & (k, 2) \oplus(k, 2) \\ & \oplus\left(k^{2}, 2 k, 24\right) \end{aligned}$ | $(k, 2)$ |
| 6,15 | $2 \oplus 2 \oplus 2$ | $\begin{aligned} & (k, 2) \oplus(k, 2) \\ & \oplus(k, 2) \end{aligned}$ | $\begin{aligned} & (k, 2) \oplus(k, 2) \\ & \oplus(k, 2) \end{aligned}$ | 0 |

The quadratic $\mathbf{Z}$-module $\mathbf{Z}_{2}^{P}$ (see $(n, m)=(4,7)$ ) is given by

$$
\mathbf{Z}_{2}^{P}=(\mathbf{Z} \otimes \mathbf{Z} / 4 \xrightarrow{(1,0)} \mathbf{Z} \xrightarrow{(2,-1)} \mathbf{Z} \oplus \mathbf{Z} / 4)
$$

and $\varepsilon_{k}$ in this line is

$$
\varepsilon_{k}= \begin{cases}2 & k \equiv 0(4), k \neq 0(8) \\ 4 & k \equiv 0(8) \\ 0 & \text { otherwise }\end{cases}
$$

Moreover for $(n, m)=(4,8),(4,9)$ we use $(\mathbf{Z} / 2)^{P}=\left[\mathbf{Z}^{P}\right] \otimes \mathbf{Z} / 2$ as defined in (2.1).
The computation of the groups in this list is readily obtained by (7.9). Combining the groups in the list with the exact sequence (9.5), (9.6) we immediately get the following short exact sequences.

$$
\left.\begin{array}{rl} 
& \mathbf{Z} /(k, 12)>\rightarrow \pi_{6} M(\mathbf{Z} / k, 3) \rightarrow \rightarrow \mathbf{Z}(k, 2) \oplus \mathbf{Z} / k  \tag{1}\\
& \\
k \equiv 1(2) & 0 \\
k \equiv 2(4) & \mathbf{Z} / 2
\end{array} \quad\right\}>\rightarrow \pi_{8} M(\mathbf{Z} / k, 4) \rightarrow \rightarrow \mathbf{Z} /(k, 24)
$$

$$
\left.\begin{array}{ll}
k \equiv 1(2) & 0  \tag{3}\\
k \equiv 2(4) & \mathbf{Z} / 2 \\
k \equiv 0(4) & \mathbf{Z} / 2 \oplus \mathbf{Z} / 2
\end{array} \quad\right\}>\rightarrow \pi_{9} M(\mathbf{Z} / k, 4) \rightarrow \rightarrow\left\{\begin{array}{l}
0 \\
\mathbf{Z} / 2 \\
\mathbf{Z} / 2 \oplus \mathbf{Z} / 2
\end{array}\right.
$$

$$
\mathbf{Z} /(k, 2)>\rightarrow \pi_{10} M(\mathbf{Z} / k, 5) \rightarrow \mathbf{Z} /\left(2 k, k^{2}\right)
$$

$$
\begin{equation*}
\mathbf{Z} /(k, 2)>\rightarrow \pi_{11} M(\mathbf{Z} / k ; 5) \rightarrow \rightarrow \mathbf{Z} /(k, 2) \tag{5}
\end{equation*}
$$

By a result of Sasao [27] the sequence (1) is non split only for $k \equiv 0(2)$ and $k /(k, 12) \equiv 1(2)$; in this case one has $\pi_{6} M(\mathbf{Z} / k, 3)=\mathbf{Z} / 2 \oplus \mathbf{Z} / 2 k \oplus \mathbf{Z} /(k, 12) / 2$. Moreover Tipple [33] showed that (3) is split and that (4) is non split only for $k \equiv 2(4)$. Finally we deduce $\pi_{12} M(\mathbf{Z} / k, 6)=\mathbf{Z} /(k, 12)$ from the list above. We leave it to the reader to describe further examples for the exact sequences (9.5).

## § 10 Homology of Eilenberg-Mac Lane spaces

We describe a six term sequence for the metastable homology groups of Eilenberg-Mac Lane complexes. This sequence is a kind of Eckmann-Hilton dual of the corresponding exact sequence for metastable homotopy groups of Moore spaces in § 9. Moreover we use the operators in Whitehead's certain exact sequence for a map which carries the homotopy groups of Moore spaces to the homology groups of Eilenberg-Mac Lane spaces.
Let $\underline{\underline{R}} \subset \underline{\underline{H A}}$ n be a small subringoid, see (8.1). A homotopy abelian $H$-space $U, U \in \underline{\underline{H A}}$, gives us the $\underline{\underline{R}}^{o p}$-module

$$
[\underline{\underline{R}}, U]^{\prime}: \underline{\underline{R}}^{o p} \rightarrow \underline{\underline{A b}}
$$

which carries $X \in \underline{\underline{R}}$ to the abelian group of $H$-maps $[X, U]^{\prime}=\underline{H A}(X, U)$ which is a subgroup of $[X, U]$. The quadratic $\underline{\underline{R}}$-module $H_{m}\{\underline{\underline{R}}, G\}$ associated to (8.4) (4) and the tensor product (3.1) yield the natural homomorphism ( $m<3 / n$ )

$$
\begin{equation*}
\lambda:[\underline{\underline{R}}, U]^{\prime} \otimes_{\underline{\underline{R}}} H_{m}\{\underline{\underline{R}}, G\} \rightarrow H_{m}(U, G) \tag{10.1}
\end{equation*}
$$

as follows. For $a \in[X, U]^{\prime}, b \in[Y, U]^{\prime}, \alpha \in H_{m}(X, G), \beta \in H_{m}(X \wedge Y, G)$ let $\lambda(a \otimes \alpha)=a_{*}(\alpha)$ and $\lambda([a, b] \otimes \beta)=H(\mu)_{*}(a \wedge b)_{*}(\beta)$, compare (8.6). The image of $\lambda$ is the subgroup of $H_{m}(U, G)$ generated by all elements $\alpha_{*}(a)$ where $\alpha: X_{1} \times \cdots \times X_{k} \rightarrow U$ is an $H$-map, $X_{i} \in \underline{\underline{R}}, k \geq 1$, and where $a \in H_{m}\left(X_{1} \times \cdots \times X_{k}, G\right)$.
(10.2) Lemma: $\lambda$ in (10.1) is a well defined natural homomorphism. Moreover $\lambda$ is an isomorphism if $U=X_{1} \times \cdots \times X_{k}, X_{i} \in \underline{\underline{R}}$ for $i=1, \cdots, k$ and if $\underline{\underline{R}}$ is a full subringoid of $\underline{\underline{H A}}{ }_{n}$.
Similarly as in (9.2) the lemma is a consequence of (4.4).
(10.3) Remark: A natural description of $H_{m}(K(A, n), G), m<3 n$, can be obtained by (10.1). For this let $\underline{\underline{R}}$ be the full homotopy category consisting of elementary Eilenberg-Mac

Lane spaces $K(\mathbf{Z}, n)$ or $K\left(\mathbf{Z} / p^{i}, n\right)$, $p=$ prime. Then (10.1) yields the natural homomorphism ( $n \geq 2$ )

$$
\lambda:[\underline{\underline{R}}, K(A, n)] \otimes_{\underline{\underline{R}}} H_{m}\{\underline{\underline{R}}, G\} \stackrel{\tilde{\rightrightarrows}}{\rightarrow} H_{m}(K(A, n), G)
$$

which is an isomorphism for all $A \in \underline{\underline{A b}}$. This follows essentially from (10.2), compare (4.6). We clearly have $[\underline{R}, K(A, n)]=[\underline{\underline{R}}, K(A, n)]^{\prime}$.
We now consider a special case of $\lambda$ in (10.1). For this let $\underline{\underline{R}} \cong \mathbf{Z}$ be the full subcategory consisting only of $K(\mathbf{Z}, n)$ and let $U=K(A, n)$. Then $H_{m}\{\underline{\underline{R}}, G\}$ is the quadratic Zmodule (see (8.6))

$$
H_{m}^{G}\{n\}=\left(H_{m}(K(\mathbf{Z}, n), G) \xrightarrow{H} H_{m}(K(\mathbf{Z}, n), G) \xrightarrow{P} H_{m}(K(\mathbf{Z}, n), G)\right)
$$

and we get by (10.1) the natural homomorphism

$$
\begin{equation*}
\lambda: A \otimes_{\mathbf{Z}} H_{m}^{G}\{n\} \rightarrow H_{m}(K(A, n), G) \tag{10.4}
\end{equation*}
$$

which is an isomorphism if $A$ is free abelian; here $A$ needs not to be finitely generated. In fact $\lambda$ is the tensor approximation of the functor $\underline{\underline{A b}} \rightarrow \underline{\underline{A b}}$ which carries $A$ to $H_{m}(K(A, n), G)$, compare (4.8). For $G=\mathbf{Z}$ we set $H_{m} \overline{\{n\}}=H_{m}^{\mathbf{Z}}\{n\}$. Since $K(\mathbf{Z}, 2)=\mathbf{C} P_{\infty}$ we readily see that $H_{4}\{2\} \cong \mathbf{Z}^{\Gamma}$. Therefore we derive from (10.4) the natural homomorphism $\lambda: \Gamma(A)=A \otimes \mathbf{Z}^{\Gamma} \cong H_{4} K(A, 2)$ which is actually an isomorphism for all $A$, compare [16]. The following list shows some examples of quadratic Z-modules $H_{m}\{n\}$. We use in this list the notation for indecomposable quadratic $\mathbf{Z}$-modules in (2.4), (2.12); the examples can be deduced from the computations in [16].

