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§ O. Introduction.

We recall that K3 surface is a smooth projective algebraic surface

X over an algebraically closed field k with KX=O and H1 (X,OX)=O.

Anormal projective algebraic surface Y is a singular K3 surface

if for the minimal resolution of singularities ~:X~Y the nonsingu­

lar surface X is a K3 one. In this case, all singularities of Y are

Du Val singularities A , D , E , and we get Y if we blow down treesm m m
of nonsingular rational curves of the type A , D , E on X.

. m m m
V. A. Alekseev asked me: what one can say about a complete ample

linear system IBI of integral Weil divisors Don singular K3 surface

Y. For example, what one can say about the fixed part of the linear

system, mUltiplicities of fixed components with respect to n2 ,

dimlBj?

This problem is very important maybe from the viewpoint cf a clas­

sification of Fano threefolds F with m-factorial terminal singulari­

ties. If the linear system I-KFI has a ~ood member Yel-KFI then, by

the adjunction formula, Y is a singular KJ surface and the restrieti­

on cf the linear system I-KFI on Y is a complete ample linear system

of Y. Thus, we can reduce a description of the I-KFI to a linear sys­

tem on the surface Y. And a classification of Fano threefolds is very

closely.related with a description of linear systems o~ KJ surfaces.

Unfortunately, it is not proved yet that this good member does

exist. Recently, V.A.Alekseev got some results in this direction, and

i t was the reason why he asked me about. On the other hand, as I

think, one can consider results about linear systems on singular KJ

surfaces as a good model for the system I-KFI on Fano threefolds with

terminal singularities and· can try to generalize these results for

Fano threefolds with terminal singularities.

It was very strange to me that I did not see in literature some

results devoted to linear systems on singular KJ surfaces. Except, of

course, Saint-Donat's paper [5-D] devoted to nonsingular ones. It i5

required to construct some theory devoted to this problem.

At first, me and a little later Alekseev considered the case when
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rk pie Y=1 (see § 3, 3.3 here). It was solved by different methods. I

worked with nonsingular K3 surface X, and Alekseev used Riemann-Roeh
for singular K3 surfaee Y. Later, I eonsidered the general case when
rk pie Y is arbitrary. The last ease is mueh more eomplicated, and we

will consider this case here. On the other hand, for the ease rk pie

Y=l we have a very precise answer. For an arbitrary rk pie Y, we have

a theory only. Using this theory, one ean get the full deseription of

all eases in principle.

At last, we ree~ll some results about linear systems on nonsingu­
lar K3 surfaces. Here we have the

Proposition 0.1. Let HEPie X ls nef. Then one of the eases (i)­
(iv) belov holds:

(i) H
2 >0, IH I eontains an irredue1ble eurve and has not fixed

points, dirn IHI=H
2
/2+1>0;

(ii) H
2
=0, IHJ=mIEI, m>O, vhere lEI is an elliptie peneil (IHI

eontains an irredueible eurve for m=1 only).

(iii) H=O, IHI=0.

(iv) H
2

>0 and IHI=mIEI+r, m>l, where lEI is an elliptie peneil, r
is an irredueible eurve with r 2=-2, and E·r=l_ Here m=dimIHI=H2/2+1,

r is the fixed part of IHI.
Proof. It is weIl known to specialists and follows very easy from

[5-D]. We will give a proof.

Let H~O. 5ince H is nef, H2~0. Then, by Riemann-Roeh theorem,

dimIHI>O. Let Icl be the moving part of IHI and A the fixed part. By

[5-D], (i), or (ii) helds for Icl.

At first, let ICI contains an irredueible curve c. By Riemann~Roeh

theorem, (C+A)2~c2. Thus, 6·(2C+A)sO~ It fellows A· (C+6)+6-CsO. 5ince

C+6 and C are nef, 6·C=A·(C+A)=0. Then A2=0. If 6=0, we get the case

(i). If A~O, by Riemann-Roeh theorem, dirn IAI ~1, and we get the
centradictien.

Let Icl=mlEI where lEI i5 an elliptic peneil. By Riemann-Roch the­
orem, (mE+A) 2/2+1sm. Thus, (mE+A) -A+mE- As2rn-2. Since mE+A is nef,
either E-A=O or E-A=l and A2~-2. We consider these possibilities.

