ON CERTAIN QUESTIONS OF THE FREE GROUP AUTOMORPHISMS
THEORY

VALERY G. BARDAKOV AND ROMAN MIKHAILOV

ABSTRACT. Certain subgroups of the groups Aut(F),) of automorphisms of a free group F,, are
considered. Comparing Alexander polynomials of two poly-free groups Cb} and P; we prove
that these groups are not isomorphic, despite the fact that they have a lot of common properties.
This answers the question of Cohen-Pakianathan-Vershinin-Wu from [9]. The questions of
linearity of subgroups of Aut(F,,) are considered. As an application of the properties of poison
groups in the sense of Formanek and Procesi, we show that the groups of the type Aut(G * Z)
for certain groups G and the subgroup of I A-automorphisms [ A(F,) C Aut(F,,) are not linear
for n > 3. This generalizes the recent result of Pettet that IA(F),,) are not linear for n > 5.

1. INTRODUCTION

1.1. The group of basis conjugating automorphisms. Let F, be a free group of rank
n > 2 with a free generator set {x1, z, ..., x,} and Aut(F},) the group of automorphisms of F,.
Taking the quotient of F), by its commutator subgroup F), we get a natural homomorphism

€ Aut(F,) — Awt(F,/F)) = GL,(Z),

where GL,(Z) is the general linear group over the ring of integers. The kernel of this homo-
morphism consists of automorphisms acting trivially modulo the commutator subgroup F) . It
is called the group of I A-automorphisms and denoted by IA(F),) (see [2, Chapter 1, § 4]). The
group TA(F3) is isomorphic to the group of inner automorphisms Inn(F5), which is isomorphic
to the free group Fs.

D. Nilsen (for the case n < 3) and W. Magnus (for all n) have shown that (see [2, Chapter
1, § 4]) the group IA(F,) is generated by the following automorphisms

I vy wilxg, vy kF4,5, $i'—>~il?j_1$i93j i # 7,
ik - T — I [ # 1, K Iy —— I L # 1.

The subgroup of the group IA(F},) is generated by the automorphisms ¢;;, 1 < i # j <n
is called the group of basis conjugating automorphisms. We will denote this group by Cb,.
The group Cb, is a subgroup of the group of conjugating automorphisms C,,. (Recall that any
automorphism of C,, sends a generator x; to an element of the type fi_lx,r(i) fi, where f; € F,,,
and 7 is a permutation from the symmetric group S,.) Clearly, if 7 is the identity permutation,
then the described element lies in the group Cb,,.

It is shown by D. McCool [3] that the group of basis conjugating automorphisms Cb,, is
generated by the automorphisms ¢€;;, 1 <14 # j < n, defined above has the following relations
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(we denote different indexes by different symbols):
Eij€kl = EkiEi
€ij€kj = Ekj€ij,

(gijenj)ein = cin(€ijery)-

It is shown in [7] that the group of conjugating automorphisms Cb,,, n > 2 decomposes into
a semi-direct product:

Cbn :Dn_1>\(Dn_2>\(>\(D2>\D1))), (1)
where the group D;, i = 1,2,...,n — 1, is generated by the elements ,111,€i112,...,it1,is
€141y €2,i+1, - - -, Eiit1. Lhe elements ;111,412 - .., Ei+1,; generate a free group of rank 7, but
the elements €1 41,2441, - - -, €ii+1 generate a free abelian group of rank 4.

