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§ 0. Introduction.

We recall that K3 surface is a smooth projective algebraic surface
X over an algebraically closed field k with K,=0 and Hl(X,Ox)=O.

A normal projective algebraic surface Y is a singular K3 surface
if for the minimal resolution of singularities c:X-—Y the nonsingu-
lar surface X is a K3 one. In this case, all singularities of Y are

E
m’ “m’
of nonsingular rational curves of the type Am, D

Du Val singularities A, D and we get Y if we blow down trees

, E_ on X.

V.A.Alekseev asked me: what one can say abght ﬁ complete ample
linear system |D| of integral Weil divisors D on singular K3 surface
Y. For example, what one can say about the fixed part of the linear
system, multiplicities of fixed components with respect to 52,
dim|D|?

This problem is very important maybe from the viewpoint of a clas-
sification of Fano threefolds F with Ql-factorial terminal singulari-
ties. If the linear system |-K.| has a good member Ye|-K.| then, by
the adjunction formula, Y is a singular K3 surface and the restricti-~
on of the linear system [-K_ | on Y is a complete ample linear system
of Y. Thus, we can reduce a description of the |-KF| to a linear sys-
tem on the surface Y. And a classification of Fano threefolds is very
closely related with a description of linear systems on K3 surfaces.

Unfortunately, it is not proved yet that this good member does
exist. Recently, V.A.Alekseev got some results in this direction, and
it was the reason why he asked me about. On the other hand, as I
think, one can consider results about linear systems on singular K3

surfaces as a good model for the system |-K on Fano threefolds with

|
terminal singularities and can try to gengralize these results for
Fano threefolds with terminal singularities.

It was very strange to me that I did not see in literature some
results devoted to linear systems on singular K3 surfaces. Except, of
course, Saint-Donat’s paper ([S5-D] devoted to nonsingular ones. It is
required to construct some theory devoted to this problemn.

At first, me and a little later Alekseev considered the case when
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rk Pic Y=1 (see § 3, 3.3 here). It was solved by different methods. I
worked with nonsingular K3 surface X, and Alekseev used Riemann-Roch
for singular K3 surface Y. Later, I considered the general case when
rk Pic Y is arbitrary. The last case is much more complicated, and we
will consider this case here. On the other hand, for the case rk Pic
Y=1 we have a very precise answer. For an arbitrary rk Pic Y, we have
a theory only. Using this theory, one can get the full description of
all cases in principle.

At last, we recall some results about linear systems on nonsingu-
lar K3 surfaces. Here we have the

Proposition 0.1, Let HePic X 1s nef. Then one of the cases (i)-
(iv) below holds:

(i) #%>0, |H| contains an irreducible curve and has not fixed
points, dim |H|=H2/2+1>0;

(ii) H%=o0, |H|=m|E|, m>0, where |E| is an elliptic pencil (|H|
contains an irreducible curve for m=1 only).

(iii) H=0, |H|=e.

(iv) H%>0 and |H|=m|E|+, m>1, where |E| is an elliptic pencil, T
is an irreducible curve with I'’=-2, and E-T'=1. Here m=dim|H|=H2/2+l,
' is the fixed part of |H|.

Proof. It is well known to specialists and follows very easy from
[S-D]. We will give a proof.

Let H=#0. Since H 1is nef, szo. Then, by Riemann-Roch theorem,
dim|H|>0. Let |C| be the moving part of |H| and A the fixed part. By
[s-D], (i), or (ii) holds for |C]|.

At first, let |C| contains an irreducible curve C. By Riemann-Roch
theorem, (C+A)2<C%. Thus, A-(2C+A)<0. It follows A-(C+A)+A-C<0. Since
C+A and C are nef, A-C=A-(C+A)=0. Then A2=0. If A=0, we get the case
(i). If A#0, by Riemann-Roch theorem, dim|A|21, and we get the
contradiction.

Let |C|=m|E| where |E| is an elliptic pencil. By Riemann-Roch the-
orem, (mE+A)2/2+1sm. Thus, (mE+A)-A+mE-A<2m-2. Since mE+A 1is nef,
either E-A=0 or E-A=1 and Azs-z. We consider these possibilities.

Let E-A=0. By Hodge index theorenm, Azso. Since E+A is nef, A%=o0.
If A=0, we get the case (ii). If A#0, we get the contradiction since
dim|A}21.

Let E-A=1 and Azs-z. Then A=I'+A’ where I' is an irreducible curve
with F2=—2, and E-T'=1, and E-A'=0, and I' is not a component of the
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divisor A’. If A'=0, we get (iv). Let A'=#0. By Hodge index theorem
and Riemann-Roch theorem, (A32<0 and (F+A32=-2+2F-A$+(A32<0. Since
Picard lattice of K3 surface is even, 2F-A’+(A’)2=(P+A')-A’+F-A’so.
Since C+I'+A’ is nef and C-A'=0, (I'+A’):-A’'>0. Since I' is not a compo-
nent of A’, TI'*A’20. It follows (I'+A’):A’'=["-A’=0. Thus, (A')2=0. We
get the contradiction. =

We want to get something similar for singular K3 surfaces. On the
other hand, the Proposition 0.1 will be very important for us in the
case of singular K3 surfaces also.

§ 1 Fixed part of linear system on nonsingular K3 surfaces.

Let X be a nonsingular K3 surface, H an effective divisor on X and
|H| the corresponding complete linear system. Let |H|=|C|+A, where
|Cc|] is the moving part and A is the fixed part of |H|. What one can
say about the |[C| and A?

From the Proposition 0.1, it follows the following statement:

(*) |Cc| satisfies the condition (i), (ii), or (iii) of the Propo-
sition 0.1, and A=ZkiFi, where any Fi is an irreducible =2 curve and
kieN. If |C|=m|E| where E is an elliptic curve and mz2 then there
does not exist more than one irreducible component Fi of A such that
E-T.21; if here m24, then the multiplicity k., of the r; is ki=1.

our question is: If (*) holds, when

|c+a|=|C|+A? (1.1)

We correspond to this situation a graph G(C,A) (and G(A)) by the
obvious way. The G(C,A) is the dual graph of intersections of the
irreducible components C and Fi of C+A. Here C is a general member of
lc| if c®>0, and C=mE where E is a general member of the pencil |E|
if c%=0 and |C|=m|E|. The weight of the vertex C is equal to c?, the
weight of the vertex Fi is equal to -2. The multiplicity of C is equ-

i

al to 1 if ¢%>0, and is equal to m if |C|=m|E| where |E| is an ellip-
tic pencil; the multiplicity of Fi is equal to ki. For the case (i)
let Crea=C and for the case (ii) Creq=E where |%|=m|E . We denote by
o a vertex of the weight -2, and by Co (or C“¢) a vertex of the
weight Cz.

The question is: What are graphs of this kind possible? It is
obvious that if G(C,A) is possible (has the property (1.1)) then an
every subgraph of G(C,A) is possible. Here a subgraph corresponds to

a divisor D such that 0<D<C+A.
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We prove the following basic theorem.

Theorem 1,1, Let C and A are divisors on the nonsingular K3

surface X which satisfy the condition (%) above.

