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§0. Introduction
For any integcr m > 1, let X} be the Fermat curve over the complex number field C
defined by

z™+y"+ 2™ =0.

The jacobian variety J(XL) of X}, decomposes up to isogeny into a product of some

smaller abelian varieties. To be more precise, let

A = {(a,b,c) | a,b,c € Z/mZ\ {0},a+ b+ c = 0}.
The group (Z/mZ)* acts on A, by ¢t - (a,b,¢c) = (ta,thtc), t € (Z/mZ)*, and we
denote by G, the orbit space (Z/mZ)*\2L,. Then we have an isogeny

m:J(Xh) — ] A4s,
S5e€n

where Ags is an abelian variety of CM type in the sense of Shimura and Taniyama (see
Theorem 1.3). In general, As is not always simple and it may happen that Ag and Ag
are isogenuous for two distinct orbits S and S’. Thus there arise the following two natural
questions:

(Q1) When are As and Ag isogenuous over C?

(Q2) When is Ag absolutely simple?

In {K-R] Koblitz and Rohrlich gave the answer to these questions in three typical cases:

(i) ged(m,6) = 1 (see Theorem 1.8), (ii) m = 2" and (iii) m = 3". In this paper we



give an almost complete answer to (Q1) and (Q2). To state our results, we introduce some
notation. We denote by [c] the orbit of & € AL, If & = (a,b,¢), 0’ = (a',¥/,¢') € A},
and {a,b,c} = {ta',tb',tc'} for some t € (Z/mZ)*, we say that « is equivalent to
a'. From the definition of As one can easily see that Ap, is isomorphic t0 Apy if
is equivalent to o'. A result of Koblitz and Rohrlich (see Theorem 1.8) implies that the
converse is true if m is prime to 6.

For any a € Z/mZ, we donote by (<) the rational number such that 0 < (%) < 1 and

~m(%) =a (mod m). We introduce the following sct:
mfn = {a = (ao,...,as) € (Z/mZ \ {0})6 I It ’ al =3 forany t € (Z/mZ)x},

where [t - o| = (322) + .. + (!2). For any a = (a,b,c),a’ = (a',¥,c') € AL, put
a*xa = (a,bcad b, d)and —a = (—a,—b,—c). Then it is known that As and As
are isogenuous if and only if a * (—a') € B}, for some @ € S,a' € S’ (see Proposiﬁon
- 1.4). To describe ddccomposition of Ag into simple factors, we define a subgroup W, of
(Z/mZ)* by

Wo = {t € (Z/mZ)* | a*(~t-a) € B}

Then it is known that As is isogenuous to the product of §W, copies of a simple abelian

variety (see Corollarly 1.7). Now let £ be a finite set of nutural numbers defined by

£ ={2,3,4,6,8,9,10,12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30,

36,39, 40, 42, 48, 54, 60, 66, 72, 78, 84, 90, 120, 156, 180}.

If ay, ..., a, are any elements of Z/mZ\ {0}, we denote by GCD(a,, ..., a,) the greatest
common divisor GCD(&,, ..., a,,m), where &; is any positive integer such that &; = a;
(mod m). Then the following theorem gives the answer to (Q1).
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Theorem(.1. Suppose m ¢ £ and let a,3 be two elements of A},. We assume that
GCD(e,B) = 1 and a is not equivalent to 5. Then A, and Apg are isogenous if

and only if @ and § are equivalent to elements in one of the following three groups.

() (a,3a,~4a), (T -0, —2a,30)
@  (a,2a,—3a), (—';‘- —a, 2?"‘ — a,2a)
m m m m a m a m
(3) (a’av —20.), (a1 "2" -a, ?); (E - a, “"2"" - a, 26), (5, -2— + E, -E - G),

(m—Za 3m — 2a a)
4 H 4 H H

where the fourth and fifth elements in (3) are defined only when a =0 (mod 2) and

2a = m (mod 4), respectively.

To state the answer to (Q2) we define five types for elements a € A1, with GCD(a) =1

as follows.

Typel : elements of A1 which are not of the following types.
Typell —1: elements of A}, which are equivalent to (1, w, —1 — w) with w? =1,
w # 1, andw;é%+lifordgm23.

Typell — 2 : elements of A}, which are equivalnt to (1,1, —2), ordam > 2.

m
2
TypelII  :elements of A}, which are equivalnt to (1,w,w?),1+ w + w? =0,

Typell — 3 : elements of 21, which are equivalnt to (1, % +1,= —2),ordym > 3.

Theorem 0.2. Suppose m ¢ £ and @ € AL,,GCD(a) = 1. Then W, is given as
follows.

(i) Wo = {1} if a is of Type L

(i) Wa = {1,w} if a is of Type II1.



(iii) Wo = {1, 3 — 1} if a is of Type II-2.

(iv) Wo={1,2-1,2+1,32 -1} if a is of Type II-3.
(v) Wo ={1,w,w?} if a is of Type IIL

In particular, Aq) is simple if and only if a is of Type L

We have seen that the problem can be reduced to the study of the structure of B N
(AL, «2AL ). The large part of this paper will be devoted to the proof the following theorem

from which one can easily deduce above two theorems.

Theorem 0.3. Suppose m ¢ £ and o € B, N (AL, x2A}.) with GCD(a) = 1. Then a
.18 equal (up to permutation) to one of the following elements:

(1) (a,b,c)*(—a,—b,—c)

@  (a,a,-2a) %(—a, T +4a,2

3) (a,a,~2a) * (F +a, 7 +a,—2a)

(4) (a,%+a,’—;‘-—2a)*(—2a,%‘~+2a,%

(5) (6, % +a, % —2a)*(F +2a,F + 2a,—4a)

(6) (a,F + a, 3 — 2a) x (—2a,-2a,4a)

V)] (a,%‘-+a,%-—2a)*(%+a,§f‘-+a,—2a)

(8 (a,3a,-4a) * (Z + a, 2 + 2a,-3a)

9 (a,2a,—3a) * (% + a, 2Tm + a,—2a)

These problems are related to the calculation of the Picard number p(X}, x X1) of
the surface X! x X1. In a letter to Shioda, Zagier computed it for m < 110 using the

following relation due to Shioda:

(0.1) X0 x X0 =2+4{B5 N (A, AL}
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He has conjectured Theorem 0.1 and the closed formula for p(X !, x X1,). Using Theorem

0.3, we can prove the Picard number formula:
Theorem 0.4. The Picard number of X}, x X} is given by

p(XE x XL)=6m? ~27Tm +23

0 (2t m)
0 (31 m)
£ 18m+9 (2m) + { SUPERANGED D10}
20Tm +9 (4|m) 315";

where A(d) is the values calculated in Table II of section 8.

The present paper is organized as follows. In section 1 we review some basic results
on J(X}), and in section 2 we prepare some basic tools for the proof of Theorem 0.3.
Section 3 is a preliminary section for the later sections. Section 4, 5 and 6 are devoted to
the proof of Theorem 0.3. The proofs of Theorem 0.1, 0.2 and 0.4 are given in section
7. In section 8 we discuss three topics; (i) the defining field of the isogeny from As to
the product of simple abelian varieties, (ii) ordinary primes for As and (iii) the Hodge
conjecture for four diﬁlensional Fermat varieties. In the last section we give the list of
elements of AL, m ¢ £ that give the same "CM-type”.

I would like to thank Professor T.Shioda for helping and encouraging me during the

course of this work. I also thank Professor R.Coleman for his useful comments.



§1. The jacobian variety of a Fermat curve.
In this section we recall some basic results on the jacobian
variety of a Fermat curve. First let us define the Fermat variety xg

of dimension n and degree m as a hypersurface in P?él defined by

For the detail of Fermat varieties, see (S~-K] or [Shl]. Let mo be the
group of m—-th root of unity. Then G; = (nm)n+2/diagonal acts on x;
coordinatewise: g = (§0, vee 4 &

'yg

n+1) : (xo, oo s xn+1) e (§0x0, ..

. n,,n n,.,n
n+lxn+1)' This makes the cohomology groups H (xm,Q) and H (Xm,C)

into G;—modules. The character group of G; is identified with the

following group

A
n _ -
Gp = ( (ag, -.. v a ) | aiEZ/mZ, ag + ... +a =01},
a a A
- 0 n+l _ n = .
via a(g) = ;0 "'§n+1 for ¢ = (ao, e an+1) € Gm and g = (§0. ...

A
n . . . n
§n+1) € Gm' Following Shioda we define two subsetscof Gm

A
n _ n .
ﬂm = { (ag, «-. , an+1)€Gm | a, = 0 for all i },
B0 = (e ed] | It-al = n/2 + 1 for all teZ/nl)” ),
where lt-al = <ta0/m? I (tan*llm>. Moreover, if n is even,

define a subset D; of ﬂ; by



n _ n ~
Dm = { ot € ﬂm | o (a,,-a

0°"80> cr v Bpsp0T3y0) )

where ~ denotes the equality up to permutation.

A
For each o € G;, let

V) = ( E € H“(x;,C) | g5(&) = a(g)E for any g € G; y.

The following theorem is well known.

Theorem 1.1. Notation being as above the following staiements hold.
(i) Let 0 denote the trivial character of G;, then
H"(x;,C) =V @ e V(x),
. aeﬂm

where dim V(a) = 1 for any o € ﬂ;, and dim V(0) =1 (regp. 0) if n =

even (resp. odd).

(ii) Let Hp'q(x;) be the subspace of H;rim(x;’C) of Hodge type (p,q),

Hp’q(x;) = e V(.
aeﬂm
lol=q+1

(iii) If n i3 aeven, then

(H® (X".Q)K\H“/z’“/z(x;))oc = @ V(a).

prim m (153:

Proof. See [Kl, [0], [R] and [Shll. O



n/2,n/2

The elements of H“(x;.o)(\ﬂ (x;) are called Hodge cycles of

middle dimension on x;.
Next let us consider the jacobian variety of a Fermat curve. The
following proposition is a special case of Theorem 1.1 (ii).

1

Corollarly 1.2. The Hodge decomposition of H (X;,t) is as follows:

Hl'o(x;) = @ V), Ho’l(x;) = @ V.
aeﬂm aeﬂm
leel =1 Il =2

The endomorphism ring of J(X;) contains Z[G;] as a subring. For

every g € G; we denote by g* the induced element of End(J(x;)). For

each S € Gm we choose an element ¢ € S, and put m(S)= m/GcD(x), Let

_ * 1
ng = 2 Trgg),Q(® (&))" € End(J (X)),

geGm

where Q(g) = Q(gm(s)). ;m(S) = exp(2ni/m(8)). This definition does

not depend on the choice of . Let us define an abelian variety A_. as

S

the image of HS:

Ag = &t

1
S (J(Xm)).

S
If ¢ € S, then End(As) contains a subring isomorphic ta Z[G;/Ker(a)]
since the action of Ker(a) on AS is trivial. There is an isomorphism

of G;—modules



1

H™ (Ag,0) = @& V().
a€S _
For each a € ﬂ;, put
Hy = teZ/mHD™ | lteal = 1),
e ey ._,__[___'- N -_,.., — 5_._“ _
W, = ( te/mSHI | t-H = Hy ).

Then for an appropreate element o € S we have isomorphisms

H' %A ) T @ vit-a), 1A T @ V.
S S
teH,,

This shows that Ha is the CM-type of A

S Combining these results, we
obtain the following

Theorem 1.3. The abelian variaties Ag's are defined over @, and there

i3 an isogeny defined over 0

T J(Xl) — T A

S€6_ S
Horeover AS satisfies the following propaertias:

(i) The dimension of AS 18 @e(m(S8S))/2.

