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Braiding of Lie algebra 8l(2)

J.Donin, D.Gurevich

Abstract

We construct a (flat) braided deformation of the enveloping al­
gebra U(sl(2)). This means that the deformed algebra lies in the
category of Uq (sl(2))-modules. We consider the space generating this
deformed enveloping algebra. as a braided version of the Lie algebra
sl(2). Quantum counterpart of Feigin algebras 91(>') are defined and a
braided pairing and involution are introduced there. Poisson hrackets
generating this deformation are investigated.

o Introduction

It is not a big exaggeration to say that. the most popular object connected
with the quanttUll Yang-Baxter equation (QYBE) is the so called quantum
group Uq(g). It is well-known that this object has a Hopf algebra structure
which is adefonnation of the usual one of U(g). Nevetheless there exists
another type of defonnation arising frDIn the YBE, namcly brniding. Let us
give some exanlples oE braided or-in more general context- twisted objects.1

In [G 1] oue of the authors has iutroduced a notion of generalized Lie al­
gebras (called in SOUle papers S-Lie algebras) assuming S to be an involutive
(S2 = id) solution oE the QYBE. The enveloping algebra of an S-Lie alge­
bra is a twisted object i.e. it has a twisted Hopf struct.ure. It means that
the compatibility of the multiplication Il and the comultiplication ß can be
expressed by means of the standard relation

ßp.(a 0 b) = Il(ßa 0 ßb)

1 According to a tradition we llse the term braided to denot.e the ohjects connect.ed with
a non- involu tive (q lI<L'3i- triangu Iar) 80Intion of the QY BE. The term S -Lie alge bras is lIsed
only for involutive Sand the term twi.'itcd is used in the both cases.
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hut the multiplication in r.h.s. of this relation is defined via the operator S
(like in the definition of a super-Hopf algehras).

Remark that as far as we know the twisted Hopf algebras (assuming S to
be involutive) were first introduced by S.MacLane.

The dual object of the enveloping algebra mentioned above can be consid­
ered as a twisted analogue of a formal (co)group. Global group-like twisted
objects of CL a.nel SL type have been considered in the paper [G3].

Sh.Majiel [MI] has introduced a notion of a braided group anel discov­
ered a process of transn1utation converting the quantum group Uq(g) into a
braided group. The braided groups constructed by Sh.Majid have a braided
Hopf structure.

Note that there exist solutions of the QYBE which can not be obtained by
means of defonnation froln the usual pennutation S=u (u(x0y) = y0x), for
example a super-penllutation. A new classes of non-deformational solutions
of the QYBE have been constructed in [G2], [G3] (sOlne of theIn have been
independently discovered by M.Dubois- Violette and G.Launer [DL]).

All above objects represent exalllples of twisted (in particular, braided)
structures.

However in the present paper we use the term braided in a slightly different
sense assuming a b1'aided object to lie in the category Uq(g) - M od of Uq(g)­
modules. If this object is an algebra A this means that the mllltiplicat.ion
Il : A02 --+- A satisfies the condition

XJl = JlD..(X), X E Uq(ß) (1)

where ß is the coproduct in Uq(g) i.e. Uq(g) plays the role of the group of
symmetries of the algebra A.

Remark that cOlnpared to Uq(g), that is defined by means of some rela­
tions incltlding analytic ones, the braided counterpart of the algebra U(sl(2))
considered in the paper is thc so called quadratic-linear algebra.

Since all such objects of this category have a deformational nature it. is
reasonable to put a quest ion about the fiutness of that brnicling deformation.
Roughly speaking t.he jlalne8s means that the "quant.ity" of elelnent.s of the
cleformed object is stable under deforn1ation. In particular, we call aspace
V E Uq(g) - M od equipped with a bracket [,] : V02 --+- V a braiclecl Lie
algebra if the bracket [,] is a lnorhpism in the category Uq (g) - M od and if
its enveloping algebra is a flat deformat.ion of the initial object.
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Empbasize tbat tbe problem of definition of a braided counterpart of
Lie algebras (coll1pared to S-Lie algebras) bas been a subject of numerous
papers. Tbe main difficulty is to give a proper "braided" version of tbe
Jacobi identity. In some paper tbey reproduce tbe form given in [GI] for tbe
involutive S. However the simplest example considered in tbe present paper
shows that this definition is not reasonable.