Let E·A=O. By Hodge index theorem, A2S0. Since E+A 15 nef, A2=O.

If A=O, we get the case (ii). If 6~O, we get the contradiction sinee

dimIAI~l.

Let E·A=l and A2~-2. Then A=r+A' where r i5 an irreducible curve

with r 2=-2, and E -r=l, and E - A'=0, and r is not a component of the
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divisor f:.'. If f:.'=0, we get (iv). Let f:.';:o. By Hodge index theorem

and Riemann-Roch theorem, (A,)2<0 and (r+f1,)2=-2+2r-A'+(A,)2<0. Sinee

Pieard lattice of K3 surface is even, 2r.11'+(11') 2= (r+f:.') ·f:.'+r·f:.'~o.

Sinee c+r+f:.' is nef and C·l1'=O, (r+l1') ·A'~O. Since r is not a compo­

nent of f:.', r·f:.'~o. It follows (r+A') ·l1'=r·A'=o. Thus, (A') 2=0. We

get the contradietion. •

We want to get something similar for singular K3 surfaces. On the

other hand, the Proposition 0.1 will be very important for us in the

ease of singular K3 surfaces also.

§ 1 Fixed part of linear system on nonsingular K3 surfaees.

Let X be a nonsingular K3 surfaee, H an effective divisor on X and

IHI the eorresponding eomplete linear system. Let IHI=ICI+A, where

Ici is the moving part and A is the fixed part of IHI. What one ean

say about the JCI and A?

From the Proposition 0.1, it follows the following statement:

(*) Ici satisfies the condition (i), (ii), or (iii) of the Propo­

sition 0.1, and A=~.r., where any r i i6 an irredueible -2 curve and
~ ~

kiEN. If Icl=mlEI where E i6 an elliptic eurve and m~2 then there

does not exist more than one irreducible component r. of A such that
~

E·r.~l; if here m~4, then the multiplicity k i cf the r. is k.=1.
~ ~ ~

Dur question is: If (*) holds, when

IC+f:.I=ICI+f:.? (1.1)

We eorrespond to this situation a graph G(C,A) (and G(A» by the

obvious way. The G(C,A) i6 the dual graph of interseetions of the

irredueible components C and r i of C+A. Here C is a general member of

Ici if c2
>0, and C=mE where E is a general member of the peneil lEI

if c
2

=0 and Icl=mIEI. The weight of the vertex C i6 equal to c 2 , the

weight of the vertex r. i6 equal to -2. The mUltiplicity cf C is equ-
~

al to 1 if c2>0, and i6 equal to m if Icl=mlEI where lEI is an ellip-

tic peneil: the mUltiplicity of r i is equal to k i . For the ease (i)

let Cred=C, and for the case (ii) C d=E where Icl=mIEI. We denote by
re 2

o a vertex of the weight -2, and by' Co (or Co) avertex of the

weight C2 •

The question is: What are graphs of this kind possible? It is

obvious that if G(C,A) i6 possible (has the property (1.1» then an

every subgraph of G(C,A) 16 possible. Here a subgraph corre6ponds to

a divisor D such that O~D~C+A.
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We prove the following basic theorem.

Theorem 1.1. Let C and A are divisors on the nonsingular K3

(m~4)

I
01

1 2 3 2 1
0--0--0--0--0

I
10

surface X which satisfy the condition (*) above.

Then IC+AI=lcl+A if and only if G(CßA) is a tree (particularlYß

all components of C+A are intersected transversely in no more than

one point) and G(CßA) has no subtrees Dm' E6 , E7 , ES' Dm(C), E6 (C),
E7 (C), ES(C), Bm(C) or G2 (C) below:

12221
o -- 0 -- 0 - ••• -- 0 --0

I
02

I
01

1 2 3 4 3 2 1
0-- 0 -- 0 -.- 0 -- 0 -- 0 -- 0

I
02

2 4 654 3 2 1
0--0--0--0--0--0--0--0

I
03

I
o 2

I

fi (C):m
1 2 2 2 1
o -- 0 -- 0 - ••• -- 0 --0 Cred

I I
10 01

12321
0--0--0--0--0 C

red

(m~4)

o 1
1 2 3 4 3 2 1
0--0--0--0--0--0--0 C

redI
02

2 4 654 321
o -- 0 -- 0 -- 0 -- 0 -- 0 -- 0 -- 0 Cred

I
03

E
7

(C) :

rn-I

1 2 2 2
0---0--0- ••• --0 C

red (m~2)

10

G2 (C): t ~ ~Cred
Proof. By the Proposition 0.1, these conditions are necessary: The

divisors corresponding to subgraphs Äm, Dm' E6 , E7 , Es' Äm(C), Dm(C),
E6 (C), E7 (C), Es(C), Brn(C), G2 (C) are nef.