| $m$ | $n$ | $H_{m}\{n\}$ | $H_{m}(K(A, n))$ |
| :--- | :--- | :--- | :--- |
| 3 | 2 | 0 | 0 |
| 4 | 2 | $\mathbf{Z}^{\Gamma}$ | $\Gamma(A)$ |
| 5 | 2 | 0 | $R(A)$ |
| 5 | 3 | $\mathbf{Z} / 2$ | $\mathbf{Z} / 2 \otimes A$ |
| 6 | 3 | $\mathbf{Z}^{\Lambda}$ | $\mathbf{Z} / 2 * A \oplus \Lambda^{2}(A)$ |
| 7 | 3 | $\mathbf{Z} / 3$ | $\mathbf{Z} / 3 \otimes A \oplus \Omega(A)$ |
| 8 | 3 | $(\mathbf{Z} / 2)^{\otimes}$ | $\mathbf{Z} / 3 * A \oplus\left(\otimes^{2} A\right) \otimes \mathbf{Z} / 2$ |
| 7 | 4 | 0 | $\mathbf{Z} / 2 * A$ |
| 8 | 4 | $\mathbf{Z}^{\Gamma} \oplus \mathbf{Z} / 3$ | $\mathbf{Z} / 3 \otimes A \oplus \Gamma(A)$ |
| 9 | 4 | 0 | $\mathbf{Z} / \mathbf{3} * A \oplus R(A)$ |
| 9 | 5 | $\mathbf{Z} / 2 \oplus \mathbf{Z} / 3$ | $(\mathbf{Z} / 2 \oplus \mathbf{Z} / 3) \otimes A$ |
| 10 | 5 | $\mathbf{Z}^{\Lambda}$ | $(\mathbf{Z} / 2 \oplus \mathbf{Z} / 3) * A \oplus \Lambda^{2}(A)$ |

In general the map $\lambda$ in (10.4) is not an isomorphism. As an analogue of theorem (9.5) we obatin the following result. Again we use the derived functors in (7.4).
(10.5) Theorem: Let $m \leq 3 n-3$. Then there is a natural map $\kappa: H_{m}(K(A, n-1), G) \rightarrow$ $A * H_{m}^{G}\{n\}$ such that ${ }_{\kappa} H_{m}(K(A, n-1), G)=\operatorname{kernel}(\kappa)$ is embedded in the natural exact sequence

$$
\begin{gathered}
0 \leftarrow A \otimes^{\prime} H_{m}^{G}\{n\} \leftarrow{ }_{\kappa} H_{m-1}(K(A, n-1), G) \leftarrow A \otimes^{\prime \prime} H_{m+1}^{G}\{n\} \leftarrow \\
A * H_{m}^{G}\{n\} \leftarrow H_{m}(K(A, n-1), G) \leftarrow{ }_{\kappa} H_{m}(K(A, n-1), G) \leftarrow 0
\end{gathered}
$$

where $i$ is the inclusion.
In the stable range $m<2 n-2$ this yields just the short exact sequence

$$
\begin{equation*}
A * H_{m}(K(\mathbf{Z}, n), G) \leftarrow \kappa H_{m}(K(A, n-1), G) \leftarrow<A \otimes H_{m+1}(K(\mathbf{Z}, n), G) \tag{10.6}
\end{equation*}
$$

which is a kind of Eckmann-Hilton dual of (9.6). Using the formulas in (7.7) it is easy to obtain the exact "cross effect sequence" of (10.5), this is a sequence of a similar nature as in (9.7).
Proof of (10.5): The theorem is a special case of (3.12) in [9]. For this let $X_{1} \xrightarrow{d} X_{0} \rightarrow \rightarrow A$ be a short free resolution of $A$ and let $g: K\left(X_{1}, n\right) \rightarrow K\left(X_{0}, n\right)$ be a map which induces $d$. Then the fiber of $g$ is the Eilenberg-Mac Lane space $K(A, n-1)=P_{g}$. Therefore we can apply (3.12) [9]. Using the isomorphism $\lambda$ in (10.4) (where we replace $A$ by $X_{0}$ and $X_{1}$ respectively) we get the isomorphisms

$$
\begin{aligned}
& H^{0}\left\{H_{m}^{G}\right\}_{*}(g) \cong \\
& H^{1}\left\{H_{m}^{G}\right\}_{*}(g) \cong A * H_{m}^{G}\{n\} \\
& H^{2}\left\{H_{m}^{G}\right\}_{*}(g) \cong A \otimes^{\prime} H_{m}^{G}\{n\}, \\
& \cong A \otimes^{\prime \prime} H_{m}^{G}\{n\} .
\end{aligned}
$$

Compare the definition in (7.4). Whence (10.5) is just a special case of (3.12) [9].
(10.7) Examples: We describe some applications of (10.5) where we use the list in (10.4). Since $H_{7}\{4\}=0$ we obtain the isomorphism

$$
\begin{aligned}
A \otimes^{\prime} \mathbf{Z}^{\Gamma} \oplus A \otimes \mathbf{Z} / 3 & =A \otimes^{\prime} H_{8}(4) \\
& \cong{ }_{\kappa} H_{7} K(A, 3) \\
& =H_{7} K(A, 3) \cong \Omega A \oplus A \otimes \mathbf{Z} / 3
\end{aligned}
$$

which corresponds to the isomorphism $A \otimes^{\prime} \mathbf{Z}^{\Gamma} \cong \Omega A$. Since $H_{7}\{3\}=\mathbf{Z} / 3$ we have $A \otimes \otimes^{\prime \prime} H_{7}\{3\}=0$ so that ${ }_{\kappa} H_{5} K(A, 2) \cong A \otimes^{\prime} \mathbf{Z}^{\Lambda}$ where $\mathbf{Z}^{\Lambda}=H_{6}\{3\}$. Moreover we have $H_{4}\{3\}=0$ so that ${ }_{\kappa} H_{4} K(A, 2)=H_{4} K(A, 2) \cong \Gamma(A)$. Therefore we derive from (10.5) the exact sequence

$$
A \otimes \mathbf{Z} / 2 \leftarrow \leftarrow \Gamma(A) \leftarrow<A \otimes^{\prime \prime} \mathbf{Z}^{\Lambda} \stackrel{0}{\leftarrow} A * \mathbf{Z} / 2 \leftarrow \leftarrow R(A) \leftarrow<A \otimes^{\prime} \mathbf{Z}^{\Lambda}
$$

which is the union of two natural short exact sequences. By (2.12) (4) this shows that there are natural isomorphisms $A \otimes^{\prime \prime} \mathbf{Z}^{\Lambda} \cong S^{2}(A) \cong A \otimes \mathbf{Z}^{S}$.
(10.8) Remark: J. Decker got a formula for $H_{m} K(A, n), m<3 n$, in terms of a list of homology operations $\alpha$, see III (4.3) [14]. This list of homology operations (based on results of Cartan [11]) allows in principle the computation of $H_{m} K(A, n)$ as a functor and hence we can derive the quadratic $\mathbf{Z}$-module $H_{m}\{n\}$. The exact sequence (10.5) still is helpful for understanding the somewhat intricate functors $\Omega_{q}$ and $R_{q}$ which appear in Decker's formula. They generalize the functors $\Omega$ and $R$ of Eilenberg-Mac Lane [16], that is $\Omega_{0}=\Omega, R_{0}=R$.

