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Braiding of Lie algebra sl(2)

J.Donin, D.Gurevich

Abstract

We construct a (flat) braided deformation of the enveloping al-
gebra U(sl(2)). This means that the deformed algebra lies in the
category of Ug(sl{2))-modules. We consider the space generating this
deformed enveloping algebra as a braided version of the Lie algebra
si(2). Quantum counterpart of Feigin algebras gl()) are defined and a
braided pairing and involution are introduced there. Poisson brackets
generating this deformation are investigated.

0 Introduction

It is not a big exaggeration to say that the most popular object connected
with the quantum Yang-Baxter equation (QYBE) is the so called quantum
group U,(g). It is well-known that this object has a Hopf algebra structure
which is a deformation of the usual one of U(g). Nevetheless there exists
another type of deformation arising from the YBE, namely braiding. Let us
give some examples of braided or-in more general context- twisted objects.!

In [G1] one of the authors has introduced a notion of generalized Lie al-
gebras (called in some papers S-Lie algebras) assuming S to be an involutive
(S? = id) solution of the QYBE. The enveloping algebra of an S-Lie alge-
bra is a twisted object i.e. it has a twisted Hopf structure. It means that
the compatibility of the multiplication sz and the comultiplication A can be
expressed by means of the standard relation

Ap{a® b) = p(Aa @ Ab)

' According to a tradition we use the term braided to denote the objects connected with
a non-involutive (quasi-triangular) solution of the QYBE. The term S-Lie algebras is used
only for involutive S and the term twisted is used in the both cases.
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but the multiplication in r.h.s. of this relation is defined via the operator S
(like in the definition of a super-Hopf algebras).

Remark that as far as we know the twisted Hopf algebras (assuming S to
be involutive) were first introduced by S.MacLane.

The dual object of the enveloping algebra mentioned above can be consid-
ered as a twisted analogue of a formal (co)group. Global group-like twisted
objects of GL and SL type have been considered in the paper [G3].

Sh.Majid [M1] has introduced a notion of a braided group and discov-
ered a process of transmutation converting the quantum group U,(g) into a
braided group. The braided groups constructed by Sh.Majid have a braided
Hopf structure.

Note that there exist solutions of the QYBE which can not be obtained by
means of deformation from the usual permutation S=¢ (6(zQy) = y®«<), for
example a super-permutation. A new classes of non-deformational solutions
of the QYBE have been constructed in [G2], [G3] (some of them have been
independently discovered by M.Dubois-Violette and G.Launer [DL]).

All above objects represent examples of twisted (in particular, braided)
structures.

However in the present paper we use the term braided in a slightly different
sense assuming a braided object to lie in the category U,(g) — Mod of U,(g)-
modules. If this object is an algebra A this means that the multiplication
i A®? — A satisfies the condition

Xp=pA(X), X € U,(p) (1)

where A is the coproduct in U,(g) i.e. U,(g) plays the role of the group of
symmetries of the algebra A.

Remark that compared to U,(g), that is defined by means of some rela-
tions including analytic ones, the braided counterpart of the algebra U(s{(2))
considered in the paper is the so called quadratic-linear algebra.

Since all such objects of this category have a deformational nature it is
reasonable to put a question about the flatness of that braiding deformation.
Roughly speaking the flutness means that the “quantity” of elements of the
deformed object is stable under deformation. In particular, we call a space
V € U,(8) — Mod equipped with a bracket [,] : V®* — V a braided Lie
algebra if the bracket [,] is a morhpism in the category U,(g) — Mod and if
its enveloping algebra is a flat deformation of the initial object.



Emphasize that the problem of definition of a braided counterpart of
Lie algebras (compared to S-Lie algebras) has been a subject of numerous
papers. The main difficulty is to give a proper “braided” version of the
Jacobi identity. In some paper they reproduce the form given in [G1] for the
involutive S. However the simplest example considered in the present paper
shows that this definition is not reasonable.

We give another version of the Jacobi axiom ensuring the flatness of the
deformation of the enveloping algebra (this version is a specialization of the
Jacobi identity from [PP] for the braided case)?.

Note that deforming the enveloping algebra U(g) we deforme simultane-
ously its graded adjoint algebra, i.e. the commutative algebra of polynomials
on g*. Therefore it is natural to consider a quasiclassical limit of this defor-
mation. It is a so called R-matrix Poisson bracket., i.e. the Poisson brackets
generated by an R-matrix.