(ii) A admits coanez rultiplication by 71[¢

m(S)
(iti) The CH-type of A

3 i8 given by Ha for some o € S.

Proof. See [Schl(VI, Satz 1.2 and Satz 1.5). O



For ¢« = (a, b, ¢) and ' = (a', b', ¢c') € ﬂ;, define
L] L] L] 1] 4
a*(-a ) = (a' b’ c, —a’, -b s, —C ) € ﬂm.

Proposition 1.4. Let S, S' € Gm. Then the following conditiong are
equivalent.

(1) Ag and Ag, are iSogenuous.

(ii) There exist o« € S and o' € S' such that ged(a) = gecd(a') and

. 4
oax{-t') € Bm.

Proof. Let ¢ (resp. ') be an element of S (resp. S') such that Ha
(resp. Ha‘) is the CM-typevof AS (resp. AS,). By the theory of

Shimura and Taniyama [S-T] we can see that As is isogenuous to AS'

and only if ged(a) = ged(ax') and Ha = aHa, for some a € (Z/mI)>*. 1f
1

if

we put @" = a «', this shows that lt-al = |t-a"| for all t € Z/ml>)*
since &Ha' = Ha"’ Here note that lt-a”l = 3 - It-(-x¢")|. Hence (i) is
equivalent to the condition : f[t-(ax(-a”))] = 3 for all t € (Z/mZ)x,

or equivalently ax(-a") € B;. This proves. the assertion. O

Remark 1.5. Let us introduce another proof due to Shioda which uses

the inductive structure. For each S € Gm' let

VS = @& Vix).
Q€S
Let 5§, §'" € Gm and suppose dim-VS = dim VS' (i.e. ged(@) = ged(a')

_10_



fof ¢ €S and a' € S'). The proof proceeds as follows:

Ao, and AS’ are isogenuous.

S
{==)> VSOV(_S.)is spsnned by the classes of some algebraic

1 1
cycles an Xm x Xm.
{==> V(a)®V(-0¢') is spanned by the classes of some
1 1

algebraic cycles on xm ¢ xm.

{==> V(x)®¥(x') is spanned by some Hodge cycles on X; X X;

(since the Hodge conjecture is true for any surface).
{==> V{a*(-x')) is spanned by spanned by some Hodge cycles
on X; (by the inductive structure).

C==> a*(-a') € B$ (by Theorem 1.1 (iii)),

As for simplicity of an abelian variety with cdmplex
multiplicstion, we have a criterion due to Shimura and Taniyama

([S-T1, Chap.II, §8). In our case it can be stated as follws:

Theorem 1.6. Let S € Gm and choose ¢ € S g0 that the CH-type of Ag is
given by Ha' Then AS i3 isogenuous to the product of Iwal copies of a

simple abelian variaety BS
(1.1) A. ~B. X ... X B..

In particutar‘AS i8 simple if and only if wa = {1). Moreover BS

satisfies the follouing properties:

(1) dim BS = ¢(m(5))/21wal.
L]

(ii) End(Bg)®Q = Q% )y *, the fized field of W,

m(S)

_11_



(iii) The CH-type of BS 18 Ha/wa.
Proof. See [K-R}l or [Schl(VI, Satz 2.2). O

Corollarly 1.7. Let the notation be as above. Then the following two
conditions are equivalent.

(i) AS i3 sgimple.

(ii) a*((-t)a) € B:] if and only if t = 1 (mod.m(S)).

Thus in order to prove Theorem 0.1 and Theorem 0.2, we must

determine the structure of Im i= Q;f\(ﬂ;*ﬂ;). To investigate it we

define the following sets:

g a. + b, =0
l,,1.dec _ 1 41 i j
(ﬂm*ﬂm) - {(31'32’33'b1’h2’b3’)eﬂm*ﬂm , for some i, j }’
Idec _ md w1l ol . dec
m = Bmf\(ﬂm*ﬂm) ,

Iindec

- dec
" = Im\Im .

‘We call the elements of Igec

(resp. I;ndec

) decomposable (resp.
indgcoaposable) elements of Im.

The following theorem due to Koblitz and Rohrlich [K-R] is
fundamental.

Theorem 1.8, If ged(m,6) = 1, then

- _y ! 1 [
Im = { ax(-a') | « € ﬂm, o x }.

- 12 -



§2. Some basic tools.

In this section we review some basic tools for the proof of
Theorem 0.3 from our previous paper [Al]. Let m (>1) be an integer
and R(m) the free abelian group generated by Z/mZ\{0}). Then every

element of R(m) is written as

c (a), c¢_€1.
a€Z/mIN{0} 2 a

For a, b € Z/mIN{0}), we define the product of (a) and (b) in R(m) by

f(ab) if ab # 0,
(a){b). =
\ 0 if ab = 0.

Extending it linearly we define multipiication law in R(m), thus R{m)
is a commutative ring with unit (1). If a = (al) + ...+ (ar), we
write it as a = (al, o es -y ar). The number r will be called the

length of ¢ and denoted by {(ax). For r 2 1, define
R(m, r) = ( ¢ € R(m) | a = (ag, -.. , a) ).

For the convenient we also define R(m, 0) = {0}. Let PC (m) be the
set of primitive odd Dirichlet characters on Z/mZ. For any x € PC (m)

and o = 2 c, (a) € R(m), define x(a) = 3 c,x(a). Moreover let

A(m) = { ¢ € R(m) | x(x) = 0 for all x € PC (m) },

A(m, r) = A(m)NYR(m, 1),

_13_



Am = U A(m, 1).
r>0

Note that PC (m) = ¢ if m = 12 or ord,(m) = 1, in which case we

define A(m) to be R(m). If o = al + “2 with ai € A(m, ri); then

¢clearly ¢ € A(m, f1+r2), and we write

a =oa, & a

1 2 € A(m, rl)QA(m. rz).

Moreover let us define

A°(m, r) = A(m, r) N\ U A(m, i)®A(m, r-i).
0<ilr

Now for each divisor d of m we introduce two important maps td

and Td from R(m) to R(m/d): For a € Z/mZIN\{0}, put

{(m)
T, (a) = 4202 ¢ 1 (p, -1)}(a"),
d o(m/38) pld/s

pim/d

where 8 = gecd(d, a) and a' isfhe element of Z/(m/d)Z satisfying the

following condition:

a' = a/(8/ W p) (mod.m/d).
plé
plm/d

In particular a' = a (mod.m/d) if ged(3, m/d) = 1. From the

definition it follows that T ,(«) = a. Moreover, for o = > c (a) €

- 14 -



R(m), put

Ty = Y c,T(a) € R(m/d;.

We define the primitive part of 2 c,(a) to be > c,(a), and
ged(m,a)=1
let rd(a) be the primitive part of Td(a). For example, when ¢ = (a),
5%%%%7{ T (p, -1)}(a") if ged(m,a)ld,
T.((a)) = pld/ged(m,a) .
d plm/d
¢} otherwise.

In this notation the primitive part of ¢ is tl(a). (Note that this

definition is slightly different from that of [All.)

To understand the importance of Td and Ty let us introduce the

following subsets of R(m):

B(m) = ( 3 c,a) € Rm | 3 c, (Cta,/m>-1/2)=0 YteZ/mL)™ ),

B; = B(m) NR(m, n+2),
n
B = vy B".
m nz0 m

We have a natural map from ﬂ; to R(m, n+2), and we can easily see
that the image of 3; by this map is exactly B;ifr1m.@mn: The following

characterization of B(m) and Bm is fundamental in this paper.

- 15 -



Proposition. 2.1. The following conditions are equivalnt.
(i) ¢ € B(m) (resp. Bm).

(ii) td(a) € A(m/d) (resp. Am/d) for any divisor 4 of m.

Proof. See [Al], Proposition 2.2. O

The map Td is a natural one in the following sense.

Proposition 2.2. (i) Leat d1 and d

2 be two divisors of m such that
didzlm. Then,

for any @ € R(m), we have

T (T, ()) = T (@),
d, d, d,d,

where in the left gide T

d 18 considered as a map fron‘R(m/dl) to
2

R(m/dldz)'

(ii) If x € B(m) {(resp. Bm). then Td(a) € B(m/d) (resp. Bm/d) for any
divisor d of m.

Proof. (i) It suufices to show the statement for o« = (a) € R(m, 1).

Let 61 = ged(a, dl) and 52 = gcd(a/&l,

dz). Then
T. (T, (@)
dy, "dy
= T, (67%}%17{ n (p, -1)}(a")
2 1’ pld, /8,
p!m/d1

- 16 -~



@(m/dl)

@(m) '
= . (w (p, -1)y¢m (p, -1)})(a")
pfm/d1 plm/dld2
e(m/3 )
o{m) 1
= . (m (p, -1)}(a"),
17277172
pfm/d1d2

where a' (resp. a") is an element of Z/(m/dl)Z (resp. Z/(m/dldz)l)

such that

a' = a/ai (mod.m/dl) (resp. a" = a'/&é (mod.m/dld )),

2

wvhere-

8! =&,/ W »p (resp. 8 =&,/ T p ).
1 2 2
phS1 plzs.2

plm/d1 plm/dld2

Here note that 6162 = ged(a, dldz) and

@(m/8152)¢(m/d1)
) @(m/81)¢(m/d162)‘

emy | ®MdY  om)
®(m/3,) ¢(m/d;5,) ~ ¢(m/5,5,

We want to show the following equality:

w(m/8162)¢(m/d1)

(*x)
¢(m/61)¢(m/d162)

= 1.

-17..



= = . b3
For that purpose put ep ordp(m/dl) and fp ordp(mlél) Then ep

fp.for evry p since alldl. Moreover, if p|62, then ep = fp. Indeed,

if eP > fp. then p does not divide a/&l, which implies that pl&z.

Therefore we obtain

¢(m/d,) ¢ (m/5))
¢(n/d 5,) = om/d

(= ¢(62)),

182

which is eguivalent to (%). Thus we obtain

(m)
T, (T, (a)) = —32 0 (g (p, -1)})(a™
d d o¢(m/5,68,) '
2 1 172 pldld?_/&l&2
plm/d1d2
= T (a).
d,d,y
(fi) Put ' = Td(a) € R(m'), where m' = m/d. For any divisor d4' of m’
and any X € PC (m'/d'), we have
x(td.(a')) = x(Td,(a'))
= x(Td,(Td(a)))
= X(Tdd.(a)) (by (i))
= x(tdd.(a))

0 (since ¢ € B(m)).

This shows that o¢' € B(m'). O

For any a € Z/mZ\{0}, the element (a, -a) of R(m, 2) belongs to

—1.8-



0 - - . 2r
Bm. Therefore (ao, By o s ar. ar) is an element of Bm for any
a; € Z/mIN(0}. Moreover, if m is even, the element (ao, “ahs e

2r+1
m .

a -a_, m/2) belongs to B Let us define the following subsets:

rl

D(m) = the subgroup of the abelian group R(m) generated by

(a, -a) (a€Zl/mIN{0}) (and (m/2) if m is even),

Dg = D(m) NR(m, n+2),
_ n
Dm = J Dm.

nx0

Then it is easy to see that D; corresponds to D; when n is even.