We give another version of the Jacobi axiom ensuring the flatness of the
deformation of the enveloping algebra (this version is a specialization of the
Jacobi identity from [PP] for the braided case)2.

Note that defonning the enveloping algebra U(g) we deforme simultane­
ously its graded adjoint algebra, i.e. the comillutative a.lgebra of polynoll1ials
on g"'. Therefore it is natural to consider a quasiclassical linlit of this defor­
mation. It is a so called R-Inatrix Poisson bracket., i.e. the Poisson brackets
generated by an R-mat.rix.

In the case under consideration the corresponding R-matrix is of the form
R = ~X 1\ Y. It is a particular case of the following (modified) R-matrix
defined for any sinlple Lie algebra 9

R = ~ L X a /\ X- a E /\
2 g, (2)

aEO+

where {Ha, X a, X-al is the Cartan-Weyl basis in the Chevalley nornlaliza­
tion and n+ is the set of positive roots of g.

Tbere exists a natural way to assign to any R-matrix a bracket f 0 9 ~
{I, g} R defined on any honlogeneous space M and in particular on any orbit
in g"'. However the bracket dcfined by means of the R-matrix (2) satisfies the
Jacobi identity and therefore it is Poisson one only under sonle conditions on
M(we call such hOll1ogeneous space to be of an R-matrix type).

All R-Inatrix type orbits in g* for any simple Lie algebra 9 over the
field k = C have been classified (over the field k = C) in [GP]. Though the
problem of a quantization of all R-ll1atrix brackets on H.-matrix type orbits is
open it seenlS very plausible that the result of quantization can be represented
as a braided defonllation of tbe quotient-algebras of U(g) corresponding to
these orbits.

2When the paper was almost. completed we have received a preprint [M2] where the
author gives adefinition of a braided Lie algebra based on the notion of braided groups
but does not iuvestigate the flatnes.'l of the braiding deformation. Remark timt t.he braided
group is not any Rat deformation of the initial group structure.
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From this point of view t.he algebra Lie sl(2) has an exceptional position
since the R-matrix bracket is Poisson on the whole sl(2r (Le. all orbits in
sl(2r are of the R-matrix type). Therefore only for this algebra a braided
Hat deformation of the enveloping algebra can exist. We construct this de­
formation in Section 3.

In Section 4 we consider a braided counterpart of the algebra gl(A) in­
troduced by B.Feigin. These algebras have been defined in [Fei] as some
quotient-algebras of U(sl(2)). We introduce a braided pairing in the de­
formed algebras that is a morphism in the category of Uq (sl(2))-modules.

Emphasize that a deforInation of the pairing arising from the classieal R­
matrices has been studied in [GRZ]. There some enlarged scheine of quantum
mechanics has been suggested. The present paper ean be considered as a first
step aiming to include the deformational algebras arising from quantization
of some modified R-Inatrices in this scheme.

1 Family of Poisson brackets

First of all we recall the definition of a Hat deformation.
Let Ah be an assoeiative algebra over the ficld k[[h]] where k is the gronnel

field k = R 01' k = C and h is a formal paralnetre. This algebra is called a
Hat deforInation of the algebra A = Ao if Ah anel A[[h]] are iSOInorphic to
each other as k[[h]]-lnodules anel the multiplication Jlh in Ah is equal to

with some Inaps Jli : A02
---+ A and where Po = Il is the multiplication in the

initial algebra A (extended to A[[h]]). In a similar way Cl deformation of Cl

coassociative structure can be defined.
It is well-known that if Ah is a ftat deforInation of the algebra Athen PI

is a Hochschild cocycle on A. Assunüng A to be commutative we get more
information about IL1 . Nalnely the antisymmetric part of JlI d~noted usually
by

{a,b} = Jlda,b) - Jll(b,a)

and called a Poisson bracket satisfies the Leibnitz anel Jacobi idcntities .
Any Poisson bracket defined in the algebra of (smooth) functions on a

(smooth) lnanifold M cau be described by means of some skew bi-vector field
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on M. If such a Poisson bracket {,} is given, then a procedure of construct­
ing an algebra Ah with properties described above is called a deformational
quantization.