In the case under consideration the corresponding R-matrix is of the form
R =1XAY. Itis a particular case of the following (modified) R-matrix
defined for any simple Lie algebra g

1
R=- 3% X,AX_, €A, (2)
2a€ﬂ
+

where {H,, X4, X_o} 15 the Cartan-Weyl basis in the Chevalley normaliza-
tion and {2, is the set of positive roots of g.

There exists a natural way to assign to any R-matrix a bracket f @ ¢ —
{f,9}r defined on any homogeneous space M and in particular on any orbit
in g*. However the bracket defined by means of the R-matrix (2) satisfies the
Jacobi identity and therefore it is Poisson one only under some conditions on
M (we call such homogeneous space to be of an R-matrix type).

All R-matrix type orbits in g* for any simple Lie algebra g over the
field k = C have been classified (over the field k = C) in [GP]. Though the
problem of a quantization of all R-matrix brackets on R-matrix type orbits is
open it seems very plausible that the result of quantization can be represented
as a braided deformation of the quotient-algebras of U(g) corresponding to
these orbits.

2When the paper was almost completed we have received a preprint [M2] where the
author gives a definition of a braided Lie algebra based on the notion of braided groups
but does not investigate the flatness of the braiding deformation. Remark that the braided
group is not any flat deformation of the initial group structure.
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From this point of view the algebra Lie s{(2) has an exceptional position
since the R-matrix bracket is Poisson on the whole si(2)" (i.e. all orbits in
sl(2)" are of the R-matrix type). Therefore only for this algebra a braided
flat deformation of the enveloping algebra can exist. We construct this de-
formation in Section 3.

In Section 4 we consider a braided counterpart of the algebra gi(}) in-
troduced by B.Feigin. These algebras have been defined in [Fei] as some
quotient-algebras of U/(sl(2)). We introduce a braided pairing in the de-
formed algebras that is a morphism in the category of U,(s!{(2))-modules.

Emphasize that a deformation of the pairing arising from the classical R-
matrices has been studied in [GRZ]. There some enlarged scheme of quantum
mechanics has been suggested. The present paper can be considered as a first
step aiming to include the deformational algebras arising from quantization
of some modified R-matrices in this scheme.

1 Family of Poisson brackets

First of all we recall the definition of a flat deformation.

Let As be an associative algebra over the field k[[A]] where £ is the ground
field k = R or £k = C and / is a formal parametre. This algebra is called a
flat deformation of the algebra A = Ay if A, and A[[h]] are isomorphic to
each other as k[[A]]-modules and the multiplication g, in Ay is equal to

= po + hpey + B, + .

with some maps y; : A%? — A and where p; = g is the multiplication in the
initial algebra A (extended to A[[A]]). In a similar way a deformation of a
coassociative structure can be defined.

It is well-known that if Ay is a flat deformation of the algebra A then g,
is a Hochschild cocycle on A. Assuming A to be commutative we get more
information about g,. Namely the antisymmetric part of j, denoted usually
by

{a,b} = pr(a, b) — py (b, a)
and called a Poisson bracket satisfies the Leibnitz and Jacobi identities .

Any Poisson bracket defined in the algebra of (smooth) functions on a
(smooth) manifold M can be described by means of some skew bi-vector field



on M. If such a Poisson bracket {, } is given, then a procedure of construct-
ing an algebra A, with properties described above is called a deformational
quantization.

If a Poisson bracket is nowhere degenerated (this means that the manifold
has a symplectic structure) then a deformational quantization always exists
(cf., for example, [Fed] and [DWL]). As far as we know there does not exist
any example of a non-quantizable (degenerated) bracket.

Let g be a Lie algebra with structure constants cf; in a fixed base {X;}
ie [X;, X;] = cf—‘ij. Consider the linear Poisson-Lie® bracket {, }p;, defined
in the space Pol(g*) of polynomials on M = g* as follows

{f,9}(€) =< [df,dg},€ >, £ € g".

