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1. Basic Constructions for Pseudodifferential Boundary Value Problems

Operator-Valued Symbols and Wedge Sobolev Spaces

1.1 Operator-valued symbols. A strongly continuous group action on a Banach space E is a family
k= {kx: A€ Ry} C L(E) such that, for e € E, the mapping A — kye is continuous and xxk, = Kx,.
In particular, each k) is an isomorphism.

It will be useful to know that there are constants ¢ and M with

(1.1) lleallcemy < emax{A, A1},

This can be easily deduced from the corresponding well-known result on the growth of (additive)
strongly continuous semi-groups.

We let H?(R) be the usual Sobolev space on R, while H*(Ry) = {u|n, : « € H*(R)} and H§(R4)
is the set of all « € H*(R) whose support is contained in R, . Furthermore, H*¢(Ry) = {Fu:ue
H*(Ry)} and Hy'(Ry) = {(r)""u:u € Hi(R4)}. Finally, S(R}) = {ulgz : u € S(R9)}.

For all Sobolev spaces on R and R, we will use the group action

(1.2) [6xf] (r) = A f(Or).

This action extends to distributions by kau(p) = u(kx-10). On E = C' use the trivial group action

! Ky — id.

In the above definition, (r) = (1 + |r|?)!/? is the function used frequently for estimates in connection

with pseudodifferential operators. The definition extends {n) to 7 € RY. It is equivalent, but sometimes

" more convenient, to estimate in terms of a function [5], where [5] is strictly positive, and [n] = |5| for

large |77]. We then have Peetre’s inequality: For each s € R there is a constant C, with

7+ €° < Cafn)* ()",

Let E, F be Banach spaces with strongly continuous group actions &, &, let € R*, a € C®(Q x
R* L(E, F)), and p € R. We shall write

ac S“(Qqu;E:F)a

provided that, for every K CC  and all multi-indices «, 8, there is a constant C = C(K, «r, 8} with

(1.3) % ¢gy-1 DS DB aly, m)siyllc(m,ry < C (10

The space S¥(2, R?; E, F) is Fréchet topologized by the choice of the best constants C.

The space S#(Q, R9; C*, C!) coincides with the (I x k matrix-valued) elements of Hérmander’s class
SH (2, RI9).

Just like in the standard case one has asymptotic summation: Given a sequence {a;} with a; €
SHI(Q, R E,F) and pj = —o00, there is an a € SH(Q, R E, F), pp = max{u;} such that ¢ ~ 3 ay;
a is unique modulo $~°°(Q, R%; E, F). Note that S™%(Q,RY; E, F'} is independent of the choice of &
and K.

A symbol a € §#(Q1, RY; E, F) is said to be classical, if it has an asymptotic expansion a ~ Z;.";O a;
with a; € S#¥~3(Q, R?; E, F) satisfying the homogeneity relation

(1'4) aj(y) /\T]) = A“—jk.\ ai(yan) K1

for all A > 1,|n| > R for a suitable constant R. We write a € S%(Q,R%; E, F). For E=C* F=C!
we recover the standard notion.

There is an extension to projective and inductive limits: Let £, F' be Banach spaces with group
actions. If F{ «+ F5 « ... and E| < E; — ... are sequences of Banach spaces with the same group
action, and F = proj — lim Fy, E = ind — lim Ej,, then let

S*(Q,RGE,F) = proj—lim,S*(Q,R% E, Fy);
SY(Q,R%E,F) = proj-lim,S*(Q,RY; Ey, F);
S*(Q,RYGE,F) = proj—limg ;S*(Q,RY; Ey, F).
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As an integral part of a pseudodifferential calculus for boundary value problems on manifolds with edges we
introduce the algebra of Mellin operators. They represent the typical operators near the edge. In fact we show
how to associate an operator-valued Mellin symbol to an arbitrary edge-degencraie pseudodifferential boundary
value problem, the so-called ‘Mellin quantization’ procedure. Furthermore, we introduce a class of adequate
Sobolev spaces based on the Mellin transform on which these operators act continuously.

Introduction

The analysis of partial differential operators on manifolds with piecewise smooth geometry, in particular,
on manifolds with polyhedral singularities, is of central interest in models in mathematical physics,
engineering, and applied sciences.

An important aspect is the understanding of the solvability of differential equations in terms of a
Fredholm theory. It is very desirable, for example, to have an appropriate notion of ellipticity implying
the Fredholm property and the possibility of constructing parametrices to elliptic elements within a
specified calculus, for this allows a precise analysis of the solutions to clliptic equations.

We shall deal with these questions in the context of boundary value problems on a manifold with
edges by constructing an algebra of pseudodifferential operators adapted particularly to this situation.

The present paper is a first step in this direction. It focuses on the Mellin type operators, their
properties, and the (Mellin) Sobolev spaces they naturally act on. It follows the general strategy of
an iterative construction of operator algebras for situations of increasing complexity: Our local model
of a manifold with an edge is the wedge C x RY, where C is a manifold with boundary and conical
singularities. We can therefore rely on the analysis of boundary value problems on manifolds with
conical singularities given in {15], [16]. Technically, we regard the operators on the wedge as pseudo-
differential operators along the edge of the wedge, taking values in the algebra of boundary value
problems on the cone, and we employ the concept of operator-valued symbols on Banach spaces with
group actions as presented, e.g., in [20].

The operators we are considering in this article correspond to boundary value problems on a manifold
with edges localized to a neighborhood of the edge. They show a typical edge-degeneracy: Denoting
the variable in the direction of the cone by ¢ and the variables along the edge by y, derivatives &; or
8y will only appear with an additional factor ¢. This suggests the use of the Mellin transform and
associated Mellin Sobolev spaces.

There are two crucial constructions in this context. The first is the Mellin quantization procedure
which shows how to pass from an edge-degenerate boundary symbol to a Mellin symbol which induces
the same operator up to smoothing errors and vice versa. The second is the so-called kernel cut-off, an
analytical procedure that allows to switch to holomorphic Mellin symbols (up to regularizing symbols).
While the first step shows that the Mellin calculus is indeed the appropriate tool for this situation,
the second one is indispensable for a Fredholm theory within the calculus, for it enables us to work on
Sobolev spaces with different weights.

Historically, this paper has several roots. One is Kondrat’ev’s article [10], where he analyzed bound-
ary value problems on domains with conical points, another Agranovich&Vishik [1], who employed
parameter-dependent operators, furthermore Vishik&Eskin [23], who analyzed boundary value prob-
lems without the transmission property, and Boutet de Monvel [3], who constructed a pseudodifferential
calculus for boundary value problems. Primarily, however, there is the Mellin calculus for manifolds
with conical singularities in the boundaryless case, see, e.g., Schulze [20], as well as the corresponding
calculus for manifolds with edges in [7].
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1.7 Elementary properties of wedge Sobolev spaces.

(a) WH(R?, H*(Ry)) = H*(R{™).

(b) W*(RY, H§(Ry)) = H(RL™).

(c) W*(R?,C) = H*(RY), using the trivial group action ) = id.

Theorem 1.8. Let E,F be Banach spaces as in 1.1, s, € R, and a € S*(R, Ri x RY;E,F) or
a € S*(RY x R, R x R.; E, F). Then for every A € R!
opa(A) : Wi, (RY,E) — W ¥(R, F)

comp

is bounded. If & is independent of y and §, then we may omit the subscripts ‘comp’ and oc’.
The mapping op : symbol +—  operator is continuous in the corresponding topologies.
A proof may be found in [19, Section 3.2.1].

Boutet de Monvel’s Algebra

We start with a review of the relevant spaces and terminology. An central notion in Boutet de Monvel’s
calculus is the so-called transmission property. It is a condition on the symbols of the pseudodifferential
operators that ensures that the operators map functions which are smooth up to the boundary to
functions which are smooth up to the boundary.

Definition 1.9. (a) Let H* = {(e* f)": f € S(R1)}, Hy = {(c™f)": f € S(R-)}, where the hat *
. indicates the Fourier transform on R, and e* stands for extension by zero to the opposite half axis. H’
denotes the space of all polynomials. Then let

H=H"®oH; & H'
Write Hy,d € N, for the subspace of all functions f € H with f(p) = O((p)d_l).