If a Poisson bracket is nowhere degenerated (this means that the manifold
has a symplect.ic structure) then a deformational quantization always exists
(cf., for example, [Fed] and [DWL]). As far as we know there does not exist
any example of a non-quantizable (degenerated) bracket.

Let 9 be a Lie algebra with structure constants cfj in a fixed base {Xd
i.e. [Xi, Xj] = cfjXk . Consider the linear Poisson-Lie3 bracket {, }PL defined
in the space Pol(g*) of polynomials on M = g* as follows

{t, 9 }(~) =< (d/, dg], ~ >, eE g'".

Then tbe enveloping algebra U(g) with the parameter h introduced in struc­
ture constants (cfj --+ hcfj) is a quantization of the Poisson-Lie bracket (in
what follows we use not.ation Uh(g) for U(g) equipped with the parameter h
as above). That follows frOl11 the PBW theorem.

The restrictioll of the Poisson-Lie bracket to any of its symplectic leaves
defines the so called KiriJlov-Kostant-Souriau bracket (we denote it {,} KKS)'

Let R = 1·
ij Xi (;9 X j E 1\02 9 be a dassical or a modifieel R-matrix. Let us

consicler a new bracket

(3)

where x =< X, e>, eE g'" (we caJl this bracket the R-matrix one).
It is obvious that the bracket (3) can be restricted to any sYI11plectic leaf

of the Poisson-Lie bracket (the orbits of the corresponding group G). It is
also deal' that the bracket (3) is Cl. Poisson if R is a dassical R-r11atrix. If R
is a modified R-matl'ix the bracket (3) is a Poisson only being restricted to
a some orbit.s in g. (we call t.llem the R-Inatrix type ones, cf. Introduction).

We reproduce (partially) t.he result froll1 [GP] where all R-rnatrix type
orbits have been classified (over the fielel k = C).

Proposition 1.1 Let CJ be a non-zero orbit in o· 0/ an element x E 0·.
1. Suppose the orbit CJ to be of R-matrix type. Then x is either semisimple
or nilpotent.

3Nowadays this name is more orten IIsed to denote some quadratic Poisson bracket
defined on the corresponding Lie gronp. 'Ne prefer to caB it. the Sklyanin bracket.
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2. If 0 is se1nisi7np/e, then 0 is of R-matrix type ilJ 0 is asymmetrie spaee
(it is truefork = R as 'lUeIl).

We do not reproduce any description of R-matrix type nilpotent orbits since
we do not need it. Let us only remark that. the orbit of the heighest weight
vector is an orbit of such type (cf. also [DG1], [DGM], [DG2])

As it follows from this Proposition for any Lie algebra g =f:. s/(2) there
exist orbits whicb are not of R-matrix type, for example non-symmetrie orbits
of semisimple elenlents.

Tbus tbe Lie algebra g = 8/(2) is only simple Lie algebra such that 0.11
orbits in g* are of R-nlatrix type anel therefore tbe bracket (3) is Poisson one
on tbe whole g*.

It i8 easy to see that R-matrix bracket (assuming R t.o be a classical R­
lnatrix) and Poisson-Lie bracket are compatible. The bracket.s {, }KKS anel
{, } R have the salne propert.y for any moelifieel R-matrix anel any R-matrix
type orbit. This nleans t.hat 0.11 brackets of the family

(4)

are Poisson.
Note that conlpatibiIity of the bracket {,} KKS and reduced Sklyanin

bracket has been investigated in [KRR] for the orbits equipped with an her­
mitien structure.