Let p be a prime factor of m. For any a € Z/mZ with pa # 0, put

(a, %+a, e iB:%lﬂ+a’ -pa) ifp > 2,
g =
P,;a m m
(a, §+a, -2a, 5) ifp= 2.

p-1 .,
Then ap a belongs to Bm if p > 2, and o

2
2,a belngs to Bm. These are
called standard elements. (See [Al]l and [K-01.)
.The proof of Theorem 0.3 is elementary but rather long. One of
the reason lies in the fact that there may exist some t(®l) € (Z/mZ>)*

suth that x(t)

1 for any x € PC (m). To be more precise, let

Udm)

( t e @/mb* | x(t) =1 for Yx € PC (m) ).
Then the following proposition holds.

_19_



Proposition 2.3. Assume ordz(m) # 1 and m # 12. Then, for m = 15, 20,

we have
({1} if 2lm and ord,(m) # 1,
{1, u) if 2|m and ord,(m) # 1,
Um) = ¢ .
{1, v} tf 2lm and ordq(m) = 1,

L (1, u, v, uv} if 2|lm and ord, (m)

[}
—
-

where v« = m/2 - 1 and v i3 characterized by the condition v = 1

(mod.3), = -1 (mod.m/3). Moreover

u(1s)

<2>

{1, 2, 4, 8},

u(20) <3> {1, 3, 7, 9}.

Proof. See [All, Proposition 6.1. O
Let ox = (al, cee s ar) and 8 = (bl, e br) be two elements of
R(m, r). If a, = uibi with u, € U(m) for all i, we write o y 8. In’
particular this implies that x(a) = x(8) for all x € PC (m). When « Q
(the primitive part of ¢ ) for some p and a, we call o« p—quagi-

P,a
gstandard element and will be abbreviated by p-q.s..

Proposition 2.4. Suppose m # 21 and 28. [f a € Ao(m,S). then ord3(m)

> 1 and a 18 3-quasi-standard, that is, for some a € (Z/mZ)x

U m 2m
a = (a, §+a. §—+a).

Proof. See [Al]l, Proposition 8.1. O
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Proposition 2.5. Suppose m # 15, 20, 27 and 28. [f @ € A(m,4), then
it i3 5-quasi—-standard (ords(m) = 1) ora € A(m,2)®A(m,2). !

Proof. See [All, Proposition 8.2. O

Proposition 2.6. Suppose m = 15, 20, 27 and 28. Let a« € R(m,2) and
suppose that (1, x)x € A(m) with some x € (Z/mI)>* such that neither
-X mor -x2 belongs to U(m). Then a¢ € A(m,2).

Proof. See [Al]l, Lemma 8.6. O

In the proof of Theorem 0.3, we will use the following result on

the strucure of Bi which has been determined in [Al]l, [M-N] and [Sh3].

Theorem 2.7. Assume m = 12, 14, 15, 18, 20, 21, 24, 28, 30, 36, 40,
42, 48, 60, 66, 72, 78, 84, 90, 120, 156, 180. Then every glement of

Bi with ged(ax) = 1 ig equal to one of the following elements:

(1) (a, -a, b, -b)

m m
(2) (a, 2+a._ 2a, 2.)
(3) (a, %+a. %+2a, -4a)
(4 (a, Bsa, g—“‘««a, -3a)

Now we define some notations which will be used later. Let o =
(al, e ar) € R(m,r). For each divisor d of m, let us define the

d-part of o by
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ay = ZA (ai),
gcd(m,ai)=d

where the summation is taken over i's such that gcd(m,ai)'= d. We

define Nd(a) and N(d)(a) as follows:

N, (a) = L(ad),

d
N, () = 3 N, (),
(d) d'=0(mod.d)9
Moreover put
D(ax) = min { gcd(m.ai) }.

1<i<r

An element o« of R(m,r) will be called reduced if it cannot expressed

as ¢ = ' + a" for any a* € R(m,r') and a" € A(m,r") with r', r" < r.
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8§3. Some fundamental lemmas.

In this section we prove some fundamental lemmas which will be
used in the later sections. Throughout this section we always assume
that m is an odd integer. For any divisor d of m with gcd(d,m/d) = 1,

let us define the following subgroups of Z/mI>)*.

(x€ I/mD* | x2 = 1 (mod.d) },

K e
{ x € (Z/m)* | x P =1 (mod.p<p) for Yplid 1},

v, (d)

vV, (d)

= d i ’
where ep or p(m) and Kp is defined by

f p-1 if pld
K =
P~ \2p if p2ld

For each integer r > 2, let

Vim,T) = vl(ml)f\vzcm),

where m1 is a divisor of m defined as follows:

e
( m 2 p P if m#2 3p, (p25),
p>r(if p~Im)
_ ] p>r+1(if plm)
ml— kS
1 if m = 3p, (5Lp<L2r+1),
\ m if m= 3p, (p>2r+1).
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Lemma 3.1. /f ax = (al, cee ar) € A(m,r) and ai/aj ¢ V(m,r) for some

i and j, then a ecannot belong to A°(m,r).

Proof. It suffices to show the lemma for a = (1, X, ... ) with x €&

Vim,r). If a0 € Ao(m,r). then x € V_(m) by [1], Corollarly 3.4.

2

Moreover Proposition 6.4 and 6.5 [loc.cit.] implies that x € Vim).

Therefore x € V(m,r), which is a contradiction. O

Corollarly 3.2. Suppose m is odd. For ¢ € A(m,r) put V = V(m,r) and f

= [K2>V 1 V1. If we write a = o, + (2)a, + ... + (2f-l)af_l + a' with

a, € ZIV] and o' € R(mINZIV], then o, € A(m) foraltl i =0, ... , f-1.

Lemma 3.3. Suppose m is odd and m # 21. For @, 8 € R(m) put V =
Vim,2¢L () +{(B)), ¢ = l(x) and £ = [<2>V : VI. If L < 2f, ¢(B) £ 1 and
(2,-1)ax + B € A(m), then the following statements hold.
(i) If B =0and « € A(m), then 2f € Um).. Horeover, if L < £, them

L = f and

a ¥ ara, 2, 22, ..., 2Ly,

(ii) If £8) = 1, them ordy(m) > 1 and 2f = -1 (mod.m/3). Moreover,

if £t < £, then

2 {-1

@ = (ay(1, 2, 2%, ..., 2Ly, 8 2¢

(-2%"a).

Proof. In order to prove the lemma we may assume that both o« and B8

are reduced and that they are of the following forms:
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R
1]

ad * (2Day + L. 4 (2 s PR

™
3]

B. + (2)81 + ...+ (2 )8

0

with o, Bi € Zf{Vl. In paticular ai(resp. Bi) € A(m) whenever x;

(resp. Bi) # 0., Then

(2, -1Dax + B

f-1
_ f - i -
= (@Da,_ + (-, + 8, +i§1(2 Ma, _, + (Do, + 8.},
and by Corollarly 3.2 we obtain
f
(3.1) (20, _; + (-Dexy + 80 € A(m),
(3.2) x. + (-Da. + B. €AMW, i =1, ..., f-1.
i-1 i i .

(i) If 8 = 0, then from (3.1) and (3.2) we obtain

(3.4) 2f, -, € A(m) for 0 < i < f-1.

.. = O

1

£-1 (mpd.A(m)).

If ai € A(m) for some i, then ai € A(m) for all i by (3.3), which is

a contradiction. Therefore t(ai) > 0 for all i. Since ¢ ¢ 2f, this

implies that t(ai) = 1 for some i, hence (3.4) implies that 2fe U(m).

Now suppose { < f. Then (3.4) implies that Zfe U(m). The abave

argument shows that { = f and {(ai) = 1 for all i, say ai = (ai).
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Then (3.3) implies that a € (aO)U(m) for all i, which proves (i).

1
(ii) If ¢(B8) =1, say 8 = BO (b) and 81 = ... = Bf_1 = 0, then from

(3.1) and (3.2) we obtain

]|

(3.5) @, ax, (mod.A(m)) for 1 < i < f-1,

0

(3.6) 2f, -Da, + (b) € A(m) for all i.

[£ @, € A(m) for some i, then ®, € A(m) by (3.5), and so (b) € A(m)
by (3.6), which is impossible. Thus none of ai's belongs to A(m),
which implies C(ai) 2 1 for all i. Since ¢ < 2f, this shows that
L(ai) = 1 for some i. It follows from this and Proposition 2.4 that

'ord3(m) > 1 and 2f

-1 (mod.m/3). If £ £ f, then t(ai) = 1 for all

i, say ai = (ai). Hence (3.5) and (3.6) implies that ai € aOU(m) and

caf, -1)(ay) + (b) € A(m). Therefore b = DT

which proves (ii). O

ao by Proposition 2.4,

Corollarly 3.4. Suppose m i3 odd and m > 51. Lelt x be an element of
R(m, ¢) with ¢ < 4. Then the following statements hold.

(i) If (2, -1)x € A(m), then x € A(m).

(ii) Assume, in additiom, m » 225 if {(a) = 3 or 4. Then (2, -l)a +

(b) € A(m) for any b € (Z/m2)*.

Proof. If m # 225, the condition imposed on m insure that 2f > {(a)

f f

and 2° € U(m), and that 2 % -1 (mod.m/3) if ord,{(m) > 1. Thus the

, 3
assertion immediately follows from Lemma 3.1 when m # 225. If m =
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225, x(2) # 1 for any x € PC (225). Therefore (2, -1)x € A(225) if

and only if ¢ € A(225), which proves (i) when m = 225. 0O

Lemma 3.5. Suppose m is odd and does not divide 105, 3p (p£17). Let
and B8 be reduced elements of R(m) such that 2 < {(x) £ 4 and {(B) =
Let f be as in Lemma 3.3 and assume {(x) < f. Then, if (2, -1)x + B

A(m), the following siatements hold.

(i) If () = 4 and ax ¢ A(m), then there are five cases balow:
(a) o« 2 (a,2a,4a,8a), 8 ¥ (a,-16a),
_ m _ 2m 2m m _ 2m
(b)) a = (a, Za,a a.3 a), (a .3 2a,3 2a,4a), (3 a.3 a,2a,4a),
B = (a,-8a),
_ (__ 2m 2m _ _
(c) a = (3 a,5— a,3 2a,3 2a), 8 = (a,-4a),
(d) o U (a,-2ga,—2g2a.-2g3a), (-ga.—gza,vgaa,Za), 8 4 (a,—-4a).
U m_ 2m 3m 4m U _
(e) a.- (5 a, ——a, -2, 3 a), 8 = (a,-2a).

(ii) If ¢(x) = 3, then there are three casas belouw:

(a) a ¥ (a,2a,4a), 8 ¥ (a,-8a),

- 2m m . 2m _
(b)Y a = (a.3 2a,3 2a), (3 a,53——a, 2a), B = (a,-4a),
(c) o u (-ga, —gza, —gaa). 8 = (a, -2a).

(iii) If {(a) = 2, then there are tow cases below:

(a,2a), B g (a,—-4a),

=

(a) o

m 2m 8

(b) o = (§-a,§——a), = (a,-2a).

Here g is an alement of (Z/m)* (ord

5
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=1 (mod.m/5).

Proof. We prove only (i) because the other cases are similar. We
have only to consider the case where 8 = (1, 2%b) with b eV, 1 <e¢ <

f. First consider the case ¢ ¢ f. Then from (3.1) and (3.2) we obtain

(3.7) x, = Ta,_qr X, = ... Fa., (mod.A(m)),
f

(3.8) (2Da,_, + (-Day + (1) € A(m),

(3.9) Xy * (-—l)ctc + (b) € A(m).