(b) Let U = U’ x R,U’ € R*! open. A symbol p € S*(U,R9) has the transmission property at
r =0if for every k € N

(17) Dﬁp(ﬂ!’,f’, 81 (E‘) P)lr:l) € S”(U;;’)R?f_l)®ﬁHd.p:

where d = entier(y) + 1. Write p € S;,. (U, RY),p € Sy (U, R?), etc.
Remark 1.10. Recall that

S(Ry) = proj—lim,,en H"(Ry),
S'(Ry) = ind—lim, en Hy o "(R4).

Using the notation of 1.1 we will, in particular, deal with the spaces S*{U,R";&'(R,), S(R4)),
SHEU,R™ S (R4 ), C), and S*(U,R™; C,S(R4)).

Definition 1.11. Let E, F be Fréchet spaces and suppose both are continuously embedded in the
same Hausdorff vector space. The exterior direct summ E & F is Fréchet and has the closed subspace
A = {(a,—a) : ¢ € ENF}. The non-direct sum of E and F then is the Fréchet space E+ F := E@ F/A.

1.12 Parameter-dependent operators and symbols in Boutet de Monvel’s calculus. Let
U C R"*! be open. A parameter-dependent operator of order n € R and type d € N in Boutet de
Monvel’s calculus on U x Ry is a family of operators

CP(U x Ry )™ C®U x Ry)™
(1.8) A(N) ® - ®
Cee(uym™ ceu)m
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Example 1.2. Let v; : S(Ry) = C be defined by
vif = lim 6.f(r).

Then, for all s > j + 1/2 , we can consider v; as a (y,n)-independent symbol in S7+1/2(R9 x
R% H*(R.),C).

In fact, all we have to check is that ||&p,;-1v;5q[| = O([n)7+!/2) for the group actions & on C and «
on H*(R,). Since the group action on C is the identity, that on H*{R.) is given by (1.2), everything
follows from the observation that

A * £ ([nlr)}e=o = (/28 £ (0).
The following lemma is obvious.
Lemma 1.8. For a € S*(Q,R%EF) and b € 5Y(0),R% F,G), the symbol ¢ defined by c(y,n) =

b(y,n)a(y,n) (point-wise composition of operators) belongs to S*#+*(Q, R%; E,G), and D‘;’Dfa belongs
to S*~1*l(Q, R, E, F).

Lemma 1.4. Let a = a{y,n) € C(Q x R4, L{E, F)), and suppose that a(y, A\n) = MKy aly,n) sx-1
for all A > 1,|n] 2 R. Then a € S5 (Q,R™ E, F), and the symbol semi-norms for a can be estimated in
terms of the semi-norms for a in C°(Q x R, L(E, F)).

" Proof. Without loss of generality let R = 1. We only have to consider the case of large |7)|. For these,
the assumption implies that

Dy Dya(y,n) = A™Hk,-1 (D DYa)(y, M) ka.
Letting A = [n], we conclude that
Rin-1 Dy Dyaly, n)xgy = m]*71°1(D5 D) (y, n/)-

The norm of the right hand side in £(E, F) clearly is O([]*~12!). Moreover, a is classical, since it is
homogeneous of degree ¢ in the sense of (1.4). a

Definition 1.5. Let Q2 = £ x Q; € R? x R? be open and a € S#*(Q,R? x RY; E, F). The parameter-
dependent pseudodifferential operator op a is the operator family {opa(A) : A € R} defined by

(15) fop a(N) fl(y) = f W=Dy 5 N1 (5)didn,
feC8 (0, E),y € Q). This reduces to
(1.6) [opa(3) f](y) = [ e¥a(y, ) f(m)dn

for symbols that are independent of . Here, f(7) = Fyanf(n) = [e ¥ f(y)dy is the vector-valued
Fourier transform of f, and dnp = (2m)~"dn.

Definition 1.8. Let E, & be as in 1.1, ¢ € N,s € R. The wedge Sobolev space W*(R?, E) is the
completion of S(RY, E) = S(RY)&®.E in the norm

%
e = ([ 002 g Fposta) )

It is a subset of §'(RY, F). There are a few straightforward generalizations: If {E}} is a sequence of
Banach spaces, Ey4y — Ei, E = proj — limFEy, and the group action coincides on all spaces, we let
W*(R1, E) = proj — limW*(RY, E). Similarly we treat inductive limits. For @ C R? open we shall
write u € W, (0, E), if there is a function ¢ € C§°(Q) such that u = pu, and say u € W}, (@, E), if

comp

u € D'(Q, E) and pu € W*(R9, E) for all p € CP(RY).
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(i) For all C§°(G;) functions ¢, ¥, supported in the same coordinate neighborhood G intersecting
the boundary, the push-forward

C*(U; x Ry, V1) C®(Uj x Ry, Va)
(M, AN My). : ® - @ ,
C5 (U, Wh) C(U;, W)

induced by M, A(A)M,, and the coordinate maps, is an operator in B#4(U; x Ry; RY).

(ii) If v, are as before, but the coordinate chart does not intersect the boundary, then all entries in
the matrix (M, A(A)My). - except for the pseudodifferential part — are regularizing.

(iii) If the supports of the functions ¢, ¥ € C§°(G) are disjoint, then M, A(A) My is a rapidly decreasing
function of A with values in the regularizing operators of type d.

It remains to define the regularizing elements. A regularizing operator of type 0 in Boutet de Monvel’s
calculus is an operator R acting on the above spaces with the property that there are continuous
extensions

L*(X, V1) C=®(X,Va)
: et - & and
L2(Y, W) Ce(Y, Ws)
L3(X,Va) C®(X, V)
R @ — D .
L2(}I, WQ) Cm(yn Wl)
. Here R* is the formal adjoint with respect to the inner product on the respective spaces. A regularizing

8l 0
0 I
B=°4(X) for the regularizing elements of type d and B~°4(X;R?) for the parameter-dependent
regularizing elements, i.e., the Schwartz functions on R? with values in B=°4(X).

We topologize B*¢(X;R!) as the corresponding non-direct sum of Fréchet spaces.

For each coordinate patch G intersecting the boundary, A(A) induces an operator

operator of type d is a sum R = E;‘i:o R; [ ] with all R; regularizing of type zero. We write

Pir (A + G0 KA
ww = G 50 ]

on U; x Ry. We find a quintuple a;{A) = {p;(A), g;(A), k; (), t;(A), s;(A)} of symbols for P;()), G;(A),
K;(X), T;(A), S;(A) in the sense of 1.12.

We shall call A classical, if all entries in the quintuples a; = {p;, 9;,k;,t;,s;} are classical elements
in the respective symbol classes, i.e., p; and s; are classical pseudodifferential symbols, while g;, k5, ¢;
are classical operator-valued symbols. For an interior patch, we have the pseudodifferential symbol for
P;; all other symbols can be taken to be zero. Write A € B, X RY.

el

Example 1.14. The Dirichlet problem ( ,ﬁ‘) ) is an operator in Boutet de Monvel’s calculus of order 2

and type 1: Clearly, the Laplacian A is a differential operator of order 2. As we saw in Example 1.2, the
operator of evaluation at the boundary, 7o, is an operator-valued symbol in §'/2(R%, R¢; H*(R.;.), C),
provided s > 1/2. It is not so obvious that this is an operator of type 1: Using the integration by parts
formula

u{0) = /ﬁm[n]e_"[”]u(r)dr +/ e~ g u(r)dr

valid for © € S(R4.), we may we may rewrite g in the form

00
0

Yo = to + t10r.

Here, to € SY2(RI,R7;S'(R.), C), is given by tou = fooo[n]e_’[”]u(r)dr, while the operator-valued
symbol ¢, € S™/2(R7,R7; S'(R,), C) is defined by integrating d,u against e~71. Hence 7y is of type
1.

The Dirichlet problem is independent of any parameter, but since it is a differential boundary value
problem, we may also consider it as a parameter-dependent element. Since the order of vy only is 1/2,
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of the following form:

0 0

o o(0pgi(A\) + G\ op k() + Ko(N)
T3 oopt;(N) + T3N3 ops(A) +So() |

AQ) = [ P.(A) 0 ]

(1.9) + [

where

(i) P(:)=opp() withpe SHL(U xR xU xR, R%; R}, P, =1+ Pet. Here rt denotes restriction of
functions from U x R to U x R, e* denotes extension by zero from U x R4 to U x R.