We now describe a connection between homotopy groups of Moore spaces and homology groups of Eilenberg-Mac Lane spaces. To this end recall that the Hurewicz homomorphism $h$ is embedded in a long exact sequence [37]

$$
\rightarrow H_{n+1} X \xrightarrow{b} \Gamma_{n} X \xrightarrow{i} \pi_{n} X \xrightarrow{h} H_{n} X \xrightarrow{b} \Gamma_{n-1} X \rightarrow
$$

which is natural for simply connected spaces $X$. For an abelian group $A$ we have the canonical map ( $n \geq 2$ )

$$
k: M(A, n) \rightarrow K(A, n)
$$

which induces the identity $H_{n}(k)=1_{A}$ of $A$. This map induces the natural homomorphism

$$
\begin{equation*}
Q_{1}=b^{-1} \Gamma_{m}(k) i^{-1}: \pi_{m} M(A, n) \rightarrow H_{m+1} K(A, n) \tag{10.9}
\end{equation*}
$$

where we use $i$ and $b$ in the exact sequence above. J.H.C. Whitehead [37] showed that $Q_{1}$ is an isomorphism for $m=n+1$. In the metastable range $Q_{1}$ is part of the following commutative diagram where we use $\Sigma M(A, n-1)=M(A, n), m<3 n-2$.

$$
\begin{array}{ccccc}
\pi_{m} M(A, n) & \xrightarrow{H} & \pi_{m} M(A, n) \wedge M(A, n-1) & \xrightarrow{P} & \pi_{m} M(A, n)  \tag{10.10}\\
\downarrow Q_{1} & & \downarrow Q_{2} & & \downarrow Q_{1} \\
H_{m+1} K(A, n) & \xrightarrow{H} & H_{m+1} K(A, n) \wedge K(A, n) & \xrightarrow{\rightarrow} & H_{m+1} K(A, n)
\end{array}
$$

The maps $H$ and $P$ are defined as in (8.5) and (8.6) respectively. The map $Q_{2}$ is defined by $Q_{2}=h \pi_{m+1}(k \wedge k) \Sigma$ where $\Sigma$ is the suspension operator and where $h$ is the Hurewicz map. Whence $Q_{2}$ is an isomorphism for $m=2 n-1$. The commutativity of the diagram shows that $Q=\left(Q_{1}, Q_{2}\right)$ is a map between quadratic Z-modules. We obtain the commutativity of (10.10) by the homotopy commutativity of

$$
\begin{array}{ccccc}
M(A, n) & \xrightarrow{\mu^{\prime}} M(A, u) \vee M(A, n) & \xrightarrow{\nabla} & M(A, n)  \tag{10.11}\\
\downarrow k & & \downarrow k^{\prime} & & \downarrow k \\
K(A, n) & \xrightarrow{\bullet} & K(A, n) \times K(A, n) & \xrightarrow{\mu} & K(A, n)
\end{array}
$$

Here $\mu^{\prime}$ and $\mu$ are the comultiplication and multiplication respectively and $k^{\prime}$ is given by $k \vee k$ and the inclusion. By applying the functor $\Gamma_{m}$ to (10.11) we essentially get (10.10).
For any $(n-1)$-connected space $X$ with $H_{n} X \cong A$ we have maps

$$
\begin{equation*}
k: M(A, n) \xrightarrow{k^{\prime}} X \xrightarrow{k^{\prime \prime}} K(A, n) \tag{10.12}
\end{equation*}
$$

which induce isomorphisms in homology $H_{n}$. Here the homotopy class of $k^{\prime \prime}$ is unique, the homotopy class of $k^{\prime}$, however, is not unique. From (10.10) we derive for $m<3 n-2$ the commutative diagram

$$
\begin{array}{cccc}
A \otimes \pi_{m}\left\{S^{n}\right\} & & \rightarrow & A \otimes H_{m+1}\{n\} \\
\downarrow \lambda & & & \downarrow \lambda  \tag{10.13}\\
\pi_{m} M(A, n) & \stackrel{k_{4}^{\prime} i^{-1}}{\rightarrow} & \Gamma_{m} X \xrightarrow{b^{-1} k_{*}^{\prime \prime}} & H_{m+1} K(A, n) \\
& & Q_{1} &
\end{array}
$$

which shows that $\Gamma_{m} X$ is non trivial if $Q_{1}$ is non trivial. The following lemma gives information on part of the kernel of $Q_{1}$.
(10.14) Lemma: Let $\alpha \in \pi_{m}(M(A, n))$ be a map which admits a factorization $\alpha: S^{m} \rightarrow$ $Y \rightarrow M(A, n)$ where $Y$ is $n$-connected and $\operatorname{dim}(Y) \leq m-1$. Then we have $Q_{1}(\alpha)=0$. In particular we have $Q_{1}([\xi, \eta])=0$ for all Whitehead products $[\xi, \eta]$ with $\xi \in \pi_{t} M(A, n), t>$ $n$.
(10.15) Example: All arrows in (10.13) are isomorphisms for $n=2, m=3$. Moreover the map

$$
Q_{1}: \pi_{4} M(A, 2) \rightarrow H_{5} K(A, 2) \cong R(A)
$$

is surjective and its kernel is the subgroup $S$ in (9.5). Hence we have the natural isomorphisms

$$
A *^{\prime} \mathbf{Z}^{\Gamma} \cong{ }_{\lambda} \pi_{4} M(A, 2) \cong H_{5} K(A, 2) \cong R(A),
$$

compare (9.6).

## § 11 Cohomology of Eilenberg-Mac Lane spaces

Here we obtain a six term exact sequence for the cohomology groups of Eilenberg-Mac Lane spaces in the metastable range.
Let $\underline{\underline{R}} \subset \underline{\underline{H A}}_{n}$ be a small ringoid, see (8.1). A homotopy abelian $H$-space gives us the $\underline{\underline{R}}^{o p}$-module $[\underline{\underline{R}}, U]^{\prime}$ as in (10.1). Now the quadratic $\underline{\underline{R}}^{o p}$-modules $H^{m}\{\underline{\underline{R}}, G\}$ and $\pi_{K}^{m}\{\underline{\underline{R}}\}$ associated to the functors (8.4) (3) and (8.4) (2) respectively yield the natural homomorphisms ( $m<3 n$, resp. hodim $\left(\Omega^{m} K\right)<3 n$ )

$$
\begin{align*}
& \lambda: H^{m}(U, G) \rightarrow \operatorname{Hom}_{\underline{\underline{R^{o p}}}}\left([\underline{\underline{R}}, U]^{\prime}, H^{m}\{\underline{\underline{R}}, G\}\right),  \tag{11.1}\\
& \lambda: \pi_{K}^{m}(U) \rightarrow \operatorname{Hom}_{\underline{\underline{R^{o p}}}}\left([\underline{\underline{R}}, U]^{\prime}, \pi_{K}^{m}\{\underline{\underline{R}}\}\right)
\end{align*}
$$

Compare (5.5). By (5.6) we know
(11.2) Proposition: The homomorphisms $\lambda$ in (11.1) are isomorphisms if $U=X_{1} \times \cdots \times X_{r}$ is a finite product with $X_{i} \in \underline{\underline{R}}$ for $i=1, \cdots, r$ and if $\underline{\underline{R}}$ is a full subringoid of $\underline{\underline{H A}}$.
(11.3) Remark: Let $\underline{\underline{R}}$ be the ringoid of elementary Eilenberg-Mac Lane spaces as in (10.3). Then (11.1) yields the natural homomorphism

$$
\lambda: \pi_{K}^{m}(K(A, n), G) \rightarrow \operatorname{Hom}_{\underline{\underline{R^{o p}}}}\left([\underline{\underline{R}}, K(A, n)], \pi_{K}^{m}\{\underline{\underline{R}}\}\right)
$$

which is an isomorphism if $A$ is finitely generated.
We now consider a special case of $\lambda$ in (11.1). For this let $\underline{\underline{R}} \cong \mathbf{Z}$ be the full subcategory consisting only of $K(\mathbf{Z}, n)$ and let $U=K(A, n)$. Then $H^{m}\{\underline{\underline{R}}, G\}$ and $\pi_{K}^{m}\{\underline{\underline{R}}\}$ are the quadratic Z-modules

$$
\begin{aligned}
& H_{G}^{m}\{n\}=\left(H^{m}(K(\mathbf{Z}, n), G) \stackrel{H}{\rightarrow} H^{m}(K(\mathbf{Z}, n) \wedge K(\mathbf{Z}, n), G) \xrightarrow{P} H^{m}(K(\mathbf{Z}, n), G)\right), \\
& \pi_{K}^{m}\{n\}=\left(\pi_{K}^{m} K(\mathbf{Z}, n) \xrightarrow{H} \pi_{K}^{m} K(\mathbf{Z}, n) \wedge K(\mathbf{Z}, n) \xrightarrow{P} \pi_{K}^{m} K(\mathbf{Z}, n)\right)
\end{aligned}
$$

respectively defined as in (8.6). Now (11.1) yields the natural homomorphisms

$$
\begin{align*}
& \lambda: H^{m}(K(A, n), G) \rightarrow \operatorname{Hom}_{\mathbf{Z}}\left(A, H_{G}^{m}\{n\}\right) \\
& \lambda: \pi_{K}^{m}(K(A, n)) \rightarrow \operatorname{Hom}_{\mathbf{Z}}\left(A, \pi_{K}^{m}\{n\}\right) \tag{11.4}
\end{align*}
$$

which are isomorphisms if $A$ is a free abelian group (here $A$ needs not to be finitely generated). In the next result we use the derived functors in (7.4).
(11.5) Theorem: Let $m \leq 3 n-2$. Then there is a natural map $\kappa: \operatorname{Ext}\left(A, H_{G}^{m}\{n\}\right) \rightarrow$ $H^{m}(K(A, n-1), G)$ such that ${ }_{\kappa} H^{m}(K(A, n-1), G)=$ cokernel $(\kappa)$ is embedded in the natural exact sequence