Let us prove the inverse statement which is much more difficult.

If A=O, the statement is trivial. If Icl=mIEI, where lEI is an el­

liptic pencil, m~2 and A=r is an irreducible curve, then the
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statement holds by the Proposition 0.1 and the condition (*).

Let ~~0 and A is not an irreducible curve if Icl=mIEI, m~2 and lEI
is an elliptic peneil. Let G(C,~) be a tree and it has no subtrees

Dm' E6 , E7 , Es' Dm(C), E6 (C), E7 (C), Es(C), Bm(C) or G2 (C). We will

show that then there exists an irreducible component r i of ~ such

that ri·(C+A)<O. It follows the Theorem. Indeed, then r 1 15 a fixed

component of IC+~ I, and the conditions of the Theorem hold for

c+(~-r.). Thus, we shall obtain the Theorem by the induction and the
~

Proposition 0.1.

In such a way, we must prove that there exists an irreducible com­

ponent r. of A such that r.·(C+A)<O. If it i9 not true, then the di-
~ ~

visor C+A is nef. In this case we call the tree G(C,~) nef also. To

prove the Theorem, we have to show that, if the tree G(C,A) is nef,

then the tree G(C,~) contains one of subtrees Dm' E6 , E7 , Es' Dm(C),

E6 (C), E7 (C), ES(C), Bm(C) or G2 (C). We can reformulate this by the

following way. We say that the nontrivial nef tree G(C,~) is minimal

if it has no nontrivial nef subtrees (Here, the nef tree is called

trivial if it corresponds to the divisors C, or kE, or kE+r where

k~2, or 0.) We must show that an every nontrivial minimal nef tree is

one of the trees Dm' E6 , E7 , ES' Dm(C), E6 (C), E7 (C), ES(C), Bm(C) or

G2 (C). In such a way, we have to obtain the elassification of nef

minimal trees.

Let G(C,A) be a nontrivial minimal nef tree. Evidently, then trees

G(C,A) and G(~) are connected.

Since G(C, A) is a tree, it has at least two end5. Thus, there

exists a terminal vertex v
1

of G(C,A) with the weight -2.

Let G(C,A) be a chain of vertices v 1 ,v2 '··· ,vm and k 1 ,k2 ,··· ,km

are their multiplicities. Then the chain of multiplicities

0,k
1

,k
2

, ... ,km is convex below, and, if the vertex vm has the weight

-2, the chain O,k
1
,k

2
, ••• ,km,O i5 convex below also. Here, the chain

0,k1 ,k
2

, ••• ,k i5 convex below if k.-k. 1+k.-k.+1S0 for lsism-1. Itm ~ ~- ~ ~

follows that the vertex vm has the weight ~O (thU5, we have a case

(i) or (ii») and the ehain of multiplicities 0,k1 ,k2 , ... ,km is stron­

gly inereased. It follows very easy that m=J, kl=1, k2=2, kJ=J and

the vertex VJ=E where IEj is an elliptic peneil (G(C,A) i9 nontrivial

minimal nef!). Thus, G(C,A) is the tree G2 (C).

We recall that the valence of a vertex v of a tree i5 the number

of edges of the tree whieh eome out from v. Suppo5e that G(C,~) i5
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not a chain. Then we can suppose that the chain v
1

,v
2

, ••• ,vm consists

of vertices v
2

, ••• ,v 1 of the valence 2, and the v has a valencern- rn
~3. For the cases (i) and (ii), the vertex C is a terminal vertex cf

the tree G(C,A) since the tree G(A) is connected. Thus, the vertex v. m

has the weight -2. The multiplicity km of the vrn is ~2 since the

chain of multiplicities O,k1 , ... k m i8 increased.

If the vertex v rn has the valence ~4, then G(C,A) contains a subt­

ree of type 04 or 04 (C) with the vertex V m of the subtree of the

valence 4. It follows that G(C,A) is this subtree, since G(C,A) is a

minimal nef tree.