1.2. Braid group as a subgroup of Aut(F,). Braid group B, n > 2, on n strands is defined
by the generators o4, 09, ...,0,_1 with defining relators

0i0i410; = 04100541 1 =1,2,...,n—2,
0,05 = 0,05 ‘Z —j| 2 2.
There exists a natural homomorphism from the braid group B, onto the permutation group
Sy, sending the generator o; to the transposition (i,74+ 1), =1,2,...,n— 1. The kernel of this

homomorphism is called the pure braid group and denoted by P,. The group P, is generated by
the elements a;;, 1 < ¢ < j < n which can be expressed in terms of generators of B,, as follows:

_ 2
Q41 = Oy,

2 _— -1
Qijj = 04-105—2...0;410; Ui—l—l .. .O'j_

The pure braid group P, is a semi-direct product of the normal subgroup U,, which is the

20N, i+ 1< j<n.

free group with free generators a,,, as,, . . ., @y—1, with the group P,_;. Analogously, P,_; is a

semi-direct product of the free subgroup U,,_; with the free generators ay ,,_1,@25-1, - - ., Gn—2n-1

with the subgroup P,_, etc. Hence the group P, has the following decomposition
P,=U,NUpaN(o . NUsANUp)) .., Uy~ F;q,i=2,3,...,n. (2)

The pure braid group P, is defined by relations (for v = +1)

ag arah, = (aijar;)” ap; (agag;) ™",

—v v v —v .
o O Uy, = (AhjOmj)” i (arjams) "5 m <,

—v v —v _—v]VY v _—v] 7V .
Qi Ak Ay, = [a'ij aa'mj] G [aij ?a’mj] , 1< k< m,

—v [ Z . .
iy, Ui Ay, = s E<it;m<j m<ek,

where [a,b] = a~'b7 ab is the commutator of elements a and b.
The braid group B,, can be embedded into the automorphism group Aut(F},). In this em-
bedding the generator o;, i = 1,2,...,n — 1, defines the following automorphism

-1
Ti — TiTi417;

0; @ Tig1 — Ty,
T — T [ #1414+ 1.
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The generator a,, of the pure braid group P, defines the following automorphism

(1, — x; s<t t<r,
—1,.-1

Ty — Tr Ty a

Aps :

z— o7 e e 27T r<i<s,

r o r s

-1
\ T — T, T2, .

As was shown by E. Artin, the automorphism ( from Aut(F,) belongs to the braid group
B, if and only if 3 satisfies the following two conditions:

1) B(x;) = a; 'wr@a, 1 <i<n,
2) B(r12a ... xy) = 2120 . . . Ty,

where 7 is a permutation from S,,, and a; € F,,.

The set of automorphisms from C,,, which act trivially on the product z;zs...x, is exactly
the braid group B,. It was shown by A. Savushkina [4], that the braid group B, intersects
with the subgroup Cb, by the pure braid group P,. Thus the group P, is a subgroup of
the basis conjugating automorphism group Cb,, for all n > 2. Furthermore, the concordance
of decompositions (1) and (2) of groups Cb, and P, respectively, takes a place: there are
correspondent embeddings U;, 1 < D;, i =1,2,... ,n— 1.

1.3. The welded braid group. The welded braid group W B,, is one of natural generalizations
of the braid group. It was introduced in [6]. This group contains the braid group B,, and the
permutation group S,. The group W B,, is generated by elements

01,02,...,0p-1,01,02,...,0,_1,

and has the following relations

0i0i110; = 0i410; 0441, 1 =1,2,...,n—2, (3)

0,05 = 0,04, ‘7’_]|227 (4)

QG Qg QG = Q1 QG Qyr, 0= 1,200 ,n — 2, (5)

Q; ;= Qg |Z_j‘227 (6)

a?=1i=1,2,...,n—1, (7)

Q; 05 = 0; O,y |Z_j|227 (8)

O Qg1 O = Qi1 0 0441, ©=1,2,...,n—2, (9)

Oif10; Qg1 = Q; 044104, 1= 1,2,...,n — 2. (10)

The relations (3)—(4) are the defining relations of the braid group B, the relations (5)—(7)

are the defining relations of the permutation group .S,,. Observe that the following relation
takes a place in the group W B,,:

041 O O = O Qi1 Oy, 2.:1,2,‘..,71—2, (11)
which is symmetric to the relation (9). Observe also that we don’t have in W B,, the relation
0i0ip1 0 = Qiy10; 0441, 1= 1,2,...,n — 2, (12)

which is symmetric to the relation (10).
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There exists a natural homomorpism from the group W B,, onto the group S,,, sending the
generators o; to the generators «; and leaving the element «; as it is. The kernel of this
homomorphism if called the pure welded braid group and is denoted by W P,. It is shown in [6]
that the welded braid group W B,, is isomorphic to the conjugating automorphism group C,,,
but the pure welded braid group W P, is isomorphic to the basis conjugating automorphism
group Cb,,.