Then |C+A|=|C|+A iIf and only if G(C,A) is a tree (particularly,
all components of C+A are intersected transversely in no more than
one poi?t) anq-G(C,A) ?és no subtrees ﬁm' ﬁe, E7, EB' ﬁm(c), EG(C),
E7(C), ES(C)' Bm(C) or GZ(C) below:

5 . 12331 (m24)
" | |
1o o1
E,: 1311
o2
o1
= 1 2 3 4 3 2 1
E_: ° © ° ° ° o a
’ |
02
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M ° ° ° ° ° [ 3 C)
8
|
°3
: S S B 21
Dm(C) : | ° <|’ Cred (mz4)
1o o1
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Eg(C): ° i ° * Crea
o 2
|
o 1
By %3 T I S
o2
. 2 4 6 5 4 3 2 1
Eg(C): | * Cred
o3
— -1 ——
1le
~ L1 2 3
GZ(C). ° Cred
Proof. By the Proposition 0.1, these conditions are necessary: The
divisors corresponding to subgraphs im' D, E, E,,6 E

d s s 9 b 6 E;. Eg, A_(C), D_(C),
EG(C)' E7(C), ES(C), Bm(C), GZ(C) are nef.

Let us prove the inverse statement which is much more difficult.

If A=0, the statement is trivial. If |C|=m|E|, where |E| is an el-

liptic pencil, mz2 and A=TC

is an irreducible curve, then the
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statement holds by the Proposition 0.1 and the condition (*).

Let A<e and A is not an irreducible curve if |C|=m|E|, m22 and |E]
is an elliptic pencil. Let G(C,A) be a tree and it has no subtrees
6m, ES, E7, ES, ﬁm(C), EG(C), §7(C), EB(C), §m(0) or 62(0). We will
show that then there exists an irreducible component Fi of A such
that T, - (C+A)<o0. It follows the Theorem. Indeed, then T, is a fixed
component of |C+A|, and the conditions of the Theorem hold for
C+(A—Fi). Thus, we shall obtain the Theorem by the induction and the
Proposition 0.1.

In such a way, we must prove that there exists an irreducible com-
ponent I'; of A such that I',-(C+4)<0. If it is not true, then the di-
visor C+A is nef. In this case we call the tree G(C,A) nef also. To
prove the Theorem, we have to show that, if the tree G(C,A) is nef,
then the tree G(C,A) contains one of subtrees ﬁm' EG' E7, Ea, ﬁm(C),
EG(C),_E7(C), EB(C), Bm(C) or GZ(C)' We can reformulate this by the
following way. We say that the nontrivial nef tree G(C,A) is minimal
if it has no nontrivial nef subtrees (Here, the nef tree is called
trivial if it corresponds to the divisors C, or KE, or KE+I" where
k22, or 0.) We must show that an every nontrivial minimal nef tree is
one of the trees Bm, Es, E7, EB, ﬁm(C), EG(C), E7(C), EB(C), ﬁm(C) or
Gz(C). In such a way, we have to obtain the classification of nef
minimal trees.

Let G(C,A) be a nontrivial minimal nef tree. Evidently, then trees
G(C,A) and G(A) are connected.

Since G(C,A) is a tree, it has at least two ends. Thus, there
exists a terminal vertex v, of G(C,A) with the weight -2.

1
Let G(C,A) be a chain of vertices v Voreso,V and k., ,k,.,...,k

1’ m 1’727 m
are their multiplicities. Then the chain of multiplicities
0,k1,k2,...,km is convex below, and, if the vertex Vo has the weight
-2, the chain 0,k
O’kl'kz""’km is convex below if ki-ki_1+ki—ki+1so for 1l<i<m-1. It
follows that the vertex Vo has the weight 20 (thus, we have a case

1'k2""'km'° is convex below also. Here, the chain

(i) or (ii)) and the chain of multiplicities O,kl,k km is stron-

greeey

gly increased. It follows very easy that m=3, k1=1, k2=2, k3=3 and

the vertex v.=E where |E| is an elliptic pencil (G(C,A) is nontrivial
minimal nef!). Thus, G(C,A) is the tree EZ(C).
We recall that the valence of a vertex v of a tree is the number

of edges of the tree which come out from v. Suppose that G(C,A) is
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not a chain. Then we can suppose that the chain VitVoreeaVy consists

of vertices VoreseiV of the wvalence 2, and the Vo has a valence

23. For the cases (i? ;nd (ii), the vertex C is a terminal vertex of
the tree G(C,A) since the tree G(A) is connected. Thus, the vertex Vo
has the weight =-2. The multiplicity km of the Vo is 22 since the
chain of multiplicities o,kl,...km is increased.

If the vertex Vi has the valence 24, then G(C,A) contains a subt-
4 OF D4(C) with the vertex Vo of the subtree of the
valence 4. It follows that G(C,A) is this subtree, since G(C,A) is a

minimal nef tree.

ree of type D

Thus, further, we can suppose that Vi has the wvalence 3. Let

Qg s Oyyee @ =V and 81,82,...,Bp=vm be two other chains of vertices of

G(C,A) which are different from the chain VarVoree Vo and come out

from Vo' Here we suppose that the valence of Coypoeel g and

BZ,...,Bp_l is 2 and the vertices a. and Bl have valence 1 or =23.

1
1 has the valence 23. Let tl,...,tn=km22
are multiplicities of L YRR A In this case, if all multiplici-
ties tl,tz,...,tn are strongly greater than 1, the tree G(C,A) conta-
ins a subtree Dn+2 or Dn+2(C) with the vertices o, and Vi of the va-
lence 3 in this subtree. Then G(C,A) is coincided with this subtree.
Thus, we can suppose that there exists i21 such that ti=1 and all

t

Suppose that the vertex o

i+1””'tn=km are strongly greater than 1.

It follows that we can find nef subtree T of G(C,A) with vertices

Zy UppeeoqUp g0 V9rero Vo g0 Wiseeo Ve 4 and with the form
Y1 “1-1 %2 Vm-1 "1

T Ve

i

° wl
where 122, m22, tz2.

To get this tree, one should set up {ul,...ul_1}={a1,...,an_l} if

o, has the valence 1, and {ul,...u1_1}={ai,...,an_l} if a, has the

valence 23. By the same way, one gets the chain wv using the

ree e W, _
chain 31'---:BP-~31??6 ?}C,A) is miniTal, G(C,AﬁiT. Wenggbuld prove
that G(C,A)=E6, E., Eg, E6(C), E7(C), EB(C)' or Bm(C). We prove it in
the Lemmas below. We denote by D the curve C in the case (i), the
curve E in the case (ii), and one of the terminal vertices of

G(C,A)=G(A) in the case (iii). We denote by & the multiplicity of D.
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Thus, 8=1 in the case (i), |C|=8|E| in the case (ii) where |E| is an
elliptic pencil, 8§ 1is equal to the multiplicity of D in the case
(iii). Indexes near vertices on pictures are multiplicities of the

vertices.
Lemma 1, If a tree T of the form
s D
|
T e s e T C = e °
b, Bq—l d eryTTT ey
where 2<gsr, is nef and minimal then it is E7, EB’ or B3(C).
Proof. The chains O,bl,...,bq_l,d and 0,cl,...,cr_l,d are convex
below and 82d—bq_1+d—cr_1 where d-bq_lzl and d-c__,21. It follows

that 822 and d22. Thus, we have the case (ii) or (iii).