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Hom}^{\prime}\left(A, H_{G}^{m}\{n\}\right) \rightarrow{ }_{\kappa} H^{m-1}(K(A, n-1), G) \rightarrow \operatorname{Hom}^{\prime \prime}\left(A, H_{G}^{m+1}\{n\}\right) \rightarrow \\
& \operatorname{Ext}\left(A, H_{G}^{m}\{n\}\right) \xrightarrow{\kappa} H^{m}(K(A, n-1), G) \xrightarrow{q}{ }_{\kappa} H^{m}(K(A, n-1), G) \rightarrow 0
\end{aligned}
$$

where $q$ is the quotient map.
In the stable range $m<2 n-2$ this sequence is equivalent to the short exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Ext}\left(A, H_{G}^{m}\{n\}\right) \rightarrow H^{m}(K(A, n-1), G) \rightarrow \operatorname{Hom}\left(A, H_{G}^{m+1}\{n\}\right) \rightarrow 0 \tag{11.6}
\end{equation*}
$$

where $H_{G}^{m}\{n\}=H^{m}(K(\mathbf{Z}, n), G)$ is an abelian group. Theorem (11.5) is a special case of the next result.
(11.7) Theorem: Let hodim $\left(\Omega^{m} K\right) \leq 3 n-2$. Then there is a natural map $\kappa$ : $\operatorname{Ext}\left(A, \pi_{K}^{m}\{n\}\right) \rightarrow \pi_{K}^{m} K(A, n-1)$ such that $\kappa_{K}^{m} K(A, n-1)=$ cokernel $(\kappa)$ is embedded in the natural exact sequence

$$
\begin{gathered}
0 \rightarrow \operatorname{Hom}^{\prime}\left(A, \pi_{K}^{m}\{n\}\right) \rightarrow \kappa \pi_{K}^{m+1} K(A, n-1) \rightarrow \operatorname{Hom}^{\prime \prime}\left(A, \pi_{K}^{m-1}\{n\}\right) \rightarrow \\
\operatorname{Ext}\left(A, \pi_{K}^{m}\{n\}\right) \xrightarrow{\kappa} \pi_{K}^{m} K(A, n-1) \xrightarrow{q}{ }_{\kappa} \pi_{K}^{m} K(A, n-1) \rightarrow 0
\end{gathered}
$$

where $q$ is the quotient map.
Again it is obvious how to describe the "cross effect sequence" of (11.7) by the formulas in (7.7).
Proof of (11.7): The theorem is a special case of (3.7) in [9]. For this let $g$ be given as in the proof of (10.5) with $P_{g}=K(A, n-1)$. Using the isomorphism $\lambda$ in (11.4) (where we replace $A$ by $X_{0}$ and $X_{1}$ respectively) we get the isomorphisms

$$
\begin{aligned}
& H_{0}\left\{\pi_{K}^{m}\right\}\left(g^{o p}\right)=\operatorname{Ext}\left(A, \pi_{K}^{m}\{n\}\right) \\
& H_{1}\left\{\pi_{K}^{m}\right\}\left(g^{o p}\right)=\operatorname{Hom}^{\prime}\left(A, \pi_{K}^{m}\{n\}\right) \\
& H_{2}\left\{\pi_{K}^{m}\right\}\left(g^{o p}\right)=\operatorname{Hom}^{\prime \prime}\left(A, \pi_{K}^{m}\{n\}\right)
\end{aligned}
$$

Compare the definition in (7.4). Now $i$ in (3.7) [9] yields the homomorphism $\kappa$ in (11.7). Therefore (11.7) and also (11.5) is just a special case of (3.7) [9].
q.e.d.

## Appendix A: Quadratic derived functors

In this appendix we associate with a quadratic $\underline{\underline{R}}$-module $M$ a chain functor and a cochain functor. If we apply these functors to a projective (resp. injective) resolution we get the quadratic derived functors which coincide with the classical derived functors in case $M_{e e}=0$. We understand that Dold-Puppe [15] obtained derived functors of non additive functors which as well generalized the classical derived functors of an additive functor; the construction of the quadratic derived functors below is different and relies on the structure of a quadratic module.

Let $\underline{\underline{R}}$ be a ringoid with a zero object. An $\underline{\underline{R}}$-module $M$ yields the following chain functors which are as well denoted by $M$

$$
\begin{equation*}
M: \underline{\underline{R}} / \simeq \rightarrow \underline{\underline{A b}} * / \simeq \text { and } M: \underline{\underline{R}}^{*} / \simeq \rightarrow \underline{\underline{A b}}{ }^{*} / \simeq \tag{A.1}
\end{equation*}
$$

compare the notation in (6.1). For a chain complex $X_{*}$ in $\underset{\rightarrow}{\underline{R}}$ we define $M\left(X_{*}\right)$ simply by setting $M\left(X_{*}\right)_{n}=M\left(X_{n}\right)$. The differential $d_{*}$ in $M\left(X_{*}\right)$ is induced by the differential $d$ in $X_{*}, d_{*}=M(d)$. Similarly we get induced chain maps $M(F)$ with $M(F)_{n}=M\left(F_{n}\right)$ and induced chain homotopies $M(\alpha)$ with $M(\alpha)_{n}=M\left(\alpha_{n}\right)$. Since $M$ is an additive functor one readily observes that this chain functor is well defined. In the same way one gets the cochain functor $M$ which carries $X^{*} \in \underline{\underline{R}}^{*}$ to the cochain complex $M\left(X^{*}\right)$.
Now let $M$ be a quadratic $\underline{\underline{R}}$-module. We associate with $M$ the quadratic chain functors $M$ as in (A.1) which again are simply denoted by $M$, see (A.2) and (A.3). In fact, if $M_{e e}=0$ these chain functors coincide with the additive functors above.
(A.2) Definition: For $X_{*}$ in $\underline{\underline{R}}$ the chain complex $C_{*}=M\left(X_{*}\right)$ is given by the abelian groups ( $n \geq 2$ )

$$
\left\{\begin{array}{l}
C_{0}=M\left(X_{0}\right)  \tag{1}\\
C_{1}=\operatorname{cok}\left\{\left(P,-(1, d)_{*}\right): M\left(X_{1}, X_{1}\right) \rightarrow M\left(X_{1}\right) \oplus M\left(X_{1}, X_{0}\right)\right\} \\
C_{n}=\operatorname{cok}\left\{P \oplus(1, d)_{*}: M\left(X_{n}, X_{n}\right) \oplus M\left(X_{n}, X_{1}\right) \rightarrow M\left(X_{n}\right) \oplus M\left(X_{n}, X_{0}\right)\right\}
\end{array}\right.
$$

The differential $d=d_{n}: C_{n} \rightarrow C_{n-1}$ is induced by the maps

$$
\left\{\begin{array}{l}
d_{1}=\left(d_{*}, P(d, 1)_{*}\right),  \tag{2}\\
d_{n}=d_{*} \oplus(d, 1)_{*}, n \geq 2 .
\end{array}\right.
$$

For a chain map $F: X_{*} \rightarrow Y_{*}$ we get the induced chain map $M(F): M X_{*} \rightarrow M Y_{*}$ by

$$
\left\{\begin{array}{l}
(M F)_{0}=\left(F_{0}\right)_{*},  \tag{3}\\
(M F)_{n}=\left(F_{n}\right)_{*} \oplus\left(F_{n}, F_{0}\right)_{*}, n \geq 1
\end{array}\right.
$$

Finally a chain homotopy $\alpha: F \simeq G, \alpha_{n}: X_{n-1} \rightarrow Y_{n}$ in $\underline{\underline{R}}$ yields a chain homotopy $M \alpha: M F \simeq M G$ by

$$
\left\{\begin{array}{l}
(M \alpha)_{1}=\left(\left(\alpha_{1}\right)_{*},\left(\alpha_{1}, F_{0}\right)_{*} H\right),  \tag{4}\\
(M \alpha)_{n}=\left(\alpha_{n}\right)_{*} \oplus\left(\alpha_{n}, F_{0}\right)_{*}, n \geq 2
\end{array}\right.
$$