If £(ai) =2 1 for all i, then f = {(a) and C(ai) = 1 for all i, say o,

(ai). It then follows from (3.7) that a.1 € aOU(m) (1<i<c~1) and aj

. f
€ acU(m) (c+1<j<f-1), and (2 a,, ~—ag, 1), (ao, -a,, b) € A(m) by

(3.8) and (3.9). Then Proposition 2.4 implies that ord £

3
=1 (mod.m/3). But this is impossible since m | 32°5. Thus mi = 0 for

{(m) > 1 and 2

some i. We may assume ai = 0 for some i with ¢ £ i £ f-1. Then (3.7)

implies that ac = ... = af—l = 0 since x is reduced. Moreover, for i

=0, ... , ¢c-1, from (3.8) and (3.9) we obtain

(3.10) o, *+ (-1) € A(m),

(3.11) @, + (b) € A(m),

This implies, in particular, that b is an element of ~-U(m), which

c

shows that 8 y (1, -27). Since a is reduced, £(ai) =21 for i =20,...,

c-1, hence ¢ £ 4. If ¢ 4, then t(ai) =1, say a, = (ai). Then
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(3.10) shows that ai € U(m), hence « y (1, 2, 4, 8), which shows (a).
If ¢c = 3, then one of {(ai) its two and the others are one. In this
case we obtain (b). Indeed, for example, in case £(a0) = C(al) =1

and {(ax,) = 2, it follows from Proposition 2.4 that ordscm) > 1 and o

2
) i, 2, %—4, %9-4). If ¢ = 2, there are three cases: (C(ao), t(al))
= (1,3),¢2,2) or (3,1). In the first case, say Xy = (ao), @, = (al,
az, a3). Then (3.10) and (5.11) implies that ao € U(m) and (-1, al.
a,, a3) € A(m). Since o is reduced this implies that ord5(m) = 1 and
(al, a,, :;13)'g (-2, -gz. -ga). hence o 4 (1, -g, -gz. —53). Thus'we

obtain (d). The third case is similar. In the second case, say ao =

(ao, al) and al = (az. 83). Then (3.10) implies that both (-1, ao.

al) and (-1, az, as) belong to A(m), hence ord3(m) > 1 and (ao, al)-=
_ (D 2m _ /m_ 2m m_ 2m .

(az, a3) = (3 1, 3 1). Therefore o = (3 1, 5——1, 3 2, 5—-2), which

is (e). If ¢ =1, then ¢ = and (3.10) implies that o+(~-1) belongs

09
to A(m). Since o is reduced, a+(-1) € AQ(m,S). Proposition 6.6 of

2m 3m 4m
5 1» g5 13

[Al] shows that ord.(m) > 1 and a = (%—1, 1), which is

5
(e).
Next let us consider the case ¢ = f. In this case from (3.1)

and (3.2) we obtain

(3.12) ao = ...

]
R

{mod.A(m)),

3.1 @ha,_ |+ Dey + a, 270 € am.
Since o is reduced this implies that f £ {(xx), hence f = {(a) = 4 and
t(ai) = 1, say mi = (ai). Then (3.12) implies that a, € aOU(m) for
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all i and that

J+(1, 16b) € A(m).

(3.14) (16, -1)(a0

Here nofe that (16, -1) does not belong to A(m) since m | 3:5, 3-17.
Moreover (3.14) cannot be 5-q.s. since m | 3:5*7, 3:17. Therefore

(l6a 16b)®(~-a 1) or (l6a 1)9(—30. 16b). In the first case we

0]
have a

0’ 0’
0 € U(m) and b € -U(m), hence Q (1, 2, 4, 8) and 8 = (1, -16).

In the second case we have 16&0 € -U(m) and 28b € ~U(m), hence (-16)x

Q (1, 2, 4, 8) and (-16)8 Q (1, -16). This proves the lemma when m

does not divide 3°-72. By a similar argument as above we can see that

the lemma holds for m which divides 33-72. a

Lemma 3.6. Suppose m is odd and does not divide 3p (p<17), 45, 63,
105. Lael ¢ = (2, -1)(1, a) + B € A(m) with L(B) = 3 or 4. If L(B) =
4, say B = (bl’ b2, b3, b4), we assume that 1 + a + b1 = b2 + b3 + b4
= 0. Then the following statements hold.

(i) If L(B) = 4, then there are three cases below:
(i-1) a=1, 8 = (1, 1, -2, -2).

(i-2) a= -2, 8 = (1, -2, -2, 4).

(i-3) a = -2'1, B = (1, 1, -2, -2~ 1y,

(ii) If L(B) = 3, then there are four cases belou:

(ii-1) a=-1, 8= (b, I+, %ﬂ+b).
.. _ . (I 2m - m_ 2Zm
(ii-2) a =2, 8 = -1, 281, -0, a, 34, g,
. _ ol - m m
(ii~3) a = 83 2, B (1, 8§+2, 8§+4).
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- - oI - m _om - m_ _ah
(ii-4) a = e§+1, 8 = (1, e§+1, e§+2),,( 2, 53 2, 53 1)

Here £ denotes 1 or -1.

Proof. Let V V(m,8) and f = [<2>V : VI. Let k be an integer such

that 0 < k < £-1 and a € 2%v.
Case 1: I1f k # 0, 1, then 8 2 (-2, 1)1, a).

Case 2: If k

1, then

(2, -1)(1, a)+B = (2, -a)+(-1)+(2a)+8B.

Therefore £1(8) =2 3. If {1(8) = 4, then there are four cases:

(3.15) (2, -a, b,, by)®(-1, 2a, b, b)),
(3.16) (2, -a, b)®(-1, 2a, by, by, b,),
(3.17) (2, -a, b,)®(-1, 2a, b, by, b,),
(3.18) (2, -a)e(-1, 2a, by, by, by, b,).

In the first case (3.15), we have (-1, b1)9(2a. b4) or (-1, b4)0(2a,
bl) because (-1, 2a, bl’ b4) cannot be 5-q.s3. since f 2 3. If-b1 €
U(m), then a = -2 or v-1 according to the case b1 = 1 or v, hence a =

- U :
-2, b1 = 1 and b4 = 4 since (2a, bd) € A(m). Moreover (2, 4, bz, b3)

a2 * byt by

# 0, which is a contradiction. On the other hand, if b4 € U(m), then

€ A(m), hence (b2, b3) = (-2, -4). But this implies that b

b1 = -2a or -2va, hence a =1 or (2v—1)‘1. Since k = 1, a must be the

latter. Therefore (2, b2)0<-(2v-1)‘1,-b ), which implies that b

3 + b

2 3
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+ b4 # 0, a contradiction. Thus the first case cannot occur. The
second case (3;16) also cannot occur. In fact, if (2, -a, bl) € A(m),

then ord3(m) > 1 and -a = b1 = 2 (mod.m/3), hence 1 + a + b1 # 0. In

the third case, ord3(m) > 1 and a = 8%-2, b2 = -8%+2. The second

factor belongs to A(m,3)®A(m,2). For example, if (-1, b b,)®(2a,

1’ 73

b.), then b, = +0_1. Therefore 1 + a + b, = 0, which is a

4 1 3 1

contradiction. The other cases are also impossible. Finally let us
consider the last case (3.18). In this case we have a = 2, b, = -3,

hence (-1, 4, -3, b2, b3, b4) € A(m). Therefore (b2’ ba, b4) = (-1,

-3, 4).

If £1(8) = 3, then

(3.19) (2, -a, bl)G(-l, b2)9(2a; b3)
(3.20) (2, -a)e(-1, bl’ b2)0(2a. b3)
(3.21) 2, -a)Of-I. bl)Q(Za, b2, ba).

Note that orda(m) > 1 in any casel From the first case (3.19) we

obtain

= B = m m
a = g3-2, 8 (1, g3+2, &3+4)

From the second case (3.20) (resp. (3.21)) we obtain

- - (= m_ 2m_ m 2m
a =2, 8 = (-4, 3 1, 3 1) (resp. (1, §+4, §—+4)).
Case 3: k = -1. This case is quite similar to Case 2.
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Case 4: k = 0. If {(B) = 4, then

(3.23) (2, 2a, bl’ b2)0(-1, -a, b3. b4).
(3.24) (2, 2a, b2, b3)9(-1. -a, bl’ b4).
(3.25) (2, 2a, bl)Q(-l, -a, b2' b3’ b,J,
(3.26) (2, 2a, bz)e(-l, -a, bl’ b3’ b4),
(3.27) (2, 2a)e(-1, -a, bl' b2, b3; b4).

First note that a € ~-U(m). Indeed, if a € -U(m), then ged(m,b,) > 1,

1
which is a contradiction. In particular the last case (3.27) cannot’

occur. In case (3.23), we obtain (-1, b,)®(-a, b4), so b Q 1 and b

3 3 4
U

= a. Moreover, if (b,, 2)®(b,, 2a), then a = 1 and 8 = (1, 1, -2,
-2), which is (i-1). If (2, b2)0(2a, bl)’ then we obtain the same

result as above. In case (3.24), if (-1, bl) € A(m), then b1 = 1 and

a = -2. Hence B8 = (1, -2, -2, 4), which is (i-2). If (-a, bl) € A(m),

then b1 = a. Since 1 + a + b1 = 0, this implies that a = -2_1, which
is a contradiction because k = 0 now. In case (3.25) we have orda(m)
>1 and a = 1, b1 = 2 (mod.m/3), which is impossible. In case (3.26)
we have
(2.‘2a. bz)O(bz. 2b1. 2b3. 2b4).
i = .l = —eD_
Therefore a = 8§+1, b2 = E§+2 and b1 = 83 2, hence
m m
(-8§+2. 83 4, 2b3, 2b4) € A(m).
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This implies 2b3 = 82-2 and 2b, = -em+4.

3 4 3
hence this case also cannot occur.

If £¢(B)Y = 3, then

(3.28) (2, 2ae(-1, -a, bl' b2’ b3)
(3.29) (2, 2a, bI)Q(-I, -a, b2. b3)
(3.30) (2, 2a, bI' bz)o(-l. -a, b3).

In case (3.28) we have a € -U(m) and (b1
ord3(m) >1, a = -1 and 8 = (b, %+b, %E+

Then 2b, + 2b +2b4 = 0,

2 3

. b2, ba) € A(m), hence

b), which is (ii-1). From

.(3.29) (resp. (3.30)) we obtain a = €3+1 and 8 = (1, -g2+1, -glhgy

3

(resp. (-2, Sm

proved our lemma. O
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§4. Proof of Theorem 0.3 (the first case).
First we define three subsets of B; which corresponds to

T, rdeC ,ng riMdeC 4etined in §1:
m* *m m

_ 4 _
Xm { (ao, R a5) € Bm | ag + a; +a, = 0
xgec = { (ao. eee a5) € Xm I a, + aj = 0 for some i & j },
indec dec
Xm = Xm N\ Xm .

The aim of this section is to prove Proposition 4.9, which treat the
case where ordz(m) # 1 and Nl(a) > 0. For that purpose we prove some

l emmas.
Lemma 4.1. Suppose ord,(m) = 1 and m > 60. Then N, (x) # 3 if o€ X
Proof. Suppose N;(@) = 3, then by Proposition 2.4 we oﬂtain

m 2m

¢ = (a, §+a, §—+a, X, ¥, 2).

We may assume it decomposes as follows:

m 2m 2m

(a, §+a. 5——2a)+(§—+a, X, ¥)
— 2m
= 03,a + (3a, §—-2a, X, Y) (mod.Dm).