1.4. The group Cb;. Denote by Cb;} the subgroup of the group Cb,,, n > 2, generated by the
elements ¢;;, ¢ > j. Groups Cb; are poly-free groups: it is shown in [15] that there exists the
splitting exact sequence:

1— F, 1 —Cbl - COb | —1,

where F),_1 is the free subgroup in Cb;, generated by the elements

En1s€n2y -+ -y Enn—1-

Description of the Lie algebra constructed from lower central filtration of the basis conjugat-
ing automorphism group, is a non-trivial problem; the methods used in the description of Lie
algebras for pure braid groups, do not work in this case. However, in the case of the group Cb;",
the situation is different. Lie algebras and cohomology rings of groups Cb! were described in
[9]. It was also shown in [9] that the group Cb;' is isomorphic to the pure braid group P, for
n = 2,3. Groups Cb; and P, are quite similar. For instance, the groups Cb}" and P, are stably
isomorphic, namely, suspensions over their classifying spaces XK (Cb;, 1) and XK (P,, 1) are
homotopically equivalent for all n > 1 (see [9]). The conjecture that Cb} and P, are isomorphic
for all n > 1 comes naturally (question 1, [9]). One of the main results of this paper is the
proof that the groups Cbf and P, are non-isomorphic (Theorem 1).

1.5. The questions of linearity. As it was shown above, for any n > 2, there is the following
chain of subgroups of the automorphism group Aut(F,):

P, C Cb, C IA,(F,) C Aut(F,).

It was shown in [16], [17] that the braid groups B, are linear. Hence the pure braid groups
P, are also are linear. The situation with groups Aut(F;,) is as follows. The group Aut(F},)
is not linear for all n > 3 (see [11]), however the group Aut(F3) is linear (such a presentation
was constructed, for example, in [12]). A certain non-linear subgroup (called poison group) of
Aut(F;,) was constructed in [11]. The following question rises naturally (see question 15.17 [13]):
are the groups of IA-automorphisms IA(F},) and the groups of basis conjugating automorphisms
Cb, linear for n > 27 Recently A. Pettet showed that the group IA(F,) is not linear for n > 5.
In this paper we show that the groups IA(F),) are not linear for all n > 3 (Theorem 5).
Therefore, the complete answer to the question 15.17 from [13] is given.

2. THE GROUP Cbj IS NOT ISOMORPHIC TO THE PURE BRAID GROUP P,

2.1. Fox differential calculus. Recall the definition and main properties of Fox derivatives
[5, chapter 3], [8, chapter 7].

Let F, be a free group of rank n with free generators 1, xs, . . ., x,. Let ¢ be an endomorphism
of the group F,,. Denote by F¥ the image of F}, under the endomorphism ¢. Let Z be the ring
of integers, ZG the integral group ring of G.

For every 7 =1,2,...,n define a map

i :4F, — ZF,
8xj
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by setting 5
x; | 1 fori=jy,
) or; { 0 otherwise,
%) dx;t f —a7t fori=j
or; |0 otherwise,
d(wv)  Ow

3) w,v € ZF,,

_( )T @
8xj a 8xj v w(‘?xj’

where 7 : ZF,, — 7 is the trivialization operation, sending all elements of F, to the identity,

0 0
4) a—x] (Zagg> = Zaga—é]j, g€ F,, a, €.