The next definition is dual to (A.2).
(A.3) Definition: For $X^{*}$ in $\underline{\underline{R}}^{*}$ the cochain complex $C^{*}=M X^{*}$ is given by the abelian groups ( $n \geq 2$ )

$$
\left\{\begin{array}{l}
C^{0}=M\left(X^{0}\right) \\
C^{1}=\operatorname{ker}\left\{\left(H,-(1, d)_{*}\right): M\left(X^{1}\right) \oplus M\left(X^{1}, X^{0}\right) \rightarrow M\left(X^{1}, X^{1}\right)\right\} \\
C^{n}=\operatorname{ker}\left\{H \oplus(1, d)_{*}: M\left(X^{n}\right) \oplus M\left(X^{n}, X^{0}\right) \rightarrow M\left(X^{n}, X^{n}\right) \oplus M\left(X^{n}, X^{0}\right)\right\}
\end{array}\right.
$$

The differential $d=d^{n}: C^{n} \rightarrow C^{n+1}$ is induced by the maps

$$
\begin{equation*}
d^{1}=\left(d_{*},(d, 1)_{*} H\right), d^{n}=d_{*} \oplus(d, 1)_{*}, n \geq 2 \tag{2}
\end{equation*}
$$

For a chain map $F: X^{*} \rightarrow Y^{*}$ we get the induced chain map $M(F): M X^{*} \rightarrow M Y^{*}$ by

$$
\begin{equation*}
(M F)^{0}=\left(F^{0}\right)_{*},(M F)^{n}=\left(F^{n}\right)_{*} \oplus\left(F^{n}, F^{0}\right)_{*}, n \geq 1 . \tag{3}
\end{equation*}
$$

Finally a chain homotopy $\alpha: F \simeq G\left(\alpha^{n}: X^{n+1} \rightarrow Y^{n}\right)$ in $\underline{\underline{R}}^{*}$ yields a chain homotopy $M \alpha: M F \simeq M G$ by

$$
\begin{equation*}
(M \alpha)^{0}=\left(\left(\alpha^{0}\right)_{*}, P\left(\alpha^{0}, F^{0}\right)_{*}\right),(M \alpha)^{n}=\left(\alpha^{n}\right)_{*} \oplus\left(\alpha^{n}, F^{0}\right)_{*}, n \geq 1 \tag{4}
\end{equation*}
$$

(A.4) Proposition: The definitions (A.2) and (A.3) yield well defined functors $M: \underline{\underline{R}} / \simeq \rightarrow$ $\underline{\underline{A b}} * / \simeq$ and $M: \underline{\underline{R}}^{*} / \simeq \rightarrow \underline{\underline{A b}}^{*} / \simeq$ respectively.
The functors $M$ in (A.4) are quadratic, the cross effect of these functors is described below. The proof of (A.4) is similar to the proof of (6.4), in fact (6.4) can be used for the 1 dimensional part of the proposition, compare (A.5) below.
We point out that the definition of the quadratic chain functors relies on the structure maps $H$ and $P$ of the quadratic $\underline{\underline{R}}$-module $M$; a functor $\underline{\underline{R}} \rightarrow \underline{\underline{A b}}$ which is merely quadratic is not appropriate for the definition of the functors in (A.4).
(A.5) Remark: The quadratic chain functors $M_{*}$ and $M^{*}$ in (6.3) are related to the quadratic chain functors $M$ in (A.4) as follows. Let $d_{1}: X_{1} \rightarrow X_{0}$ and $d^{0}: X^{0} \rightarrow X^{1}$ be given by $X_{*}$ and $X^{*}$ respectively. Then the 1 -dimensional part of $M X_{*}$, resp. of $M X^{*}$, coincides with the map

$$
M_{1}\left(d_{1}\right) / \text { boundaries } \rightarrow M_{0}\left(d_{1}\right), \text { resp. } M^{0}\left(d^{0}\right) \rightarrow \text { cycles } \subset M^{1}\left(d^{0}\right)
$$

compare the definition in (6.3) and (A.2), (A.3). This shows that for $X_{i}=0, X^{i}=0, i \geq 2$, one has isomorphic homology groups $H_{i} M X_{*}=H_{i} M_{*}\left(d_{1}\right), \quad H^{i} M X^{*}=H^{i} M^{*}\left(d^{0}\right)$ for $i=0,1$. The homology $H_{2} M_{*}\left(d_{1}\right)$ and $H^{2} M^{*}\left(d^{0}\right)$, however, cannot be obtained by $M X_{*}$ and $M X^{*}$ respectively.
We now assume that the additive category $\underline{\underline{A}}$ is an abelian category with enough projectives and injectives respectively, for example $\underline{\underline{A}}=\underline{\underline{M}}(\underline{R})$. The homology of chain complexes in $\underline{\underline{A}}$ is defined. We say that $X_{*}$ is a projective resolution of $X \in O b(\underline{A})$ if a chain map $\varepsilon: X_{*} \rightarrow X$ in $\underline{\underline{A}}_{*}$ is given (which induce an isomorphism in homology) where all $X_{i}$ of $X_{*}$ are projective in $\underline{\underline{A}}$ and where $X$ is the chain complex concentrated in degree 0 . On the other hand $X^{*}$ is an injective resolution of $X$ if a chain map $\varepsilon: X \rightarrow X^{*}$ in $\underline{\underline{A}}^{*}$ is given (which induces an isomorphism in cohomology) where all $X^{i}$ of $X^{*}$ are injective in $\underline{\underline{A}}$. It is well known that the choice of resolutions $X_{*}, X^{*}$ yields functors $i: \underline{\underline{A}} \rightarrow \underline{\underline{A}}^{*} / \simeq$ and $j: A \rightarrow A_{*} / \simeq$ which are well defined up to canonical isomorphisms.
(A.6) Definition: Let $\underline{\underline{A}}$ be an abelian category as above and let $M: \underline{\underline{A}} \rightarrow \underline{\underline{A b}}$ be a quadratic functor. Then (3.5) shows that $M$ yields a quadratic $\underline{\underline{A}}$-module $M=M\{A\}$ as well denoted by $M$. Using the resolution functors $i, j$ above and using (A.4) one gets functors

$$
\begin{equation*}
M i: \underline{\underline{A}} \rightarrow \underline{\underline{A b}} * / \simeq \text { and } M j: \underline{\underline{A}} \rightarrow \underline{\underline{A b}} \underline{\underline{*}}^{*} / \simeq . \tag{1}
\end{equation*}
$$

The $n-t h$ (co)homology of these functors yields the quadratic derived functors $L_{\mathrm{n}} M: \underline{\underline{A}} \rightarrow$ $\underline{\underline{A b}}, \quad R^{n} M: \underline{\underline{A}} \rightarrow \underline{\underline{A b}}$ respectively, $n \geq 0$. For $X \in O b(\underline{\underline{A}})$ one has

$$
\begin{equation*}
\left(L_{n} M\right) X=H_{n} M X_{*} \text { and }\left(R^{n} M\right) X=H^{n} M X^{*} \tag{2}
\end{equation*}
$$

where $X_{*}, X^{*}$ are resolution as above. The chain complexes $M X_{*}, M X^{*}$ are defined as in (A.2), (A.3).
(A.7) Remark: In case $M$ in (A.6) is an additive functor, that is $M_{e e}=0$, the derived functors coincide with the classical derived functors of $M$, see for example [12], [18]. For a quadratic functor $M$ Dold-Puppe [15] as well defined derived functors; their construction, however, is different to the one in (A.6) and is available for any non additive functor $\underline{\underline{A}} \rightarrow \underline{\underline{A b}}$, see (6.5) and (7.5). Our definition in (A.6) is adapted especially to quadratic functors. In degree $n=0,1$ the derived functors above coincide with the derived functors of Dold-Puppe.
(A.8) Definition: Let $\underline{\underline{A}}$ be an abelian category and let $M: \underline{\underline{A}} \rightarrow \underline{\underline{A b}}$ be a quadratic functor.

