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Introduction

The notion of determinant occurs twice in the algebraic K -theory of a scheme X : firstly, we
have the map det : Ko X — PicX which takes a vector bundle on X to its highest exterior
power (we assume X is irreducible); secondly, we have the map det : K1 X — I‘(X , O})
which is induced by the usual determinant map GL(R) — R* in the affine case X = SpecR.

Let W' be the union of components of rank zero in the G-construction of Gillet and Grayson
[GG] associated with the category Py of vector bundles on X. We can regard W' as the
first term of the weight filtration, since :

roW'EF KoX = ker (rank : KoX — Z)
and .
TrmWIEF;K,,,XEK,,,,X for m > 1.
In the present paper we define a simplicial set 7' such that
moT=PicX, mT=T(X,0%), and 7, T =0 for m > 2
and a simplicial map
det : Wl =T
which yields the above two determinant maps on the homotopy groups:
F1KoX = ker (rank : KoX — Z)=moW! & ngT=PicX
and
KiXZmW! ¥ m T=r(X, 0%).

We also describe the homotopy fiber of the map det : W! — T as a simplicial set
W2 A vertex in W? is a triple (P, P';4), where P and P’ are vector bundles
on X such that rank P = rank P’ and ¢ : det P det P’ is an isomorphism. An
edge in W? connecting (Po, Py; w0} to (Pr, Pj;41) is a pair of short exact sequences
(Py — P1 — Pyjo; Py — P{ — Pyyg) such that the diagram

dety = detPy ® detPyy

Pt | 1l Yol
det Pll = det, P(') & det PI/O

commutes, where the horizontal isomorphisms are naturally induced by these short exact
sequences. Higher dimensional simplices in W? are defined in a similar way.

The long exact sequence associated with W2 — Wi — T yields
moW? = ker ((rank , det) : KoX — Z @ Pic X)
miW? 2 ker (det : K1 X — (X, 0%))
T W? e KX form > 2.

Thus W? provides the groups SK,,X as homotopy groups for all m > 0. The SK-
groups can be defined for m > 1 as the homotopy groups of BSL*(R) in the affine case
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X = SpecR and by means of the generalized cohomology of the sheafification of BSL™*
in the general case (cf. [Sou] p.524).

In a future paper we hope to define A-and -y - operations on W2 as simplicial maps and
prove on the simplicial level that the map 4! + y2 4 -- - is contractible. This would imply
directly that F.rszX = SK,,X for each m > 0.

1. Definitions

Let X be an irreducible scheme.

We denote by . P = Px the category of vector bundles on X. Suppose we are given a choice
of the tensor product Py @ - -+ ® Py for each collection of objects (P1,...,P) in P and a
choice of the exterior product Pi A ... A Py, for each admissible filtration Py > --- »— P,
(by definition, the latter is isomorphic to the image of PL® P @ ---® Py, in A\ K Py, ). These
operations satisfy the usual functoriality and compatibility conditions (cf. [Gr, sect 7]).

Let L = Lx be the category of linear bundles on X and their isomorphisms. We set
det P = A rank PP for every P in P, where \ ¥P now stands precisely for the exterior

product Pp..AP associated with P RN P ( k copies). Thus we obtain the map
det : ObP — ObL.

Let I = Ox be the identity linear bundle. We assume that det O = I for any zero object O
in P. We also assume that an object L' = Hom(L, I) is chosen for each L in L.

Proposition 1.1. (i) Any exact sequence
(1.1) 0= FR—-P—-Pyp—0
in P gives rise to an isomorphism
6 =10p, : det Pl'—,ﬁ det Py @ det Py g

in a natural way;

(ii) Given a commutative diagram of the form

Py
T

(1.2) Py — P
T T

PR - P - P
such that the sequences 0 — Py — Pj — Py — 0, with 0 <2 < j < 2, and
0 = Pyjg — Py — Poy1 — 0 are exact, the diagram
det P, boz det Py ® det Pyjq

(1.3) ' 61,2 | L1®6102/0
det Py @ det Pyyy 1% det Py @ Pyjp ® det Pyyy

commutes.