Let us consider the case (ii). Since 822, d22 and 2<gsr, the tree
T contains the subtree §3(C). It follows T=§3(C), since T is minimal.

Let us consider the case (iii). Then the chain 0,8,d is also
convex below. It follows that we have an inequality

d/2z82d/q+d/r. (1.2)

It follows that 3sgsr. Let g=3. From (1.2), 1/221/3+1/r and rz6. It
follows cizi and d>r>6 since the chain 0,c1,...,cr_l,d is convex
below. From (1.2), then 823. If b1=1, then d/2z282(d-1)/2+d/r. It fol-
lows, d/rs<l/2. We obtain the contradiction, since dzr. Thus, blzz.
Since the chain O'bl'bz'd is convex below, b224. As a result, we

-~

prove that T contains a subtree E Then T=E

8"’ 8°
Suppose 4<gsr. Since 822 and the chains O,bl,...,bq_l,d and
O'Cl""’cr-l’d are convex below, T contains a subtree §7. Then
T=§7. ]
Lemma 2, If a tree T of the form
3 a a d c c c
Do ot .o Rl or'l... o2 o1
ob
1 g-1
ib
-] 1 _ . _
where p2l, g23 and rz23 is nef and minimal, then T is E6, E7, E8 or

E_(C).
6
Proof. Let us use an induction by p. For p=1 it was proved in the

"~

Lemma 1 that T is E7 or E

Now suppose that p22.

8*

At first, suppose that a1=1. Then, evidently, Dzzo and we have the
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case (i) or (ii). Let us set up c,"=c+l"1 where Fl is the component
corresponding to the vertex with the multiplicity a, and the weight
of ¢’ is 1. Then we get the statement by induction: The case p=2 is
impossible; if p23 then p=3 and T is Es(c'). It follows that T
contains the subtree EG and T=E_. We get the contradiction.

p—l'd' and 0'b1’°"'bq-1'd' and
r-1'd are convex below. Since g23 and rz3, we get d23,
qulzz, End cr_lzz. If =1, then also ap_lzz, since alzz. It follows
T=E6 or EG(C). If §=2, then the chain 6=2,a1,...,ap_1,d is increased
(may be not strongly), since a,22. It follows T contains the subtree
Bp+2(C). Then T=Bp+2(0), and we get the co?Fradiction, since g>3 and
r>23. If 823, then T contains the subtree Gz(C) since alzz and p=z2.
Then T=GZ(C), and we get the contradiction, since ¢g>3 and rz3. =

Lemma 3, If a tree T of the form

6
Let a,z2. The chains a,al,...,a

O,CI,.--,C

D 8 Cr Cro1 €3 cl
o ° o « o ® o 4]
-~ ocz
where r>4, is nef and minimal, then T=Br(C).
Proof. The chains o,cl,cs,.and 0,c2,c3,and a,cr,...,c3 are convex
below and c4zc3-c1+c3-c2. It follows c4zc322, and the chain

6,cr,...,c3 is decreased. It follows, D2=0 and we have the case (ii).
Then T contains the subtree ﬁr(C), hence T=§r(C). .
Lemma 4, If a tree T of the form

é a a d c c
D o ol .o op—l ° 02 ol
obl
where p>1, is nef and minimal, then T=E8 or ES(C).
Proof. The case (i). Then &=1. The chains 1,a1,...,ap_1,d, and
O,bl,d, and 0,c1,c2,d are convex below, and b1+c2+ap_122d. It follows

that d/2+2d/3+1+(d-1) (p-1) /p=22d. Thus, d(2-1/2-2/3-(p-1)/p) <

sl1-(p-1)/p. Or d(1/p-1/6)sl/p. Evidently, dz3. It follows, p=24. If

p=4, we get d/12<51/4. It follows d=3. One can see very easy that this

case is impossible. If p=5, we get d/3051/5. If follows that ds6. One
can see very easy, that then d=6 and T=§8(C).

Let us suppose that p26. If a1=1, we set up Cl=C+I"1 where Fl cor-

responds to the vertex with the multiplicity ai, and this case is
reduced to the case p-1: we obtain that p=6 and T=E8(Cl). Then T con-

tains E_, and T=E

8 g We get the contradiction. If a.z2, then dzp+127

1
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and pd/(p+1)+2d/3+b122d. or d(1/3+1/(p+1))sb1. Since d27, we get
blz3. If c1=1, we get pd/(p+l)+d/2+1+(d-1)/222d. It follows
d/(p+1)<1/2. This is impossible since dzp+l. It proves that T
contains the subtree ES and T=E8. We get the contradiction.

The case (ii). If a,;=1, ve set up Cl=C+l"1 (like above). It reduces
the case to the previous one, and we get that T contains the subtree
ﬁs. Particularly, it holds if 824. Let alzz. If =3, then T contains
the subtree GZ(C) and T=GZ(C). We get the contradiction. If =2, we

get that the chain 8,&1,...,8 d is increased since a.22. It fol-

p-1'" - 1
lows that T contains the subtree Dp+1(C), and T=Dp+1(C). We get the
contradiction. If §=1, the proof is the same as for the case (i).

The case (iii). Then the chain 0,al,...,a d is convex below,

p-1’
and the proof is similar to the case (i). =

Lemma 5. If a tree T of the form

b5 S S R
Ib
° "1

where rz4, is nef and minimal, then T=§7, E7(C) or ES'

Proof. The case (1i).

If p=1, we get the statement from the Lemma 1.

Let p=2. Then d-blzd/z, and d—alz(d-l)/z, and we get
Cp_,2d-b,+d-a,2d-1/2. It follows that ¢ __,2d. We get the
-contradiction since the chain 0,c d is convex below.

Let p23. If a,
above. Let alzz. Then dzp+1, aizl+i, and d:>r, cizi. Let b1=1. Then
dp/ (p+1)+d(r-1)/r+lz2d. It follows, d(2-p/(pt+l)-(r-1)/r)<l. Oor
d(l/(p+1)+1/r)<1l. But dzp+l and d>r. We get the contradiction. Thus,

blzz. It follows, T contains the subtree E7(C).

1t 1Cpr_qs
=1, then we reduce the case to the case p-1 like

The case (ii). The proof is the same as for the Lemma 4.

The case (iii). We have the inequality 2d<d(p/(p+1l)+1/2+(r-1)/r).
Thus, 1/(p+1l)+1/r<l1/2 and pz2. The case p=2 follows from the Lemma 4.
Let p>3. Then 821, aizi+1, dx4, cjzj.

Let b1=1. Then d/(pt+l)+d/rsl. But dzp+l and dzr. We get the
contradiction, and blzz.

As a result, we proved that T contains a subtree E7. Then T=E7.

finishes the proof of the Lemma and the Theorem 1.1l. =

It

The basic Theorem 1.1 reduces a description of all possible graphs

G(C,A) with the condition (1.1) to a description of nonsingular
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curves trees 7 on K3 surfaces which satisfy the condition

(*)' 9 does not contain more than one curve C with a square szo
(if 7 has not such a curve, we set up C=0); all other curves Fi, ier,
of the 7 are nonsingular rational.