We say that $M$ is quadratic right exact if each exact sequence $X_{1} \xrightarrow{d} X_{0} \xrightarrow{q} X \rightarrow 0$ in $\underline{\underline{A}}$ induces an exact sequence

$$
M\left(X_{1}\right) \oplus M\left(X_{1} \mid X_{0}\right) \xrightarrow{\left(d_{*}, P(d, 1)_{\bullet}\right)} M\left(X_{0}\right) \xrightarrow{q_{*}} M(X) \rightarrow 0 .
$$

We say that $M$ is quadratic left exact if each exact sequence $0 \rightarrow X \xrightarrow{i} X^{0} \xrightarrow{d} X^{1}$ in $\underline{\underline{A}}$ induces an exact sequence

$$
0 \rightarrow M(X) \xrightarrow{i_{4}} M\left(X^{0}\right) \xrightarrow{\left(d_{0},(d, 1) . H\right)} M\left(X^{1}\right) \oplus M\left(X^{1} \mid X^{0}\right) .
$$

The definitions immediately imply as in the classical case:
(A.8) Lemma: Let $M: \underline{\underline{A}} \rightarrow \underline{\underline{A b}}$ be quadratic right exact then one has the natural isomorphism $M \cong L_{0} M$. Dually if $M$ is quadratic left exact one has the natural isomorphism $M \cong R^{0} M$.
As examples of quadratic derived functors we obtain the following quadratic Tor and Ext functors for a small ringoid $\underline{\underline{R}}, n \geq 0$.

$$
\begin{align*}
& \left.\operatorname{Tor}_{\underline{R}}^{\underline{R}}: \underline{\underline{M}}(\underline{\underline{R}})^{o p} \times \underline{Q M} \underline{\underline{R}}\right) \rightarrow \underline{\underline{A b}}  \tag{A.9}\\
& \operatorname{Ext}_{\underline{\underline{R}}}^{n}: \underline{\underline{M}}(\underline{\underline{R}})^{o p} \times \underline{\underline{Q M}}(\underline{\underline{R}}) \rightarrow \underline{\underline{A b}}
\end{align*}
$$

For $M$ in $\underline{\underline{Q M}}(\underline{\underline{R}})$ these functors are derived from the quadratic functors

$$
\begin{equation*}
\otimes_{\underline{\underline{R}}} M: \underline{\underline{M}}\left(\underline{\underline{R}}^{o p}\right) \rightarrow \underline{\underline{A b}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Hom}_{\underline{\underline{R}}}(, M): \underline{\underline{M}}(\underline{\underline{R}})^{o p} \rightarrow \underline{\underline{A b}} \tag{2}
\end{equation*}
$$

that is, for a projective resolution $X *$ of $X$ in $\underline{\underline{M}}\left(\underline{R}^{o p}\right)$ and for a projective resolution $Y_{*}$ of $Y$ in $\underline{\underline{M}}(\underline{R})$ we set

$$
\begin{equation*}
\operatorname{Tor} \stackrel{\underline{R}}{n}(X, M)=L_{n}\left(\otimes_{\underline{\underline{R}}} M\right)(X) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Ext}_{\underline{\underline{R}}}^{n}(Y, M)=R^{n} \operatorname{Hom}_{\underline{\underline{R}}}(, M)(Y) \tag{4}
\end{equation*}
$$

In (4) we consider $Y_{*}$ as an injective resolution in $\underline{\underline{M}}(\underline{\underline{R}})^{o p}$ and we use (8.3). Clearly the groups (3), (4) are trivial for $n \geq 1$ in case $X$ and $Y$ are projective objects in $\underline{\underline{A}}$. The functors (A.9) are quadratic in the first variable and additive in the second variable.
(A.10) Proposition: The functor $\otimes_{\underline{R}} M$ is quadratic right exact and the functor $\operatorname{Hom}_{\underline{\underline{R}}}(, M)$ is quadratic left exact so that we have natural isomorphisms (see (A.8))

$$
\operatorname{Tor}_{0}^{\underline{R}}(X, M)=X \otimes_{\underline{\underline{R}}} M \text { and } \operatorname{Ext}_{\underline{\underline{R}}}^{0}(Y, M)=\operatorname{Hom}_{\underline{\underline{R}}}(Y, M)
$$

In case $M$ is an $\underline{\underline{R}}$-module, that is $M_{e e}=0$, the Tor and Ext groups above coincide with the classical groups, see [18].
(A.11) Example: Let $\underline{\underline{R}}=\mathbf{Z}$ be the ring of integers and let $M$ be a quadratic $\mathbf{Z}$-module. For an abelian group $A$ one gets (see (7.4)) $\operatorname{Tor}_{1}^{\mathbf{Z}}(A, M)=A *^{\prime} M$ and $\operatorname{Ext}_{\mathbf{2}}^{1}(A, M)=\operatorname{Ext}^{\prime}(A, M)$. This follows since $d_{A}$ in (7.4) is a projective resolution of $A$, see (A.5). Clearly $\operatorname{Tor}_{n}^{\mathbf{Z}}=0=$ Ext ${ }_{\mathbf{Z}}^{n}$ for $n \geq 2$ since the chain complex $d_{A}$ is 1 -dimensional.

## Appendix B: The cross effect of quadratic derived functors

We introduce biderived functors which describe the cross effects of the quadratic derived functors above. Moreover we discuss various exact sequences for these functors. We assume that $\underline{\underline{R}}$ is a ringoid with a zero object.
(B.1) Definition: Let $M$ be an $\underline{\underline{R}} \times \underline{\underline{R}}$-module, see (1.7). Then we define the additive functor

$$
M: \underline{\underline{R}} / \simeq \otimes \underline{\underline{R}} / \simeq \rightarrow \underline{\underline{A b}} / \simeq
$$

(as well denoted by $M$ ) as follows. For chain complexes $X_{*}, Y_{*}$ in $\underline{\underline{R}}$ we get $C_{*}=$ $M\left(X_{*}, Y_{*}\right)$ by ( $n \geq 2$ )
(1)

$$
\left\{\begin{array}{l}
C_{0}=M\left(X_{0}, Y_{0}\right) \\
C_{1}=\operatorname{cok}\left\{\left((1, d)_{*} ;-(d, 1)_{*}\right): M\left(X_{1}, Y_{1}\right) \rightarrow M\left(X_{1}, Y_{0}\right) \oplus M\left(X_{0}, Y_{1}\right)\right\} \\
C_{n}=\operatorname{cok}\left\{(1, d)_{*} \oplus(d, 1)_{*}: M\left(X_{n}, Y_{1}\right) \oplus M\left(X_{1}, Y_{n}\right) \rightarrow M\left(X_{n}, Y_{0}\right) \oplus M\left(X_{0}, Y_{n}\right)\right\}
\end{array}\right.
$$

The differential $d=d_{n}: C_{n} \rightarrow C_{n-1}$ is induced by the maps

$$
\left\{\begin{array}{l}
d_{1}=\left((d, 1)_{*},(1, d)_{*}\right),  \tag{2}\\
d_{n}=(d, 1)_{*} \oplus(1, d)_{*}, n \geq 2 .
\end{array}\right.
$$

For chain maps $F: X_{*} \rightarrow X_{*}^{\prime}, G: Y_{*} \rightarrow Y_{*}^{\prime}$ we get the induced chain map $M(F \otimes G)$ : $M\left(X_{*}, Y_{*}\right) \rightarrow M\left(X_{*}^{\prime}, Y_{*}^{\prime}\right)$ by

$$
\left\{\begin{array}{l}
M(F \otimes G)_{0}=\left(F_{0}, G_{0}\right)_{*}  \tag{3}\\
M(F, G)_{n}=\left(F_{n}, G_{0}\right)_{*} \oplus\left(F_{0}, G_{n}\right)_{*}, n \geq 1 .
\end{array}\right.
$$

Finally, chain homotopies $\alpha: F \simeq F^{\prime}, \beta: G \simeq G^{\prime}$ yield a chain homotopy $M(\alpha, \beta)$ : $M(F \otimes G) \simeq M\left(F^{\prime} \otimes G^{\prime}\right)$ by

$$
\left\{\begin{array}{l}
M(\alpha, \beta)_{1}=\left(\left(\alpha_{1}, G_{0}\right)_{*},\left(F_{0}, \beta_{1}\right)_{*}\right),  \tag{4}\\
M(\alpha, \beta)_{n}=\left(\alpha_{n}, G_{0}\right)_{*} \oplus\left(F_{0}, \beta_{n}\right)_{*}, n \geq 2 .
\end{array}\right.
$$

The next definition is dual to (B.1).
(B.2) Definition: We associate with an $\underline{\underline{R}} \otimes \underline{\underline{R}}$-module $M$ the additive functor

$$
M: \underline{\underline{R}}^{*} / \simeq \otimes \underline{\underline{R}}^{*} / \simeq \rightarrow \underline{\underline{A b^{*}}} / \simeq
$$

(as well denoted by $M$ ) as follows. For cochain complexes $X^{*}, Y^{*}$ in $\underline{\underline{R}}^{*}$ we get $C^{*}=M\left(X^{*}, Y^{*}\right)$ by $(n \geq 2)$
(1)

$$
\left\{\begin{array}{l}
C^{0}=M\left(X^{0}, Y^{0}\right) \\
C^{1}=\operatorname{ker}\left\{\left((1, d)_{*},-(d, 1)_{*}\right): M\left(X^{1}, Y^{0}\right) \rightarrow M\left(X^{0}, Y^{1}\right) \rightarrow M\left(X^{1}, Y^{1}\right)\right\} \\
C^{n}=\operatorname{ker}\left\{(1, d)_{*} \oplus(d, 1)_{*}: M\left(X^{n}, Y^{0}\right) \oplus M\left(X^{0}, Y^{n}\right) \rightarrow M\left(X^{n}, Y^{1}\right) \oplus M\left(X^{1}, Y^{n}\right)\right\}
\end{array}\right.
$$