Proof: for any m > 0, we have the Grothendieck filtration
A ANRy—= PN .. APOAPL > - BPAPRAN- - AP > PA---AP

associated with the left arrow in (1.1) in which all products contain m factors. The successive
quotients are the products

POA"'/\PO ®\P1/0/\"'/\P1/01

"~
k-

r

with r 4 3 = m, the quotient maps being induced by the right arrow in (1.1). In particular,
if m = rank Py, the only nonvanishing quotient corresponds to the pair 7 = rank Fp, s =
rank /% /9, and we obtain the isomorphisms

PoAN-- APy A PPN AP = PA---AP
S——’ S—— S———

r 8 m

b /

§
Pon--ANBy @ 531/0/\-;-/\]31/(1

s

r

The desired isomorphism &1 : det = det Py @ det P /o now can be defined from the
above diagram.

Let rank P’ = r; and rank Pj/i =T/ in (1.2). We have the natural commutative diagrams

detP, = PoA-- AP A PaA--APy & RA--ARs A PIA---APL A PiA--- AP
N 1
0,2
PoA AP @ PygA-APyyy = PoA-APy ® PigA---APyg A PypA--APypq
o raz0 4l .-17” g = fnv,u g
~ !
1 ® 610,270
PoA- APy ® PiygA-APijg ® PyjiA- APy,
and " o 2
detP, = PA---AP A PBA-- AP = PA-- AP A PLA AP A PoA AP
A T1/1 ) o ’ ) r]./u T
N 1
61,2
PyA-APL  ® Py A--APayy = PoA--APy A PIA-APL  ® Py A--APy
" Y o a7 Y
N Iy
do1®1 PBAAR & ‘P1/uf\""'\P1/a ® ‘132/1/\“'/\172/1

r1/0 /1
in which all the arrows are obviously isomorphisms. The desired commutativity in (1.3)
is now equivalent to the commutativity of the diagram
PoA-APoAPYA- - APLAP, A APs = DBoA--APa@PijgA--- AP gAPya A=A Py
! !
PoA--APGAPLA-- APL@Py/y A -APyyy = PaA---APo®PijaA AP jg@Py Ao APy

The latter is evident (cf. (E2) in [Gr, sect 7])



Definition Let A be a partially ordered set. We let ArA denote the set {j/i|i,j € A,7i < j}.
By multiplicative map on ArA with values in £ we mean a map D : ArA — L endowed
with a collection of isomorphisms

§ijn s D(k/0)=D(j/1) ® D(k/j) forevery i < j <k inA

such that
(1)D(i,7) = I for every i € A;

(1.4) . o
(41) for every ¢ < j in A,&;;; and &; ;;

are the natural isomorphisms D(j/:)=1 ® D(j/#) and D(j/1)=D(j/i) ® I, respectively;

(i72) for every @ < 7 < lin A, the diagram
. bij, L. .
D(¢/i) = D(j/i) ® D(1/5)
binel L1®65n,

D(k/iy® D(e/k) P D(jfi)® D(k/4) ® D(£/k)

commutes. We let Mult(ArA, L) = {(D;6;;x)} denote the set of all L-valued multiplica-
tive maps on ArA.

Definition. We define the simplical set Z = Z. £ by

Z(A) =Mult (Ar,A, L), A€ A

where A denotes as usually the category of finite nenempty totally ordered-sets and non-
decreasing maps.

By definition, there is a unique O-simplex * in Z. A l-simplex in Z is an object
L = D(1/2) of L. A 2-simplex in Z is a tuple (Ll,Lg,Lzll;(S), where int the above
notation Ly = D(1/0), Ly = D(2/0), and Ly; = D(2/1) are objects of £ and § = &p,1,2 :
Ly=Li ® Ly is an isomorphism. Thus, Z looks in a sense like the classifying space of
the Picard group, and it is easy to see that m;Z = Pic X. However, Z is not homotopy
equivalent to BPic X. In fact, we have mZ = Aut] = T'(X,0%) and 7, Z = 0 for
m 2> 3 (cf. Proprosition 2.1 and Theorem 3.1).