To obtain all possible graphs G(C,A), one should prescribe to the
i such that the
condition (*) holds, and prove the condition of the Theorem 1.1. Here

curves C and Fi of the trees 7 multiplicities m and k

any tree 7 is possible if these multiplicities are equal to one:
Corollary 1.2. If J is a tree satisfying to the condition (*)’,
then for the divisor A= Z I, holds that |C+A|=|C|+A.
i€r

Proof. This follows from the theorem 1.1, or one can prove it
independently (consider a terminal vertex with a weight -2 of G(C)).m

§ 2. Trees of nonsingular curves on a nonsingular K3 surface.

2.1, General remarks. We consider here results on a classification
of nonsingular curves trees 7 on K3 surfaces which satisfy to the
condition (*)’. G(C) is the graph of intersections of curves of 7 and
G the graph of intersections of the curves Fi’ iel.

To obtain this classification, we use the following reasons (I),
(II), (IITI), (IV) below, which are purely algebraic.

(I). Hodge index theorem: A tree G(C) should not be more than

hyperbolic - the corresponding intersection matrix has not more than

one positive square.

By (I), connected component G, of G may be elliptic (with negative
definite intersection matrix), parabolic (with semidefinite intersec-
tion matrix), and hyperbolic (with hyperbolic intersection matrix).

Proposition 2.1.1. (1) An elliptic connected component of G is a
tree Am,Dm,EG,E7 or EB' o N

(2) A parabolic connected component of G is a tree Dm,Es,lE:.7 or EB'

(3) A hyperbolic connected component Ghyp of G is unique.

(4) If Ghyp¢°’ then all other components of G are elliptic,.

(5) If 0220 and C=0 and Ghypﬁg’ then C is joined to a vertex rhfp
of Ghyp' If Cz>0 and Gi is a parabolic component of G, then C is
joined to a vertex Fi of Gi'

Proof. It is obvious. =

For the matrix M we denote by D(M) the determinant of M, and
ﬁ(M)=D(-M). For the subgraph T of G(C) we denote by the same letter

the corresponding intersection matrix. It is obvious that
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>0 if T is elliptic,

=0 if T is parabolic, (2.1)
<0 if T is hyperbolic, :
<0 if T is hypebolic and linearly independent.

We use the following simple formula: Let a tree G has a form:
Be — —G
G: .

D(T) is

1

G
Let ] be the vertex of G; joinedkto B. Then
_ 55G)=5(G115(G2)--;B(Gk)(-le-B(Gl-Vl)ﬁ(Gg)---ﬁ(fk)—
_—D(Gl_) D(GZ—VZ_)D(G3) . -2- D_(Gk) - .-D(_Gl)D(Gz) .- -_D(Gk_l)D(Gk_-Vk)=
=D(G1)D(Gz)"'D(Gk)('B 'D(Gl-{Vll)/D(Gl)‘ ...-D(Gk-{vk})/D(Gk)).
(2.2)

(II). On a K3 surface, if E is an effective curve with E2=0, then
C-E>2 for any irreducible curve C with 0220.

We can use (II) by the following way.

Let we have a connected parabolic subtree P of G(C): ({C), where
02=0 and C=0, Bn’ ﬁs, E7 or EB' This tree corresponds to all
components of an elliptic pencil fiber on a K3 surfaces. Thus, an
every vertex v of ? has the invariant m(®,v) which is equal to the
multiplicity of the corresponding to v irreducible component of the
fiber. (This invariants are shown as the mnultiplicities of the

E,, E, of the Theorem 1.1.) By (II), we

vertices of the trees Dn’ E 7+ Eg

‘have the

Proposition 2.1.2. (1) Let szo and C=0., Let P be a connected
parabolic subtree of G(C), let p be a vertex of ? joined to C. Then
m(?P,p)>1.

6'

(2) Let P and Q be two connected parabolic subtrees of G(C) which
have not common vertices. Let p be a vertex of P and q of Q and pg an
edge of G(C). Then either m(P,p)>1 or m(Q,q)>1. =

For example, it follows that G(C) has not subtrees (where 6220):

Co ° ° )

o o

o

. * e o .. © = 0
| | | |
° ° ° °

(III). An elliptic pencil on a K3 surface has not multiple fibers.
It follows the

Proposition 2.1.3, Let a trée G(C) has two disjoint connected pa-
rabolic subtrees P and Q, and a vertex w of G(C)-P is joined to a
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vertex p of the P. Then w is joined to some vertex q of the Q and

m(?,p)=m(Q,q). =
Let 8=An, D or E_ be an elliptic subtree of G(C) and e be a ver-
tex of &. We can introduce the invariant m(€,e) which is equal to the

set of multiplicities of the vertex e under all possible embeddings

, E .
m m

Proposition 2.1.4. Let G(C) has two disjoint connected subtrees ?

of & into all parabolic connected graphs im, D

and €& where 7P is parabolic and & is elliptic. Let a vertex w of
G(C)-? is joined to a a vertex p of P and to a vertex e of €,

Then m(P,p)zmin m(€,e).

Proof. Vertices of ? correspond to all components of a degenerate
fiber of an elliptic pencil E on X. Vertices of & correspond to some
components of an other degenerate fiber of E and also have multipli-
cities. By (III), we get the statement. =

(IV). The rank of Picard lattice of K3 surface g 22, and it is <20
if a basic field has the characteristic 0.

It follows the

Proposition 2.1.5. rk G(C)<22, and rk G(C)<20 if char=0.

We describe all possible trees G(C) which satisfy the condition
(I), the Proposition 2.1.2 of (II), the Propositions 2.1.3 and 2.1.4
of (III) and the Proposition 2.1.5 of (IV). It is a purely algebraic

.problem about sets of vectors in a linear space with a symmetric

paliring.
2.2. The case Cz>0. For K3 surface szz, and we have the
2
Theorem 2.2.1. 1. Let C"22 and the Ghypﬁg’ let thp be the vertex
of the Ghyp joined to C. Then Ghyp_rhyp is elliptic.
2. Let Hl""’Ht be all connected components of Ghyp-rhyp and Fi
be a vertex of Hi joined to thp' Then
D(Ghyp)=D(H1)'--D(Ht)(2-D(H1-F1)/D(H1)-...-D(Ht—Ft)/D(Ht))<0
vhere
D(H - )/D(H1)+...+D(Ht—rt)/D(Ht)>2.
3. For Ghy (C) we have
B(Ghyp(C))=D(Hl) D(H ) (~C? (2~ D(H -r )/D(H .-B(H -T, )/B(H ))=~1)<0
2_
2gC sD(Ghyp hyp)/( D(G )) 1/(D(H1 Fl)/D(H )+...+D(H F )/D(H )=2).

4, It follows: 2 < D(H -r
5.

l)/D(H 1+.. +D(H - )/D(H ) s 5/2.



- 13 =

4G(C) if Cz<1/(5(H1-Fl)/ﬁ(H1)+...+5(Ht—Ft)/5(Ht)-2)
rk Ghyﬁc) = 5 - _ _ - .
#G(C)-1 if c=1/(B(H,-T)/B(H)+...+D(H -T,)/D(H,)-2)

6. From 1-4 and the Proposition 2.1.2, it follows:

2 -
If C™>42 then Ghyp_z’ If Ghyp¢g’ then the tree Ghyp

(only if 02542), four (only if 0256) or five (only if Cz=2) ends, and

has three

Ghyp(c) is one of the following trees:
G has three ends:
hyp

Gl(Cz:p.q.r:a)

o
T:
9.
L]
where az20, 2<p<qgsr, if p23 then ax<l,
as2; 1/p+l/gq+l1l/r<1, 1/p+l/q+l/a>1,
Zsczs(r—a)(—pqa+pq+qa+ap)/(pqr—pq—qr-rp)s42 (the case 02=42
corresponds to the case a=0, p=2, g=3, r=7 only).