2 Quantization and quadratic-linear algebras

There exists a problem of great interest: to quantize the whole family (4)
simultaneously. The scheme of simultaneous quantization assuming R to be
a non-modified classical R-Inatrix was suggested in [GRZ]. If R is a modified
R-matrix (2) then the quantizat.ion is done only for some brackcts frolll the
family (4) (cf. [DGI], [DGM], (DG2]).

Note that the brackets (4) are in general degenerated and therefore they
can not be quantized by methods of the papers [Fed] anel (DWL].

Let us reproduce a scheme of quo.ntization from [GRZ] in a short form
assuming R ta be a classical R-Jllatrix. Consider the elelnent
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constructed by Drinfeld [D1) and satisfying the following relations

Fv = 1 Inodv, Fv - (J'Fv = R modv'2, (c (9 id)Fv = (id (9 c)Fv = 1,

A 1'2 D F 1'2 _ A 23F F 23
Ll l'v v -Ll V),l

where (J' is the usual perIllut.ation. Deforrn now the initial mult.iplication

as follows

Ilh,v = Jlh (p (9 P)Fv

where p is the extension of the representation px(Y) = [X, Y) to Uh(g) and
(p (9 p)Fv is the corresponding Illap from Uh(g)02 [[v]J to itself.

The algebra Uh(g) equippeel with t.he multiplication P'h,v will be denoted
uh,q (we put q = eV

). It is a two-parameter quantization of the family
(4). More precisely this algebra equipped with the multiplication Ilh,),I where
h = ah1 , v = bh t is a quantizat.ion of the bracket {,} b'u,

Unfortunately we can not. use sirnilar rnethods to quantize the family (4)
when R is the R-matrix (2) since there do not exist elements Fv with the
above properties. (the last property holds in a weakcr form). Nevetheless
we will quantize the faInily (4) in t.he frarnes of theory of quaelratic and
quadratic-linear algebras.

We will reproduce SOIlle aspect.s of this theory basing mainly on the paper
[PP).

Let V be a fixed linear space anel I be a subspace in V0 2 . Then the
algebra I\+(V, I) = T(V)j {I} where {I} is the ideal in T(V) generated by
elements belonging to I is called the qundratic algebra corresponcling to I.
Let I\~(V, I) clenotes its hOIllogenous component of degree land introeluce
the linear spaces

I\~ = k, I\~ = V, I\~(V, J) = 1\~-l(V, I) (9 V n V0(l-2) (91,1 = 2; 3; ...

Note that in general case the direct stIrn ffil\~(V, I) does not have any ag­

socitive structure. The quaclratic algebra is called a [(oszul algebra if the
cornplex
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is exact, here d is a natural differential:

The following statement is well-known.·

Proposition 2.1 If I\+(V, I) is a Koszul algebra then the usual relation

P-(tyP_( -t) = 1

for the PoinclLre serics P±(t) = L dirn I\~ (V, 1)tk holds.

Given a map [,] : I -+ V define a quadratic.linear algebra (an analogue
of the enveloping algebra) in a natural way: U(g) = T(V)j {J} where {J} C
T(V) is the ideal generated by elements I - [, ]1. Since there exists a natural
filtration in this algebra we consider the graded algebra G7>U(g).

The following proposition proved in [PP] is a very useful generalization
of the PB\V theorem.

Proposition 2.2 Let llS assunu!, that the algebra I\+(V, I) is a f{oszul algebra
and that the followiug eonditions

and
[, ] ( [, ]12 _ [,] 23) 1\: (V, 1) = 0

are fulfilled. 'Then GrlJ( g) nnd 1\+ (V, 1) are isomorphie as graded algebras.

In the next Section we will usc this proposition to const.ruct a braiding of
sl(2).

3 Braided Lie algebras: sl(2) case

First let us give adefinition of a braided Lie algebra.