Given a partially ordered set A, we regard the set ArA as a category in which
Mor (5/4,7'/4') consists of a unique mormpism if © < ¢ and 7 < 7', otherwise it is
empty. Say that a functor F': ArA — P is exact if

(i) F(i/i) = O for every i € A, where O denotes a distinguished zero object in P;
(ii) the sequence O — F(j/i) — F(k/i) — O is exact forevery + <j <k in A.

Recall that the S-construction of Waldhausen associated with the category P is the simplicial
set S = SP given by

S(A) = Exact (ArA,P), A€ A,

where Ezact refers the set of exact functors.

Proposition 1.1 obviously implies the following
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Proposition 1.2. Let A be a partially ordered set and F : ArA — P be an exact functor.
Consider the map D = det-F . ArA — L.

(i) Forevery 1 <j <k in A, the exact sequence 0 — F(j/i) — F(k/i) — F(k/j) —
0 gives rise to an isomorphism &; ;1. : D(k[i)=D(j /1) @ D(k/j) in a natural way;

(iiy For every i <k <k < in A, the diagram (1.4) (iii) commutes, i.e., (D;6;;y) is
a multiplicative map ((1.4) (i) and (ii} obviously hold);

(iii) This gives rise to a simplicial map

(1.5) det : SP — Z.L

2. Applying the loop space functor
Let F: X — Y be a mimplicial map, A € A, and yo € Y(A). Following [GG, sect. 1],
we define the right fiber over yo to be the simplicial set yo|F' given by

| X(B)
(yol F)(B) = I |.Ben,
lY(AB) — Y(B)

{yo} = Y(4)

where AB denotes the concatenation of A and B, i.e., the disjoint union AJ[ B ordered
so A < B. By definition, a B-simplex in y|F' is a pair (y,z), where y is an AB-simplex
in Y and z is a B-simplex in X such that the A-face of y is equal to yo and the B-face
of y is equal to F(x).

If F=1:Y —Y, we write y|F. Ir is easy to see that y|Y is contractible for any Y and
y € Y(A) (cf. [GG, Lemma 14]). A B-simplex in y|Y is an AB-simplex in ¥ whose
A-face coincides with y.

Suppose Y has a distinguished vertex *, i.e., * € Y({b}), where {0} € A is a one-element

set. Let Pr: *|Y — Y denote the natural projection. We define the (simplicial) loop space
of Y at % to be the simplicial set

QY = x|Pr
QY — Y
or, equivalently, Y can be defined from the cartesian square | L (cf. [GG,
Y — Y

sect. 2]). By definition, a B-simplex in QY is a pair of {b}B-simplices in Y whose B-faces
coincide and whose {b}-vertices are equal to *.

Recall that the G-construction of Gillet and Grayson associated with P is the simplicial set
G =G. P = QS.P. By [GG, Theorem 3.1]; there is a homotopy equivalence |G|=8|S].
It follows that =,,G = K,,X for m > 0.

For A € A, let ¥(A) denote the disjoint union {L,R} ][ A ordered so that the symbols
L and R are comparable, L < a and R < a for any a € A, and A is an ordered subset
in y(A). Let T(A) = Ary(A). It is easy to see that the G-constructions can be described
as follows:

2.1 G(A)Exact (IT'(A),P), A € A.
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Definition. We define the simolicial set T = 7.L by T.L = QZ.L. Similarly to (2.1),
we can write