(ii) The symbols g;,¢;,k, and s belong to the following spaces:

g; € 8I(U, R x RE S (R)™,S(Ry)™),
t; € SFIU,R™! x RL S (Ry)™,C™),
k€ S*U,R"!' x R, C™  S(Ry)™), and

s € SH(U,RM! x R C™, C™);

(iit) for j = 0,...,d, the operators G;,T;, Ko, and Sy are rapidly decreasing families of integral
operators with smooth kernels:

G; has an integral kernel in S(R!, C®((U x R..) x (U x Ry))),
T;  has an integral kernel in S(R!, C®((U x R..) x U)),

Ky has an integral kernel in S(RY, C®(U x (U x Ry))), and

S has an integral kernel in S(R!,C® (U x U)).

Of course, all these integral kernels take values in matrices of the corresponding sizes.

(iv} &, is the normal derivative, i.e., the derivative with respect to the variable in Ry on U x R

T2 GO Ko(X)
i N3 So(¥) |
and Sy a regularizing parameter-dependent operator of type d tn Boutet de Monvel’s calulus. It is a
consequence of Theorem 1.8 that the operators in (1.9) indeed have the desired mapping property.

We shall write A € B*%(U x Ry;R}) for a parameter-dependent operator of order x and type d, and
A € B~4(U x Ry; R!) for a regularizing parameter-dependent operator of type d.

The decomposition P4 + G is not unique; certain regularizing pseudodifferential operators provide
examples for operators that belong to both classes. The topology on B*4(U x R..; R!) and B~¢(U x
R.;; R') is that of a non-direct sum of Fréchet spaces.

Given an operator A € B*%(U x Ry;R’) in the notation of (1.9) we let g = Z;'i:o g;i0%, and t =
E?:o t;07. We then have a quintuple a = {p, g, k,t, s} of symbols for A. It is not unique, but any other
choice differs only by a quintuple inducing a regularizing element.

We call an operator Ag(A) = , A € R, with the above choice of G;, T}, Ko,

1.13 Boutet de Monvel’s algebra on a manifold. Symbol levels. Let X be an n-dimensional
€ manifold with boundary Y, embedded in an n-dimensional manifold G without boundary, all not
necessarily compact. In the following we shall denote by X the open interior of X, while X denotes
the closure. Let Vi, V5 be vector bundles over GG and let W7, W3 be vector bundles over Y.

By {G;} denote a locally finite open covering of G, and suppose that the coordinate charts map
XNGjtoU; xRy CRY and Y NG; to U; x {0} for a suitable open set U; C R*™!, unless G;NY =@.

For a smooth function ¢ on G write M, for the operator of multiplication with the diagonal matrix
diag{y, wly }. We will say that A € B#4(X;R'), if

Ce (X, V1) C®(X,Va)
(1.10) A(N) ® - ®
C (Y, W) C=(Y, Wa)

is an operator with the following properties:
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for all £ <! and all differential operators D of order < I~k on G, cf. [19, Section 2.1.1, Proposition 2].
(c) We let H5Y(X") = {f|x~ : f € H*"(G")}, endowed with the quotient norm:

lullagerxay = inf{[i fllagsr(an) = £ € HYV(GM), flxr = u}.

(d) H*"(X") C HE.(X"), where the subscript ‘Joc’ refers to the t-variable only. Moreover, H*7(X") =
t7H"0(XA); 'HD‘O(XA) -~ t—n/2L2(XA)_
(e) HO®(X") has a natural inner product

1
(w,0)o00(xn) = 5= / (Mu(z), Mv(2)) 1acx) dz.
T

(f) If @ is the restriction to X* of a function in C§°(G x R), then the operator M,, of multiplication
by @,
My, t HOY(XN) = HOT(XN),

is bounded for all s, € R, and the mapping ¢ — M,, is continuous in the corresponding topology.

Definition 2.4. Let F be a subspace of D'(X") or D'(G") with a stronger topology. Suppose that ¢
is a smooth function on G x R.. and that multiplication by ¢ is continuous on F. Then [p]F denotes
the closure of the space {pu:u € F}in F..

.2.5 The spaces H}, .. Let {G;}]., be a finite covering of G by open sets, k; : G; — Uj the
" coordinate maps onto bounded open sets in R”, and {¢;};_; a subordinate partition of unity. The
maps k; induce a push-forward of functions and distributions: For a function u on G

(2.3) (kjeu)(z) = u(nj_l(:z:)), z € Uj;

for a distribution u ask that (x;.u)(¢) = u(pox;), ¢ € C§(U;). For j = 1,...,J, consider the
diffeomorphism
x;: U; x R = {(z[t],t) : z € Uj,t € R} =: C; C R

given by x;(z,t) = (z[t],t). Its inverse is xj_l(y,t) = (y/[t],t). For s € R we define HZ,,.(G x R) as
the set of all u € H} (G x R) such that, for j = 1,...,J, the push-forward (x;«;).{;u), which may
be regarded as a distribution on R™*! after extension by zero, is an element of H*(R"*!). The space
HZ,..(G xR) is endowed with the corresponding Hilbert space topology. We lct

H:one(XA) = {“l.‘(xR+ rue H?

cone

(G x R)}.

For more details see Schrohe&Schulze [16, Section 4.2]. The subscript “cone” is motivated by the fact
that, away from zero, these are the Sobolev spaces for an infinite cone with center at the origin and
cross-section X . In particular, the space H?,,.(S" x R4) coincides with H?(R"™? \ {0}).

cone

Definition 2.8. For 5,7 € R and w € C§°(R) with w(r) = 1 near r = 0, let
(2.4) KO XM = {ueD'(X") rwue H"(XN),(1-w)ue HE, (XM}
The definition is independent of the choice of w by 2.3(f). In the notation of 2.4,
(25) K1) = WIHS (XM + (L= 0] By (X).
We endow it with the Banach topology

lleellcemxry = Nlwrellposxay + (1 = whullps, (x4
In fact, this is a Hilbert topology with the inner product inherited from H*7 and H?

cone*

Theorem 2.7. For s > 1/2 and v € R the restriction you = u|ys of u to Y induces a continuous
operator

o : K:n,-y(XA) N ]CJ—1/2-'1—1/2(YA)_
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we may even replace yp by Ay, where A is a {parameter-dependent) order reduction of order 3/2, and
still have order 2.
Here, the vector bundle W is zero, while V|, V5, W, can be taken trivial one-dimensional.

Proposition 1.15. Let A € B*4(X;RY), B € B* ¥ (X;R!), and o, € C. Then
(a) aA + 8B € B¥" 4" (X;RY) for ' = max{y, p'}, " = max{d',d'}.
(b) Ao B e B 4" (X;RY) for p" = max{u+p'}, d' = max{y' +d,d'}.
We assume in here that the vector bundles A and B act on are such that the addition and composition
make sense.
For a proof see Rempel&Schulze [13, Section 2.3.3.2].

2. Wedge Sobolev Spaces

In the following, we let G be a closed compact manifold of dimension n, and let X be an embedded
n-dimensional submanifold with boundary, Y.

2.1 Parameter-dependent order reductions on G. For each g € R there is a pseudodifferential
operator A* with local parameter-dependent elliptic symbols of order g, depending on the parameter
T € R, such that

A1)t H(G,V) - H*#(G,V)

is an isomorphism for all 7.

In order to construct such an operator one can e.g. start with symbols of the form (£, (r,C))* €
S“(R“,R?;RT) with a large constant C' > 0 and patch them together to an operator on the manifold
G with the help of a partition of unity and cut-off functions.

Alternatively, one can choose a Hermitean connection on V and consider the operator (C 472 — A)¥,
where A denotes the connection Laplacian and C is a large positive constant.

Definition 2.2. For 8 € R, I's denotes the vertical line {z € C : Rez = 3}. We recall that the
classical Mellin transform Mu of a complex-valued C§®(R..)-function « is given by

(2.1} (Mu)(z) = /oo t*~Lu(t) dt.
0

M extends to an isomorphism M : L*(Ry) = L*(T'; ;). Of course, (1) also makes sense for functions
with values in a Fréchet space E. The fact that Mulr,,,_. (2) = My, (t7"u)(z + ) for u € C§°(R4)
motivates the following definition of the weighted Mellin transform M.

Myu(z) = Mos (T T0)(2 +9), v € CP(Ray, B).