Then the enveloping algebra U(g) with the parameter & introduced in struc-
ture constants (cf; — hcf;) is a quantization of the Poisson-Lie bracket (in
what follows we use notation U*(g) for U(g) equipped with the parameter h
as above). That follows from the PBW theorem.
The restriction of the Poisson-Lie bracket to any of its symplectic leaves
defines the so called Kirillov-Kostant-Souriau bracket (we denote it {, }kxs).
Let R =r7X; ® X; € A®?g be a classical or a modified R-matrix. Let us

consider a new bracket

{f,9}r = {=zi, fHz;, 9} (3)

where z =< X, € >, £ € g* (we call this bracket the R-matrix one).

It is obvious that the bracket (3) can be restricted to any symplectic leaf
of the Poisson-Lie bracket (the orbits of the corresponding group G). It is
also clear that the bracket (3) is a Poisson if R is a classical R-matrix. If R
is a modified R-matrix the bracket (3) is a Poisson only being restricted to
a some orbits in g* (we call them the R-matrix type ones, cf. Introduction).

We reproduce (partially) the result from [GP] where all R-matrix type
orbits have been classified (over the field k = C).

Proposition 1.1 Let O be a non-zero orbit in g* of an element z € g*.
1. Suppose the orbit O to be of R-matriz type. Then x is either semisimple
or nilpotent.

3Nowadays this name is more often used to denote some quadratic Poisson bracket
defined on the corresponding Lie group. We prefer to call it the Sklyanin bracket.



2. If O is semisimple, then O is of R-matriz type iff O is a symmetric space
(it is true for k = R as well).

We do not reproduce any description of R-matrix type nilpotent orbits since
we do not need it. Let us only remark that the orbit of the heighest weight
vector is an orbit of such type (cf. also [DG1], [DGM], [DG2])

As it follows from this Propesition for any Lie algebra g # si(2) there
exist orbits which are not of R-matrix type, for example non-symmetric orbits
of semisimple elements.

Thus the Lie algebra g = sl{2) is only simple Lie algebra such that all
orbits in g* are of R-matrix type and therefore the bracket (3) is Poisson one
on the whole g*.

It is easy to see that R-matrix bracket (assuming R to be a classical R-
matrix) and Poisson-Lie bracket are compatible. The brackets {, }xxs and
{, }r have the same property for any modified R-matrix and any R-matrix
type orbit. This means that all brackets of the family

{)}a.b= {a}KKS+{1}R (4)

are Poisson.

Note that compatibility of the bracket {,}xxs and reduced Sklyanin
bracket has been investigated in [KRR] for the orbits equipped with an her-
mitien structure.

2 Quantization and quadratic-linear algebras

There exists a problem of great interest: to quantize the whole family (4)
simultaneously. The scheme of simultaneous quantization assuming i to be
a non-modified classical R-matrix was suggested in [GRZ]. If R is a modified
R-matrix (2) then the quantization is done only for some brackets from the
family (4) (cf. [DG1], [DGM], [DG2]).

Note that the brackets (4) are in general degenerated and therefore they
can not be quantized by methods of the papers [Fed] and [DWL].

Let us reproduce a scheme of quantization from [GRZ] in a short form
assuming R to be a classical R-matrix. Consider the element

F, € U(9)%*([]]

6



E—

constructed by Drinfeld [D1] and satisfying the following relations
F,=1modv, F,—cF,= Rmodv? (e®id)F, = (id®¢)F, =1,

AIQF F 12 — A‘ZSFVFVZB

where o is the usual permutation. Deform now the initial multiplication
®2
o UM()™ — UMe)

as follows
Hhy = ﬂh(ﬂ @ P)Fu

where p is the extension of the representation px(Y) = [X,Y] to U*(g) and
(p ® p)F, is the corresponding map from U*(g)**{[v]] to itself.

The algebra U"(g) equipped with the multiplication sy, will be denoted
UM (we put ¢ = €¥). It is a two-parameter quantization of the family
(4). More precisely this algebra equipped with the multiplication s, where
h = ahq,v = bhy is a quantization of the bracket {,} _,.

Unfortunately we can not use similar methods to quantize the family (4)
when R is the R-matrix (2) since there do not exist elements F, with the
above properties. (the last property holds in a weaker form). Nevetheless
we will quantize the family (4) in the frames of theory of quadratic and
quadratic-linear algebras.

We will reproduce some aspects of this theory basing mainly on the paper
[PPI.