Definition 3.1 Let Uq(g) be a. quantum group and let V be a finite.dimensio­
nal objeet 01 the category U(sl(2)) - A/od of all U(sl(2))-modules. Assume
that V@2 ean be deeomposed into fL direet SU7n 0/ two subspaces V@2 = lEB 7.
We say thal the spaee V is erJ7.I.ipped with the strueture 01 a braided Lie algebra
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if there exists an operator [,] : V0 2 -+ V satisfying the axioms
O. the algebra Ä+(V, 1) is a !(08zul algebra;

1.[,]7 = 0;
2. The relations of P7'oposition 2.2 are satisfied;
3. The spaces 1,7 are objects o[ the category U(sl(2)) - M od and the operator
[,] is a m07'phis1n in this calegory.

Remark that tbis definition ean be extended up to constant-linear brackets
[,] : V02 -+ V EBk. It is possible to make this bracket purely linear introdueing
a new central generator sand a..o;;suming [, ]V02 -+ V EB ks (we let X s = 0 for
any X E Uq(g)).

We will COInpare the definition above with t.he one from [G4]. Let 5
be a solution of the quanttnn Yang-Baxter equation (QYBE). Let {ed be a
fixed base in V and {ei} ~e the dual base in V*. Consider the linear space
L = V 0 V· with base {ei = ei 0 ei } equipped with the operator

5 . L02 L02 5 ( i (()., I) - 5ab (5- 1 )i1 m (()., nQ . -+ ,Q ei 161 ek - ik mn ea 161 eb'

Consider also the algebra ARTF of Reshetikhin-Takhtaclzhyan-Faddeev type
A(S) = T(L)j{J} where {J} is the ideal generated by the inutge of the
operator id - SQ. In sOlne cases this algebra with an additional condition
on the quantum deternlinant (assuming it to be well-defined) has a Hopf
structure.

In [RTF] it is shown that. if S is a solution of the QYBE corresponding
to a vector representation of the quantum group Uq(g) then there exists a
pairing of Hopf algebra..o;;

Uq(g) 0 A RTF -+ k.

In the case under consideration the category of finite-dimensional U(g)­
lnodules aud the category of finite-dimensional ARTF-comodules eoincide. In
the general case (including non-deforIllational solutions of the QYBE frOIn
[G3]) the category U(sl(2)) - A10d in the axiom 3 of the Definition above
should be replaced by the last category as it was done in [G4].

Let restriet ourselves now to the case g = sl(2). ]n this case the Hopf
algebra structure in Uq (81(2)) can be described as folIows. This algebra is
generated by the elements {11, X, Y} satisfying the relations

qJ/ _ q-H
[H, X] = 2X, [lI, Y] = -2Y, [X, Y] = 1

q - q-
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The coproduct is defined by the following formulae

(we do not need the antipode).
Let V be a Uq(81(2) )-module of spin 1 with the base {u, v, w} and oi the

following module structure:

Hu = 2u, Hv = 0, Hw = -2w, Xu = 0, Xv = -(q + q-l)ll, Xw = v,

Yu = -v, Yv = (q +q-I)W,. Yw = 0.

The space V02 cau be decomposed into a direct surn of three irreducible
Uq(sl(2))-modules: Va, V;, anel V; of spin 0; 1 and 2 respectively. Let us
describe them explicitly:

Va = span(((/ + q)uw + vv + (q + q-I)Wll),

VI = span(q21lv - Vll, (q3 + q)(llW - Wll) + (1 - (2)VV, _q2vw + wv),

V2 = span(1l1l, llV + (/vu, 1lW - qvv + q4wu , VW + q2wv , ww)

(we omit the sign (9 if it does not lead to a Inisunderstanding). Note that the
element Cq = ((/" + q)ll'lLJ + VV + (q + q-I)WU is a q-analogue of the Casilnir
element, Le., it is Uq (sl(2) )-invariant.

We define the subspaces 1 = 1q and 7 =7q anel the bracket [,] as follows

I=V1,7=vo EBY2,

[,]7 = 0, [,](q2uv - Vll) = -2hu,

[,]((q3 + q)(uw - wu) + (1 - (2)vv) = 2hv, [,]( _q2vw + wv) = 2hw.