2.2) T(A)Mult (T'(A), £), A € A

Thus, a p-simplex in T is a collection of objects

LP/P—I
Ly -+ Lyp
Lo Ly --- Ly

in £ endowed with isomorphisms
6rij: Li=Li® Ljj; and 6p; ;Li=L; ® Ly
forevery 0 <72 < j < p and
Bij : Lifi=Ljpi ® Ly

for every 0 <1 < j < k < p satisfying (1.4) (iit) (here we write for short L;, L}, and Ly
for D(:/L), D(i/R), and D(j/%), respectively). In j\articular, a vertix in T is a pair of

L

objects f, in £. And edge connecting [ﬁ,‘] to [L, is a triple (L1/0;6,6’), where Ly

is an object of £ and & : L1=Lo ® Lyjp,8' : [} Ly ® Ly are isomorphisms.
Propesition 2.1. |{T| ~ Q|Z].

Proof: By [GG, Lemma 2.1], it suffices to show that the map =|Z — Z is fibred (see sect. 4
for the definition of a fibred map). In fact, any simplicial map X — Z is fibred, since Z
satisfies the condition (4.1) of Proposition 4.2, The verification of (4.1) for Z is similar to the
proof of Proposition 4.3 and we omit it, because we will not use the homotopy equivalence
|7l ~ £ Z] in the sequel. ged
Applying the loop space functor to the map (1.5), we obtain a simplicial map G.P — T.L
which we will also denote by det. We set W0 = G, and let W! be the union of components
in G of rank zero, i.e., the components whose vertices [g] satisfy rank P = rank ¢. The
restriction of the above map to W' yielsd the simplical map

det : W! =T

which plays the central role in the paper. By definition, this map takes a simplex F' €
W1(A) C Exact (T(A),P) to mulitplicative map D = det.F : T(A4) — L (cf. (2.2)) such
that for every 7 < j < k in y(A) the structural isomorphism &; ; : D(k/i)=D(j/i) ®
D(k/4) is the isomorphism associated with the exact sequence 0 — F'(j/i) — F(k/i) —
F(k/j) — 0 as in Proposition 1.2.



3. The homotopy groups of the simplicial set 7'

We make T into a H-space using tensor products in L; i.e., for D, D'e T(A), we define
D@ D' € T(A) by

(D® D')(5/1) = D(j/i) ® D'(j/9) fori < j in 7(A)
and let the isomorphism
Sijx: (D®D)(k/)=(D®D')(j/i)® (D& D')(k/j)
be the product map

D(k/i) ® D'(k/1)=(D(j/%) ® D(k/5)) ® (D'(j/i) ® D'(k/§))=
=(D(3/3) ® D'(3/1)) ® (D(k/§) ® D'(k/3))

where the second arrow denotes the natural permutation map. The verification of (1.4) is
trivial (we assume strictly / ® I = ). This H-space structure on 7' makes mpT into a
monoid. The vertex [;] is strict identity in 7', and therefore its component is the identity

element of 7T
Theorem 3.1.

(1) ﬂOTng;

(ii) mT = T(X,0%) and 7,7 = 0 for m > 2.

Proof: (i) For any two vertices [ f,] and [ ;‘f,] in T, there exists an edge connecting these

vertices if and only if L&(L')™" = M®(M')™". Thus the assignment [f‘,/l - {L ® (L’)_l}
gives rise to a bijective map my7 — PicX, and the operation on Pic obviously agrees
with the operation on 77" induced by the H -space structure.

(i1) It follows from (i) that all the components of 7' are homotopy equivalent. Nevertheless,
we will construct a universal covering for an arbitrary component of 7, which will enable
us to compute its homotopy groups.

For {L} € Pic X, let Ty denote the component of the vertex [f:] in T. We define the
simplicial set Ty, as follows. An A-simplex z in TL is a tuple =z = (D; E;,7 € A), where
D e Tr(A) ¢ Mult (T'(A), L) and &D(z/L)=L® D(i/R), i € A, are isomorphisms such
that the diagram

DG/ Y DG/L) @ D)
3.1) ) l&®1
1®6r,:,;

L®D(j/R) ®5" L& D@/R)® D(j/i)
commutes for every ¢« < 7 and A. Thus, a vertex in ’f[, is a pair of objects [ﬁa] in

£ endowed with an isomorphism &, : Lo=L ® Lj. We have an obvious simplicial map
Ty — T which forgets the choice of &;.