The inverse of M, is given by

1
M1 = — —# .
(M R)(2) el N t™*h(z)dz

2.3 Totally characteristic Sobolev spaces. (a} Let {A” : x4 € R} be a family of parameter-
dependent order reductions as in 2.1. For s,v € R, the space H*7(G") is the closure of C§°(G") in
the norm

(2.2) latltren(any = {
f.

Recall that n is the dimension of X and G.
(a) The space H*7(G") is independent of the particular choice of the order reducing family.
(b) For s =! € N we obtain the alternative description

1/2
A (Im 2) Mu(2) |32 IdZI} .

u e HGN) it t"/27(t8,)* Du(z,t) € LA(GM)
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LK#7(X")) of the operator Fp,-1a(y,m)k(y. This in turn simply is multiplication by o([7]~!-), which
is uniformly bounded by another application of 2.3(b).

Next let us treat multiplication by ¥ = #(y) and show that it furnishes a bounded operator on
W*(RY, E) for every Banach space E with group action . In fact, since the wedge Sobolev spaces are
defined as the completion of S{R?, E) in the corresponding norm, it is sufficient to show that, for a
pure tensor ¢ = ug ® e in S(R?) ® £ we have

l¥ullws(re,Ey £ Cllullws(ra,E)

with a constant independent of u. Choose an integer ! > ¢/2. With the help of Peetre’s inequality and
(1.1), in particular the fact that

Istp+g-1kmlle = lKp+g-rille
< Cmax{ln+€7 [, n+ &l 7} < ¢,
we get the following estimate
e rs, 5)
= [PE ) o) el
2
= @0 [P | [ Fuotn - 970 de| lpy-selfoan
< @0 [ [ \Fuoln - OF WO & Igelian 17
= C [[ o+ GV Fual IS PIE Inpye-relsande
<

C" [ [ g2 o) L -l
< C'IWl st st ey [l a5y

Here the first inequality is Cauchy-Schwarz'. O

3. Operator-Valued Mellin Symbols

As before, we let G be a closed compact manifold of dimension n, and let X be an embedded n-
dimensional submanifold with boundary, ¥.

Definition 3.1. (a) For p € R,d € N, we define Mg'd X;RY) as the space of all functions
a € A(C,B"*X;R%))

with the following property: Given ¢; < ¢z in R

(3.1) a(f +1ir) € B*(X;R? x R,),

uniformly for all § € [c;, ¢2].

We call the elements of Mg‘d(X;Rq) holomorphic Mellin symbols of order ¢ and type d. We are
assuming that the vector bundles a(z) is acting on are independent of z.

The topology of MA4*(X) is given by the semi-norm systems for the topology of .4 (C, B*4 (X; R9))
and, for families {ag : 8 € R}, the topology of uniform convergence on compact subsets of Rg in
B#4(X; R x R,). Clearly, Mg'd (X;R?) is a Fréchet space with this topoclogy.

(b) M5 (X;R?) is the corresponding space with B#4(X; R?) replaced by B%*(X;R9).
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By r denote the normal coordinate in a neighborhood of Y. Then the operators v; : uw +— Olu|ys define
CONLINUOUS MapPings

v o )C"’"(XA)—}}C’_j_l/Q"T_l/z(YA).

Proof. For one thing this can be deduced from the trace theorem for the usual Sobolev spaces. Note
that the shift in the weight v = v ~ 1/2 is due to the fact that dimY = n — 1. We shall give an
independent proof in 3.4, below. O

The following lemma is obvious after 2.3(d):
Lemma 2.8. K0 (X") = HOO(XN) = ¢t=~"/2L2(XH).
Lemma 2.9. A strongly continuous group action &y can be defined on K*7(X") by

(saf)(r) = A F(Ar),  feK(XM), 52 0.

This action is unitary on K®O(X") and eztends to distributions by (kau)(w) = u(kr-10) for u €
D'(X"), p € O5°(X7).

Proof. It is lengthy but straightforward to see that x is strongly continuous; it is unitary on KX%°%(X*)

¢ in view of Lemma 2.8. O

Remark 2.10. The definitions of the spaces H®"” and K*" also make sense for functions and dis-
tributions taking values in a vector bundle V. We shall then write H*7 (X", V) and K®7(X", V),
respectively. In later constructions we will often have to deal with direct sums

K:n,'y(XA’ Ve K:3—1/2-7-1/2(Y/\, W)

for vector bundles V' and W over X and Y, respectively. On these spaces we use the natural group

action .
ra(w,v) = (AT u(A), AFo(A)).

Definition 2.11. For real s and v we let W»7(X" x R7) = W*(RY, K*7(X1)).

Theorem 2.12. The restriction operator o induces a continuous map
Yo : WHY(XN x RI) —» W12/ 2y RY),

Proof. We know from Theorem 2.7 that 4o : K&7(X") = K*~1/27=1/2(YA) ig a bounded operator.
So we may consider it once more an operator-valued symbol, independent of y,7. Just as in Example
1.2 one checks that v € S/2(R2 x R3;K*»7(X"),K*~1/27=1/2(YN)). Now Theorem 1.8 gives the
asgertion. g

Proposition 2.13. Letyp € 8(-)_(-'\ xR?). Then the operator of multiplication by ¢ furnishes a bounded
operator on W*7 (X" x RY) for all s, € R. Its norm depends continuously on the semi-norms for ¢
in S(X" x RY).

Proof. We shall use a tensor product argument based on the identity S(YA x RI) = S(YA)é,S(RQ).
Let ¢ = o ® ¢ with 0 € S(YA) and ¥ € S(RY) be a pure tensor. We shall show the separate
continuity of the multiplications. Since both S(YA) and S(R7) are Fréchet spaces this will imply the
joint continuity and establish the proof.

Let us first deal with multiplication by o, denoted for the moment by M,. We may consider this
multiplication as the application of a pseudodifferential operator with the (y, )-independent operator-
valued symbol a(y,n) = M,. Let us check that a is an element of S°(R? x R%; K*7(X), K*7(XN))
for all 3. First of all, an application of 2.3(b) together with interpolation shows that M, is bounded
on K*7(X”"). In view of the independence of y and 1 we now only have to estimate the norm in
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. given by the point-wise composition in Boutet de Monvel’s calculus: (a,b) — ¢ with c(z,n) = a(z,7) o
b(z,m).

The proof is straightforward from the definition and Proposition 1.15.
3.6 Operator-valued Mellin symbols. Let v, € R, 2 CR% and f € C® (R, x0, BH4(X; TyjayX
R%)). Recall that {-] is a smooth positive function on R? coinciding with | - | outside a neighborhood of

zero. .
Given w),wy € C§°(Ry) define

a(y: 7]) =w (t[U])t_” {Op}[f(t) Y, 2, t’?)}“?(t[ﬂ])

According to (3.2) this furnishes a function a on  x R with values in L(K]7(X7), K37(X")) for all
s > d—1/2. We will show that a in fact is an element of S#(Q, R% K], K57). The proof is based
on Proposition 3.8, below, and a tensor product argument given in Corollary 3.9. We shall keep the
notation K77, K37, v, i, f,a,wy,ws fixed.

First let us note the following:

Lemma 3.7. If f is independent of t, then there is a C > 0 such that

a(y, An) = Mraa(y,n)Ka-1
CforallA>1, and|y| > C.
~ Proof. We have
K’z\{op}ff(yv z, tﬂ)} = {OP}[f(y: 2, /\t"])}"k
Next choose C' so large that [n] = |n| for |} > C. For v € C§°(R.) and A > 1 this implies that

x{ws (t)t™*{opy, f(y, z, tn) hwa (tn])kr-ru}
= wi(At[n))(A) 7 {opy, £ (v, 7, tAn) Jwn (At[n])u.

Since w; (At[n]) = w;(t[An]), 7 = 1,2, this gives the desired result. |

The proposition, below, shows the assertion for the case where the symbol f is independent of ¢.

Proposition 3.8. Let g = g(y, z,7) € C®(Q, B4(X;RY)) be independent of t. Then the function b
defined by

by, n) = wi(tn)t ™" {op3,9(y, 2, tn) }wa(t[n])
is an element of SL(Q,RY K7, K07), and the symbol semi-norms for b can be estimated in terms of
those for g.