We leave Lo the reader to verify that the bracket [,] is a morphism of the
category Uq ( 81(2)) - M od. Indeed it is possible to prove these relations
assuming the highest weight vect.ors of V and V; t.o be equal to each other
and applying the decreasing operator Y to this equality. This implies that
the multiplication J-lh,q in the algebra uh,q (81(2)) satisfies the condition (1).

The relations silnilar to the last three ones have been constructed in
[E] but the author of that paper does not define any bracket and does not
investigate the flatness of the defonnation of the enveloping algebra.
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Let us express the bracket [,] in the basis form:

[v, u] = 2Mu, [v, v] = 2(1 - q2)Mv, [v, 10] = _2q2M1O,

[10, u] = -2(('1 + q-l ))-1 Mv, [10, v] = 2M1O, (w,1o] = 0,

where M = h(l + q4)-1.
Let Uh ,q(sl(2)) denote the enveloping algebra T(V)/ {J} where J is a

linear space in V02 EB V generat.ed by the elements

and {J} is the corresponding ideal. Note that Uo,q(sl(2)) = 1\+ (V, 1q).

Proposition 3.1 The algebnt 1\+ (V, 1q ) is a !{oszul a.lgebra.

Proof. Fix a base D3 = {uavb1Oc , a + b + c = 3} in the homogeneous
component I\t(V,lo). Let HS show now that this set is still the base in the
space t\t(V, 11/)' i.e. the elelnents of this fanlily are linearly independent.

Note first that thc space t\:(V, 1q ) is a one-dilnensional space. It is easy
to find its generator:

z = -('1 + q-1)W('12uv - vu) + v((q3 + q)(uw - W1l) + (1 - (2)VV)+

(q3 + q)u( -(lvw + lUV) = -(/ + '1)(q2uv - vu)w + ((q3 + q)(1lW - W1l)+

(1- (/)vv)v + (q + q-l)(_'12vw +wv)u.

Thus the space VI generates a 17-dimensional subspace in V03
• It is obvious

that any elClnent of V03 can be expressed via the elements from the set D3 .

Therefore the elements frOlll D3 are independent.
By virtue of the "dianlond lemnla" (its useful version is given in a [PP])

we can state that the set {uavbwc for all integer u, b, c 2:: O} is PBW base
in t\+(V,lq ). Then by virtue of the Priddy theorem (cf. [PP]) the algebra
t\+(V, 1q ) is a Koszul one. That cOIllpletes the proof.

Since diInt\~ (V, 1q ) = 3 and diInt\: (V, 1q ) = 1 for any q, then by Propo­
sition 2.1 P+(t) does not change in the process of deformation i.e. 1\+(V,lq )

is a flat defonnation of t\+(V, 10 ),

11



It is easy to see that ({, p~ - [, ]~3)Z = 0 and therefore the following data
(V, I, 7, [,]) defines a braided Lie algebra. By virtue of Proposition 2.2
GrUh,q(sl(2)) = Ä+(V,Iq) and therefore the algebra GrUh,q(sl(2)) is a flat
two-pararneter defoflnation of the commutative algebra Ä+(V, 10 ),

We put q = e/.l and computing the quasic1assical limit we find that the
algebra UO,q(sl(2)) = "+(V, Iq) is a quantization of the R-matrix bracket

v~

{u,v}n = -UVj {U,W}R = 2' {v,w}n = vw

where R = ~(1t 0 W - W 0 1l). Since the algebra Uh,l (sl(2)) is a quantiza­
tion of the Poisson-Lie bracket it is deal' that the algebra Uh,q(sl(2)) is a
quantization of the faInily (4).

Thus we have quantized the family (4) simutaneously. In the next Section
we investigat.e some quotient algebras of the algebras Uh ,q(sl(2)).

4 Braided algebra gl(A)

The main goal of this Section is to treat the algebra A~,q as a braided ana­
logue of the Feigin algebra gl(A.) anel Lo introduce a pairing such that it is a
morphisln in the category Uq (sl(2)) - M od (for the sake of brevity we call it
a Uq(sl(2))-pairing).