B(G, (¢®ip,q,r:a))=C? (pgr-pg-gr-rp) - (r-a) (pqa-pg-qa-ap) ,

if g23 then asg4, if qgz4 then

D(Ghyp)=-pqr+pq+qr+rp, D(Ghyp—thp)=(r—a)(—pqa+pq+qa+ap).
Ghyp has four ends:
Cz
-]
) a ! b q !
Gz(C i12,q:a,b,): o o ° .o ° .o °

O — O =
0 O =

where 250256 a1, b1, 223, c*+bs3+4/(q-2) .
B(c,(c?:2,q:a,b))=4((g-2)C+((g-2) (b-3)-4)), D(Gy,p) =8~4q,
b(G )=4(4-(q-2) (b-3)). |

hyp™" hyp 2_,

G,(2;73,9;1,2) ° °

o—o—o(‘)

O — O =—

vhere g=3,4. D(G (2:3,9:1,2))=8(gq-4), D(G )—-7q+10

D +

(ChypThyp) = ~6(a+2). ,
¢*=2

|

1

|

-] o ]

o o

wvhere p=4,5. 5(G2(2:p,3;1,2))=4(p-5), B(Ghyp)=-7p+1o.

G2(2,‘P;3:1'2) °
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D =10p.
D(G hyp™~ hyp) p
g?=2
| p I
Gz(z;p,3:1,3) ° o —. . o ° ° o
| I
wvhere p=3,4. D(Gz(2:p,3;1,3)=4p-16, D(Ghyp)=8—6p, D(Ghyp-l"hyp)=8p.
¢?=2
|
G2(2:3,3;1,4) o o ° ° ° ° o
| |
D(G2(2:3,3:1,4)=0, D(Ghyp)=-9, D(Ghyp rhyp) =18.
2
G2(2;3,3;2,2) ° o ° ° ° °
I I
D(G2(2;3,3;2;2)='5: D(Ghyp)=-10, D(Ghyp-rhyp)=25.
c?=2
-]
I
G2(2;3'3;2'3) ° ° ° ° ° ° °
|
D(G,(2:3,3;2,3)=-2, D(Ghyp)=-9, D(Ghyp-rhyp)=2o.
g2
|
G,(2:3,3:3,3) o 0 ? o o o o 0
D(G,(2:3,3:3,3)=0, D(Ghyp)=—8, D(c hyp™ hyp) =16.
c2=2
r a !
G3(2,a). ° i— .o ° c; o ©
° l
D(G3(2:a))=0, D(Ghyp)=-12, D(Ghyp—l“hyp)=24:
2
| a p |
G4(2,a,p,q) ° ° —-l-— °
o q .
|_I
wvhere (p,q)=(3,q), 3s59s6, and (p,q)=(4,4).
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D(G,(2:a;ip,q))=4(Pg=2P~2q) , D(Gy,)=4(-Pa+P*q), D(Gy -T} . )=4Pq.

!
q :
|
|

t
Gg(2:p,q,T,5) o —.

n
e )
L. o

Cz=2
where pzqzrzsz2, and 2>1/p+l/q+l/r+l1/s23/2;
5(G5(2;p,q,r,s)=3pqrs—2pqr-2qrs-2rsp-23pqso,

D(Ghyp)=—2pqrs+pqr+qrs+rsp+qu, D(Ghyp-rhyp)=pqrs.
G has five ends:
hyp 5
co=2
f a ! b 1
G6(2;a,b) ° ° .o ° e ° °
| | |
D(G6(2;a,b))=0, D(Ghyp)=-16, D(Ghyp-thp)=32. ,

Proof. Ghyp-rhyp is orthogonal to C with C“>0. Since G(C) is

hyperbolic, it follows that G—thp is elliptic. Thus, E(G-thp)>0 and
B(Hi)>0. G(C) has the form

It follows that G is linearly independent and D(G)<0 since G is
hyperbolic. Applying (2.2) to D=I"
D(G
and D(G
=B (1) - -D(H,) (-c*(2-B(H,-T';) /B(H ) ~...-D(H,-T,) /B(H,))-1)50.

It follow the statements 1 - 5.

hyp and then to C, we get
)=D(Hl)---D(Ht)(2-D(H1-Fl)/D(H1)-...—D(Ht—rt)/D(Ht))<0

To get the last statement 6, we should find all possible sets

(Hl,Fl;...; Ht’rtl such thft _ _
2 < D(H,-T';)/D(H)+...+D(H,-T,)/D(H,) s5/2.
For an elliptic tree H=A_, D, E., E, or E, and its vertex I' let
I(H,T)=D(H-T')/D(H).

One can find very easy the full 1list of such pairs with
I(H,T)<5/2:
(1)

o

(Aq,r‘l’)z




_16_

with I(Aq,F(l))=1—1/(1+q)21/2, where g»1;

(2)
(2),. r
1+q'r ) ° T

,F(z))=2—4/(2+q)21, where gz2;
(3)

(3),, r
(A2+q,r ). | . .o ;
F(3))=3-9/(3+q)23/2, where gz23;
F(4)):

(A

-]

with I(A1+q

-} o

with I(A2+q,

(A

(-] © o

— o™
—
o
"

3+q’ .
r(4))=4-16/(4+q)22, where gz4:;
r(5)

with I(A3+q,

(Ag'r(s)): ° ° o -

with I(AQ,F(S))=5/2.

o

[

(o, ry:

with I(Dn,F(k))=k, where n-2xk21;
I e

with I(Dn,r(“’l))=n/425/4, where n25;
1
(EG,F( )): F(l)o o ° o °

with I(EG,F(l))=4/3:
(EG,F(Z)): o o o . .

with I(E,,T(?))=2;

with I(E7,F(7))=3/2:
I‘(l)): r(l)o

7'

with 1(E,,rN)=2;
(Ee,F(B)): ° ° ° ° ° ° ° r‘(e)

with I(Eg,T(8))=2.
It follows, we have the following and only following possibilities
for (Hy,Tyi...; H,,[,) with 2<I=I(H))+...+I(H.)s5/2:

(o ,r{ 1y}, n=0,10 with 1=n/4;
((ag,T%))) with 1=5/2;

{(A3+q,F(4))}, g=5,6 with I=4-16/(4+q);
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{(A2+qig;3))}' 7?g§15, with I=3-9/(3+q);

(£, T8y, (a,, vy wien 1=5/2;

(e, m Yy, @, ryy with 1=5/2;

(£, 77y, p_,rMy) with 1=5/2;

{(E7,r(7)),(A3,r(2))} with I=5/2;

(&, 7y, g, m)yy, ge2, with 1=5/2-1/(q+1);
{(EG,F(Z)),(AI,F(l))} with I=5/2;

(e, Ty, 0,1y with 1=7/3;

{(Es,r(l)),(A3,r(2))} with I=7/3;

(Ee, Ty, g, m )y, qa3, with 1=7/3-1/ (14 s
{(DS,F(4)),(D5,F(4))} with I=5/2;