Denote by A, the augmentation ideal of the ring ZF;,, i.e. the kernel of the homomorphism
7. It is easy to see that for every v € ZF,, the element v — v” belongs to A,,. Furthermore,
there is the following formula

= Ov
vovt = a—xj(%‘—l)a (13)
7=1
which is called the main formula of Fox calculus. Formula (13) implies that the elements
{1 — 1,29 —1,..., 2, — 1} determine the basis of the augmentation ideal A,,.

2.2. Groups Cbf and P,. As it was noted in the introduction, the poly-free groups Cb;” and
P, have similar properties. Clearly, one has

Obf ~ P, ~7;

Cbi ~ Py~ F, x Z.
However, the next result shows that the groups Cb} and P, being semidirect products of Fy
with F5 X Z, are not isomorphic.

Theorem 1. Groups Cb; and P, are not isomorphic.

Proof. It is well-known that (see [10]) that the group P, decomposes as a direct product of
its center generated by a single element aisai3a93a14a24a34 and a subgroup H = Uy X Us,
Uy = {14, a4, azs), Us = {a13,a3). Tt is easy to check that the center of the group Cb} is the
infinite cyclic group generated by the element e9163164; and the whole group Cb} is a direct
product of its center and a subgroup G = Di X DJ , where D = (g4, €49, €43), Dy = (€31, €39).
Since a center is a characteristic subgroup for every group, it is enough to show that the group
G is not isomorphic to the group H. We will compare Alexander polynomials for the groups G
and H.

The presentation of the group Cb, implies that the group G is defined by the following set
of relations:

-1 -1 -1 -1
€31 €41€31 = €41, €31 €42E31 = €42, €31 €43E31 = €41€43E47
-1 -1 -1 -1
€39 €41€32 = €41, €39 42832 = €42, €39 €43E32 = £€42E43Ey9 -
We present these relations in the following form:
S R | I | o —1.-1_-1
T11 = €471 €31 €41€31, T21 = €49 €31 €42€31, 131 = €43 €471 €31 €43€31€41,
-1 _-1 -1 -1 -1_-1_-1
T12 = €41 €39 €41€32, T2 = €49 €39 €42E32, 132 = €43 E49 €39 €43E32E42.
We define the homomorphism ¢ : G — (t), by setting
p(ea1) = p(es) = p(em) = p(ea2) = p(eaz) =t
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and extend it to the homomorphism of integral group rings by linearity
0 LG — 7(t).

Let us find Fox derivatives of the relators r;;, with respect to the symbols €31, €32, €41, €42,
€43 and their p-images. We have the following

67“11 v _9 67"11 v _9 67"12 s _9
— ) =ttt -1),[=— ) =t71—-t),[=—) =t7?t-1
(5) =re-n.(52) =ra-0.(52) e
87"12 87”21 4 _9 87”21 v _9
21—10), (=) =t2t-1), (=) =t2(1—t
(52) = -0 (52) =re-n (52) =ra-,
67”22 _2 67”22 v _9 67”31 v 1
t—1),(=2) =t21—-t), (=) =t'(t-1
( a) L (52) =, (52) =,
67”31 . .
6841
87"32 _9 87”32 v _3 2
2 =72 -1, ([ =2) =t -1,
( a) e, (=) =rra-n)
Derivatives with respect to other generators are zero.
With the obtained values of derivatives we form the Alexander matrix. After elementary

transformations of rows and columns and deleting zero rows and columns, we get the diagonal
matrix

(1 —t) diag(—t™2, —t72, —t 72, —t72(1 + t)).

Since the Alexander polynomial is defined up to the multiplication with a unit of the ring Z(t),
we get

Ag(t)

(1 —t)*(141).