Thus, further , we can suppose that v rn has the valence 3 . Let

a
1

,a
2

, ••• an=vm and ß
1

,ß
2

, ••• ,ßp=vm be two other chains of vertices of

G(C,A) which are different from the chain v
1

,v
2

, •• ,vm and come out

from vm. Here we suppose that the, valence of a 2 , •.. a n - 1 and

ß 2 , ... ,ßp - 1 is 2 and the vertices BI and ß1 have valence 1 or ~3.

Suppose that the vertex a
1

has the valence ~3. Let tl, ... ,tn=km~2

are multiplicities of a
1

,a
2

, ••• ,an . In this case, if all multiplici­

ties t 1 ,t 2 , ••. ,tn are strongly greater than 1, the tree G(C,A) conta­

ins a subtree 0n+2 er 0n+2(C) with the vertices a 1 and vm of the va­

lence 3 in this subtree. Then G(C,d) is coincided with this subtree.

Thus, we can suppose that there exists 1~1 such that t .=1 and all
~

t.+1 , ... ,t =k are strongly greater than 1.
~ n rn

It follows that we can find nef subtree T of G(C,A) with vertices

z, u1 ' ••• ,u1 _1 ' v 1 ' ... ,vm- 1 ' w1 , •.• ,wt _1 and with the form

U 1 u1 - 1 Z V rn- 1 vI
o -- ••• - 0 -- 0 -- 0- ••• -- 0

o wt - 1

o w
1

where 1~2, rn~2, t~2.

To get this tree, one should set up {Ul, ••. ul-l}={al, ••• ,an_l} if

a 1 has the valence 1, and {Ul' •.. Ul_l}~{al, ... ,an_l} if a 1 has the
valence ~3. By the same way, one gets the chain v 1 , .•. ,wm_1 using the

chain ß1 , •.. ,ß . Since G(C,A) i5 minimal, G(C,d)=T. We should prove
.",. p ~ ...... At; ..... ~ t/I1tIfII

that G(C,A)=E6 , E7 , Es' E6 (C), E7 (C), ES(C), or Bm(C). We prove it in

the Lemmas below. We denote by D the curve C in the case (i), the

curve E in the case (ii), and one of the terminal vertices of

G(C,d)=G(d) in the case (iii). We denote by 8 the mUltiplicity of D.
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Thus, 0=1 in the case (i), ICI=8IEI in the case (ii) where lEI is an

elliptic pencil, 0 is equal to the mUltiplicity of D in the case

(iii). Indexes near vertices on pictures are multiplicities of the

vertices.

Lemma 1. If a tree T of the form

o Tt
I

1,- ... -1, a-- o - ••• - o

1 q-1 Cr - l Cl
where 2sqsr ß i8 nef and minimal then 1t 18 E7 , Es' or B3 (C).

Proof. The chains O,b
l

, .•• ,b
q

_
1

,d and o,c1 , ... ,cr _1 ,d are convex

below and o~d-b 1+d - c 1 where d-b l~l and d-c l~l. It followsq- r- q- r-
that o~2 and d~2. Thus, we have the case (ii) or (iii).

Let us consider the case (ii). Since o~2, d~2 and 2~qsr, the tree

T contains the subtree B
3

(C). It follows T=B
3

(C), since T is minimal.

Let us consider the case (iii). Then the chain 0, eS, d is also

convex below. It follows that we have an inequality

d/2~ö~d/q+d/r. (1.2)

It follows that 3~q~r. Let q=3. From (1.2), 1/2~1/3+l/r and r~6. It

follows c .~i and d~r~6 since the chain 0, cl' · · · , c l,d is convex
~ r-

below. From (1.2), then o~3. If b 1=1, then d/2~o~(d-1)/2+d/r. It fol-

lows, d/rSI/2. We obtain the contradiction, since d~r. Thus, b1~2.

Since the chain O,b
1

,b
2

,d i5 convex below, b2~4. As a result, we

prove that T contains a subtree Es. Then T=Es .