{(Dm,F(m-l)),(Dn,F(l))}, m=5,6, with I=m/4+1;

(g, 7%y, ), T3y, g=2,3, with 1=13/4-4/ (2+q) ;

(0, 7)), (A, F3)yy witn 1=5/2;

(5,r %y a v V), qaa, with 1=9/4-1/ (1+q) ;

(s, m %)), (A, v M)y, qe2, with 1=5/2-1/(1+q) ;
(0,74, r M)y, 1cq<3, with 1=11/4-1/ (14q) ;

(g, 7y, (a;,r My, with 1=5/2;

(o, 7)), (a;,r)y), with 1=5/2;

(o_,ry, a,,rClyy with 1=5/2;

(@, Ty, ), T3y, 3<as6, with 1=3-4/(2+q);
((a,,m*)y, a ,r M)y with 1=5/2;

(A, T3y, (a,,r )y with 1=5/2;

Chgyp TNy, (T ), wnere p23, q21, 259/(3+p)+1/ (14q)23/2,
with I=4-9/(3+p)-1/(1+q);

(o T3y, Ty, wnere 29psq, 2<q, 1/(2+p)+1/ (2+q)23/8,
with I=4-4/(2+p)=-4/(2+q)

{(Al+p,r(2)),(Aq,r(1))}, where p>2, gz1, 1>4/(2+p)+1/(1+q)21/2,
with I=3-4/(2+p)-1/(1+q);

(e, My, r(), a,rMy), with 1=5/2.
{(EG,F(l)),(Ap,r(l)),(Aq,F(l))}, where 1spsq, 1/(1+p)+1/(1+g)25/6,
with I=10/3-1/(1+p)-1/(1+q);

{(Ds,r(4)),(Ap,r(l)),(aq,r(l))}, where 1spsq, 1/(1+p)+1/(1+q)23/4,
with I=13/4-1/(1+p)-1/(14q);

(0, Ty, a,r My a,r())), with 1=5/2;

((o_,r{)), (Dn,r(l)),(Al,F(l))} with I=5/2;

(o, r 0y, a,r®), @ ,rM)) with 1=5/2;
{(Dm,F(l)),(Ap,F(l)),(Aq,F(l))}, where 1sp<q, g>1,
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1/ (1+p)+1/(1+q)21/2, with I=3-1/(1+p)-1/(1+q):;
{(As,r(3)),(Al,r‘l)),(Al,r‘l’)}, with I=5/2;

(a,,r 3y a,r®), @ ,r())y vith 1=5/2;
{(A1+p,F(2)),(Aq,F(l)),(Ar,F(l))} where p22, 1s<qsr,

3/254/ (2+p)+1/ (1+4q) +1/(1+4r)<2, with I=4-4/(2+p)-1/(1+q)-1/(1+r);
{(AP,P(I)),(Aq,F(l)),(Ar,F(l))} where lspsgsr,

1/251/ (1+p)+1/ (1+q)+1/(1+r)<l, with I=3-1/(1+p)-1/(1+q)-1/(1+r);
{(Dn,F(;)),(Al,F(i)),(Al,F(i)),(Al,F(i))}, with I=5/2;
{(AB,rzlz),(Al,rili),(Al,rilz),(al,ril;)}, with I=5/2;

{(Ap,r ),(Aq,r ),(Ar,r ),(AS,F )} where 1lgp<gsrss, s>1,
3/251/(1+p)+1/(1+q)+1/(1+r) +1/ (1+s),

with I=4-1/(1+p)-1/(1+q)-1/(1+r)-1/(1+s);

ca,rMy, a,rMy, @, r(, (a,rM)y, @4, ry), vitn 1=5/2.

If we draw the trees corresponding to all this possibilities, we
get all trees of the Theorem and one additional tree corresponding to
the case {(Dn,F(z)),(Al,r(l))}. The last tree is impossible by the
Proposition 2.1.2. The same Proposition gives the additional inequa-
lities: if p23 then asgl, if g>3 then as4, if gz24 then as2 for the
tree Gl(Cz:p,q,r;a). =

‘ Proposition 2,2.2, 1. Let 0222 and the hyperbolic connected compo-
nent G1=Ghyp¢a. Let Gi’ l<ic<k, are all connected components of G
which are connected by the edge Cvi ,vieGi, with C, and Gj' k<i<l are
all other connected components of G (disconnected with C).

Then all connected components Gi' 25igl are elliptic and

1. B(6(c))=B(e,)B(6,) - - -B(6,) (-2~
-B(Gl—vl)/B(Gl)—B(Gz—vz)/B(Gz)—. ..... -B(Gk—vk)/B(Gk)) < 0,
where . :
2sczsﬁ(cl-v1)/(-5(el))-B(Gz-vz)/ﬁ(cz)- ...... -B(Gk-vk)/B(Gk)).

2. rk G(C)=#G(C) if the right inequality above is strong, and
rk G(C)=#G(C)-1 if this inequality is an equality.

3. If P is a parabolic subtree of the tree G then

1=Ghyp’
m(?,vl)zmin m(Gi'Vi)' 2sisk.
Proof. Use the formula (2.2) for B=C and the Proposition 2.1.4. =
Remark 2,2.3, If Ghyp=°’ then all restrictions for the tree G(C)
we can give here follow from the Propositions 2.1.1 - 2.1.5. We would
like to emphasis the difgfrence of this case from thz case Ghyp¢°'
For the case Ghyp=g the C° (equivalently, the dim|C|=C®/2+1) may be

arbitrary large. =
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2.3. The case Cz=0 and C#0. Here we have the
Theorem 2.3.1. Let Cz=0 and C=0, and the Ghyp¢z’ let T be

hyp

the vertex of the Ghyp joined to C.

Then all connected components H ..,H, of the G r are para-

1’ t hyp = hyp

bolic or elliptic. Let Fi be the vertex of Hi joined. to thp. Then
m(Hi,Fi)=1 if the component H, is parabolic, and min m(Hi,Fi)=1 if
the component Hi is elliptic, The rk G(C)=#G(C)~-p where p is the num-
ber of parabolic components from Hl""'Ht'

Proof. Use the Propositions 2.1.3 and 2.1.4 =

Remark 2,3.2, If Ghyp=g' then all restrictions for the tree G(C),
we can give here, follow from the Propositions 2.1.1 - 2.1.5. =

2.4, The case C=0. In this case G(C)=G. The problem is to classify
hyperbolic trees Ghyp' In (M], G.Maxwell investigated the case rk
Ghyp = #Ghyp' Fortunately, it is necessary only to reformulate his
results to consider the general case which we need.

Theorem 2.4.1. Let G be a connected tree of nonsingular -2 curves
on a K3 surface. Then one of the two cases (a) or (b) holds:

(a) There exists a vertex I' of G such that all connected compo-
nents Hl""'Ht of Ghyp;r are parabolic or elliptic. If pne of these
components Hl”"'Ht is parabolic, then G is hyperbolic. If all the
components Hl""’Ht are elliptic then G is hyperbolic iff

6(n1-r1)/5(nl)+...+ﬁ(nt—rt)/6(ut)>z
wvhere Fi is the vertex of Hi joined to I'. If G is hyperbolic, then
rk G=#G-max{a-1,0}
where a is the number of parabolic components from Hl"”’Ht'

(b) There exists an edge rlrz of G such that all connected

components of G-{r1r2) are elliptic and, if G, 1is the connected

1

component of G-F2 containing Fl and G, is the connected components of

2
G-I"l containing rz, then both G, and G, are hyperbolic., In this
situation the matrices of Gl,G2 and G are hyperbolic iff 5(G1)<0,
5(G2)<0 and D(G)<0.