We now consider the group H. Defining relations of the group P, imply that the group H
can be defined by the following relations

-1 1 1
a13a14a13 = a34 A14G34, a13 Q24013 = [%4 Gy Jasalagy , agy ],
CL23 a14023 = A14, a23a24a23 = Cl34 (24034,
-1 -1 -1 -1
A3 34013 = A14034Q1, , Qg3 A34023 = UA24A3409y -
These relations can be presented in the following form
_ -1, -1 -1 -1 -1,.-1 -1 -1, -1
d11 = 13014013 A3y Q14 A34, (21 = Q13 A24A13014A34014 A3y Qo A34A14034 Qqy
-1 -1 -1 -1 -1
q12 = Q14 Q93 A14G23, (22 = A23A24Q93 A34 A9y (34,
_—1 -1 -1 -1 1 -1
431 = A13 434013014034 A14 , (32 = Q93 A34A23024034 gy -

As above, we define the homomorphism ¢ from the group H to the infinite cyclic group (t),
by setting

plars) = p(az) = p(ais) = p(az) = las) =t,
and extend it by linearity to the homomorphism of group rings
w: ZH — 7Z(1).

We compute the Fox derivatives of the relators ¢;;, written above, with respect to the variables
a13, o3, A14, 24, @34 and find their images under the homomorphism ¢. We get the following
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identities (the derivatives of all other relators can be written analogously)

(B} =1 (B) e () =,
(o) == (Gee) == (G) =0
() = () = (Gm) =i
(5e2) =r-o

We form the matrix from the values of the calculated Fox derivatives. After elementary
transformations over rows and columns, we get the diagonal matrix

(1 —1) diag(1, =t~ 2, 1,t 2+t~ + 1).

The Alexander polynomial of the group H is equal to
Ag(t) =1 =) (2 +t+1).

Thus the Alexander polynomials of the groups G and H are different, and hence, the groups
G and H are not isomorphic (see, for example [8] for the proof that Alexander invariants, in
particular the Alexander polynomial, are invariants of a group and do not depend on a given
group presentation). O

3. ISOMORPHISM PROBLEM FOR A CERTAIN CLASS OF LIE ALGEBRAS

3.1. A class of Lie algebras. The last section gives a motivation for finding methods for
proving that two given subgroup of automorphism groups are not isomorphic. In this section
we will consider a similar question.

Consider a homomorphism

¢ F, — TA(Fy),
where n, k > 2. We can form a natural semi-direct product

G¢ = Fk NFn

and ask whether Gy, is isomorphic to Gy, for two different homomorphisms ¢, ¢s : F,, —
TA(Fy).
For a given group G, denote by L(G) the Lie algebra constructed from the lower central

series filtration:
= Pi(G)/711(G),
i>1

1(G) = G, 711(G) = [%(G),G].

Here we will consider the class of Lie algebras L(Gy) for different homomorphisms ¢ and
prove that some Lie algebras from this class are not isomorphic.

Since F,, acts trivially on H;(F}), there is the following exact splitting sequence of Lie alge-
bras:

0 — L(Fy) — L(Gy) — L(F,,) — 0
by [18].
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3.2. Scheuneman’s invariants. Let £ be a field and L a finitely-generated Lie algebra of

nilpotence class two. Let us choice a basis of L: {x1,...,zn,y1,...,y,} such that {yy,...,y,}is
a basis of [L, L]. Let U(L) be a universal enveloping algebra of L. Then U(L) can be identified
with a polynomial algebra over k with non-commutative variables x1,...,2,,y1,...,y, and
relations

x;y; = y;x,, for all 7, j;

Yiy; = Y;yi, for all 4, j;

x;x; — x;x; = linear combination of y;’s;
Consider an alternative sum

(T D S G S L (14)
0=(11e-in)ESn
where |o| denotes the sign of the permutation o.
Two polynomials f(z1,...,2,) and g(z1, ..., z,) are k-equivalent if
fz1, v zm) = ag(2y, ..., 20),
where a € k,a # 0,
2= byz, by €k, det(bi;) # 0.

The following theorem is due to Scheuneman:

Theorem 2. [14] The k-equivalence class of I(x1,...,x,) is an invariant of k-isomorphism of
the Lie algebra L.