Proof. For fixed y and 1, the operator b(y,7) is an element of L(K]"”,K37) by 3.3. Moreover, it is a
smooth function of y and 7, and its semi-norms in C**( x R, L{K]",K5"7)) depend continuously on
those for g. According to the leinma above it is homogeneous of degree u for large ||. The assertion
therefore follows from Lemma 1.4. O

Corollary 3.9. It is now easy to sec that a is an element of S¥(Q, R%; K7, K37) for all s > d — 1/2.
Indeed, we use the fact that

C®(Ry % 0, B44(X; Ty ay x RY) = CO(R1)S,C¥ (R, B*(X; T, jay x RY).

Employing the continuity of the mapping g — b in Proposition 3.9 it is therefore sufficient to consider
the case where

flty,2,m) = o)y, 2,m)

with ¢ € C*=(Ry4) and g € C°°(Q, B*4(X;Ty /3, x R%)) independent of t. Choose a function w €
C§°(R..) with w(t)w: (t[n]) = wi(t[n]). This is possible, since [n] is bounded away from zero. We have

a(y,n) = My wi (t[n){op}s9(y, 2, tn) Jwa (t[n))-
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Example 3.2. Let u € N and let A; € B*~%4(X), k = 0,...,x, be differential boundary value
problems. Then

In
a(z) =Y Apz* € MEH(X).
k=0

3.3 Mellin symbols and operators. Let f € C°(Ry x Ry, B"4(X;T/;_,)). For each fixed
(t,t',z) € Ry x Ry x I'1y3_,, we have a boundary value problem

ftz) @ - @
C[t))o(Ys Wl) COO(Y, W2)

in Boutet de Moivlc\el’a calculus. A .
For u € CP(X V1) @ C§°(Y , W1} = CP(Ry.,C®(X, Vi) @ C°(Y,W,)) we define the Mellin
operator opj, f by

{op3 a0 = 5 [

Ti/a—y

o0
/ (/Y2 f(t, ¢, 2)u(t)dt' [t dz.
0
If f is independent of ¢, this reduces to

{op}, flult) = -2-%'/ T3 (¢, 2) Mu(2)dz.

Fl,")—q
It is easy to see the continuity of
A <A
G (X, ) Ce(X", V)
opief: & - @ .
Ce (Y™, W) C®(YN, Wy)

For f € C®°(Ry4 x Ry, B*4(X; 1 2_)) and wi,ws € C§(Ry) we obtain a bounded extension

}cs.7+&(xf\’1/'1) _Jcs—.u.7+&(xf\,V2)
(3.2) wi {op}, fluws : & — &
K2 (YA W) Ko (YA W)

provided s > d — 1/2. A proof is given in [16, Proposition 2.1.5].
In the following we shall use the abbreviations
K9 = KPR (XA V) @ K0T (YA W) and
K37 = COTRRETR(XN V) @ KA THTERT R (Y, W),
3.4 Alternative proof of Theorem 2.7. We consider the operator of evaluation at the boundary
Yo As we saw in Example 1.14, it is a parameter-dependent operator in Boutet de Monvel’s calculus of
order 1/2 and type 1. We may therefore regard it as a Mellin operator with a Mellin symbol independent

of t,#, and z. The mapping properties (3.2}, applied with the choice V;, W> = trivial one-dimensional,
W1, Vi, = zero, show that for every choice of cut-off functions wy,ws near zero and s > 1/2,

wiyows : K37V (XA) = Ke~V2r=1/2(y Ay

is bounded. Away from zero, the spaces K" coincide with usual Sobolev spaces on the cone, hence the
result there follows from the usual trace theorem.

Proposition 3.5. Given p,p' € Z and d,d' € N, let "' = p+ ' and d” = max{y' +d,d'}. Then there
s a continuous multiplication

MAYX;RY) x ME Y (X;RY) - ME Y (X;RY)
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Note that T cannot be continued to a function in C® (R4 x Ry).

Proof. (a) is trivial. For (b) write ¢(z) = (z — 1)/Ing; this is a smooth function on Ry, (1) = 1.
The observation that (¢'8y ) [t' ' T (¢, t'))|i=¢ = (—58:)*¢(x)|e=1 shows the first claim. For the second
note that t~17°(¢,t') = ¢(z)/z, while the third and fourth follow by replacing ¢ by 1/¢. ]

froposition 3.14. Forp € C®(R4 x, B*4(X; R x RY)) defineg € C* (R4 xRy, B4 X;ToxRI))
Y
(3.3) g(t,t'y,im,m) = p(t,y, ~T(t,¢) ', Mt T (¢, )"
Then op p(t,y,7,n) = opss g(t, 'y, i7,m).
. Conversely let f € C®(R.y. x Q, B*4(X; Ty x R?)) and define g € C° (R, X Ry, B*4(X;R, x R))
)
(3'4) Q(tf t‘? yi T’ 7’) = f(t’ y? “iT(tl t')T, 1))T(t’ tl)/tl'
Then opq(t, t',y, 7,m) = opy f(t,y,i7,7).
The subscript ¢ with op indicates that the pseudodifferential action is with respect to ¢ and the
covariable 7 only.

Proof. The proof is a straightforward computation. For completeness let us sketch (3.3), omitting for
better legibility the variables z and y. The proof of the second identity is analogous.

{Optp(ta T, 7?)}“(t»7])
= (21)‘1// e =7 pt 7 nyu()dt dr

(27)_1// (t/t')iT(t’ﬂ)Tp(t,’r,n)u(t')dt'd‘r
0

(27r)‘1/fom(t/t’)"p(t,T(t,t')"f,n)t'T(t,t’)“u(t’)dt’/t’dr.

O

As a preparation for the proof of Theorem 3.17, helow, we need the following well-known facts. For
a proof see e.g. Schrohe&Schulze [16, 2.1.12, 2.3.3].

Lemma 3.15. Given a sequence f; € C®(R, x Ry x Q, B#4(X ;T x R9)) with j1; ~ —o0, there is a
symbol f € C®(Ry x Q,B4%(X;Tg x RY)), u = max{y;} such that f ~5 f;; the symbol f is unique
modulo C®(Ry. x Q,B7°4(X; Ty x R7)). If the symbols f; even belong to C'°°(ﬁ+ x §}, B4 (X Ty x
R7)), then we find f € C®°(Ry xQ, BH(X ;T x RY)); it is unique modulo C® (R x(Q, B 0. d( ¥ Ty X
R7)).

Lemma 3.16. Given f € C®(Ry x Ry x Q,B44(X;Ty x R?)) there is a symbol g € C®°(R4 x
Q, B4 X; Ty x RY)) with

(3.5) opfff _opl.fg mod C®(Q, B4 X", RY));

it has the asymptotic ezpansion

tat’ kak (t t’syvz:n)|¢’=t'

?T‘IH

(3.6) g(t,y, 2,1) Z

Conversely, every symbol with this asymptotic expansion satisfies relation (3.5).

Theorem 3.17. Let p € C®(Ry x Q, B*4(X; R x RY)) be edge-degencrate. Then there is a symbol
f € C®(Ry x Q,B4YX;To x RY)) with

(3.7) opp(t,y, 7, 1) = opy, f(t,y,ir,tn) mod C=(Q, B-¢ (X" RY)).
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Here, M, denotes the operator of multiplication by we. We note that
K,[,ﬂ—xMwli[ﬂ] = M¢,

where ¢(t) = w([n] 1)@ ([7]~'t). The norm of this operator on K3 is uniformly bounded in #; it can be
estimated in terms of the semi-norms for . Therefore M, furnishes an element in S%(Q, R%; K37, K27),
and we get the statement from Lemma 1.3.

Theorem 3.10. Let v, € R, Q C RY, and f € C®(R,. xQ, B4 X; [y/2—4 xRE)). Then the operator
op {wi (¢t ™ {op}, f(t, y, 2, tn) Jwa (0]} : Wepmp(RY, KT7) = WiZH(R?, K37)
18 continuous.

Proof. This now is immediate from Theorem 1.8. 0

Lemma 3.11. We use the notation of Theorem 3.10 and let 8 € R. Then
w1t {opke f (¢, v, 2, tn) hwa () = wr (¢[)tP {0} P T2 £ (t, y, 2, tn) Ywa(tl).
In case f even is an element in C®°(Ry x 0, MS‘ (X;RY)) we additionally have

wi(tn){opis S (t, v, 2, tn) (i’ = wi(th)t* {op} T~ f(t, v, 2, tn) }wa(tln)).