Lemma 3.2. Let D € T((A) and k € A. Then for any isomorphism & : D(k/L)=L ®
D(k/R), there exist uniquely determined isomorphisms & : D(i/L)=L ® D(i/R), with
i € A,i # k, such that = = (D; &, € A) € Ti(A).

Proof: The uniqueness of &; for 7> k follows directly from diagram (3.1). For 72 < % it
follows from (3.1) that the isomorphism & ® 1: D(7/L) ® D(k/:)=L ® D(i/R) ® D(k/?)
is uniquely determined. But for any linear bundles L,L', and L", with {L'} = {L"} in
Pic X, the map Iso(L'/L") — Iso(L' ® L,L" @ L) given by £ — £ ® 1 is a bijection,
since £ can be restored from the diagram

% 5 A
IR T
rerert ¥ rerLer!

in which the vertical arrows are induced by the natural map L@L™! — I (in particular, AutL
is naturally isomorphic to Aut/ = I'(X,0%) for any L € £). Hence the isomorphisms £;,
with ¢ < £, are also uniquely determined. The commutativity of (3.1) for an arbitrary pair
¢ < j can be deduced from the commutativity for (7, k) and for 4,k and the properties (1.4)
of the isomorphisms §. ®

Given a simplex =z = (D;&) € TL(A) and an element & € Aut L, we define £(z) to
be the simplex
E(z) = (D; £E® lD(i/R)) Ei€EAE TL(A).
This is really a simplex in fL, because the diagram
. ) W . g 5.' . ‘g
DG/L) = DG/L)@Dfi) B LeD(i/R)® D(/i)
&l lEoi®l
. E®l . 1Q6R,:., . C .
LeDG/R) B LeDy/R) ®% LeD(i/R) e D)
obviously commutes for every © < j in A. Thus we obtain a free left action of the group
Aut L on the simplicial set Tr, and it follows from Lemma 3.2 that the forgetful map

TL — T, is the quotient map associated with this action. Hence ‘TL) — |T'| is a covering,
and to complete the proof of theorem 3.1, it now remains to show the following

Proposition 3.3. T [, Is contractible.

Proof: We will define simplicial maps f : *|Z — TL and g : ’fL — %|Z such that g- f =1,
and f-g admits a simplicial homotopy to the identity map of 7. This will be enough, since
*|Z is contractible (cf. [GG, Lemma 1.4]).

We can describe the simplicial set x|Z as follows. For A € A, let o(A) denote the
concatenation {b}A, where b is a symnol (“base element”), and let > (A) = Arc(A). Then
we can identify (x|Z)(A) with the set Mult (3" (A), £). Given D € Mult (3 (A), £),
we define f(D) : T(A) — L by
F(D)i/) = D(j/i) for i<j in4;
F(DY)3/L) =L@ D(j/b) for ;€A
f(DY(3/ 1) = D(j/b) for j€A.
The isomorphisms é for f(D) are naturally induced by those for D, and we also define the
map & : f(D)(i/LYSL ® f(D)(i/R) to be the identity map for every i € A. This makes
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f(D) an A-simplex in Ty. The definition obviously agrees with the face and degeneracy
maps, and we obtain the simplicial map f : *|Z — TT.