The algebra gl(A.) was introduced by B.Feigin [Feil as a quotient algebra
of U(sl(2)) over the ideal generated by the eleInent C - A(A - 1)/2 where C
is the Casinür element in sl(2). This algebra is associative (and it is a Lie
algebra with respect to the natural bracket). As a sl(2)-modllle gl(A.) is the
direct sum of irreducible sl(2)-Inodules Vi,O :S i < 00.

Consider now the associative algebra A~,q = Uh,q(sl(2))/{Cq- c} and let
fl~,q denotes the multiplication in it. Here {Cq - c} denotes as usually the
ideal generated by the eleInent Cq - c.

Assuille now that q is not a root of unity. It is well-known that for a
generic q the q-analogue of t.he representation theory is very elose to the
classical one. Let two Uq(sl(2) )-modules Pk : Uq(g) ~ End(Vk ), k = i; j
(where k is the spin) be given. Then Vi 0 \!j cau be decotnposed int.o tbe
direct SUffi

of Uq ( 81(2) )-nl0dules.
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As an exalnple we describe explicitly this decomposition for the product
V; 0 VI

Consider an operator Si,} = u(Pi0Pi)R where R is the universal R-matrix
for Uq ( 81(2)) (c.f. [KT))

R. = eXPq_~((q - q-I)X 0 Y)q~ =

(I + ('I - q-I)X 0 Y + ('I - q-I?(1 +q-2)-IX2 0 y2 + ...)q~.
The operator Si,j being rest.ricted to an irreducible component of the product
Vi 0 Vi is a scalar one. Let A7j denote the eigenvallle of Si,l restricted on
Vk . Let P1'7j denote the projection operator Vi 0 Vi ----+ Vk in the category
Uq(g) - Mod. Then VI 0 VI = Vo EB V; ffi V2 anel

\0 -4 \1 -2 \2 2 P 2 (S-q-4)(S+q-2)
""11 = q 1 ""11 = -q ,""11 = q, 1'11 = ('12 _ q-4)(q2 + '1-2)'

Using the standart met.hocl of the clefornlation theory we show for generie
q that as a Uq(g)-module t.he algebra A~,q is the direet surn of the irredueible
Uq(g)-modules Vi,

Now we intraduee a. braided Lie bracket in the algebra A~,q. Ta do this
we introduce an operat.or f:; = {Si,l} such that Si,l = L( -1 )ak Pr7j' where
ak = 0 if A7j ~ 0 anel (I.k = 1 if A7j < 0 (asslllning q ER). This operator is an
involutive 1110rphislll in the category Uq (sl(2)) - Alod because all operators
Prt are morphisrns in it.4

Define the braided Lie bracket. a.s follows

It is abviaus that this bracket is a Illorphism in the category Uq ( 81(2)) - M od
hut the probleIll whether the .lacobi identity holds is still open.

We illustrate now the nation of a braidecl Lie algebra ollee nlore treating
the algebra A~,q itself a.s the enveloping algebra of a braicled Lie algebra.
Ta do this let us introcluce Cl new clecomposition V0 2 = I ffi 7 as follows
I = Vo ffi VI, 7 = V2 anel elefine the bracket [,] as above with the only

4Note thaI, accordillg to Drinfeld's resllIt.s [D2] S = Frrqt F- 1 where t is the split
Casimir element and F is an intertwining operator. Then S =FuF- 1 (c.f.(DGM],[DGl]).
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difference [, Ht) = c where t is the split q-Casimir, Le., Cq which is regarded
as an element of V0 2 .

In the case under consideration we have diml\:(V, I q ) = 4. It is obvious
that Z E I\~ (V, Iq ). One can find other three generators of this space using
the relations

u®t-t®uE{Y;}, v®t-t®vE{Y;}, w®t-t0wE {Y;}.