This impliegs that the last term is an element of Bi, which is however

impossible by Theorem 2.7 and Table 1 of [M-NJ]. O
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Lemma 4.2. Suppose ordzcm) # 1 and m > 60. Let a € xm\D; and suppose
Nl(a) =n>0. Then n = 2 or 4, and tl(a) € A(m,2) or A(m,2)®A(m,2).
Proof. Let a = (ao, al. a2, aa, a4. a5). First suppose m is even,
then n £ 4. If n = 2, then the assertion is clear. Hence we may

assume n = 4 since n # 3 by Lemma 4.1, say gcd(ai.m) =1 for it =

0,1,2 and 3. Then (ao, al, az, a3) € A(m). If it is 5-q.s8., then

ai(mod.m/S) € U(m/5) for i 0,1,2 and 3. But then <t ((ao,al,az,as))

5
does not belong to A(m/S5), which is however a contradiction. Hence
(ao, al. 82’ a3)'e A(m,Z)OA(m,z). This proves the assertion when m is
even.

Next consider the case m is odd. Then a € A%(m,{)®A(m,6-0), 2 <

{ £ 6. Here we choose { as large as possible. Then'our aim is to show

{ =2. If { = 6, then by [Al1, Proposition 6.4 and 6.5

e
1 (mod. p ®) for Yp 2 7,

(4.1) a.
i

e -1

(4.2) a, = £1 (mod. p Py for p = 3 and 5.

But then a, + a; + a, # 0 for any i, j and k unless m|45, which is
a contradiction. When { = 4 or 5, it is easy to see o = 05 a (mod.Dm)

for some a, which is impossible since 05 a ¢ xm. Since £ # 3 by Lemma

4.1, { must be 2. Now it remains to show n # 6. Suppose n = 6, then

the above argument shows that ord3(m) = 1 and ¢ is of the following

form:
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a = (1, -v)(x, ¥y, 2),

where ged(m,x) = ged{m,y) = gcd(m,2) = 1 and either x + y + z = 0 ar

X +y -vz =0. In both cases X + y + 2 = 0_(mod.m/3) and

Ta(a) (3, -1)(x, ¥y, 2) € Xm/

1]

q-

But this happens if and only if (x, y, 2) = (3x, 3y, 32) by Theorem
1.8 since ged(m/3,6) = 1. This implies that 1 + 3 + 8 = 0 (mod.m/3),

that is, m is a divisor of 39, which is impossible. 0O

Proposition 4.3. Suppose that ord,(m)#1 and m > 60. Let « € xI"d€¢

and suppose N (a) = 4. Then ord,(m) > 2 and « = (a, %+a. %—2a)+(%+a.
gm+a, -2a) for some a € (Z/mZ)x.

4

Proof. By Lemma 4.1 and Lemma 4.2 it suffices to show the lemma
assuming that Nl(a) = 4 and ¢ is of the following form:
Y+ (1, -w

a = (1, -w Y(a)+(b, ¢),

1 2

where wi € U(m), ged(m,a) =1, gecd(m,b) > 1 and ged(m,c) > 1. If
ords(m) = 1 and at least one of wl and wz is either v or uv, then it
is easy to see that Tala) = 2(3, -1)(a) (mod.A(m/3)) if one of w. is
u, and ta(a) = 2(3, -1)(1, a) (mod.A(m/3)) otherwise. The first case
is impossible since 3 € U(m/3). (This is because m/3 # 4, 8, 20.) It

follows from the second case that a (mod.m/3) € -U(m/3), hence a =
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-1, -u, v or uv. Since a is not decomposable, a cannot be -1, v and

uv, hence a -u and &« = (1,_-u)(1. -v)}+(b, ¢). Therefore we may

assume that oo is of the following form:

@ = (1, %1)(1, a)+(b, ¢) = (1, %’41. a, §+a, b, c).
m m

Then (b, c¢)

n
~

5—2, 5—2&) or a = g-z. In the first case we have

2 2a) (mod.Dm),

which implies that the last term belongs to B;. By Theorem 2.7 and

the table in [M-N] we see that this is possible only if it belongs to

2 _ Jn _ Jul m_ m 3m
Dm’ hence a = rz+1 (ordz(m) > 2) and ¢ = (1, 2+1, > 2)+(Z+1’ Z_+1'
-2). In the second case we have
= m o m_ ‘
x = 02'1 + (2, 2_2, b, ¢) (mod.Dm).
Similarly as above this implies (b, ¢) = (%&1, %m+1), hence o = (1,
m m m 3m
§+1, > 2)+(Z+1'—_+1' 2). O

LLemma 4.4. Suppose ordz(m) = 1, orda(m) = 1and m > 84. Let oo be an

element of Xm such that N, (@) = 2, and suppose that o« = (a, -va, x,

1
y, z, w) with ged(m,a) = 1. Then a is decomposablea.

Proof. First note that ¢ is one of the following forms:
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(4.3) (1, =-v, v-1)(a)+(x, y, 2)

(4.4) (a, X, y)+(-va, 2z, w).
In case (4;3), we have

t3((1,-v,v-1)(a)) = 2(3,-1)(a) (resp. 2(3,-1,-2)(a))
if m = even (resp. odd). Since they cannot belong to A(m/3),

NS((x,y,z)) must be positive. Then it is not hard to see that

N(3)((x.Y.z)) > 2, and 8o X 0 (mod.3). If m is odd, then

1]
]

y = 2z

T3(a) = 2(3a, -a, -2a, X, ¥, 2) € Bm/a’
which implies that 8 = (3a, -a, -2a, x, y, 2) € Xm/3. Since
gecd(m/3,6) = 1, Theorem 1.8 shows that 8 € Dm/3' Therefore (x, y, 2)
= (-3a, -v'a, (1-v)a), which shows that o is decomposable. If m is

even, then
Tya) = 2(3a, -a, x, 2) € A(m/3).

Since m/3 is even and not equal to neither 20 nor 28, Proposition 2.5

shows that (x, y) = (-3, -v'), (-3, g+v'), (g §+v’).

In the first case @ is decomposable. We can see that the other three

+3, -v') or (g+3. D

cases are impossible. For example, in the second case, we have

R
1]

(1, =-v, 2v', -3, g+v', g-4v')
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=g + (v')(1, 2, §+1, 3-4) (mod.D_),

3,1

which shows that the last term belongs to B But it is impossible by

Theorem 2.7. The other cases are similar.
Next consider the second case (4.4). In this case N(a)(a) < 2.

By the similar argument as above one can see that N (¢) = 2, say x

(3

= 2 =0 (mod.3). Since ta(a) € A(m/3), Ngﬁ(x, Y, 2, w)) > 1. Then a

simple calculation shows that N3 = 2, say ged(m,X) .= ged(m,2z) = 3.

Then

ta(a) = 2(3a, -a, X, Z) € A(m/3).

Since m/3 = 20, 28, Proposition 2.5 implies that (x, z) = (-3a,

(3

2+3a, -v'a) or (@

2+3a, l-'-j-r\r'a). If (x, 2) = (-3a,

-v'a), (-3a, DT4vra), 5

2
-v'a), then
= (a, -3a, 2a)+(-va, -v'a, -2a),

hence & is decomposable. [t is easy to see that the other cases are

impossible. O

Lemma 4.5. Suppose ordz(m) 2 2, ordy(m) =1 and m > 84. Let a = (a,

%+va. X, ¥, 2, w) with gcd(m,a)

belong to xm.

1 and Nl(a) = 2. Then @ cannot

Proof. There are two cases:



(4.5) (a, §+va, %—(v+1)a)+(x, vy, 2),

(4.6) (a, X, y)+(%+va, Z, W).

In the first case, we have N(3)((x. y, 2)) 2 2. In fact, since

g-(v+1)a =a (mod.3), = % (mod.m/3), we obtain
T, (@) = (3, -1)(a, %—a) + T, ((x, ¥, 2)) € A(n/3),

which implies that N ((x, ¥, 2)) 2 2. Therefore x = y = z =0

(3)
(mod.3). But then tz(d) (resp. t4(a)) cannot belong to A(m/2) (resp.

A(m/4)) if ordz(m) > 2 (resp. = 2). In the second case (4.6), we have

Na((x, Y, 2, W)) 2 2. Therefore
Ty(@) = 2(3a, -a, x, 2) € A(m/3).

Hence Proposition 2.5 implies that x = -3a and z = v'a. Thus
¢ = (a, -3a, 2a)+(m+va, v'a, E+2§).

2 2

But this cannot belong to Bm, which proves the lemma. O

Corollarly 4.6. Suppose ordz(m) Z 1 and m > 84. Let o be an element

of x;“dec such that N (x) = 2. Then
m
¢ = (a, >+a, X, ¥, 2, W)

2

for some a € (Z/ml)>.
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Proof. The assertion follws from Lemm 4.4 and Lemma 4.5. O

Lemma 4.7. Suppose ord, (m)22 and suppose m > 204. Let o

m indec
2.2, a, b, ¢) € X!
-2, -2, 4) or (Iu1, %ﬂ+1,

Proof. If ord,(m) > 2,

2

Ta 2

We may assume that ged(m,a)

(mod.2). Then o'

Nl(a') 2 4, where

(1, B4,

*
m

m
2

Tz(a

= m/2.

5-2))

)

and suppose N

-2).

then

= (1, m/2-1, m' /2, a', b',

Since ord

1

ged(m,b) = 2,

2

2(1, -1 Y 4.

hence a = b

(¢) = 2. Then (a, b,

c)

c =

¢') € X

0

(m*') 2 2, Proposition 4.3

and

implies that ' is an element of x;?c We may assume that either a’
-1 or ¢' =m/2 (mod.m'). The first cacs implies that a = -2 and a =
991 * (m/2, m/2-2, b, .¢) (mod. D), hence (m/2, m/2-2, b, c) € Bi \
D2. Then Theorem 2.7 shows that (b, ¢) = (-2, 4) or (m/4+l, 3m/4+1),
which implies the lemma. The second case implies that ¢ = m/2 and o
0, 1 * (2, 0/2-2, a, b) (mod.D), hence (2, m/2-2, b, ¢) € BA\DZ.

But this is impossible by Theorem 2.7. Thus the assertion of the

lemma holds when ord, (m) > 2.

CIf ordz(m) =

T4 2

Therefore either N

2,

(1, 3,q,

2

2
the

2

or N

n

4

of (a,

D _2y) = 2¢4, -2,

b, ¢©)
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(0, 1, (1, 0), (1, 1) or (2, 0), then using Cor.3.4 and Lemma 3.5 we
can verify that t4(a) cannot belongs to A(m/4). Let us consider the

remaining cases: (N N, = (0, 2), (0, 3) or (2, 1). First, if N, =

2' T4 2
0 and N4 > 2, thenma=b=c¢c=0 (mod. 4), hence we obtain
(4.7) T4(a) = 2(4, -2, -2, a, b, c) € Bm/4'

If we put 8 = (4, -2, -2, a, b, ¢) € R(m/4), then NI(B) > 5 and

(4.7) implies that 8 €. X Since m/4 satisfies the condition of

m/4 °
Lemma 4.2, we see that B8 € Dm/4’ that is, (a, b, ¢)

(2, 2, -4)

(mod.m/4). Thus (a, b, ¢) = (%+2, §+2, -4), which shows that a is

decomposable. Next let us consider the case N2 = 2, N4 = 1. Say

ged(m,a) = ged(m,b) = 2 and ged(m,ec) = 4. Then

(4.8) r4(a) = 2{¢(2, -1)(2, a, b)+(=2, c)} € A(m/4).