Let V be a fixed linear space and I be a subspace in V®?. Then the
algebra A (V,I) = T(V)/{1} where {I} is the ideal in T(V) generated by
elements belonging to I is called the quadratic alyebra corresponding to 1.
Let AL(V, 1) denotes its homogenous component of degree [ and introduce
the linear spaces

N =k AL =V, ALV, =AWV, DNV Ve-D o 1=2:3: ..

Note that in general case the direct sum @A (V,I) does not have any as-
socitive structure. The quadratic algebra is called a Koszul algebra if the
complex

ANV DALV, I S AV e AT V) S
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is exact, here d is a natural differential:
da1®. ) ®@..80=(019..0:830)R (2R ...0 I).
The following statement is well-known. -

Proposition 2.1 If Ay (V, 1) is a Koszul algebra then the usual relation
P_(t)yP_(-t)=1
for the Poincaré series Py(t) = ¥ dim AL (V, I)t* holds.

Given a map [,] : I — V define a quadratic-linear algebra (an analogue
of the enveloping algebra) in a natural way: U(g) = T(V)/{J} where {J} C
T(V) is the ideal generated by elements J — [,]/. Since there exists a natural
filtration in this algebra we consider the graded algebra GrU(g).

The following proposition proved in [PP] is a very useful generalization

of the PBW theorem.

Proposition 2.2 Let us assume that the algebra Ay (V, 1) is a Koszul algebra
and that the following conditions

([,112 - [’]23) A:i (V1I) -y

and
LI =12 AL (VI =0
are fulfilled. Then GrU(g) and Ay (V, I) are isomorphic as graded algebras.

In the next Section we will use this proposition to construct a braiding of

sl(2).

3 Braided Lie algebras: sl(2) case

First let us give a definition of a braided Lie algebra.

Definition 3.1 Let U,(g) be a quantum group and let V be « finite-dimensio-
nal object of the category U(sl(2)) — Mod of all U(sl(2))-modules. Assume
that V®? can be decomposed into a direct sum of two subspaces V®* = [ @ 1.
We say that the space V is equipped with the structure of a braided Lie algebra
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if there exzists an operator [,]: V®? = V satisfying the arioms

0. the algebra A (V, 1) is a Koszul algebra;

L, =0;

2. The relations of Proposition 2.2 are satisfied;

3. The spaces LT are objects of the category U(sl(2)) — Mod and the operator
[,] is @ morphism in this category.

Remark that this definition can be extended up to constant-linear brackets
[,]: V& — V@k. It is possible to make this bracket purely linear introducing
a new central generator s and assuming [,]V®? — V @ ks (we let Xs = 0 for
any X € Uy(g).

We will compare the definition above with the one from [G4]. Let S
be a solution of the quantum Yang-Baxter equation (QYBE). Let {e;} be a
fixed base in V and {e'} be the dual base in V*. Consider the linear space
L =V @V~ with base {e! = ¢; @ ¢’} equipped with the operator

Sq: L®* — L% So(el ®e}) = ST (ST, el @ e

Consider also the algebra Arrp of Reshetikhin-Takhtadzhyan-Faddeev type
A(S) = T(L)/{J} where {J} is the ideal generated by the image of the
operator id — Sg. In some cases this algebra with an additional condition
on the quantum determinant (assuming it to be well-defined) has a Hopf
structure.

In [RTF] it is shown that if S is a solution of the QYBE corresponding
to a vector representation of the quantum group U,(g) then there exists a
pairing of Hopf algebras

In the case under consideration the category of finite-dimensional U(g)-
modules and the category of finite-dimensional Aprp-comodules coincide. In
the general case (including non-deformational solutions of the QYBE from
[G3]) the category U(sl(2)) — Mod in the axiom 3 of the Definition above
should be replaced by the last category as it was done in [G4].

Let restrict ourselves now to the case g = sl(2). In this case the Hopf
algebra structure in U,(sl(2)) can be described as follows. This algebra is
generated by the elements {/, X, Y} satisfying the relations
-H

¢ —q
[H,X] = 2X, [H,Y] = =2Y, [X,Y] = =— -



The coproduct is defined by the following formulae
AX)=X@1+¢ "X, AY)=19Y+Y®¢", A(H)=H@1+1Q0H

(we do not need the antipode).
Let V be a U,(sl(2))-module of spin 1 with the base {u,v,w} and of the
following module structure:

Hu=2u, Hv =0, Hw = —-2w, Xu =0, Xv=—(¢+¢ u, Xw=v,

Yu=—v, Yo=(¢g+¢ w, Yw=0.