Here we consider both sides as operators on C° (R, C®(X)); TP is the translation operator defined
by T=Pf(t,y, 2, tn) = f(t,y,2 = B, tn).

Proof. Using a tensor product argument, it is sufficient to treat the case where f is independent of ¢
and y, i.e., f € B*4(X;Ty/2_y x RY). But then

{op), f(z,tm) }Pu(t) 5 frm / /)2 F (2, )t Pu(t)dt [t dz

L / / (t/t"y D) f (2, tm)u(t)dt [t dz
Tyra—y

2ri

A 5 /1:1,, 1+ﬁ/ (t/t) T~ B f(z, tn)u(t)dt' Jt'dz,

so the first assertion is obvious. In case f is holomorphic, Cauchy’s theorem allows us to shift the
contour of integration, and we obtain the second statement. O

Mellin Quantization

Definition 3.12. A symbol p = p(t,y,7,7) in C® (R, xQ, B54(X; R, xRY)) is called edge degenerate,
if there is a symbol § in C®°(Ry x @, B44(X; R, x RY)) with p(t, y,7,7) = p(t,y, 7, tn).

We shall now show that given an edge degenerate symbol we can find a Mellin symbol which induces
the same operator up to a smoothing perturbation and vice versa. We start with an analysis of the
following simple function.

Lemma 3.13. Fort, t' > 0let T(t,t') = IT:EEW Then T is a smooth positive function on Ry x Ry,
T(t,t) =t. Moreover:
(a) Write x = t/t'. We have t'y = —x8, and t' ' T(t,t') = =
(b) For each k € N the functions
(0 [T T ) o me, (0T TR )] o=t
('3[ T () e=e, and (00 ) [T, t") o=t

are constant in t.
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Proof. The Mellin symbol f, can be computed in terms of the function f = f,,2 in Theorem 3.17.
The definition of op}, shows that

Optp(t:yJTi 7?) = 0P;42f1/2(t,y,i"’, t’?) = Op}{gﬂf(t) t’:y, 1/2 - + iT: t”):

where g,(t,t',y,1/2 — v + ir,n) = (t/t")/*=7 fi;2(t,y,iT,n). We can convert gy to a #'-independent,
symbol f, with

o

. 1 . )
f7(tly:1/2_7+177n) ~ Z-‘J(—tlay)kDig?(t, t',yyl/2—’7+”',7?)|z'=t
k=0

1 t _ .
p(‘t‘at’)k(t_,)l/2 7|t‘=t fol/2(ty ¥, 7))

¢
M8

[
il
o

(3.9) ~

gk
?7"'.—!

»
1l
=}

1 (1/2 - 7)kfol/2(tay) iTa 7’)
Here we used that ('8 )*(t/t')!/2" Y|y =y = (z85)¥2Y/%7Y),=1 = (1/2 — 7)*. Since f1, is smooth up
to ¢t = 0, the asymptotic summation can be carried out in C®(Ry x Q, BH4(X; Ty/2—4 x RY)), and
~ this is all we need.
If p is classical, then so is f,/; by Theorem 3.17, hence f, will be classical. a

o
. Kernel Cut-Off

We shall now analyse the behavior of symbols f € C® (R, xQ, B#4(X; T, /2—~*xR%)) under operations
of the type

fe Moso(p)M7 e f(ty,¢m).

Here, ¢ is either a function in C§°(R4) or of the form 1 — ¢ with ¢ € C§°(R4). For the proof, the
specific choice of v is of little importance. We therefore let v = 1/2, so we can work conveniently on
the imaginary axis iR = [.

Theorem 3.20. Let ¢ € CP(Ry) with ¥(p) = 1 near p=1. Let f € C®°(R, x Q, B#(X;Tp x R7)).
Then the operator-valued function fi_y defined by

fl—\[»'(t:"' V2, 7) = Mp--n(l - ¢(p))M1_/12|(_..ﬂf(ty ¥, m)

is an element of C°(R.,. x R";[i_w'd(X;[‘g)). Moreover, the mapping (3, f) — fi—y is separately
continuous from C (R} x C® (R x Q, B4 X;Tp x RY)) to C®°(R,. x Q; B~4(X; Ty x RY)).

Proof. Using a tensor product argument as above it is sufficient to treat the case where f is inde-
pendent of ¢ and y, ie, f = f(z,7) € B*%X;To x RZ). First note that B=°¢(X;Ty x RY)) =
S(Ty, B~°>4(X;R2)). In view of the identity

M
Myess0¥ o (-p0)") = (1) 5V (0410(e)

valid for, say, h € C§°(R4.), we only have to check that, for all M, N € N, and each semi-norm p; on
B#=34(X;RY), the semi-norms

(3.10) p; (0™ p(08,) {(1 = Y(p))(M; 3 F) (o, )Pl Lar,)

are finite and depend continuously on the semi-norms for f and 1, respectively. For fixed p,

2n(1 — (o)) (M7 ) (o,7)

j (1 = %(p))p™" f(ir,m)dr

(1 - p(p)) In~%p [ (i0,) 5™ f(ir, m)dr
(1-(p)) I ] P (=id,)E f(ir )dr
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Conversely, given f € C®(Ry x Q,B*(X;T, x RY)) there is an edge-degenerate boundary value
problem p such that relation (3.7) holds. The corresponding statement holds for classical symbols, i.e.,
for B*4 replaced by B,

Proof. Let p(t,y,7,n) = p(t,y,tr,tn) with p € C® (R4 x 0, B4 X; R x R?)). We know from Propo-
sition 3.14 and Lemma 3.16 that

op tp(tays 7, 77) = Op g(t t': Y, IT Tl') - OpM g(tiya iT, 77)1

where

( t’ay)kD g(tt 1T)|y—t

?r'|,_-

gt y,ir,n) ~
(= —t'8,) D {p(t,y, =T (¢, t) ', T (t, )" Y=

(=400 ) DE{B(E, v, =T (8, )7 i, )T (0, £) ™" Home-

2
M 08 T
v:1~

P
Il
?T'Ia—a

0

Next we prove that, for each &, the function f; defined by
fk(tl T, 7]) = (-tla!')kDf{ﬁ(t: Y, _T(t3 tl)tTv n)t’T(t! tl)_l }lt'=t

is an element of C*®° (R4 x , B#4(X;R x R%)). In fact, Leibniz' formula implies that

(') D¥{#(t,y, =T (t, ") Ur, ' T (2, ¢) 1}
= Y Chkak (—1'8) (DR, «,~T<t t'y~1tr,m)}
k1+kz+ky=k

X (—t'8p Yo (T (t, ') T} (~t'Bp Yo {=T(t, ') 1},
hence Lemma 3.13 shows that we only have to check the derivatives
(=8 ) {DEp(t,y, T, ) e, )}

For k; = 1, this is just DEH1(¢,y, —T(¢,¢') " 1, n)rt'8p T (¢,¢')~'t. Together with iteration, Lemma
3.13 again yields the smoothness.

According to Lemma 3.15 we can find an f € C®(Ry. x Q, B84 X;Ty x R%)) with f ~ 332, fi.
Then f(t,y,7,tn) ~ 3 fu(t,y,7,in) in C®(Ry x Q, B*4(X;To x R9)), and hence

opy’ F(t,y,i7,tn) = op.p(t,y,7,n) mod C™(Q, B~¢(X";RY)).

Clearly, the same argument applies with B¢ replaced by Bé‘,’d.
The converse statement follows in the same way, using the second part of Proposition 3.14 and the
asymptotic expansion formula for pseudodifferential double symbols. O

3.18 Mellin quantization for arbitrary weights. We have solved the question how to associate to
an edge-degenerate boundary value problem p € C*®(R.,. x Q, B*4(X; R x R1)) a Mellin symbol f, 5 €

Cm(ﬁ+ XQ? Bp.,d(_X'; FU XR%)) Wlth op¢ p(ty wT, 77) = Op]f.l.éz f1/2 (t! ya ‘i’l", t"l) mOd Cco (Q, B—m'd(XA; Rg))
This allows us to treat the case of arbitrary weights.