The differential $d=d_{n}: C^{n} \rightarrow C^{n+1}$ is induced by the maps

$$
\left\{\begin{array}{l}
d^{1}=\left((d, 1)_{*},(1, d)_{*}\right),  \tag{2}\\
d^{n}=(d, 1)_{*} \oplus(1, d)_{*}, n \geq 2
\end{array}\right.
$$

For chain maps $F: X^{*} \rightarrow X^{\prime *}, \quad G: Y^{*} \rightarrow Y^{*}$ we get the induced chain map $M(F \otimes G): M\left(X^{*}, Y^{*}\right) \rightarrow M\left(X^{\prime}, Y^{*}\right)$ by

$$
\left\{\begin{array}{l}
M(F \otimes G)^{0}=\left(F^{0}, G^{0}\right)_{*}  \tag{3}\\
M(F, G)^{n}=\left(F^{n}, G^{0}\right)_{*} \oplus\left(F^{0}, G^{n}\right)_{*}, \quad n \geq 1
\end{array}\right.
$$

Finally chain homotopies $\alpha: F \simeq F^{\prime}, \beta: G \simeq G^{\prime}$ yield a chain homotopy $M(\alpha, \beta)$ : $M(F \otimes G) \simeq M\left(F^{\prime} \otimes G^{\prime}\right)$ by

$$
\left\{\begin{array}{l}
M(\alpha, \beta)^{0}=\left(\left(\alpha^{0}, G^{0}\right)_{*},\left(F^{0}, \beta^{0}\right)_{*}\right),  \tag{4}\\
M(\alpha, \beta)^{n}=\left(\alpha^{n}, G^{0}\right)_{*} \oplus\left(F^{0}, \beta\right)_{*}, n \geq 1
\end{array}\right.
$$

As in (8.4) one can readily check:
(B.3) Proposition: The functors in (B.1) and (B.2) are well defined and additive.

The crucial property of the functors (B.1) and (B.2) is described by the next result.
(B.4) Theorem: Let $M$ be a quadratic $\underline{\underline{R}}$-module and let $M\left(X_{*} \mid Y_{*}\right)$ and $M\left(X^{*} \mid Y^{*}\right)$ be cross effects of the quadratic functors $M$ in (A.2) and (A.3) respectively. Then there are natural isomorphism

$$
\Psi: M\left(X_{*} \mid Y_{*}\right) \cong M_{e e}\left(X_{*}, Y_{*}\right) \text { and } \chi: M_{e e}\left(X^{*}, Y^{*}\right) \cong M\left(X^{*} \mid Y^{*}\right)
$$

of chain complex. Here $M_{e e}$ is the $\underline{\underline{R}} \otimes \underline{\underline{R}}$-module given by $M$, see (3.1) and (1.7), and $M_{e e}\left(X_{*}, Y_{*}\right)$ and $M_{e e}\left(X^{*}, Y^{*}\right)$ are defined by (B.I) and (B.2) respectively.
Similarly as in (A.6) we can use the functors in (B.1), (B.2) for the definitions of derived functors. Let $\underline{\underline{A}}$ be an abelian category with enough projective and injectives.
(B.5) Definition: Let $M$ be an $\underline{\underline{A}} \otimes \underline{\underline{A}}$-module. Using the resolution functors $i: \underline{\underline{A}} \rightarrow \underline{\underline{A}} / \sim$ and $j: \underline{\underline{A}} \rightarrow \underline{\underline{A}}^{*} / \simeq$ one gets the additive functors

$$
\begin{equation*}
M(i \otimes i): \underline{\underline{A}} \otimes \underline{\underline{A}} \rightarrow \underline{\underline{A b}} / \simeq \text { and } M(j \otimes j): \underline{\underline{A} \otimes \underline{\underline{A}} \rightarrow \underline{\underline{A b^{*}}} / \simeq . . . . . . . ~} \tag{1}
\end{equation*}
$$

The $n-t h$ (co)homology of these functors yields the biderived functors

$$
L_{\mathbf{n}} M: \underline{\underline{A}} \otimes \underline{\underline{A}} \rightarrow \underline{\underline{A b}} \text { and } R^{n} M: \underline{\underline{A}} \otimes \underline{\underline{A}} \rightarrow \underline{\underline{A b}}
$$

respectively, $n \geq 0$. For $X, Y \in \mathrm{Ob}(\underline{\underline{A}})$ one has

$$
\left\{\begin{array}{l}
\left(L_{n} M\right)(X, Y)=H_{n} M\left(X_{*}, Y_{*}\right),  \tag{2}\\
\left(R^{n} M\right)(X, Y)=H^{n} M\left(X^{*}, Y^{*}\right)
\end{array}\right.
$$

where $X_{*}, Y_{*}$ (resp. $X^{*}, Y^{*}$ ) are projective (resp. injective) resolutions of $X, Y$. The chain complexes $M\left(X_{*}, Y_{*}\right), M\left(X^{*}, Y^{*}\right)$ are defined in (B.1), (B.2).
As a corollary of (B.4) one gets immediately.
(B.6) Corollary: Let $M$ be a quadratic $\underline{\underline{A}}$-module. Then the quadratic derived functors (A.6) have the cross effects

$$
\begin{aligned}
& \left(L_{n} M\right)(X \mid Y)=\left(L_{n} M_{e e}\right)(X, Y) \\
& \left(R^{n} M\right)(X \mid Y)=\left(R^{n} M_{e e}\right)(X, Y)
\end{aligned}
$$

where $M_{e e}$ is the $\underline{\underline{A}} \times \underline{\underline{A}}$-module given by $M$.
In addition to (B.6) one gets the following natural exact sequences for quadratic derived functors, they correspond to the classical exact sequences for derived functors in case $M_{e e}=0$. To this end we consider a short exact sequence

$$
\begin{equation*}
S=\left(0 \rightarrow X \xrightarrow{i^{\prime}} Y \xrightarrow{q^{\prime}} Z \rightarrow 0\right) \tag{B.7}
\end{equation*}
$$

in $\underline{A}$ and maps $S \rightarrow S^{\prime}$ between such sequences.
(B.8) Theorem: Let $M$ be a quadratic A-module. Then $S$ in (B.7) yields the following natural commutative diagram in which the rows and columns are long exact sequences $(n \in \mathbf{Z})$.

$$
\begin{array}{cccccc} 
& \downarrow & & & \downarrow \\
& & L_{n+1} M_{e e}(X, Y) & & & L_{n} M_{e e}(X, Z) \\
& & \downarrow & & \\
& & & & \downarrow & \\
\rightarrow & L_{n+1} M q^{s} \xrightarrow{\partial} & L_{n} M X & \\
& \downarrow & L_{n} M Y & \rightarrow & L_{n} M q^{s} \xrightarrow{\partial} & L_{n-1} M X
\end{array} \rightarrow
$$

We leave it to the reader to write down the dual diagram for right derived functors $R^{n}$; for this we simply replace $L_{*}$ by $R^{*}$ in such a way that $\partial$ raises the degree by 1 . If $M_{e c}=0$ we see that the rows of the diagram are isomorphic, in this case the row coincide with the classical exact sequence for left derived functors, see IV § 6 [18]. In case the sequence $S$ is split all boundaries $\partial$ are trivial and the remaining short exact sequences are split, this yields (B.6).

Proof of (B.8): We can choose a short exact sequence of projective resolutions

$$
\begin{equation*}
0 \rightarrow X_{*} \xrightarrow{i} Y_{*} \xrightarrow{r} Z_{*} \rightarrow 0 \tag{1}
\end{equation*}
$$

of $S$, compare the proof of (IV. 6.1) [18]. As a module we have $Y_{n}=X_{n} \oplus Z_{n}$. The differential of $Y_{*}$ is given by

$$
\begin{equation*}
(d \oplus d)+i_{1} \xi r_{2}: X_{n} \oplus Z_{n}=Y_{n} \rightarrow X_{n-1} \oplus Z_{n-1}=Y_{n-1} \tag{2}
\end{equation*}
$$

Here $d$ denotes the differential of $X_{*}$ and $Y_{*}$ respectively. We now derive from (1) the following commutative diagram in which rows and columns are short exact sequences of chain complexes


The maps $j$ are well defined chain maps since we have (2) for the boundary in $Y_{*}$. We now set

$$
\begin{equation*}
L_{n} M i^{s}=H_{n} \operatorname{ker}\left(q_{*}\right), L_{n} M q^{s}=H_{n} \operatorname{cok}\left(i_{*}\right) . \tag{4}
\end{equation*}
$$