Given a simplex of TL(A), i.e., a multiplicative map D : T'(A) — L endowed with
isomorphisms &; satisfying (3.1), we let g(D) be the composite map 3 (A) < T'(A4) L,
where the inclusion ) (A) — T(A) is the identity on ArA and sends b to R. Then
g : Ty, — *|Z is a simplicial map, and obviously we have g- f = 1,5

We now proceed to show that there is a simplicial homotopy connecting f - g and 15,1 A

p-simplex z in TUL is a collection of objects in £ of the form

[ Lpjp-1]
T = LI/O T Lp/O

Ly In - L,

o1

endowed with isomorphisms & (cf.(2.3)) and isomorphisms & : L = L® L} for 0 <7 < p.
By definition,

Lpjp-1

(f . g)(&:) = LI/O e Lp/O
LoLy L®Ly - L®L,

Ly Ly L

where the isomorphisms &; : L @ LIL ® L! are the identity maps.

A p-simplex in A[1l] can be thought of as a representation of the set [p] = {0,1,...,p} in
the form of a concatenation [p] = {0,...,»}{n-+1,...,p}, where n € {-1,0,...,p}. For
short, we will denote this simplex by n. We define homotopy H : T xA[l] — T by

Lp/r-l

H(zin)= | Lnjg Loy~ Lypo
LO"'Ln L®L:1+1 L®L;

Ly Ly Ly o L

where & isasin z for 0 <1< n and & = 15757 forn+1<2<p.

To make H(z;n) into a simplex of Ty, it remains to define the isomorphisms 6. They will
be the same as in = except the case 6y, ; L®L3'—TL,- ® Lj;, where i <n and j > n+1.
In this case we define 6 to be the composite isomorphism in any of the two possible ways
in the diagram

L L Ol Lelle Ly
5]' T \. " T £Ei®l
L; ‘SL'E'-J.—-)O ’ L;® Lj/,-

which is commutative by virtue of (3.1). One checks directly the required compatibility
conditions (1.4) (iii) and (3.1) for H(z;n), whence H is the desired simplicial homotopy.
This completes the proof of Proposition 3.3 and Theorem 3.1. ®



4. The map det : W1 — T is fibred

Let F: X — Y be a map of simplicial sets, A € A, and yo € Y(A). Anymap f: A" — A
in A gives rise to the base change map yo|F — (f*yo)|F which takes a B-simplex (y, )
to (f*y,z) where we write simply f*y to denote the inverse image of vy under the map
1

A'B fﬂ» AB (cf. sect. 2). We say that F is fibred if y|F — (f*y)|F is a homotopy
equivalence for any f: A’ — A in A and any y € Y(A).
Theorem B’[GG, p. 580). If FF : X — Y s a fibred simplicial map, then for any A € A
and y € Y(A) the square

ylfF — X

l !

yY — Y
is homotopy cartesian, and therefore |y|F| can be regarded as homotopy fiber of the map
IF| X — Y.
Theorem 4.1. The map det : W! — T defined in sect. 2 is fibred.

We claim that in fact any simplicial map X — T is fibred. The latter follows from Propositions
4.2 and 4.3 below.

Proposition 4.2. Suppose that Y is a simplicial set such that
(4.1) for any map f : {a} — A in A and any simplex y € Y(A) there exists a simplicial
map @ : (f*y)|Y — y|Y such that the diagram
Fly S Y
l !
y 4 v
commutes, where the vertical arrows take {a}B (resp. AB }simplices to their B-faces, and

(4.1) (i) ( f*y)‘Y 2, le L (f*9)|Y is the identity map;

(4.1) (ii) there exists a simplicial homotopy h : (y|Y)xA[l] — y|Y which connects the map

y|Y 5 (f*NY S y|Y with the identity map and which is constant on the B-part (see the
definition of y|Y in sect. 2), i.e., the diagram

WY)xal] = yly
! |
Y Loy
commuiites.
Then any simplicial map F' : X — Y s fibred.

Proof: It suffices to prove that for any map f: {a} — A in A and any yy € Y(A), the
map yo|F — (f*yo)|F is a homotopy equivalence, for given a map g : A’ — A, we see
that the base change maps yo|F — (g1¢*yo)|F' and (g*yo)|F — (979" yo)|F are homotopy
equivalences for any map g; : {a} — A', the assertion for yo|F — (g™yo)|F follows.