Suppose 4~q~r. since o~2 and the chains O,b1, ... ,bq_1,d and

0, cl' · · · , c r - 1 ' d are convex below, T contains a subtree E7 . Then

T=E7 • •
Lemma 2. If a tree T of the form

o a l a p _ 1 d c r - 1 c 2 Cl
Do -- 0 - ••• - 0 -- 0 -- 0 - ••• - 0 0

I
ob
I q-1

.
I
ob

1
where p~l, q~3 and r~3 18 nef and minimaiß then T is E6 , E7 , ES or

E6 (C).

Proof. Let us use an induction by p. For p=l it was proved in the

Lemma 1 that T is E7 or ES.
Now suppose that p~2.

At first, suppose that a
1
=1. Then, evidently, D2~O and we have the
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ease (i) or (ii). Let us set up c'=c+r1 where r 1 is the eornponent

eorresponding to the vertex with the multiplieity a
1

and the weight

of C' is 1. Then we get the statement by induetion: The ease p=2 is

impossible; if p~3 then p=3 and T i5 E6 (C'). It follows that T

eontains the subtree E6 and T=E6 • We get the eontradietion.

Let a1~2. The ehains o,a l , ..• ,ap_l,d, and O,bl , •.. ,bq_l,d, and

0, cl' ••• , cr_l,d are eonvex below. Sinee q~3 and r:2:3, we get d~3,

b 1:2:2, and C 1~2. If 0=1, then also a 1:2:2, sinee al~2. It followsq- r- p-
T=E6 or E6 (C). If 0=2, then the chain 0=2,a1 , ... ,ap _

1
,d is inereased

(may be not strongly), sinee a1~2. It follows T eontains the subtree

Bp+2(C). Then T=B +2(C), and we get the eontradietion, since q~3 and
p -

r~3. If 0~3, then T contains the subtree G
2

(C) sinee 8
1

:2:2 and p:2:2.

Then T=G2 (C), and we get the contradiction, since q~3 and r:2:3 ••

Lemma 3. If a tree T of the form
o c r c r - 1 c 3 cl

D 0--0--0-- ••• --0 0

oC
2

where r~4, is nef and minimal, then T=B (C).
r

Proof. The chains 0, cl' c 3 ' ,and 0, c 2 ' c 3 ' and 0, c r ' ... , c 3 are convex

below and c4~C3-C1+C3-C2. It follows C4~C3:2:2, and the chain

cS,cr ' ... 'C3 is decreased. It folIows, D2=O and we have the ease (ii).

Then T contains the subtree B (e), hence T=B (C) .•r r
Lemma 4. If 8 tree T of the form

o 8 1 8
p

_
1

d c
2

Cl
D 0 -- 0 --••• -- 0 -- 0 ---0 --- 0

I
ob

1
where p~l, 15 nef and minimal, then T=ES or Es(C).

Proof. The case (i). Then 0=1. The ehains 1, a 1 , ... , B p _
1

' d, and

O,b1 ,d, and O,cl ,c2 ,d are convex below, and b 1+C2+8p _1:2:2d. It follows

that d/2+2d/3+1+(d-l) (p-1)/p~2d. Thus, d(2-1/2-2/3-(p-l)/p)~

sl-(p-1)/p. Or d(l/p-1/6)s1/p. Evidently, ,d:2:3. It folIows, p;;::4. If

p=4, we get d/12~1/4. It follows d=3. One can see very easy that this

case is impossible. If p=5, we get d/30sl/5. If follows that ds6. One

can see very easy, that then d=6 and T=ES(C).

Let us suppose that p:2:6. If B
1
=1, we set up c l =c+r1 where r 1 cor­

responds to the vertex with the rnuItipI ieity a l' and this ease is

redueed to the ease p-1: we obtain that p=6 and T=ES (C1 ). Then T con­

tains Es and T=Es . We get the contradiction. If a 1:2:2, then d:2:p+l:2:7
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and pd/ (p+1) +2d/3+b1~2d. Or d (1/3+1/ (p+i) ) Sbl . Since d~7, we get

b1~3. If C 1=1, we get pd/(P+1)+d/2+1+(d-l)/2~2d. It follows

d/(P+l)~1/2. This is impossible since d~p+1. It proves that T

contains the subtree Es and T=ES • We get the contradiction.