[f (2, a, b) € A(m/4), then (-2, c) € A(m/4). This implies that (a,

b, ¢) = (%42, %ﬂ+2, %—2). But this is impossible since a + b + ¢ = 0,
Thus (2, a, b) € A(m/4). Moreover, if m/4 # 32-52 and (2, a, b) is

reduced, Lemma 3.5 implies that (a, b, c¢) satisfies one of the

followings:

2, a, B ¥ (x, 2x, 4x), -2, ¢ ¥ (x, -8x),
(2, a, b) = (x, 3-2x, %ﬂ-zx), (-2, ¢) = (x, -4%),
2, a, ) Y (-gx, -g%°x, -g9x), (-2, &) Y (x, -2x).
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But in all cases we have a + b + ¢ # 0, which is a contradiction. For

m = 4-32°52

we can directly obtain the same result. Therefore we may
assume that (2, a, b) is not reduced, say (2, a) € A(m/4). Then (2,
-1)(b) + (-2, c) € A(m/4) by (4.8). It follows that (a, b, ¢c) = (-2,
-2, 4) or (%+1, %ﬂ+1, -2). This completes the proof. O

Lemma 4.8. Suppose ordz(m) > 2 and m > 204. Let ¢ = (1, a, -a-1) +

(g+1, b, ¢c) € Xm and Nl(a) = 2. Thep o 13 decoaposable.

Proof. There exists an odd divisor d of m such that Nd(a) = 2, say .

ged(m,a) = ged(m,b) = d. Then td((a, b)) € A(m/d) since T .((1,

)
m/2+1)) € A(m/8) for any odd divisor &§. When m/d # 20, 24,
considering t3d if necessary, Proposition 2.3 implies that b = -a or
m/2 + a. If b = -a, then o is decomposable. We show that b cannot

equal m/2 + a. Suppose b = m/2 + a, then o = (1, m/2+1)(1, a, -a-1).

1f ord,(m) > 2, then T,(&¢) = 2(1, a', -a-1) with a' = a/2. But this

2 2
cannot belong to Bﬁ/z. If ordz(m) = 2, then we may assume that a +1 =

0 (mod.4) and
T4(a) = 2{(2, -1)(1, a, -a-1) + ((a+l1)/2)},
which cannot belong to Bm/4. This show that b # m/2 + a. Next let us

consider the case where m/d = 20 or 24. The assumption on m then

implies that d > 3. Hence both a and b do not affect ta(a) so long as

]

we suppose & 2, 3, 4 or 6. Then, considering ta(a) for such é6's and

using Cor.3.4, we can see that o cannot belong to Bm. a
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Combining Proposition 4.3, Corollarly 4.6 and Lemma 4.8 together

we obtain the following

Proposition 4.3. Suppose ord,(m) # 1 and m > 204. Letl o € x;"dec and

2
suppose Nl(a) > 0. Then a¢ i3 one of the following alements:

(1) (a, a, -2a)+(-g'—+a. %a, -2a),

(2) (a, %a, l;-za)u-za, -2a, 4a),
m m m Jdm

(3) (a, 3+a, 3-2a)+(7+a, ;—+a, -2a),

where a is an element of (Z/mL)*.
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§5. Proof of Theorem 8.3 (the second case).
Throughout this section we assume ordz(m) = 1. Our aim in this

section is to prove Proposition 5.2.

Lemma 5.1. Suppose ord

. indec
(a3, a4, a5) € Xm

(m) =1 and m > 102. Let a = (ao, a a,) +

2 1’
and suppose gcd(m.ai) =1 fori =0,1, 3 and 4.

2

Then (a a4) (mod.m/2) ecannot belong to A(m/2).

O, al' aa’

Proof. If (ao, a;, ag, a4) (mod.m/2) is 5-q.s., then ords(m) = 1 and

ai(mod.m/IO) € aOU(m/IO) for i =1, 3 and 4. Therefore 32 (fesp. a5)

= -2a, or —(v+1)30 (resp. —2a3 or -(v+1)a3) (mod.m/10). Then

0
[(5,—1)(2,—1,—-1)(%) if a;=a,, a,=a, (mod.m/10),

T, o@) = 1cs.-1){3(2,—1)»«(—1)}@;0) if a =a,, a,zva; (mod.m/10),

4(5,-1)(2,-1)(&0) if alsvao, a45va3 (mod.m/10).

In the first case we have T, . (ax) = (5,-1)(2.-1,-1)(&0) € B which

10 m/10°
is however impossible. The second case implies that 5 € U(m/10) since

X(3¢(2,-1)+(-1)) = 0 for all x € PC (m/10). But this is impossible. In
the third case we have (5,-1)(2,-1) € A(m/10), which i3 also

impossible by Corollarly 3.4 since (5,-1) € A(m/10). Thus (ao, al,

a ) is not 5-q.s..

3* 34

Next suppose (a al, a2, a3) belongs to A(m/2,2)®A(m/2,2), then

OI
there are two cases:

_46_



(5.1) (ao, aI)O(a3, §4)

(5.2) (ao, a3)9(a1, a4).

We show that the both cases are impossible. In the first case we have
orda(m) = 1 and a1 = -vag,, a4 = -vag, hence ¢ = (1, -v, v~1)(a0, 33).
Therefore

tﬁ(a) = {2(3, -1)(2, -1)+(-2)}(a ) € A(m/6),

o’ 23

which implies that (aO, 83) € A(m/6) since X(2(3,-1)(2,-1)+(-2)) # 0

for any x € PC (m/6). Thus the first case (5.1) cannot occur. I[f

(5.2) hols, we have 33 = -vao, a4 = -va,, hence a = (aO. a,
az)(l,-v). Therefore
J(S,—l){2(2.—1)(&0,al)+(a2)} if ged(m,a,) = 2,
ts(a) = 12{(3,-1)(2,-1)(ao.a1)+(a2)} if gcd(m.az) = 6,
2(2,-1)(3,—1)(&0,31) if gcd(m,az) # 2,6.

.

It can be easily shown that the first and second cases are impossible.
From the third case we obtain a; = -ay or va,. Since o is
indecomposable, a, = -a,. On the other hand, if a, 0’ then a, =
(v+1)ao, whiph implies that gcd(m,az) = 6. But this is a

= va
contradiction. Therefore (5.2) cannot hold. O

Proposition 5.2. Suppose ordz(m) = 1landm> 210. Ifa € x;"dec and

Nl(m) > 0, then o0 i3 one of the following alements:
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(1) (a, a, -2a)+(g+a, §+a, -2a),
(2) (a, §+a, g-za)+(4a. -2a, -2a),

where a is an element of (ZImZ)x.

Proof. Clearly Nl(a) < 4. Let al (resp. az) be the primitive part

(resp. 2-th part) of «.

Cagse 1: N,(x) = 4. First suppose that N

1 () = 2. then

2

€ A(m/2).

tz(a) (2, -Da, + o

1 2

If o) ¢ A(m/2), Lemma 3.5 (i) implies that a is one of the following

elements:

(a, %+2a, %+4a, %+8a, g+a, -16a),

(a, §+2a, %—a, .%ﬂ-a, g+a, -8a),

(a, F-2a, 28-2a, D+da, J+a, -sa),

(%*a; %E-a, %+2&, %+4a, g+a, -8a),

(%—a, %m-a, %—Za, %m~2a, g+a, -4a),
3-28a, J-28a%, J-2ga°, J-2ga"%, Jva, -1a),
(-ga, -gza. —gaa. %+Za, %+a, -4a).

But . it is not hard to see that none of these belongs to Xm. Therefore

al € A(m/2) if Nz(a) = 2. If m/2 = 225, we can see that o ¢ Xm. In
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fact, when m/2 = 225 and a € xm, then Ts(a) € x150 5

But, looking at the table in §8 closely, we can see that this is

and T_.(x) € x90'
impossible. Since oy € A(m/2), it follows from [All Prop.6.5 that it
is b-g.s8. or belongs to A(m,2)®A(m,2). If it is 5~q.s8., then we can

easily see that T, . (ax) € A(m/10). If x, € A(m,2)®A(m,2), then ord,{(m)

10 ' 1 3
= 1 and al = (1, -v)(a, b). Here note that this implies, in
particular, that any element @ of x;ndec cannot satisfy the condition

N, (@) =1, N, () 2 if 3 | m. Now since a - va = 0 (mod.3), this

implies that o« = (1, -v)(a, b, ¢) with a + b + ¢ = 0. Therefore

Ta(a).= (3, -1)(a, b, ¢) € Xm/s,

which is impossible by the above remark. Therefore Nz(a) cannot be 2. .

Corollarly 3.4 (ii) shows that N,(x) # 1. [f N,(x) = 0, then o, €

2 2 1
A(m/2) by Corollarly 3.4 (i) since 24 ¢ U(m/2). By a similar argument

as above one can see that this case is also impossible.

(x) < 2. If N

Case 2: N,(a) = 3. In this case, clearly N (x¢x) = 2, then

1 2 2
Lemma 3.5 (ii) implies that @ is one of the following elements:

m m m m

(a, 5+a, E+2a, §+4a, 8a, 2?,
m 5m m

(a, 3 2a, 3 2a, §+a, 4a, 6a),

m 2m m m _

(3 a, 5—-&, §+2a, §+a, 4a, 3a).

But none of these belongs to xm. By Corollariy 3.4 (ii), Nz(a) = 1.

If Nz(a) = (0, then al € A(m/2) by Corollarly 3.4 (i), hence orda(m) >
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1 and @ = (a, Bva, %ﬂm. X, y, 2). But it is easy to see that @ € X_.

Case 3: Ny(a) = 2. In this case, if N,(a) = 4, Lemma 3.6 (i) implies
that @ is one of the elements listed in the statements. Moreover it
is easy to see that Nz(a) # 1, 2 and 3. Thus Ng(a) = 0 and oy €
A(m/2) by Corollarly 3.4 (i), hence orda(m)'= 1 and o is one of the

following two elements:

(5.3 (r, -v, v-1)(a)+(b, ¢, dJ,

(5.4) (a, b, ¢c)+(-va, d, e).

Then by a similar argument as in the proof of Lemma 4.4 we can show
that ¢ is decomposable.

Case 4: Nl(a) = 1. Far simﬁlicity we assume that o = (1, a, b, ¢, d,
e). If Nz(a) = 4, say ged(m,a) = gcd(m,b) = ged(m,c) = ged(m,d) = 2,

then

tz(a) = (2, -1, a, b, ¢, d) € A(m/2).

There are three cases:

(5.5) (2, a, b, c)e(-1, 4,
(5.6 (2, a, b)®(-1, c, d),
(5.7) (2, a)e(-1, b, ¢, d).

We are going to show that they are all impossible. In case (5.5), we

have d = %+1 or §+v, hence e = %—2 or %—v-l. Since ged(m,e) > 1, e =
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g-v-l = m/2 (mod.m/3). Therefore (2, a, b, c¢) is 5-9.s., hence we may

assume-(b, ¢) € A(m/2). But this is impossible since it would imply

that ged(m,a) > 1. In case (5.6), we have orda(m) >1 and ¢ = (1,

m 2m m 5m
3*2, 32, 571, g1

, —3). But this cannot belong to Xm. From (5.7)
we obtain a = -2 or -2v. If (-1, b, ¢, d) is 5-q.s., then rlo(a) g
4{(5, -1)(-1)+(2, -1)(e)}, which cannot belong to A(m/10). Thus we
may assume (-1, b, ¢, d) € A(m/2,2)®A(m/2,2). If (-1, b)®(c, d), then
b U 1 and d y -c. Since a + b + ¢ = 0, we have (a, b, ¢} = (-2, 1, 1)
or (-2v, v, v) (mod.m/2). In both cases, d = % -v and e = %+v—1.

m m m

m m m
E-v, E+v-1. -2, §+1, §+1) or (1, E_V’ §+v-1, -2v,

§+v, §+v). both of which cannot belong to B_. If (-1, d)®(b, c), then

Therefore ¢ = (1,

‘ged(m,a) > 1, hence this case cannot occur.
If Nz(a) = 3, then

tz(a) = (2, -1, a, b, ).