Let ¢ : (f*40)|Y — wolY be the map of (4.1). We define a map @ : (f*yo)|F — yolF
by (y,z) » (@(y),z). Then, by virtue of (4.1) (i), the composite map (f*yo)|F LA
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yo| F 5 (f*y0)|F is the identity map We deﬁne a homotopy H : (yo|F) x A[l] — yo|F
which connects the map yo|F 4 (f*yo)|F 2 yo|F with the identity map, by letting
H{y,z;n) = (h(y;n), ) for (y,7) € (ol F)(B) and n € A[1)(B) ®
Proposition 4.3. T satisfies (4.1).

Proof: Let f: {a} — A be the inclusion {i{} — [p] = {0,1,...,p}. We assume yq is a
p-simplex in T given by (2.3). Then f*yg is the vertex [ﬁ,:] A g-simplex « in (f*yo)|T
is a collection of objects of £ of the form '

Mq/q—lﬁ

Ml/[) Mq/o
.ljlllﬂ,;L Mq,f

Ly My ... M,
L My ... M

together with isomorphisms ¢ satisfying (1.4). We set

Mara—1 ]

Ml/U ﬂdqﬂ,

L @Mox ... L7A®Mo|i—th mw t+1<j<p
wl(z) =
- Lo Moyt My t—th row

R S I T TR Liyi®Moe oo Lyyi@Mge|i—th ww 0<i<t—1

Ly ... Ly ... L¢ v Ly ... Lp Mo M

T N A VN A T 1

(recall that an inverse object L™! is chosen for every L in £). To make ¢(z) a g-simplex
in yo|7', we have to define the isomorphisms é and verify (1.4). This amounts to the study of
various locations of three (resp. six) objects in the above picture. In each case ¢ is naturally
induced by the corresponding isomorphisms for z and yp, and (1.4) for ¢(z) follows easily
from the same properties of z and yo.

Thus we obtain a simplicial map ¢ : (f*0)|T — yo|T, and obviously f* - ¢ is the identity
map of {f*y)|T. It remains to define a homotopy A : (yo|T) x A[l] — yo|T satisfying (4.1)
(ii) which connects the map ¢ - f* with 1, 7.

A g-simplex ¥ in yo|T is a collection of objects of L

i Mq/q——ﬂ
Mo - My
Mo,p v M‘J:P
Y = Lp/p—l MO;P_I T Mq,p—l
LI/O ces Lp/O M(),(] Ces Mq,O
Lo L1 RN Lp MO s Mf]
L. L oM ... M
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fogethcr with isomorphisms § satisfying (1.4). Let n € {-1,0,...,q} denote a q-simplex
in A[l]. We set '

[ Myjq-1
Ml/(] P Mq/o
h(y;n) = Mo ... My LJ-'/I, Q@ Mut1t - L;/lt ® Mg,
Lp/t MO,t s Mn,t Mn+1,t ERER Mq,t
Ly Mo . Mng Ly @ Magae o0 Ly @ Moy
Ly ... L, My ... M, M4 M,
Ly o My M) P . ML

Again we have to consider various locations of objects in order to define the isomorphisms
§ for h(y;n) and check (1.4). We omit this trivial verification. This completes the proof
of Proposition 4.3 and Theorem 4.1.

5. The second term of the weight filtration

We define the simplicial set W? as follows. For A € A,, an A-simplex in W?
is a tuple (F;v;,i€ A), where F' : T(A) — P is an exact functor such that
rank F(i/L) = rank F(i/R) for every i € A (ie., F € W(A) ; cf sect. 2) and
i @ det F(i/L)= det F(i/R) are isomorphisms compatible with the isomorphisms ¢ in
det -F (cf. Proposition 1.2), i.e., for every 7 < 7 in A the diagram

det F(j/L) 5 det F(i/L) ® det F(j /i)
(5.1} (I L@l

det F(j/R) 5 det F(i/R) ® det F(j /4)
comimutes. "
For short, let P; = F(i/L), P/ = F(i/R), and P;; = F(j/i). We see, in particular, that
a vertex in W2 is a triple (P, P';¢) where P
and P’ are objects of P such that rank P = rank P’ and ¢ : det P=det P’ is an
isomorphism. An edge in W? connecting (Po, P§; %o) to (Pr, P{;41) is a pair of short exact
sequences (0 — Py — Py — Py — 0,0 » Py — P{ — Py — 0) such that the diagram