The case (ii). If a 1=1, we set up c 1=c+r1 (like above). It reduces

the case to the previous one, and we get that T contains the subtree

Es. Particularly, it holds if ~~4. Let a1~2. If ~=3, then T contains

the subtree G2 (C) and T=G2 (C). We get the contradiction. If ~=2, we

get that the chain 0,a1 , .•• ,a _l,d is increased since a1~2. It fol-
p - -

lows that T contains the subtree Dp+1(C), and T=Dp +1 (C). We get the

contradiction. If ~=l, the proof is the same as for the case (i).

The case (iii). Then the chain D,a
1

, ... ,ap_
1

,d is convex below,

and the proof is similar to the case (i) .•

Lemma 5. If a tree T of the form

o BI a p _ 1 d Cr - 1 c 2 Cl
D 0 -- 0 - ••• - 0 -- 0 -- 0 - ••• - 0 0

o b
1

where r~4, is nef and minimal, then T=E7 , E7 (C) or ES.

Proof. The case (i).

If p=l, we get the statement from the Lemma 1.

Let p=2. Then d-b1~d/2, and d-al~(d-1)/2, and we

Cr_l~d-bl+d-al~d-l/2. It follows that cr_l~d. We get

·contradiction since the chain D,cl, ... ,cr_l,d is convex below.

Let p~3. If B 1=1, then we reduce the case to the case p-l like

above. Let al~2. Then d~p+l, ai~l+i, and d~r, Ci~i. Let b 1=1. Then

dpj(p+l)+d(r-l)jr+l~2d. It foliows, d(2-pj(p+1)-(r-l)jr)sl. Or

d(l/(p+l)+l/r)sl. But d~p+l and d~r. We get the contradiction. Thus,

bl~2. It foliows, T contains the subtree E7 (C).

The case (ii). The proof is the same as for the Lemma 4.

The case (iii). We have the· inequality 2d~d(p/(p+l)+1/2+(r-l)/r).

Thus, 1/(p+1)+1/r~1/2 and p~2. The case p=2 follows from the Lemma 4.

Let p~3. Then ~~1, a.~i+1, d~4, c.~j.
~ J

Let b
1
=1. Then dj (P+1) +d/r~l. But d~p+1 and d~r. We get the

contradiction, and bl~2.

As a result, we proved that T contains a subtree E7 • Then T=E7 . It

finishes the proof of the Lemma and the Theorem 1.1••

The basic Theorem 1.1 reduces a description of all possible graphs

G (C, 11) with the condition (1. 1) to a description of nonsingular
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curves trees ~ on K3 surfaces which satisfy the condition

(*)' 1 does not contain more than one curve C with a square C2~0

(if ~ has not such a curve, we set up C=O); all other curves r., iEI,
~

of the ~ are nonsingular rational.

To obtain all possible graphs G(C,A), one should prescribe to the

curves C and r i of the trees ~ mUltiplicities m and k
i

such that the

condition (*) holds, and prove the condition,of the Theorem 1.1. Here

any tree ~ is possible if these multiplicities are equal to one:

Corollary 1.2. If ~ 1s a tree satisfying to the condi t10n (*)',

then for the divisor ~= r r. holds that IC+AI=lcl+~.
1~I ~

Proof. This follows fram the theorem 1.1, or one can prove i t

independently (consider a terminal vertex with a weight -2 of G(C)) .• 6

§ 2. Trees of nonsingular curves on a nonsingular K3 surface.

2.1. General remarks. We consider here results on a classification

of nonsingular curves trees f!J on K3 surfaces which satisfy to the

condition (*)'. G(C) is the graph of intersecticns cf curves cf ~ and

G the graph of intersections of the curves r., ieI.
~

To obtain this classification, we use the following reasons (I),

(lI), (IlI), (IV) below, which are purely algebraic.

(I). Hodge index theorem: A tree G (C) should not be more than

hyperbolic - the correspond1ng intersection matrix has not more than

one positive square.

By (I), connected companent Gi cf G may be elliptic (with negative

definite intersection matrix), parabolic (with semidefinite intersec­

tian matrix), and hyperbclic (with hyperbolic intersection matrix).

Proposition 2.1.1. (1) An elliptic connected cornponent of G is a

tree Am,Dm'~6,E7 or ES.
fItttt/I """,-.,..... fItrttt/I

(2) A parabolic connected cornponent of G is a tree Drn ,E6 ,E7 or ES.

(3) A hyperbolic connected component Ghyp of G is unique.