Thus the followi ng elements (together wi th Z) generate the space I\~ (V, Iq)

ZI = 'llt - u((q3 + q)(uw - wu) + (1 - '12)VV) - q-2V(q2uv - vu) =

tu + q-2(((/ + q)(uw - wu) + (1 - '12)VV)11 + ('12uv - vu)v,

Z2 = vt + ('13+ '1 )1l( _q2V'W + 'lllV) + w('1- 1+ '1-3)('12 11V - vu) =

tv - ('13+ q)('12uv - V11) - ('1- 1+ '1-3)( _'12vw + WV)11,

Z3 = wt + '1-Zw(((/ +q)(uw - W1.l) + (1 - qZ)vv) - v( -(/vw + Wv) =

tw - (('13+ q)(uw - wu) + (1 - q2)VV)W + '1-Z( _q2vw + Wv)v.

Applying now the operator L]1z - L]23 to the elelnent.s above we obtain O.
Thus the axioills 1-3 of t.he Definition of a braided Lie algebra are satisfied.
As for the axiom 0 we can only conjecture it.

Thus we have represented the algebra Ah,q (up to the conjecture) as the
enveloping algebra of a braieled Lie algebra.

Introeluce now a Uq($1(2))-pairing in the algebra Ah,q as follows. First
remark that lInP1'?j =I 0 iff i = j and ditnImF1"?i = 1. Let fi denote Cl.

generator of the space hnPr?i ancl put < 1, 1 >= 1,

where bi is elefineel via the relat.ion P1'?j = hili (we t.ake the split Casill1ir as

11)'
In the case of the algebra A~,q there exists a lot of pairings since we can

choose Ii in arbitrarily way. As for the algebras A~,q, c =I 0 we should chaose
the elements Ii nl0re carcfully. Nall1ely we put fi = ci f: mod {V;}. 11. i8
natural to da so because of the equations < ft, fi >= ck+1

•

It is clear that this pairing in algebra the A~,q is a Uq(..,,1(2))-one anel it is
S-commutat.ive Le. <, >=<, > S.
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Thus a Uq (B/(2))-pairing in the algebra A~,q is constructed. This approach
enables us to treat the braided algebra A~,q as an operator algebra (with
respect to right or left multiplication) equipped with a braided pairing. It
would be very interesting to calculate this pairing in a more explicit form.

It is not difficult to construct an involution which is a morphism in the
category Uq(B/(2)) - Mod hut its role is not yet clear. Finishing this Section
we want to remark that for the algebras lying in the category of Uq(g)­
modules it is natural to require the pairing and involution operators to be
morphisnls of this category. From our point of view it is more natural to
introduce the so called "quantUlll sphere" (c.f. [P]) equipped with pairing
and involution of such a type. It will be done elsewhere.

5 Discussion

At the end of the paper we would like to cotnpare the braided Lie algebras
and the S-Lie algebras introduced in [GI] for an involutive solution of the
QYBE S. Let us recall that the last object wa.", defined by the followng
aXIoms:
1. [,JS=-['],
2. [,][, ]12(id + 5 125 23 + 5 2351~) = 0,
3. 5[,]12 = [,]235125 23 .

Introducing the subspaces land 7 E V02 as follows

I = Im(id - 5) = Ker(id + S), 7 = Im(id + 5) = Ker(id - S)

one can see that the first axioms coincide. The axiom 0 for thc S-Lie algebra
is fulfilled since in the invoilltive case the algebra !\(V, I) is always Koszul
one (it is proved in [G3] in a n10re general context). The last axiom from
the last definition Ineans that the bracket [,] is a morphism of the category
generated by the space V.

However the axiotns.2 have different fOrIns. And it is easy to check that
the Jacobi identity ill the last fonn is not true for the braided Lie algebra
8/(2). In particttlar that the "adjoint" operator X -t [X, Y] is not a repre­
sentation of the braided Lie algebra 8/(2) (but it is a representation for auy
5-Lie algebra).

Remark that one often introcIuces the Jacobi identity for non-involutive 5
in the same fornl as for S-Lie algebras (cf. for example [\\T], [0]). An exanlple
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of the bracket in the braided sl(2) shows that it is reasonable to claim the
Jacobi identity for non-involutive S in a weaker form of Proposition 2.2.
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