For k-equivalent polynomials f(z1,...,2,) and g(z1,...,2,) and 2, = > bz, by € k,
det(b;;) # 0, such that f(z1,...,2m) = ag(2, ..., 2.,),

" m

Hes(f)(z1,- -, 2m) = a™(det(b;;))*Hes(g) (2, ..., 2..),

’m

where Hes(f)(z1,...,2m) is the Hessian det( o ) (see, for example, Lemma 8 [14]).

02;0z;

3.3. Non-isomorphic Lie algebras. Consider the following homomorphism ¢, of a free group
F3 with basis {uq, us, u3} to the automorphism group of a free group F3 with basis {t1, to, t3}:

Do : Uy b — tiag
a- Tl ti — t; for t = 2,3,

where o = (o, g, ag),

ay € {[t2, t1], [ta, ta], [t1, 3]},
Qa3 € {[tl, tQ], [tg,tg], [tg, tl]}

Lie algebras L(G,) which correspond to the groups G, can be described as Lie algebras with
generators tq, to, t3, U1, U, uz and defining relations:

(L, ui] = au, [ta, us] = a, [ts,u3] = as,

[tg,ul] = [tg,ul] = [tl,UQ] = [tg,Ug] = [tl,U:),] = [t2,U3] = 0
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Consider the quotient
La = L(G¢a )/ [L(G¢a )7 L(G¢a )7 L(G¢a )] .
Clearly, L, is 12-dimensional algebra with basis
{tla t2a t3> Uy, U2, U3, Y1, Y2, Y3, Ya, Ys, y6}7

where y1 = [t1,t2],y2 = [t1,t3], Y3 = [ta, ta], ya = [ur, o], ys = [u1, us), ys = [u2, us]. Consider
the polynomial (1, ts,t3, u1, us, u3). The direct computation gives the following expression

I(ty,to, ts, ur, ug, uz) =
[t1, to][ts, us][ur, us] — [t1, ts][ta, wol[u, us] + [t1, u1][ta, ts][ug, us] — [t1, u1][t2, uslts, us]
= Y1Ya3 — YoYsQ2 + Y3Yet1 — Q10203 = Play a,as) (Y15 - -5 Ys)-
By Theorem 2, we have
{k — equivalence classes of cubic forms P4, ay.a5)} C {k — isomorphism classes of G, }

Consider the following cases:

1) Let a; = (a1, g, a3) with oy = [to, t3], as = [t1, 3], ag = [t1,t2]. Then
Poy (Y1, - Y6) = Yiys — YsYs + Yals — 1Y2ys,
Hes(Pu,)(y1, .- -, ys) = 64y7y3y3.

2) Let ag = (o, g, cvg) with aq = [to, 3], e = [ta, 3], as = [t1,1s]. Then
Pay (Y1, -, Y6) = Yiya — Y2ysys + Y3Ys — Y103,
Hes(P,,) = 16yiy;.

3) Let ag = (o, ag, cvg) with ag = [ta, t3], e = [te, 3], asz = [t1,t2]. Then
Py (1, - - Y6) = Y1yays — Y2ysys + Ysys — Us,
Hes(P,,) = 4y5.

Clearly, all these three cases define non-k-equivalent polynomials. Hence, the correspondent
groups and Lie algebras are not isomorphic.

Proposition 1. The Lie algebras L(G,,), L(G,,), L(G.,) are pairwise non-isomorphic.

Remark. The invariant polynomials for the two-step nilpotent quotients of Lie algebras of the
groups Cby /Z(Cby) and P,/Z(P,) define cubic forms which lie on Hilbert’s null-cone, hence
they do not differ from each other by an invariant of a Hessian type!.

4. ON NON-LINEARITY OF CERTAIN AUTOMORPHISM GROUPS

4.1. Poison group. Let G be a group. Consider the group H(G), defined as an HNN-
extension:

H(G) = (G x G,t|tg, )t " =(g9,1), g€ C).
It is easy to see that the group H(G) can be presented as a semi-direct product
H(G) ~ (G*Z) x G,
where the action of G on G x Z = G * (t) is defined by
g gt gt get™ — gi(tgT) gty gk(tg™)T, g,9i € Ges € L.