Let H ..,ij be all connected components of Gj-Fj, j=1,2, and

Jji’’ .

J
rji be a vertex of the Hji joined to the Fj' Then the last inequali-
ties are equivalent to

A1=D(H11—F11)/D(H11)+...+D(H1k1-Flk1)/D(Hlk1)>2,
A2=D(H21-F21)/D(H21)+...+D(H2k2-F2k2)/D(H2k2)>2,

and
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(A;-2) (A,-2)s1.

The rk G=#G if the last inequality is strong, and rk G=#G-1 if the
last inequality is equality.

Proof. This is similar to [M]. We leave details to the reader. m

The Theorem 2.4.1 is sufficient to draw (in principle) all
possible trees G of -2 curves on the K3 surfaces. An additional
restrictions for these trees give the Propositions 2.1.1 - 2.1.5. For
example, all connected trees with 10 vertices are either elliptic or
parabolic, or hyperbolic (it is mentioned in ([M]), and the full list
of these trees one can find in [H]. Only the following tree with <10
vertices contradicts to these propositions and, hence, is impossible
on K3 surfaces:

o
0 0=o0
(-]

°
—0—0

(-]

2.5. Remark. Here we only mentioned the most important and rude
conditions for trees G(C). We hope to give other more delicate neces-
sary and sufficient conditions in further publications. This problem
is a little similar to the problem of a description of all possible
singularities of quartic singular K3 surfaces. You can see the series
of Urabe’s articles devoted to this subject; see [U], for example.
But our problem is much more complicated. It is arithmetic and is
connected with the existence of an embedding of the corresponding to
G(C) lattice into K3 cohomology lattice (it is an even unimodular
lattice of the signature (3,19)). One can use here the discriminant
form technique (see [N]).

§ 3. Fixed part of Weil linear systems on singular K3 surfaces.

3.1. General case. Let Y be a singular K3 surface and ¢:X ——Y the
minimal resolution of singularities of Y. Let AS=ijFj,where bjzo are
integers and Fj are components of the exceptional divisor of_o. Let D
be an effective divisor on X. A complete Weil linear system D on Y is
the image |ﬁ|=c*(|D+AS|), where |D+A_| is the complete linear system
on X and we consider all possible bjzo. It is very easy to see that
this image is stabilized if bj are increased. Like in the § 1, we
want to describe the moving part and the fixed part of the linear
system D. Evidently} the fixed part is the image of the fixed part A
of the linear system |D+AS

. And the fixed components part of |D| is
the image o*(Ar) of the part Ar=A-AS. It is not difficult to prove
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that when bj»o then all components Fj of AS belong to the fixed part
of the linear system |D+AS|. We suppose that bj>0, or it is more
convenient to suppose that the all bj=+w.

Let [D+A_|{=|C|+A, where |C| is the moving part and A is the fixed
part. Then A=Ar+AS where As is the part defined by the all components
Fj of the multiplicity +o and A _=A-A_. Then the multiplicity a; of an
irreducible component Pi of A is defined and is a finite natural
number. It defines the multiplicities of the corresponding irreducib-
le components ot(Fi) of the fixed part o, (4) of the complete linear
system |D|. As in § 1, we define the graph G(C,A). Its difference
from the situation of the § 1 is that vertices of its subgraph G(A)
are of the two kinds:

Black vertices of the multiplicity +o corresponding to the

components Fj of the exceptional divisor of o;

White vertices of the finite multiplicity aieN, corresponding to
the irreducible components o*(Fi) of the fixed part of |ﬁ|.

Thus, the problem we should solve, is the same as in the § 1l: To
describe all possible graphs G(C,A) of this kind such that
|c+a}=|C|+A. It is a particﬁlar case of the problem we have solved in

the § 1, and it is necessary to reformulate the results of § 1 in
this situation only.

The analog of the condition (*) is the condition

(**) |c| satisfies the condition (i), (ii), or (iii) of the
Proposition 0.1, A=A +A_, where Ar=2airi, aiEN, and As=ijFj, bj=+w
(or bj»O), and all Fi and Fj are irreducible -2 curve. (For the graph
G(C,A), the vertices Fi are called white and the vertices Fj black.)
If |C|=m|E| where E is an elliptic curve and m>2 then there does not
exist more than one irreducible component R of A such that E-Rz21; if
here m24, then the vertex R is white and has the multiplicity a=1.

Our question is: If (**) holds, when

|C+A|=|C|+A ? (3.1)

Theorem 3.1,1, Let C+A be a divisor on a nonsingular K3 surface X
which satisfy the condition (**) above.

Then |C+A|=|C|+A (equivalently, |0, (C+A)|=0, (|C|)+o,(A) for the
contraction o of the all black curves F.), if and only if G(C,A) is a
tree and G(C,A) has not a subtree T=ﬁ;, Es, §7, EB' ﬁm(C), EG(C),
E7(C), ES(C) Bm(c) or Gz(C) of the Theorem 1.1. It means that if the
tree G(C,Ared) contains the subtree Tred (red means the reduction),
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~

then there exists a vertex v of T which is a white vertex of the tree
G(C,A) and its multiplicity in G(C,A) 1is strongly less than the
multiplicity of the vertex v in the subtree T.

Proof. This follows from the Theorem 1.1. =

3.2. Nef case. We use notations of 3.1. Here we want to consider
the case when a linear system |D| on a singular K3 surface Y is nef
or numerically ample (in the sense of Mumford intersection pairing on
a normal surface [Mu)). This case is the most interesting for appli-
cations (for Fano threefolds, for example). We use the following
trivial

Lemma 3.2.1. D is nef iff 0*(5) is nef. In other words, if we nor-
malize weights bj of black vertices Fj of the A by the condition
Fj~(c+A)=0 (here bj are rational numbers) and not change weights a;
of the white vertices Fi (here a, are natural numbers), then for any
white curve Fi we have the inequality: Fi-(C+A)zO. If |5| is ample,
the last inequalities are strong: Fi-(C+A)>0. |

Thus, it is natural to give the

Definition 3.2.2. The graph G(C,A) is called convex below if for
the weights {bj} of the black vertices Fj satisfying to the condition
Fj-(C+A)=0, the condition Fi-(C+A)20 holds for the white vertices Fi.
In other words, for any component U of the A the inequality U- (C+A)20
holds, and, if U is black, this inequality is the equality. A diagram
G(C,A) is called strongly convex below if it is convex below and for
any white vertex Fi a’ strong inequality Fio(C+A)>0 holds. It is
sufficient to prove this conditions for connected components A, of A
only. =

From the Theorem 3.1.1 and the Lemma 3.2.1, we get

Theorem 3.2.3. Under the conditions of the Theorem 3.1.1,

|o, (C+b) |=o, (|C|)+0,(A) and o, (C+A) is nef

if and only if G(C,A) satisfies the Theorem 3.1.1 for the weights
bj=+m of the black vertices Fj and the tree G(C,A) is convex below
for the weights bj of the black vertices Fj satisfying to the
condition Fj-(C+A)=O of the Definition 3.2.2. If o, (C+A) is ample,
then this tree G(C,A) should be additionally strongly convex. =

As an example, let us consider the case when C2>0 and G(A) has the
form Am or Dm‘ We denote o a white vertex, * a black vertex, and o a
vertex which may be either white or black. Then we get the following
possible trees G(C,A) on the K3 surfaces over a basic field of chara-
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cteristic 0, where c; is the weight of the vertex (white or black)
satisfying to the conditions of the Definition 3.2.2:

?1
(A_,i): PR QO —
m & &1 & &ia en

where the chains of weights 0,c1,...ci, and ci,...,cm,o are convex
below and (ci-ci_1)+(ci-ci+l)sl. Since m<19, the
max{cl,...,ci,...cm}=cisi(m+1—i)/(m+1)s(m+1)/455 .