Theorem 3.19. For every cdge-degenerate p € C® (R4 x Q, B4 (X; R x RY)) and every v € R there
is an fy € C®(Ry x Q,B44X;T _y % Ri)) such that

(3.8) 0P} fy (64, 1/2 = v + i1, tn) = op p(t, ¥, 7, 1)

modulo C® (2, B~°¢(X";R?)). The corresponding statement holds for classical symbols, i.e., for B
replaced by Bi‘,’d.
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Proof. By definition, £'(Ry, B#4(X;R9)) = L(C®(R,), B#4(X; RY)) with the topology of bounded
convergence. Let us start by showing that o M 1_/12 f € £&'(Ry, BA4(X;RY)) and that the mapping is
separately continuous in ¢ and f.

Let ¢ € C®(Ry) and denote by ( , } the evident B*¢(X;R%)-valued pairing which extends the
L3 (Ry, %‘1) bilinear form. Then

o

(o [ 67 1 (i, m)dr, )

—00

(ML 1)

{ / p~' TV fiT, n)dT, poip)

((~p0,)™ [ 1 (14 i)~ f(ir, ), o)

(3.12) - j 7 (14 i7)~N f(ir,m)dr 57 (p0,) (oo (o )w(p))
0 -

—00

The last integral is an L'-integral with values in B#%(X; R9), provided N is sufficiently large. This
“rfollows from the fact that, for every semi-norm ¢ on B844(X;R7), we have ¢(f(ir,7)) = O({T,)").

Moreover, if the semi-norms for ¢ in C*°(R4) tend to zero, then the last integral tends to zero in all
semi-norms of B*4(X;RY). So it indeed defines an element of £'(R.y, B*4(X;RY)).

Now let us show separate continuity. As ¢ varies over a bounded set in C*°(R. )}, the integral in
(3.12) can be estimated in terms of finitely many semi-norms for f € B*“(X; Ty x RY) and finitely many
semi-norms for ¢ € Dy, K C Ry compact. Finally note that the Mellin transform yields a continuous
map from &' (R, B%Y(X;RY)) to A(C, B#¢(X;R?)). Indeed, this follows from the relations

E'(Ry, BYX;RY)) = &'(Ry)®.B*X;R?) and
A(C,BH(X;RT) = A(C)&:B"(X;RY),

together with the well-known fact that the Mellin transform maps £'(R4) to A(C) continuously. 0O

The next proposition settles Step (i) of the Outline 3.22.

Lemma 3.24. Let £, F and Y be Fréchet spaces, and assume that £ and F are embedded tn a common
vector space X'. Suppose T : £+ F — Y is a linear map, and the restrictions

T:E2)Y, T:F-Yy
are continuous in the topologics of £ and F. Then
T:E4+F->Y
is continuous in the topology of the non-direct sum.

Proof. Let {pi,p2,...}s {q1,92,...}, be increasing systems of semi-norms for £ and F respectively.
Denote the translation invariant metric in )} by d. Then a system of semi-norms for £ + F is given
by r;j(z) = inf {p;(e) + ¢;(f) : e+ f = z}. So suppose 2z € £ + F and V C Y is an e-ball about
Txo. Then there is a j € N and a § > 0 such that d(Te,0) < § and d(Tf,0) < §, provided that
e€ &, feF, pile) <& and g;(f) < 8. This implies that Tz € V for all z with r;(z — zo) < &:
In this case we can find e, € £, fi € F such that e, + fi = £ — 2o and pj(e1) + ¢;(f1) < 6. Hence

d(Tz,Txe) = d(T(x — 20),0) £ d(T(e1),0) + d(T(f1),0) < e. m|

In order to settle Step (ii) of the Outline 3.22, we first note that an operator in B~°¢(X ;T x RY)
can also be viewed as an element of S(TI'y x R?, C®°(X x X)), where C®(X x X) is the Fréchet space
of smooth kernel sections.

Lemma 3.25. Let h € S(T'g), s € S(T'y,C®(X x X)). Then
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after integration by parts. Since f € B*9(X ;T x R?) we conclude that (1 - ;b(p))(Ml'/'zf)(p,n) €
B4 X RI) for arbitrary L, so it belongs to B~=¢(X; R9). Next write for large L

M p (p8,) V(1 — (o)) (M7A 1) (e, )]
- 5 / in™ p(p8,) (o™ (1 = (p)) In™" p] (8 £) (i, m)er.

Denoting 1;{p) := (p8,)? (1 — ¥(p)), we conclude from Leibniz’ rule that the integral is a linear combi-
nation of terms of the form

(=]

(3.11) InM=L=% . () [ p=iT e (B f)(ir, m)dr,

—00

where j) +j2+43 = N. For a semi-norm p; on B#~»4(X; R7) and fixed M, N, choose L > M+ N +j+2.
Then M — L — j3 < 0; moreover (1+ r2)r3 (8 f)(ir,n) € B*~34(X; R, x RY), so that

Pj ( f_ : pi (T 0F f(im,m)) dr) <C

with a constant ¢ = C(L, j1,j) independent of p. We conclude that the semi-norm in (3.10) can be
estimated by finitely many expressions

o ' 2 dp) /2
const. {.[o |lnM_[‘—”p7,bj,(p}| _;p} < 00.

Thus all the semi-norms in (3.10) are finite; they continuously depend on the semi-norms for f in
B*4(X;Ty x R?) and on those for 1 in Dk, K C Ry compact. Here, Dx denotes those elements in
C§°(R.4+) that have support in K. This completes the proof. ]

Theorem 3.21. Let ¢ € CP(Ry) and f € C®(Ry x Q, B*4(X; Ty x R?)). Then the operator-valued
function f, defined by

folty,2,m) = Mpsap(p)M7y -, f(8,9,Cm)

is an element of C®°(R X Rq;MS'd(X;R")). Moreover, the mapping (v, f) — f, is separately con-
tinuous from CP (R} x C(R, x ©, B4(X;Ty x R)) to C*(R, x Q; MA(X; RY)).

3.22 Outline of the proof. Using a tensor product argument as in Corollary 3.9, it is no restriction
to assume that f is independent of t and y, i.e., f € B»%(X; Ty x R?). We shall first see quite easily in
Lemma 3.23 that f, is an operator-valued function in A(C, B#4(X;R?)). It is more difficult to show
that it also defines a family of parameter-dependent operators along each line 'z, uniformly for 8 in
compact intervals, in the sense of Definition 3.1. To this end we proceed in the following steps, keeping
the notation f, ¢, f, fixed:

(i) For non-direct sums, it is sufficient to consider each summand separately.
(ii) Show the assertion for regularizing elements.
(iii) Reduce to the case X = R}.
(iv) We then only have to deal with operator-valued symbols of 5 types, with

(v) an additional consideration concerning the transmission property.
Lemma 3.23. The function f, is an element of A(C,B*%(X;R9)), and the mapping
O3 () x BH4(X; Ty x RT) — A(C, BH4(X; RY))

given by (p, f) = f, is separately continuous.
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0]

I k[ﬁ“’-’i][”]'”ﬁ(q— - J)EK,J.UI" D?l Dgz Dgap(E’ g, 77)”'[6.am] Klw)ig,o,n~? da”f-(E,F)

-0

IA

oo
/||ﬁ[s,a.q][u]—1 le(ry (T = o)l Rjg o,0-1 DE D2 D2 p(E, 0,0) i 0.l (B, )

-

* Negulie,om-1 ez do.

Here we have used the fact that (scalar) multiplication by ¥(r — o) commutes with the action of .
According to (1.1) there are constants ¢ and M such that

||K[£,a.f;]‘1[v}||£(E)r ”'-‘:'[E.o-.r][v]"llﬁ(F) < CL(§:J:77|1))M1

where L(£,a,n,v) = max{[§, 0,77 [v], (£, 0,m)[v] ! }. Peetre’s inequality implies that
[€,0,0] 7 [v] < C[(€,0,m) = (€,7,m)] = Clo — 7]
and, by symmetry, [£,0,7][v]! < C[o — 7] for a suitable constant C. Together with the facts that

”R’[E.a’.n]" (Dfl Dg’DgSP)(f: g, n)n[f.a,q] ”C(E,F) = 0([§v a, W]I‘_!ﬂl)

- and that 9 is rapidly decreasing we conclude with Peetre’s inequality that the final integral above is

O([vj#-181y.
~ This shows our claim. Clearly, all estimates depend continuously on ¢ and p, thus they depend
continuously on a, and the corresponding mapping is separately continuous. O

We now complete the proof of Theorem 3.21 with Step (v) of the outline, i.e., the observation that
the transmission property is preserved under the construction. This is the contents of the following
lemina.