TAuthors thank V.L. Popov for helping analyzing these cubic forms and for this remark
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For example, if G = Z, we get the following group
H(G) = (a,b | [a, [b.a]] = 1),
It follows from elementary Titse moves that
H(Z) = {a,d,t | [a,d] =1, tad't ' =a) = {a,d,t | [a,d] =1, d =a 't at = [a,1]) =

= <avt ‘ [av [avt]] = 1>>

where a = (a,1),d’ = (1,a) € G x G.
Denote by N AF the class of nilpotent-by-abelian-by-finite groups. The following result due
to Formanek and Procesi presents a way of constructing non-linear groups.

Theorem 3. [11] If G ¢ N AF, then the group H(G) is non- linear.

The simplest example of a group which does not lie in the class N AF, clearly, is a free
non-cyclic group. Thus, for G = F5, the group H(Fy), called a poison group, is non-linear. This
fact plays an important role in the proof of non-linearity of groups Aut(F;,) for > 3; the poison
group is a subgroup in Aut(F,), n > 3. This statement can be generalized.

Theorem 4. Let G ¢ NAF, then Aut(G * Z) is non-linear.

Proof. We will realize the group H(G) as a subgroup in Aut(G * Z) and the statement will
follow from Theorem 3. Elements of the subgroup G x G in H(G) we will denote as (g, ¢’), i.e.
we put dash for elements from the second copy of G. The group G xZ we will describe in terms
of generators g € G and a free generator t. Consider the homomorphism

f:H(G) = Aut(G * Z),

given by setting
f:gHig7 QEGJ tHitu ngng g,€G7

where i, is the conjugation by g, i; is the conjugation by ¢, sy (¢’ € G) is the automorphism of
G x Z acting trivially on G and sending the element ¢ to the element t¢g’~!. It can be checked
that f is a group homomorphism. Every element of the group H(G) can be written without
'dash’ elements, since tgg't—! = g and, therefore, ¢’ = [g,¢]. Hence, in the case of the existence
of a non-trivial kernel of f, there is an element of G * Z, acting trivially by conjugation, i.e.
lying in the center of G*Z. However, any non-trivial free product has a trivial center, therefore,
f is a monomorphism. Thus H(G) is a subgroup of Aut(G % Z). Theorem 3 implies that the
group Aut(G * Z) is non-linear. O

Clearly, one can consider different embeddings of groups H(G) in correspondent automor-
phism groups. Consider the case G = F5.

Let F3 be a free group with basis x1, x9, x5 and ay, as, ag some elements of F3, such that the
subgroup (ay, as, as) is free of rank 3. Define automorphisms «;, i = 1,2, 3 of the group Fj as
conjugation with a;. The following statement can be checked straightforwardly:

Proposition 2. Let ¢1, ¢o € Aut(F3) be automorphisms which satisfy the following conditions:
¢1(ar) = ¢2(a1) = as,
¢1(az) = ¢2(az) = as,
¢1(az) = azar, ¢a(az) = azas.

Then the subgroup of Aut(Fs), generated by elements o, s, as, ¢1, P2 is isomorphic to the
poison group H(Fy).
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As an example lets take a3 = x3, with a; and ay arbitrary elements of (1, xs), which does
not lie in one cyclic subgroup. Define
qby{xinh 1=1,2

€r3 — X3d1,

by - €T; — T, 1=1,2
29 x5 309

The conditions 2 can be checked straightforwardly. Then the subgroup of Aut(F3), generated
by the elements «a;, ¢;, i = 1,2,3,j = 1,2 is isomorphic to H(F3). In particular, in the case
ai, as € vo(F3), we have the following

Theorem 5. The group I A(F3) contains a subgroup isomorphic to H(Fs), and hence, I A(F3)
is not linear.