Now (B.8) is obtained by the long exact sequences associated to short exact sequences of chain complexes.
There are the following examples of biderived functors. We associate with $M$ in $\underline{\underline{M}}(\underline{\underline{R}} \otimes \underline{\underline{R}})$ the additive functors

$$
\left\{\begin{array}{l}
\otimes \underline{\underline{R}} \otimes \underline{\underline{R}} M: \underline{\underline{M}}\left(\underline{\underline{R}}^{o p}\right) \otimes \underline{M}\left(\underline{\underline{R}}^{o p}\right) \rightarrow \underline{A b}  \tag{B.9}\\
\operatorname{Hom}_{\underline{\underline{R}} \otimes \underline{\underline{R}}}^{\underline{\underline{R}}}(, M): \underline{\underline{M}}(\underline{\underline{R}})^{o n} \otimes \underline{\underline{M}}(\underline{\underline{R}})^{o \underline{p}} \rightarrow \underline{\underline{A b}}
\end{array}\right.
$$

which carry the object $(X, Y)$ to $(X \otimes Y) \otimes_{\underline{\underline{R}} \otimes \underline{\underline{R}}} M$ and $\operatorname{Hom}_{\underline{\underline{R}} \otimes} \otimes \underline{\underline{R}}(X \otimes Y, M)$ respectively, compare (4.2) (3) and (5.2) (3). The biderived functors of (B.9) are denoted by

$$
\begin{equation*}
\operatorname{Tor}_{\underline{n}}^{\underline{\underline{R}}} \otimes \underline{\underline{R}}(X, Y, M)=L_{n}\left(\otimes_{\underline{\underline{R}} \otimes \underline{\underline{R}}} M\right)(X, Y) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Ext}_{\underline{\underline{R}} \otimes \underline{\underline{R}}}^{n}(X, Y, M)=R^{n}\left(\operatorname{Hom}_{\underline{\underline{R}} \otimes \otimes \underline{R}}(, M)(X, Y)\right) . \tag{2}
\end{equation*}
$$

Using (9.6) one obtains for a quadratic $\underline{R}$-module $M$ the cross effects ( $n \geq 0$ )

$$
\begin{equation*}
\operatorname{Tor} \underline{\underline{R}}_{n}^{n}(X \mid Y, M)=\operatorname{Tor}^{\stackrel{R}{n}} \stackrel{R}{=}\left(X, Y, M_{e e}\right), \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Ext}_{\underline{\underline{R}}}^{n}(X \mid Y, M)=\operatorname{Ext}_{\underline{\underline{R}} \otimes}^{\underline{\underline{R}}} \underline{\underline{\underline{R}}}\left(X, Y, M_{e \epsilon}\right) . \tag{4}
\end{equation*}
$$

As an example of (1) we get for $\underline{\underline{R}}=\mathbf{Z}$ the triple torsion product of Mac Lane [21]

$$
\begin{equation*}
\operatorname{Tor}_{1}^{\mathbf{Z}}(X, Y, M)=\operatorname{Trp}(X, Y, M)=H_{1}\left(d_{X} \otimes d_{Y}, M\right), \tag{5}
\end{equation*}
$$

compare (7.7) (3). We can also apply theorem (B.8) for the functors in (3), (4); this leads for $\underline{\underline{R}}=\mathbf{Z}$ to the following results on the functors in (7.4), see (A.11).
(B.10) Theorem: Let $M$ be a quadratic Z-module and let $S: 0 \rightarrow X \xrightarrow{i} Y \xrightarrow{q} Z \rightarrow 0$ be an exact sequence of abelian groups. Then one has the following commutative diagrams in which the rows and the rectangle sequences of broken arrows are exact sequences of abelian groups. Moreover these diagrams are natural in $S$.


In case $M_{e e}=0$ the diagram above correspond exactly to the classical six term exact sequences. We can apply these exact sequences for example if $M$ is the quadratic Z-module $M=\mathbf{Z}^{\Gamma}$. In this case the torsion product $Y *^{\prime} \mathbf{Z}^{\Gamma}=R(Y)$ corresponds to the functor $R$ of Eilenberg-Mac Lane, see (10.15).

## LITERATURE

1. Bak, A.: $K$-theory of forms, Annals of Math. Studies. 98 Princeton Univ. Press (1981).
2. Barratt, M.G.: Homotopy ringoids and homotopy groups. Quart. J. Math. Oxford Ser. (2) 5 (1954), 271-290.
3. Baues, H.J.: Obstruction theory. Lecture Notes in Math. 628 (1977) Springer Verlag.
4.     -         -             - .: Commutator calculus and groups of homotopy classes. London Math. Soc. Lecture Note 50. Cambridge University Press (1981).
5.     - — - .: Algebraic Homotopy. Cambridge studies in advanced mathematics 15 Cambridge University Press (1989).
6.     -         -             - .: Relative Homotopiegruppen bei Abbildungskegeln, Compositio Math. 32 (1976) 169-183.
7. Baues, H.J. and Dreckmann, W.: The cohomology of homotopy categories and the general linear group. $K$-Theory 3 (1989) 307-338.
8. Baues, H.J.: Combinatorial Homotopy and 4-dimensional Complexes, de Gruyter, Expositions in Mathematics, de Gruyter Verlag (1991) 380 pages.
9.     -         - . .: Metastable homotopy and homology. Quaestiones Math. 14 (1991) 161-178.
10.     -         - . .: On the group of homotopy equivalences of a manifold, preprint MPI für Mathematik, Bonn 1991.
11. Cartan, H.: Seminaire E.N.S. 1954/55: Algèbres d'Eilenberg-Mac Lane et Homotopie. Benjamin, 1967.
12. Cartan, H. and Eilenberg, S.: Homological algebra, Princeton Mathematical Series 19, Princeton University Press (1973).
13. Cohen, F.R. and Moore, J.C. and Neisendorfer, J.A.: Torsion in homotopy groups. Annals of Mathematics 109 (1979) 121-168.
14. Decker, J.: The integral homology algebra of an Eilenberg-Mac Lane space. Thesis, University of Chicago (1974).
15. Dold, A. and Puppe, D.: Homologie nicht additive Funktoren. Anwendungen. Ann. Inst. Fourier Grenoble 11, 201-312 (1961).
16. Eilenberg, S. and Mac Lane, S.: On the groups $H(\pi, n)$ II. Ann. of Math. 60 (1954) 49-139.
17. Floer, A.: Über hochzusammenhängende Poincaré-Komplexe. Diplomarbeit RuhrUniversitat Bochum (1982).
18. Hilton, P.J. and Stammbach, U.: A course in homological algebra. Graduate texts in mathematics 4, Springer Verlag New York (1971).
19. Jeschonnek, V.: Die Tensor Approximation quadratischer Funktoren. Diplomarbeit Universität Bonn (1992).
20. Kervaire, A.M. and Milnor, J.W.: Groups of homotopy spheres I. Ann. of Math. 77 (1963) 504-537.
21. Mac Lane, S.: Triple torsion products and multiple Künneth formulas. Math. Ann. 140 (1960) 51-64.
22.     -         -             - . Categories for the working mathematicians, Springer Verlag New York (1971).
23. Mather, M.: Pull-backs in homotopy theory. Can. J. Math. 2 (1976) 225-263.
24. Mitchell, B.: Rings with several objects, Advances in Math. 8 (1972), 1-161.
25. Nomura, Y.: The Whitney join and its dual. Osaka J. Math. 7 (1970) 353-373.
26. Pirashvili, T.: Polynomial functors. Proc. Math. Inst. Tbilisi v. 91 (1988) 55-66.
27. Sasao, S.: On homotopy type of certain complexes. Topology 3 (1965) 97-102.
28. Sasao, S. and Takahashi, H.: Highly connected Poincaré complexes. Kodai Math. J. 2 (1979) 139-147.
29. Scharlau, W.: Quadratic and hermitian forms. Grundlehren der math. Wissenschaften 270 Springer New York (1985).
30. Stöcker, R.: Zur Topologie der Poincare-Räume. Habilitationsschrift Ruhr-Universität Bochum (1974) (Typ.)
31.     -         - . .: On the structure of 5-dimensional Poincaré duality spaces. Comment. Math. Helv. 57 (1982) 481-510.
32. Thomas, E.: Postnikov invariants and higher order cohomology operations. Ann. Math. 85 (1967) 184-217.
33. Tipple, D.A.: A note on the metastable homotopy groups of torsion spheres. Bull. London Math. Soc. 3 (1971) 303-306.
34. Toda, H.: Composition methods in homotopy groups of spheres. Princeton University Press (1962).
35. Wall, C.T.C.: Classification of $(n-1)$-connected $2 n$-manifolds. Ann. of Math. 75
(1962) 163-189.
36.     -         - .: Classification problems in differential topology VI. Classification of $(s-1)$ - connected $(2 s+1)$-manifolds. Topology 6 (1967) 273-296.
37. Whitehead, J.H.C.: A certain exact sequence. Ann. of Math. 52 (1950) 51-110.

Hans-Joachim Baues

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
5300 Bonn 3