[of c c c
(Dm,l): C} 01 03 94 cer. —oT
© c,
where the chains 1,c1,c3, and 0'c2'c3' and c3,c4,...,cm,0 are convex

below and c3—c1+c3-c25c4. Since m<l19, the

max{l,cl,cz,...cm}=max{1,c3}s(m—2)/25174?<9.
ol
I
(Dm,i), 3<i<m: - o} o ceeo cee— O —— O ——0-,,.— 0O
€3/2 ey <, Cx=1 €i-1 %1 Ci+1  “m
c3/2
The chains of weilghts c3,c4,...,ck=1,...ci_l,ci and ci,...cm,o are
convex below, :?fi-k)?ﬁiigi) and gci—ci_1)+(ci—ci+l)sl. The
max{cl,..,c }=C.s S(m+2-K)“/ (4 (m+1~k))<81/17<5.
m i
(m+1-k)
(Dm,m) : 1/2 % % e % o C .

I
1/2

We should emphasize that this diagrams are possible for an arbit-
rary even Cz>0 and an arbitrary dim|o*(c+A))|=Cz/2+1, and here the
moving part o, |C| of |o,(C+A))| is not a pencil. A multiplicity of
the fixed part components of |o, (C+A))| may be >1, but <8 (and the
case of the maximum multiplicity 8 is possible). This shows the dif-
ference of the nef and ample linear systems on singular K3 surfaces
comparing with the nonsingular case. But here the hyperbolic
component Ghyp(A)=o. We consider an opposite example below.

3.3. The case rk Pic Y=1l. More generally, we consider the case
when a*(Di)2>0 for any irreducible component Di of a general member
D=3De|C+A
an every elliptic component of G(A) contains black vertices only; the

. This case is characterized by the following conditions:

tree G(A) does not contain parabolic components; if v is a white ver-
tex of Ghyp(A) and N(v) is the maximum connected subtree of Ghyp(A)
which contains only the one white vertex v, then N(v) is hyperbolic.

Using this conditions and the theory above, we get the following
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description of Ghyp{?'A> if it has a white vertex v of a multiplicity
22 (equivalently, |D| has a fixed component of a multiplicity 22):
This case is the most interesting for applications.

We get that for a white vertex v of a multiplicity >1 the tree
N(v) is one of the following trees:

I P 1
. . ; .. * Fi p27’.
02
I p I r !
— e — 3 s — . ..——+ ,1/2>1/p+Yr,
|. r I
. . ; 8 . .o ., rz7;
I p 1
. ¢ — ..o'_; 5 * 7 p27;
| - r
. . ; a * v s . ¥l r27l
I p .l r i
. . % . ees *, 1>1/p+l/g+1/r,
f |
- g
i
, p l r 1
¢ a— .. . 1;3 . PR * 1/2>1/p+1/r'.'
| r ]
. . 4‘; . . e * Fi r27;
r )
5 « a ’ r27;

.
.
* —_— O =
.
.

It follows very easy that this multiplicity >1 white vertex v of
the G(C,A) is unique, and G(C,A) has not more then one other white
vertex. We shall denote this vertex C (thus, we permit that CZ=-2).
If there exists this additional white vertex C of the multiplicity

one, then the tree CUN(v) is one of the following:
f p | 1

. . ; ... . ‘e, p27, -25C%<(7-p)/(p-6)<0.
°2
ol T p T r 1
.o I 3 .o '
1/2>1/p+1l/r, -25025(2p+3r-pr-2)/(pr-2p-2r)s4.
r p T r | 1
. S e ™ * i . L * OC,

»
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1/2>1/p+l/r, -25025(2r+3p—pr—2)/(pr—2p-2r)54.

\
: . . 3 e e— - Y e, r27, -2¢c%<(7-1r)/(r-6)so0.
i
1 l p 2
C s . . ...—-; 8 + , p27, -2sC"<(7-p)/(p-6)<0.
I r } 1 2
. . . 3 . . . * C , rz7, =2<C"s(7-r)/(r-6)x<0.
|
— p | r | 1
» P . 2 7 | . PO o c i
'q
i

§

1>1/p+1/q+1/r, —25025(2pq+pr+qr-pqr-pfq))/(pqr-pq-qr-rp)slo.

| p 1 r 1 1
C — . . 73 . cae— * o C
1/2>1/p+l/r, -25025(2r+3p—pr-2)/(pr-2p-2r)s4.
4l r ' 1 ' 2
. . ? . voe . ° C , rz7, =2sC"<(7-r)/(r-6)s<o0.
f r )
. B e —3Y ¢, r27, -25c?<(7-r)/ (r-6)<0.
|

It follows very easy: the estimate b2<20 if |D| has a component of

the multiplicity >1. We hope giving more precise description of the
\case rk Pic Y=1 in further publications.

We should mention that almost at the same time V.A.,Alekseev got
the same results for rk Pic Y=1 by other method (using Riemann-Roch
theorem for singular K3 surfaces) and the more strong estimate: p%<13
if |5| has a fixed component of a multiplicity >1. Of course, the
same estimate follows from the calculations above.

§ 4. Some open questions.

4.1, Fano threefolds. Let F be Fano threefold with (-factorial
terminal singularities, and a good member YE|-KF|, which is a singu-
lar K3 surface, exists. Let dim|-K |>0. Then |-K.||,
complete ample linear system on the singular K3 surface Y. Thus, some
tree G(C,A), we have described above, corresponds to this linear sys-
tem. We can consider this tree G(C,A) as an invariant of the Fano
threefold F. What are such invariants G(C,A) possible for Fano

threefolds F with Q-factorial terminal singularities?

is an nonempty
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4.2, Graded ring of a singular K3 surface. I due to participants
of the conference "Algebraic and Analytic Varieties" Tokyo, August
1990, the Professors Sh.Ishii, M.Reid, M.Tomari and K.Watanabe by the
following very interesting question (see their articles connected
with this subject): What one can say about the graded ring

R(Y) = o HO(Y,0(mD))

mz0
for a nef effective (or, maybe, noneffective) integral Weil divisor D

on a singular K3 surface Y, its generators and relations. The nonsin-
gular case see in [S-D]. The theory we have constructed here gives
all possibilities when it is needed to investigate this ring. Moreo-
ver, this theory permits to interpret a homogeneous constituent
HO(Y,O(mﬁ)) of the ring as a some precisely described complete linear
system on the nonsingular K3 surface X which 1is the minimal
resolution of singularities of Y.
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