1)

det Py 5 det Py ® det Py
Y1l ldp®1
det | — det Fy @ det Py

2o

commutes.
There is an obvious simplicial map W? — W' which forgets the choice of the isomorphisms
Pi.
Theorem 5.1. W2 — W' % T is a homotopy fibration sequence.
This assertion together with Theorem 3.1 yield a long exact sequence
= 0o WS W 50 s WS KX D (X,0%) A
— 1gW? = ker (am : KgX — Z) = Pic X — 0



Corollary 5.2.

(i) ToW?2 2 ker ((an, det) : KX — 2@ Pic X)
(ii) mW? & ker (det : K1 X — T(X, 0%))
(iii) TmW? & K, X for m > 2

©

Proof of the theorem. Let * denote the vertex [ﬂ of T regarded as a {b}-simplex. By

Theorem B’ and Theorem 4.1, it suffices to construct homotopy inverse maps f : x| det —
W? and g : W? — «|det.

A p-simplex in *|det is a pair (=, F'), where

Lp/p—l ]
LI/O ... L /0
(5.2 T = P
Ly=1 I Ly ... L,
_L;, =] LE) Ly ... L; |

is a collection of objects of £ endowed with isomorphisms 6 (i.e., z is a {b}[p]-simplex
in T whose {b}-vertex is *) and F is a p-simplex in W such that det F is equal to
the p -face of z.

We set
% =85 Orbi s LiSL
where 6rp; : Li=I® Li/b and Spp; : L:»:I @ L,'/b, and claim that (F;v;,0 <i<p)

is a p-simplex in W2, For it suffices to verify (5.1) for every 7 < j in [p]. This follows
from the diagram

bi
LJ' L—> . Li ® Lj/,'
6rp; L1 L ¥rp:i @1
' 1®8si,;
T®Lip 27 T®Lip®Ly;
1 TUoRp; @1
6Rp.i
bR,i.j
Ly 2 LieLy

in which both parts are commutative by virtue of (1.4) (iii) for =.

Thus we obtain a simplicial map f : *|det — W?2. We define a homotopy inverse map
g : W? — x|det as follows. Given a p-simplex  (F;¢;,0<i<p) in W2, we set
L; = det F(¢/L), L; = L;j, = det F(i/R), and L;;; = det F(3/i) for 0 < i< j < p
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We define a {b}{p)-simplex z by (5.2), where the isomorphisms & in the p-face are the
same as in det F (cf. Proposition 1.2). Further, we set

Sppi - Lt = det F(i/R) & det F(i/R) = Lijy = 1 ® Ly,

where L — I ® L;y is the natural map (recall that [ = Ox ), and

SR, j d . ‘g
Bhij + Lipp = det F(j/R) ™ L AF ot P(i/ R) @ det F(j i) = Lipp ® Ljis
the compatibility condition follows trivially. Thus (z, F') is a p-simplex in *|det, which
gives rise to a simplicial map g. Clearly, f.g = ly2, and it is easy to define a simplicial
homotopy which connects g - f with 1,/4,. Theorem 5.1 is proved. ®

[GG] H. Gillet and D. Grayson, The loop space of the () -construction
Illinois J. Math. 31 (1987), no. 4, 574 - 597

[Gr] D. Grayson, Exterior power operations on higher K-theory, K-Theory 3
(1989), no. 3, 247 - 260

[Sou] C. Soulé, Opérations en K-théorie algébrique, Canadian J. Math., 37 (1985),
no. 3, 488 - 550

14