(4) If Ghyp~0, then all other cornponents of Gare elliptic.

(5) If c2~0 and C~O and Gh ~0J then C 1s joined to a vertex r hyp2 yp
of Gh • If C >0 and G. 1s a parabolic cornponent of G, then C isyp ~

joined to a vertex r. of G.•
~ ~

Proof. It is obvious .•

For the matrix H we denote by D(M) the determinant of H, and

D(H)=D(-H). For the subgraph T of G(C) we denote by the same letter

the Gorresponding intersection matrix. It is obvious that
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[

>0 if T is elliptic,
D(T) i =0 if T is parabolic, (2.1)

s ~O if T is hyperbolic,
<0 if T is hypebolic and linearly independent.

We use the follewing simple fermula: Let a tree G has a form:

G:

(11). On a K3 surface ß if E 1s an effect1ve

C·E~2 for any irreducible curve C vith ~~o.

We ean use (11) by the following way.

Let we have a eonnected parabolic subtree ~ of G(C): (Cl, where

c2
=0 and C;z:!O, on' E6 , E7 or Es . This tree corresponds to all

eornponents of an elliptic peneil fiber on a K3 surfaees. Thus, an

every vertex v of ~ has the invariant m(~,v) which is equal to the

rnultiplieity of the corresponding to v irreducible component of the

fiber. (This invariante are shown as the multiplieities of the
--- ..- ".... ~

vertices of the trees Dn , E6 , E7 , ES of the Theorem 1.1.) By (11), we
',have the

Proposition 2.1.2. (1) Let C2~0 and C;z:!O. Let 1J be a connected

parabolic subtree of G(C), let p be a vertex of ~ joined to C. Then

m(1',p»l.

(2) Let l' and Q be two connected parabolie subtrees of G(C) whieh

have not eommon vertiees. Let p be a vertex of 1J and q of Q and pq an

edge of G(C). Then either m(1',p»l or m(Q,q»l .•

For example, it fellows that G(C) has not subtrees (where C2~O):

Co -- 0 -- 0-

I
o

--0--0

o

0- 0 - ..... - 0 - 0 - 0 - 0 - ••• - 0 - 0

I I
o o o o

(111). An elliptie peneil on a K3 surfaee has not multiple flbers.

It fellows the

Proposition 2.1.3. Let a tree G(C) has tvo disjoint eonneeted pa­

rabolie subtrees ~ and Q, and a vertex v of G(C)-1J 1s joined to a



- 12 -

vertex p of the ~. Then v is joined to some vertex q of the Q and

m(~,p)=m(Q,q).•

Let g=A
n

, D
n

or E
n

be an elliptic subtree of G(C) and e be a ver­

tex of g. We ean introduce the invariant m(g,e) which is equal to the

set of multiplicities of the vertex e under all possible embeddings

of g into all parabolic connected graphs Ä , Ö , E .m m m
Proposition 2.1.4. Let G(C) has tvo disjoint connected subtrees ~

and g where l' 1s parabo1ic aild g is e11iptic. Let a vertex w of

G(C)-~ i5 joined to a a vertex p of rp and to a vertex e of g.

Then m(rp,p)~min m(e,e).

Proof. vertiees of l' correspond to all components of adegenerate

fiber of an elliptie peneil E on X. vertiees of g correspond to some

eomponents of an other degenerate fiber of E and also have multipli­

eities. By (111), we get the statement.•

(IV). The rank of P1card 1attice of K3 surface s 22, and it is s20

1f a basic field has the characteristic O.

It follows the

Proposition 2.1.5. rk G(C)s22, and rk G(C)~20 if char=O.

We deseribe all possible trees G (C) whieh satisfy the eondition

(I), the Proposition 2.1.2 of (11), the Propositions 2.1.3 and 2.1.4

of (111) and the Proposition 2.1.5 of (IV). It is a purely algebraie

.problem about sets of veetors in a linear space with asymmetrie

~pairing.

2.2. The case c 2>o. For K3 surfaee C2~2, and we have the
2

Theorem 2.2.1. 1. Let C ~2 and the Ghyp~0~ let r hyp be the vertex

of the Ghyp joined to C. Then Ghyp-rhyp is elliptic.