Observe also that the poison group H(F5) is residually finite. It follows from Baumslag’s
theorem which states that every finitely generated subgroup of an automorphism group of a
residually finite group is itself residually finite. Also observe that the non-linearity of the poison
group can be used for construction of other non-linear groups given by commutator relations.
For example, the group H(F,) contains the following normal subgroup of index 2:

H = <$1,$2,$3,$4,$5 \ [$1,$3] = [$2,$4] = [ng5,$3] = [$§57$4] =1,
(2123, 2] = [wo24, 21] = [27° 23, 24] = [25° 24, 23] = 1),

which is of cause non-linear.

5. QUESTIONS

(1) Describe the Lie algebra of the group Cb,, n > 2.

(2) Let L,, be a free Lie algebra with n generators, n > 3. Does the group Aut(L,) contain
the poison group as a subgroup?

(3) Are the groups Cb; linear for n > 37

(4) Define the chain of subgroups

Aut(F,) =IA} >1A2 > 1A3 >

where IA¥, k > 1 is the subgroup of Aut(F),), which consists of automorphisms act-
ing trivially modulo the k-th term of the lower central series of Fj,. This chain was
introduced in [1]. For which k >3, n > 3 the groups IA* are non-linear?

(5) Do the groups Cb,, contain the poison group as a subgroup for n > 3?7

(6) Is the group H(Z) = (a,b | [a, [b,a]] = 1) linear?

Acknowledgements. The authors thank Vladimir Vershinin for helpful comments and sugges-
tions and Alexandra Pettet for sending the preprint where the non-linearity of the group I A(Fs)
is proved.

REFERENCES

[1] Andreadakis, S.: On the automorphisms of free groups and free nilpotent groups, Proc. London Math.
Soc., 15 (1965), 239-268.

[2] Lyndon R. and Schupp P.: Combinatorial group theory, Springer- Verlag (1977).

[3] McCool,J.: On basis—conjugating automorphisms of free groups, Can. J. Math., 38 (1986), 1525-1529.

[4] Savushkina, A.: On group of conjugating automorphisms of a free group, Mat. Zametki, 60 (1996), 92-108.



ON CERTAIN QUESTIONS OF THE FREE GROUP AUTOMORPHISMS THEORY 12

Birman, J.: Braids, links and mapping class group, Princeton—Tokyo: Univ. press, 1974.

Fenn, R., Rimanyi, R. and Rourke, C.: The braid—permutation group, Topology, 36 (1997), 123-135.
Bardakov, V.: The structure of the group of conjugating automorphisms, Algebra i Logik, 42 (2003),
515-541.

Crowell, R. and Fox, R.: Introduction to knot theory, Ginn and company, 1963.

Cohen, F., Pakianathan J., Vershinin, V. and Wu, J.: Basis-conjugating automorphisms of a free group
and associated Lie algebras, Preprint: arxiv math.GR/0610946.

Neschadim, M.: Normal automorphisms of braid groups, Preprint RAS, Siberian branch, Novosibirsk, 1993,
19 p.

Formanek, E. and Procesi, C.: The automorphism groups of a free group is not linear, J. Algebra, 149
(1992), 494-499.

Bardakov, V.: Linear presentations of the conjugating automorphism groups and braid groups of some
manifolds, Sib. Mat. J., 46, 1 (2005), 17-31.

Kourovka Notebook: Open problems of group theory, 15-th issue, Novosibirsk, 2002.

Scheuneman, J.: Two-step nilpotent Lie algebras, J. Algebra 7, (1967), 152-1509.

Cohen, D., Cohen F. and Pakianathan J.: Centralizers of Lie algebras associated to the descending central
series of certain poly-free groups, preprint arxiv: 0603470.

Bigelow, S.: Braid groups are linear, J. Amer. Math. Soc. 14, (2001), 471-486.

Krammer, D.: Braid groups are linear, Ann. Math. 151, (2002), 131-156.

Falk M. and Randell, R.: The lower central series of a fiber-type arrangements, Inv. Math. 82, (1985),
77-88.