The space V®? can be decomposed into a direct sum of three irreducible
U,(sl(2))-modules: V5, Vi, and V; of spin 0; 1 and 2 respectively. Let us
describe them explicitly:

Vo = span((¢® + q)uw + vv + (g + ¢ Hwu),

Vi = span(¢®uv — vu, (¢® + ¢)(uw —wu) + (1 = ¢*)vv, —¢*vw + wv),
V, = span(uu, w + ¢*vy, uw — quo + q¢twn, vw + ¢twy, ww)

(we omit the sign ® if it does not lead to a misunderstanding). Note that the
element C; = (¢*+ ¢)uw + vv + (¢ + ¢~ Hwu is a g-analogue of the Casimir
element, i.e., it is U (sl(2))-invariant.

We define the subspaces I = I, and T =7, and the bracket [,] as follows

I=V, T=V, eV,
[, ]T =0, [,](¢*uv — vu) = —2hu,

[1((¢* + Q) (vw — wu) + (1 = ¢*)vv) = 2hv, [, ](—¢*vrw + wv) = 2hw.

We leave to the reader to verify that the bracket [,] is a morphism of the
category U,(sl(2)) — Mod. Indeed it is possible to prove these relations
assuming the highest weight vectors of V and V] to be equal to each other
and applying the decreasing operator Y to this equality. This implies that
the multiplication ™7 in the algebra U/*9(sl(2)) satisfies the condition (1).
The relations similar to the last three ones have been constructed in
[E] but the author of that paper does not define any bracket and does not
investigate the flatness of the deformation of the enveloping algebra.
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Let us express the bracket [,] in the basis form:
[u,u] = 03 ['lt,‘U] = _2q2Mua [uaw] = 2((‘1 + q-l))-lea

[v,u4) = 2Mu, [v,v] = 2(1 — ¢*)Mv, [v,w] = —2¢*Mw,
o, 1] = ~2((g + =) Mo, [w,v] = 2Muw, [w,1] = 0,

where M = h(1+ ¢*)~".
Let UM7(sl(2)) denote the enveloping algebra T'(V)/{J} where J is a
linear space in V®% @ V generated by the elements

¢uv — vu + 2hu, (¢ + q)(1w — wu) + (1 — ¢*)ov — 2hv, —g*vw + wv — 2hw,
and {J} is the corresponding ideal. Note that U%(sl(2)) = A4 (V, ;).
Proposition 3.1 The algebra AL (V,1,) is a Koszul algebra.

Proof. Fix a base D3 = {u*v*w®a + b+ ¢ = 3} in the homogeneous
component A} (V,Ip). Let us show now that this set is still the base in the
space A3 (V,1,), i.e. the elements of this family are linearly independent.

Note first that the space A2 (V, [;) is a one-dimensional space. It is easy
to find its generator:

= —(q + ¢ w(qPuv — vu) + v((¢* + ¢)(vw — wu) + (1 — ¢*)vv)+

(¢ + Qu(—¢*vw + wv) = —(¢* + ¢)(¢*uv — vi)w + ((¢° + ¢)(uw — wu)+
(1 = @)oo + (g + ¢ )(—gPvw + wo)u

Thus the space V; generates a 17-dimensional subspace in V®3. It is obvious
that any element of V® can be expressed via the elements from the set Dj.
Therefore the elements from Dj are independent.

By virtue of the “diamond lemma” (its useful version is given in a [PP])
we can state that the set {u®v*w® for all integer a,b,c > 0} is PBW base
in A4(V,1,). Then by virtue of the Priddy theorem (cf. [PP]) the algebra
A+(V, 1,) is a Koszul one. That completes the proof.

Since dimA%(V,1,) = 3 and dimA3(V, I,) = 1 for any ¢, then by Propo-
sition 2.1 P, (t) does not change in the process of deformation i.e. AL(V, 1)
is a flat deformation of A, (V, ).
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It is easy to see that ({,]'* — [,]**)Z = 0 and therefore the following data
(V, I, T, [,]) defines a braided Lie algebra. By virtue of Proposition 2.2
GrUM(s1(2)) = Ay(V, I,) and therefore the algebra GrU™9(sl(2)) is a flat
two-parameter deformation of the commutative algebra A4 (V, Ip).