There are two cases: (2, a)®(-1, b, c) or (2, a, b)®&(-1, c¢). But in

both cases we get a cotradiction to the assumption N,(a) = 1, N,{(a) =

1 2
3.
If Nz(a) = 2, then
tg(d) = (2, -1, a, b) € A(m/2),
hence (2, a)®(-1, b). This implies that a = -2 or -2v and b = %+1 or
m

§+v. It is not difficult to see that o is of the following form:
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u D oy-1)+(a, *, *).

Considering T 1. In

6(a). one can see that a = -2, N3 = 0 and N6

this case we have
tﬁ(d) = 2(3, -1){(-1, xX) € A(m/6),

hence x =1 (mod.m/6). Therefore

T-v-1)+(-2, Eg+1, -Eg+1).

m
=+V, 6

(!=(1.2

But this implies that Nz(a) = 3, which is a contradiction. Since

N;(a@) # 1, this completes the proof. O
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§6. Proof of Theorem 0.3 (the third case).

In this section we treat the case where Nl(a) = 0, and prove
Proposition 6.4. After that we complete the proof of Theorem 0.3 and
Theorem 0.4. Define X&' to be the set of X €Xm with GcD(x)=1.

First let us note the following fact: For any a € Bm? if d =
D(ax>, Nd(a) =1, érdz(m/d) = 1 and m/d # 30, then NZd(a) 2 1. This is

an easy consequence of Proposition 2.3.

Lemma 6.1. Suppose m > 42. Let a € x;’and d = D(a). Then, if d > 1

and N(d)ca) = 4, o¢ L8 decomrposable.

Proof. We prove this by induction on d. If 4 > m/2, the assertion is

clear. Suppose that every 8 € Xg)with D(B) > d and N (8) = 4 is

(D(B))
decomposable. Put o = (ao. al, a2)+(a3, a4. as). Then we may assume

that a, = a, = a, ) = ged(d,a;) =

0 1 4 5
1 since 33 + a4 + 85 = 0 and a.1 ¥ 0 (mod.d) for i = 4 and 5. If we

a3 = 0 (mod.d). Note that gecd(d,a

put di = gcd(m.ai), we may assume that m)‘d4 # 12, 30. Then ord (m/d4)

2

=1 and d = 2 since Nd () = 1., This implies, in particular, that
4

both d4 and d5 are odd and that ordz(m) = 1. Therefore Nz(a) = 1.

Case 1: Nz(a) = 4. In this case we have

tz(a) = (ao, a;, a,, 33) € A{m/2).

It is easy to see that tz(a) is not 5~q.s.. Therefore we may assume

(a

0’ aI)EA(mlzd, which implies that a, = -a, or -va

1 o Since m/2 is odd.

0
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But, if a, = -vag, then a, = (v-l)a0 = 0 (mod.3), which is a
contradiction. Thus a; = -a,, that is, o is decomposable.

Case 2: Nz(a) = 3. In this case we may assume

) € Alm/2).

(6.1) rz(a) (ao, al. az) or (ao, él’ a3

By Proposition 2.4 the first case of (6.1) is impossible, and in the

second case we have

x = (a, 2+a, -g-za)+(-§+a. a,, a.),

3 4’ 75

where a = a0 or al. But then, considering tﬁ(a), one can easily see

that Na(u) = 1, say d4 = 3. Therefore 3 does not divide ds, hence

T (@) = er (a

) £ 0 (mod.A(m/2d.)),
5 5 5

2d S

which is a contradiction.

Case 3: Nz(a) 2. In this case, we have the following decomposition:

9 al € A(m,2) and a2 € R(m,4).

Proposition 2.3 implies that al = (a, —-a) or (a, -va) since m/2 is

odd. The first case shows that ¢ is decomposable. In the second case,

we define a new element ax' = al' + a2 with al’ = (v'a, 3a). Then a' €

- + - 2 1 j— t
Xm since al + ( 1)(!1 = aS,a € Bm. Moreover N(z)(a ) = 4 and D(x') >
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2. Therefore by the inductive hypothesis &' is decomposable. This
shows that o itself is decomposable as well. Thus the proof is

complete. O

_ (1)
Lemma 6.2. Suppose m > 132. If a = (a,, a;, a,)+(ay, a,, ag) € X
and 4 = D(a) > 1, then N(d)(a) Zz 3.
Proof. Let “1 = (ao, al. az) and “2 = (a3, a4, as). Suppose N(d)(a) =
3, then we may assume ao = al = a2 = 0 (mod.d). First note that d = 2.

Indeed, if d = 2, then N(z)(a) = 4, which is a contradiction. Thus we

may assume 4 > 2. Let

d' = min{( d3, d4, d5 }.
Then a3 = a4 = as = 0 (mod.d'), that is, N(d,)(az) = 3. To see this,
suppose N(d,)(a’) < 3. Then N(di)(az) =1 for i = 3, 4 and 5.

Therefore m/di = 30 for i = 3, 4 and 5, which is impossible. We are
going to prove the assertion by induction ond + d'. I[fd + d' 2 m,,.
the assertion is clear. We assume that the assertion holds for evry 8

¢

= 81 + 82 € X;)with D(Bl) + D(Bz) >d + d'. Note that m/d > 12 since

we are assuming m > 132.

Case 1: Nd(a) = 3. In this case, considering T4 OT Tyys We have
- m 2m
(ao, al, az) = (ao, 3+a0, 3 +a0).
by Proposition 2.4. (If m/d = 21 or 28, consider t3d or t4d
respectively.) But then d = m/3 since a0+ a1 + 32 = 3a0 = 0. This
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implies that a3 = a4 = a5 = g, which is impossible.

Case 2: Nd(a) = 2, In this case Proposition 2.3 shows that

m m

(a,Tﬂ.?QM

o, = (a, -va, (v-1)a)

m - m
(a, §+va, > (v+l)a)

(If m/d = 20, consider t4d.) The third case is impossible sinse

la

3d(rx) ¢ A(m/3d). In the first case, replacing a, by Bl = (2a, %,

1
2a) and @ by 8 = 81 +a,, we have B € Bm. D(Bl) + D(x

IQP

2) >d + 4

and N(B)(a;) = 3. Then inductive hypothesis implies that this case is
also impossible. The second case is similarly impossible. (Replace oy
by (3a, v'a, (v-1)a).)

Case 3: Nd(a) = 1. If m/d = 30, then d > 4 since we are assuming m >
132. Therefore, if Nd,(a) > 1, the above proof goes for d'. Thus we
may assume Nd,(a) = 1. Then ordz(m/d) = ordz(m/d') = 1. This implies

in particular that both d and d' are odd, hence N N £1. Since

2d' "2d°
m/d # m/d', we may assume m/d # 30. Then NZd(a) = 1, and we have

o) = =20 o 1y(al)y+(ar

2d = (/) 0 12} € Alm/2d),

which is however impossible by Proposition 2.4. Thus the proof is

complete. O

Lemma 6.3. Suppose m > 165. Let o € Xﬁjand suppose tﬁat d = D(xx) > 1

and N(d)(a) = 2, then a i8 decomposabla.
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Proof. We prove this by induction on d. If d 2 m/2, the assertion is

clear. We assume that the Iemma holds for every 8 € xg)with

N(D(B))(B) = 2 and D(B) > d. First observe that d3 < m, and so m/d >

m2/3 > 30 since we are assuming m > 165. Let ox = (ao, al, 32)+(33,

a,, as). The assumption on & implies that N a,)) =

(@) (8p> 81, 3y
N(d)((aa. a4, a5)) = 1, say a, = aq = 0 (mod.d). We may assume that

ged(a,,m) = d. Moreover gcd(ai,d) l1 for i = 1,2,4 and 5. If N,(x) =

d
2d. But this is impossible by

0'
1, then ordz(m/d)=1 and gcd(aa,m)

Proposition 2.4. Thus Nd(a) = 2, that is, ged(a
Ly - m m
follows from Proposition 2.3 that a3 = 80' E+a0, o °r 2+va0. In

the first case ¢ is decomposable. In the forth case, considering t3d,

3.m) = d. Then it

=va

we can easily see that 4 = 2. But then rhd(a) € A(m/hd) for h = 4 if
ordz(m/d) = 2 and h = 2 otherwise. Thus the fourth case cannot occur.

. m '
In the second case, If w replace (ag, aq) by (2a,, 3) (resp. (v'a,,

3a0)) (denotim the new element by a'), the induction proceeds.

since d' := D(m') > d and N(d,)(a') = 2. Therefore o' is

decomposable, which shows that o itself is decomposable as well. This

completes the proof. O

Proposition 6.4. Suppose m > 165. Lat a € xg’and d = D(x)y > 1. Then o

i3 decomposablea.

Proof. Let a = (ao, cee s ag). I[f N (¢) > 1, then the above three

(d)
lemmas shows that o is decomposable. Hence it suffices to show that

N(d)(a) # 1. Suppose on the contrary that N () = 1, say ged(m,a,)

(d) 0

= d. This implies that ordz(m/d) = 1 since rd(a) € A(m/d) and m/d >
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30 (see the biginning of the proof of Lemma 6.2). But then mq(a) ¢ A(m/2d) since
ged(d,a;) = 1 and ged(m,a;) > 2 for 1 < ¢ < 5, which is a contradicton. This

completes the proof. (O

Proof of Theorem 0.3. By Proposition 4.9, Proposition 5.2 and Proposition 6.5, the
assertion of the theorem is true for m > 210. For m < 210 we can directly check the

theorem. The proof is now complete. [J
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§7. Proofs of other theorems.

In this section we give the proofs of Theorem 0.1, Theorem 0.2 and Theorem 0.4 stated

in the introduction.