Lemma 3.27. Let p € S}, (R™,R" x [y x R?). Then
(3.14) g = M(pM[;p) € A(C, S, (R", R")).

Moreover, for every 8 € R,
(3.15) glr, € Si(R",R" x I'g x RY).

The corresponding estimates are satisfied uniformly for 8 in compact intervals. The mapping (p,p) = ¢
is separately continuous as a map from

CP(R+) x SH(R™,R” x Ty x RY)
to this Fréchet subspace of A(C, S#(R", R"+9)).

Proof. If it were not for the subscript “¢r”, (3.14) and (3.15) would follow from the Lemma above,
because the usual symbol classes correspond to the operator-valued symbols with £ = F = C and
trivial group action.

So we have to show that the transmission property is preserved under the operation f — f,. This,
however, is simple: a symbol a € S#¥(R", R" x ['; x R?) has the transmission property iff

85 0(z',0,6,(€") &n, 2,m) € S*(RET,RET x To . x RY)®, H,.
In the present situation
a::cnq(zl’ 07 Elr (E') th z, 7)) = MP—)ZQD(p)Ml-/!),I(‘_ma:,‘p(m’v 0! 5’: (g’) éﬂv Ca 7))
€ A(C,S*R",R"'T))&, He,

by a tensored version of the argument in 3.26. The last space coincides with A(C, S#(R"*~!, R"~*9)&, He )

and (3.14) is proven. For (3.15) we can argue in the same way: Restriction to I'g furnishes an element
in S# R, R* ! x T x RN®, He,..
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(a) H := M((le_/;h) € A(C), and H|r, € S(Ig) for every 3, with estimates uniformly in 8 for
B in compact intervals. The corresponding induced mapping (o, h) = H from C§P(R,.) x S(Iy)
into this subspace of A(C) is separately continuous.

(b) F:= ﬁl((le_/lzs) € A(C,C®(X x X)), Fir, € 8§(3,C®(X x X)) for every 3, with estimates
uniformly in 8 for 8 in compact intervals. The mapping (p,8) — F is separately continuous from
C&P(R4) x ST, C®(X x X)) to this subspace of A(C,C®(X x X)).

Proof. (a) By the Mellin inversion formula in 2.2, Ml‘/lzh(t) = 5 :ﬂ t~*h{is)ds. The integral
converges; we can differentiate under the integral sign for the derivatives to see that it furnishes a
smooth function.

Hence oM D;h € C§°(Ry). It is easy to check that its Mellin transform therefore is rapidly decreasing
on each line I'g, uniformly for 8 in compact intervals. Clearly, the mapping (p, g) — g is separately
continuous from C§° (R4 ) x C*(R.) to C§° (R ), and the Mellin transform is continuous from C§°(R..)
to the subspace of A(C) consisting of functions that restrict to S{Ig), uniformly for 8 in compact
intervals, i.c., the space MZ* for din X = 0. So the separate continuity follows.

(b) follows from (a), noting that S(I'g, C®(X x X))=8(I'g)®,C®(Xx X) and A(C,C®(X x X)) =
A(C)®,C>(X x X). For the continuity assertion we use the continuity of the Mellin transform from
CP (R4, C®(X x X)) to the corresponding subspace of A(C,C®(X x X)). a

Since the topology of B*%#(X; R2) is precisely that of a non-direct sum of the regularizing terms and
the local terms, Step (iii) of the Qutline 3.22 is immediate. We next attack Step (iv). Notice that all
¢ entries of the symbol quintuple in 1.12 are operator-valued symbols.

Lemma 3.28. Let E,F be Banach spaces with strongly continuous group actions k, k. Let p € R,
m,k,q € N, and
a=a(z,§,z,7) € S"RP,Rf x Do, x RL; E, F).

Then the function
A=A(z) = Mps: (M7, ,0)

is analytic on C with values in S*(R™, R}, E | F). Moreover, for all 3 € R,
(3.13) Alr, € S*(R™ R x Ty x R, E, F),
uniformly for B in compact intervals. The mapping (p,a) — A from CP(R4) x S*(R™, RF x Ty x
RY; E, F) to this Fréchet subspace of A(C,S*(R™,R¥*+%; E, F)) is separately continuous.
Proof. In view of the identities
SHR™ R xTy xRGE,F) = C®°R™&,5*R%R* x Ty xRS E,F).
A(C, S*R™, R E F)) = C®R™&,A(C,S*(RY, R¥ E, F))

we may assume that m = 0, i.e., a € S#*(R* x [y x R%; E, F) is independent of z. From Lemma 3.23
we know that A = M (szl_/;a) € A(C, S*(R**9; B, F)). This proves the first part of the statement.

Next consider A|r,. We may assume § = 0 due to the relation (M f){z + 8) = M,,.(t° f)(2):
Replacing Alr, by A|r, corresponds to replacing (t) by t~Pp(t) € C°(Ry.). For the analysis of Alr,
it is more convenient to switch from the Mellin to the Fourier transform. We write the variable on 'y
in the form z = ir, 7 € R, and let p(r,n} = a(i7,n). A simple computation gives

(M j29Mpa)(iryn) = (Frarple ) F L) (1)

The symbol p is an element of S#(R*¥t1+9, B F) and r — p(e™") = %(r) is a function in C(R). So
our task is reduced to showing that ¢ = Fy(r)F~1p € S#(R¥+1+0; B/ F). We abbreviate v = (£,7,7)
and consider a derivative Dfq = D? ' DFaDPsg. We then estimate

|&{oj=1 { D2 Frar o (M) F = pl(0) Y51 | e (B, 1)
= ||'-€[u]—lD€(¢ * P)(U)K[u}”z:(lz,p‘)
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Finally the separate continuity of the mapping follows from the closed graph theorem and the con-
tinuity properties established in Lemma 3.26, since the topology of the space with the transmission
property is finer than the original one. The closed graph theorem indeed can be applied: a mapping
A:C§P(R.,) = Y, Y alocally convex space, is continuous if and only if its restriction to the Fréchet
spaces Dy are continuous. 0

Remark 3.28. The Mellin quantization procedure in connection with the kernel cut-off allows us to
associate to an edge degenerate boundary symbol a holomorphic Mellin symbol.

We have now seen that, starting from an arbitrary Mellin symbol, the operation f + fy furnishes a
holomorphic Mellin symbol. Assuming additionally that 4 (p) = 1 near p = 1, the symbols f and fy
will differ only by a regularizing symbol along the line ['g, where we started. An interesting question is
the following: Suppose we initially have a holomorphic Mellin symbol h. What can we say about the
difference h — hy? Will it also be small along other lines? The theorem below shows that the difference
is as good as we can expect it to be.

Theorem 3.29. Given h € C* (R, x Q,MS“‘(X;R‘T)) and ¢ € CP(Ry) with Y(p) = 1 near p =1,
the difference h — hy, is an element of C®°(Ry x Q, M5%%(X;R9)).

Proof. Choose § € R and a nonnegative integer M > i+ |6|+1. Then DMh(t,.,n) is integrable along
I's. Moreover, the analyticity of the function z = p~?Dh(t, z,n) together with Cauchy’s theorem
implies that

o o0
/ p—iT(Df{h)(t,iT,ﬂ)dT=/ p“(ﬂ“’)(D‘:’h)(t,ﬁ+i'r,r})d'r,

—oo —00
g0 that Ml‘/IZ(Di"h)(t, p,1) = p‘ﬂMl‘/;_c_m(Df’h(t,C+ﬁ,17)). Hence, for z = g + ir,
(h ~ hy)(t, z,7)

[ et s o do

[Tt s (AW ) dy

/0 P A= (o) ™M p TP (DY B)(E, G + B,m) dp

| = N e ) do
= [MI/Q,p—rz(l - w(p))Ml—/]é'<_;ph(t)C + :Bi1])] (Z - ﬂ)

On the other hand, the function (¢,2,1) — h(t,z + 8,7) is an element of C°(R,., M4%(X;R9)); the
corresponding symbol estimates hold uniformly for 8 in compact intervals. Applying Theorem 3.20,
h— hy|r, € C® Ry, B~4(X;Ts x RY)), uniformly for § in compact intervals. a
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