We put ¢ = €’ and computing the quasiclassical limit we find that the
algebra U%4(sl(2)) = AL(V, 1) is a quantization of the R-matrix bracket

2
{u,0}r = —uv; {w,w}r =7, {v,w}lr=vw
where R = (v ® w — w @ u). Since the algebra U*!(sl(2)) is a quantiza-
tion of the Poisson-Lie bracket it is clear that the algebra UM(sl(2)) is a
quantization of the family (4).
Thus we have quantized the family (4) simutaneously. In the next Section
we investigate some quotient algebras of the algebras U™?(sl(2)).

4 Braided algebra gi(}))

The main goal of this Section is to treat the algebra A" as a braided ana-
logue of the Feigin algebra gi(A) and to introduce a pairing such that it is a
morphism in the category U,(sl(2)) — Mod (for the sake of brevity we call it
a U,(sl(2))-pairing).

The algebra gl(\) was introduced by B.Feigin [Fei] as a quotient algebra
of U(sl(2)) over the ideal generated by the element C — A(A —1)/2 where C
is the Casimir element in si(2). This algebra is associative (and it is a Lie
algebra with respect to the natural bracket). As a sl(2)-module gl(}) is the
direct sum of irreducible s{(2)-modules V;,0 < : < oo.

Consider now the associative algebra A" = Uh9(s1(2))/{C, — ¢} and let
pMe denotes the multiplication in it. Here {C, — c} denotes as usually the
ideal generated by the element C, — c.

Assume now that ¢ is not a root of unity. It is well-known that for a
generic q the g-analogue of the representation theory is very close to the
classical one. Let two U,(sl(2))-modules px : Uy(g) — End(Vi),k = 453
(where k is the spin) be given. Then V; ® V; can be decomposed into the
direct sum

Vi®V; = Bjimjlcm<i+tVm
of U,(sl(2))-modules.

12



As an example we describe explicitly this decomposition for the product
ien
Consider an operator S; ; = o(pi®p;)R where R is the universal R-matrix

for U,(sl(2)) (c.f. [KT))

R=expa((g—q )X @Y)g" " =

(L+(a—¢ XY +(g—¢ V(1 +¢)X2@Y +.)g 5.

The operator S; ; being restricted to an irreducible component of the product
V; ® V; is a scalar one. Let Af; denote the eigenvalue of S;; restricted on
Ve. Let Prﬁ- denote the projection operator V; @ V; — V; in the category
Uy(g) — Mod. Then Vi@V, =V, &V, & V; and

CEXCEXED
(2= N> +q7?)

Using the standart method of the deformation theory we show for generic
q that as a U, (g)-module the algebra A*? is the direct sum of the irreducible
U,(g)modules V.

Now we introduce a braided Lie bracket in the algebra A»?. To do this
we introduce an operator § = {3’.-‘1.} such that .§"-'j = E(—l)“"Prfj, where
a; = 0if /\fj >0and ap=11if Afj < 0 (assuming ¢ € R). This operator is an
involutive morphism in the category U;(sl(2)) — Mod because all operators
Pr}"j are morphisms in it.*

Define the braided Lie bracket as follows

0 _ -4 1 _ -2 \2 .2 p.2 _
M=¢ AL =—¢% Ay =¢,Pry, =

[,] = p*(id - ).

It is obvious that this bracket is a morphism in the category U, (sl(2)) — Mod
but the problem whether the Jacobi identity holds is still open.