Proof of Theorem 0.1. Let a, 3 be two elements of A, such that GCD(e, 8) = 1.
Then as is shown in section 1, Af,) is isogenous to Arg if and only if a* (-t 8) € BE,
for some ¢t € (Z/mZ)*. Since we are interested in the equivalence classes of a and j3,
we may assume without loss of generality that o x (—3) € B%,. By Theorem 0.3 there
are nine possible cases for a * (—A). In the case of (1) of Theorem 0.3, we have a ~ 4.
In the cases from (2) to (7), we see that both « and 3 are equal to elements listed in (3)
of Theorem 0.1. In the case of (8) and (9) of Theorem 0.3, both « and S are equal to

elements in (1) and (2) of Theorem 0.1, respectively. [

Proof of Theorem 0.2.. Let « be an element of A}, with GCD(a) = 1. Suppose that
W, # {1}. We want to show that « is either of Type II or of Type III. Once this has bceﬁ :
proved the calculation of W, is easy and we leave it to the reader. If w # 1 is an element
of Wa, then a * (—w - a) € B%,. One can easily see that among nine cases of Theorem
0.3 only the elements of (1), (3) and (7) can be of the form a * (—w - a),w # 1. In the

case of (1), we have w - @ ~ . Therefore

o~ (a,wa,—(1+w)a), w? =1 w#<£l or

a ~ (a,wa,w?a), 1+w+w?=0

for some a € (Z/mZ)*, hence « is of Type II-1, Type -3 or Type [I. In the case of (3),

we have

a~ (a,a,-2a)
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for some a € (Z/mZ)* and w = F —1,ordym > 2, i.e,, « is of Type II-2. In the case
of (7) we have

a~(a +a,-—-—2a) ordam > 3

)
for some a € (Z/mZ)* and w = 2 + 1,2 — 1 or & — 1, i.e., a is of Type II-3. The

proof is now complete. O

Proof of Theorem 0.4. Let H be a subset of (Z/mZ)* such that §H = ¢(m)/2 and
HU(-H) = (Z/mZ)* (ic., a halfsystem of (Z/mZ)*). If H and H' are two halfsystems
such that H =t - H' for some t € (Z/mZ)>, we say that H are equivalent to H'. We

define the numbers p;(m) and p(H) by

p1(m) = H{(e, ) € AL = Ay, | @~ BY = (T + A) N DY,

o) =t () € @ cmynm | 7 2 F SORGA = 1),

Then by (0.1) the Picard number of X}, x X, is calculated as follows:
(7.1) p=p(Xhx XL)=2+p(m)+> > p(H),
) djm HeM(d)

where H(d) denotes (Z/dZ)*-orbits of the halfsystems of (Z/dZ)*. It is easy to see that

(1.2) p1(m) = 6m? - 2Tm + 21 + { 3 gl?; )+ { (8) E?Tv)n) .

For m ¢ £, the representatives of all equivalence classes of halfsystems H with p(H) > 0
are listed in Table I of the last section. We denote by Hz(m) (resp.H3(m)) the halfsystems
in Table I-1 and I-2 (resp. Table I-3). For any divisor d of m, H2(d) and H3(d) are defined
similarly. We put

pm)=S" S p#H), pm)=S S o(H).

dim HEH3(d) d|lm HeHs(d)
dge dge
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Then by (7.1) we have

(7.3) p =2+ pi(m) + pa(m) + ps(m) + Y _ A'(d),
1
where A'(d) = 3" geyq) P(H). We define two functions A, and Az on € by
0 (21 d) . '
(3td)
D@ ={ ) g M@= { 1080(d) (3]) -
2070(d) (8ld) T2¢(d)  (9]d)

Then from Table I-1 and Table I-2 we can caluculate p;(m) as follows:
(7.4)

pa(m)+ > Ag(d)
ate
0 (24 m)
) 378 a#(d) =189m (2||m)
] 378 gaw(d) + 225 Ty o(d) =207Tm (4[m)

378 Ypya w(d) + 225 T4 0(d) + 207 Ty 0(d) = 207Tm (8|m)
Similarly from Table I-3 we obtain '

(1.5) p3(m) + ) As(d)
1t
0 , (34 m)
= { 108 334 w(d) =T72m (3|m) .
1083 3ya #(d) + 723 g4 p(d) =T2m (9|m)

If we define a function A on £ by
A(d) = A'(d) — Az(d) — As(d),

then from (7.3) we have

p=2+p(m)+ {Pz(m) + E :Aa(d)} + {PS(m) + E :As(d)} + E A(d).
d|m d|m d|lm
de€ dee deE

Substituting (7.2), (7.4) and (7.5) into this formula, we obtain the desired formula for

p(X; x X1) of Theorem 0.4. O
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£8. Some remarks.
1. The field of definition. The defining field of the isogeny (1.1) in Theorem 1.6 was

studied by Schmidt ([Sch]) and Koblitz ([Ko]). For a = (a,b,c) € AL, let

= (e ((2))7 ().

My = Ko(T(2)/T(t - @) ; t € Wa),

where Ky = Q((m(a))- Then the isogeny (1.1) is defined over M, ([Sch] V, Korollar
2.3). Note that I'(a)/T(t - a) € K2° for any ¢t € W, since a * (—¢ - ) is an element
of B2, (sce.[D], Theorem 7.18 or [K-O]). Using a result of Koblitz and Rhorlich [K-R]
(Theorem 1.8 in this paper), Schmidt showed that M, = K, when GCD(m,6) = 1 ([Sch]
V, Korollar 2.4). Using Theorem 0.2 we can get M, explicitly for any a € A}, ,m ¢ &
with GCD(a) = 1. | |

Theorem 8.1. Let K = Q({m) be the m-th cyclotomic field. Suppose that m ¢ £ and
GCD(a) = 1. Then M, is given as follows.

(i) If @ i3 neither of Type II-2 nor of Type II-3, then M, = K.

(i) If « is of Type II-2, then M, = K(2*/™),

(iii) If  is of Type II-3, then M, = K(2(m=4/2m),

Proof. The first statement (i) is clear since ¢ - a is equal up to permutation to « in that

case. To show that the other statements, we recall the following formulas:

n—1 . '
(8.1) 1;[0 I(z + %) = (2r) T n}="*I(nz),
(8.2) (z)['(1—-2z)=

sinmz’
where z € R and n € N. From these formulas we have

7r2

sin((2)r)’

(8.3) T(og,4) =21~
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Moreover for any a = (a, b,c) € A}, we have

sin((3Ym)sin({LYm)sin( (¥\r

We want to show the following formula:

8.5) F(a) N { 21-—2(%})60“(%)%) if « =(a, a,m -—2(1), ,

m T 2t if a=(a,%+a,F —2a),

where t = 2 — 1 in the first case and ¢ = 2 — 1 or 22 — 1 in the second case. (Note
that T'(t - «) = ['(a) for any other t € W,.) The statements (ii) and (iii) of the theorem
immediately follow from (8.5). We now consider the first case of (8.5). In this case we

havc-—t:%-}—land

' a*((%-{-l)'a):zaza_(%’%)

in R,,, and so by (8.3) and (8.4) we have

(@) _ D(oga)?  sin((PL=2)m)sin((22)r)
[(t-a) T(3) w3

Next we consider the second case of (8.5). In this case we have
v m m
a *x (--t . a) = 02,0 + 02,2 +a — (-5-, —2—)

in R,,, and so similarly as above we have

['(a) _ I(o2,6)T (02,2 +a) . sin((ﬂ%_—“)ﬂ-)sin((32{.3.:1)#)3,'”((%)#)
I'(ta) T(1yz 3
= 2&—2(%)

The proof is now complete. O
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2. Ordinary reduction. The abelian variety Ag is defined over Q and has good reduc-
tion at p if GCD(p,m) = 1. Moreover it has ordinary reduction at p if and only if p
(mod m(S)) € Wy, € S. Thus we can determine the set of ordinary 'pn'rnes for As.

The following theorem is proved by Coleman ({Co]) when m is prime to 6.

Theorem 8.2. Suppose m ¢ £ and let a be an element of A}, with GCD(a) = 1.

(1) If @ is of Type I, then Ag has ordinary reduction at p if and only if p = 1
(mod m).

(2) If « is of Type II-1, then Ag has ordinary reduction at p if and only ifp=1
orw (mod m).

(3) If o is of Type II-2, then Ag has ordinary reduction at p if and only if p =1
or & ~1 (mod m).

(4) If a is of Type II-3, then Ag has ordinary reduction at p if and only if p =
LF+lorx% -1 (modm).

(5) If a is of Type III, then Ag has ordinary reduction at p if and only if p = 1w

or w? (mod m).

3. Hodge conjecture for X3 . In a similar way as in the proof of Theorem 0.3, we can

determine the subset of elements a € B% with GCD(a) = 1 for a sufficiently large m.

Theorem 8.3. Supposem > 2%-3%2.5.7.11-13 and let o € BE, GCD(a) =1. Then

a is equal (up to permutation) to one of the following elements:

(1) (aa b: c, d,:L', - LL'),
(2) (aa % + a, - 2a,a:,y, Z),
3) (a, -"23 ta, —2ap, g +5, —2b),
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where both (a,b,c,d) in (1) and (z,y,2,%) in (2) are elements of ‘B2, and where

e = £1 in (13).

Note that every clement in the above theorem is genci'ated by standard elements and
soeme elements in B2,. It is shown in [Sh3], [A-S] and [A2] that the one-dimensional
subspace V(a) of H4(X3,, C) is spanned by the cohomology classes of some algebraic
cycles for any element « generated by standard elements. Since the Hodge conjecture

holds true for any surface, we obtain the following

Corollarry 8.4. If the Hodge conjecture for X} is true for every proper divisor d of

m such that d < 23-3%2.5-7-11-13, then the Hodge conjecture for X2, is also true.
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§9. Tables.

In Table I-1,2 and 3, we list up halfsystems H of (Z/mZ)* (m & £) and a € AL for
‘which p(H) > 0 and H, = H. (For the definition of p(H), see section 7.) In the tables
e, and ey denote ordy(m) and ordz(m), respectively. In Table I-1 and 2 (resp. Table I-3)
we treat the case where ez > 0 (resp. ez > 0). (Note that p(H) =01if e = e3 =0 by
Theorem 1.8.) If e3 = 1, ¢ denotes 1 or -1 satisfying m/3 = ¢ (mod 3). Moreover we

adopt the following notation.

N(m)={te N|0<t<m, ged(t,m) =1},

N(m)® = {t € N(m) | t = ¢ (mod 3)}.

We identify (Z/mZ)* with N(m) in the obvious manner. Then the halfsystems in the

tables below are defined as follows:

H(2) = N(m)n [0, T,

m 3Im

H(4) = N(m)Nn (0, T10 (5, =),

m 2m

H(2,3) = Nem)n (0, 1013, 3D,

m m 2m 3m

H(3,4) = Nm)n (0, Tl (5, T3, 20,
H(4,6) = Nom)n (0, T10 15, Z10 15, 5,
H(6)* = (N(m) N (0, Z))
U NGy 0 (15 101 Z ) 0 (Nem) e 0 (2, 2,

where, for any real number a, b, [a, b] denotes the closed interval {z € R | a < z < b}.
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Table I-1

a H)| W p(H)/p(m)

e,=1 (L 7-1,%) H(2) | {1} 234

(1,1, -2) H(2) | {1, 7 -1} 45

(21 %1"_2) %’) H(4) {ls %l—i'l} 108

(1,1, -2) H(2) |{1, -1} 45

€23 (L, 32, 3+1)
(2, 2, —4) B(4) {1, 21,541,321} 90
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Table I-2

p(H)/¢(m)

(1, 3,-4)

(3i %“& %‘ "'1)

H(3,4)

{1}

72

(1! %1'-3’ %4'2)
(4) %-3’ %—1)

H(4,6)

{1}

72

e222

(1, 3, 4)
(3: %"& %"1)

H(3,4)

{1}

72

TableI-3 (m/3 =€ (mod.3))

p(H)/p(m)

H(2,3)

{1}

72

H(6)®

{4,

gm

£3+1} 36

3322

H(2,3)

{1}

72
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In the following table we give the values of A(m) for m € & .

Table I
m A(m) m A(m) m A(m)
2 318 20 6336 48 6918
3 216 21 2592 54 2592
4 —450 2 120 60 65760
6  —864 24 11136 66 8640
8§ 576 % 864 72 4320
9 —216 28 3024 78 12960
10 576 30 20664 84 20304
12 1008 3% 7776 0 7776
14 432 39 864 120 23040
15 1728 40 6336 156 6912
18 4824 42 56160 180 6912
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