We illustrate now the notion of a braided Lie algebra once more treating
the algebra AM? itself as the enveloping algebra of a braided Lie algebra.
To do this let us introduce a new decomposition V&2 = [ @ T as follows
I =V,®V, I =V, and define the bracket [,] as above with the only

4Note that according to Drinfeld’s results [D2] S = Foq¥F~! where ¢ is the split
Casimir element and F is an intertwining operator. Then S = FoF~! (c.f.[DGM],[DG1]).
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difference [,](t) = ¢ where t is the split q-Casimir, i.e., C, which is regarded
as an element of V&2

In the case under consideration we have dimA2? (V, 1) = 4. It is obvious
that Z € A2(V, 1,). One can find other three generators of this space using
the relations

u@t—-tQue{V},v®t—t@ve (K}, wt—-t®we {V}
Thus the following elements (together with Z) generate the space A% (V, I,)
Zy = ut —u({¢® + ¢)(vw — wu) + (1 — ¢*)vv) — ¢~ *v(¢*uv — vu) =

b (4 + 0) (0 — ) + (1= B)ov)u o+ (gPuw — vy,
Zy = vt + (¢ + gu(=gvw + wo) + wlg™ + ) (gPuv — vu) =
o = (¢ + a)(gPw — v) = (71 + ) (—gvw + wou,
Z3 = wt + ¢ *w((¢® + ¢)(vw = wu) + (1 = ¢*)vv) — v(—¢*vw + wo) =
tw — ((¢° + ¢)(vw — wu) + (1 — ¢ )vv)w + ¢ 4 ~g*vw + wo)v.

Applying now the operator [,]'?—[,]*® to the elements above we obtain 0.
Thus the axioms 1-3 of the Definition of a braided Lie algebra are satisfied.
As for the axiom 0 we can only conjecture it.

Thus we have represented the algebra A" (up to the conjecture) as the
enveloping algebra of a braided Lie algebra.

Introduce now a U, (sl(2))-pairing in the algebra AM as follows. First
remark that ImPr{; # 0 iff i = j and dimImPr); = 1. Let f; denote a
generator of the space ImPr? and put < 1,1 >=1,

<> lvigy; =0if 2 # 5, <,> |viev. = b

where b; is defined via the relation Pr{; = b;f; (we take the split Casimir as
i)

In the case of the algebra Ag"’ there exists a lot of pairings since we can
choose f; in arbitrarily way. As for the algebras A*?, ¢ # 0 we should choose
the elements f; more carefully. Namely we put f; = ¢ f{ mod {V;}. It is
natural to do so because of the equations < ff ,fl = c*+,

It is clear that this pairing in algebra the Alvisa U, . (s1(2))-one and it is
S-commutative i.e. <,>=<,> §.
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Thus a U,(s/(2))-pairing in the algebra A% is constructed. This approach
enables us to treat the braided algebra A*? as an operator algebra (with
respect to right or left multiplication) equipped with a braided pairing. It
would be very interesting to calculate this pairing in a more explicit form.

It is not difficult to construct an involution which i1s a morphism in the
category U,(s{(2)) — Mod but its role is not yet clear. Finishing this Section
we want to remark that for the algebras lying in the category of U,(g)-
modules it is natural to require the pairing and involution operators to be
morphisms of this category. From our point of view it is more natural to
introduce the so called “quantum sphere” (c.f. [P]) equipped with pairing
and involution of such a type. It will be done elsewhere.

5 Discussion

At the end of the paper we would like to compare the braided Lie algebras
and the S-Lie algebras introduced in [G1] for an involutive solution of the
QYBE §. Let us recall that the last object was defined by the followng
axioms:
L. [7]S= ""[1])
2. LILT2(Gd 4 S128% + 5881 = 0,
3. S[,]lz — [,]23512523.

Introducing the subspaces I and T € V®? as follows

I = Im(id — §) = Ker(id + §), T = Im(id + S) = Ker(id — 9)

one can see that the first axioms coincide. The axiom 0 for the S-Lie algebra
is fulfilled since in the involutive case the algebra A(V,I) is always Koszul
one (it is proved in [G3] in a more general context). The last axiom from
the last definition means that the bracket [,] is a morphism of the category
generated by the space V.

However the axioms 2 have different forms. And it is easy to check that
the Jacobi identity in the last form is not true for the braided Lie algebra
sl(2). In particular that the “adjoint” operator X — [X,Y] is not a repre-
sentation of the braided Lie algebra s{(2) (but it is a representation for any
S-Lie algebra).

Remark that one often introduces the Jacobi identity for non-involutive S
in the same form as for S-Lie algebras (cf. for example [W], [O]). An example
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of the bracket in the braided si(2) shows that it is reasonable to claim the
Jacobi identity for non-involutive S in a weaker form of Proposition 2.2,
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