2. Let H1 , ••. ,Ht be all connected components of Ghyp-rhyp and ri
be a vertex of H. joined to r

h
• Then

- - ~ - - yp - - -
D(GhYP)=D(Hl)···D(Ht) (2-D(H1-rl)/D(H1)-···-D(Ht-rt)/D(Ht»<O

vhere

D(Hl-r1)/D(Hl)+···+D(Ht-rt)/D(Ht»2.

3. For Gh (C) we have
- -yp - 2 - - - -
D(Ghyp(C»=D(Hl)··D(Ht) (-C (2-D(Hl-rl)/D(Hl)- ... -D(Ht-rt)/D(Ht»-1)SO

2 - - - - - -
2~C ~D(Gh -rh )/(-D(Gh »=1/(D(Hl-r1)/D(H1)+···+D(Ht-rt)/D(Ht)-2).

yp yp - yp - - -
4. Tt fo1lows: 2 < D(Hl-rl)/D(H1)+ ... +D(Ht-rt)/D(Ht) ~ 5/2.

5.
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{

#GCC) if C2<1/cDCHl-rl)/DCHl)+ ... +DCHt-rt)/DCHt)-2) .

rk GhYbC) = #G(C)-l if C2=1/(D(Hl-rl)/D(Hl)+ .•• +DCHt-rt)/D(Ht)-2)

6o From 1-4 and the Proposition 2.1.2, it follovs:

If C2>42 then G
hyp

=0. If Ghyp;:0, then the tree Ghyp has three

(only if C2~42), four (only if C2~6) or five (only if C2=2) ends, and

G
h

(C) is one of the follovlng trees:yp
G

hyp
has three ends:

,G1 (C
2

i P I q , r i a )
r-P I a~

o - • • • T i - ···- 0 -r-_-_0_°_°_°_-_-_-----'~

q •.
LI

case

where a~O, 2~psqsr, if p~3 then a~1, if q~3 then a~4, if q~4 then

as2i 1/p+1/q+1/r<1, 1/p+1/q+1/a>1,

2sc2~(r-a) (-pqa+pq+qa+ap)/(pqr-pq-qr-rp)~42 (the

corresponds to the case a=O, 'p=2, q=3, r=7 only) °

- 2 2D(G1 (C ip,q,ria»=C (pqr-pq-qr-rp)-(r-a) (pqa-pq-qa-ap),

D(Gh )=-pqr+pq+qr+rp, D(Gh -rh )=(r-a) (-pqa+pq+qa+ap).yp yp yp
Ghyp has four ends:

2
G

2
(C i2,qia,b,):

,.-- a ----t-- b ------r-----'- q ------,
o -- 0 -- ••• -- 0 -- ••• -- 0 -- 0 - ••• -- 0

2
0

2where 2~C ~6, a~l, b~1, q~3, C +b~3+4/(q-2).

- 2 2'
D(G2 (C i2,qia,b»=4«q-2)C +«q-2) (b-3)-4»,

D(Gh -rh )=4(4-(q-2) (b-3».yp yp

o

G2 (2i 3 ,qil,2)
I q -------,

0--0--0--0-- ••• --0--0

I
o 0

where q=3,4. D(G2(2i3,Qil,2»=8(q-4), D(GhyP)=-7q+l0,

D(Gh -rh )=6(q+2).yp yp

G2 (2iP,3il,2)
I P I
o -- 0 - ••• -- 0 -- 0 -- 0 -- 0

I
o 0

where p=4,S. D(G2 (2iP,3i1,2»=4(P-S), D(G
hYP

)=-7P+l0.
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D(Gh -rh )=10p.yp yp

G2 (2iP,3i1,3)
....---- p I
o -- 0 - .... -- 0 -- 0 -- 0 -- 0 -- 0

I
o 0

where p=3,4. D(G2 (2iP,3i1,3)=4p-16, D(GhYP )=S-6P, D(Ghyp-rhyp)=sP.

C
2

=2
o

G
2

(2 i 3,3 i 1,4)
I

0-- 0 -- 0 -- 0 -- 0 -- 0 -- 0 -- 0

I
o o

D(G2 (2i3,3i1,4)=0, D(G
hYP

)=-9, D(Ghyp-rhyp)=1S.

C2=2
o

G2 (2i3,3i2,2) 0-- 0 -- 0 -- 0 -- 0 -- 0 -- 0

o o

D(G2 (2i3,3i2,2)=-S, D(G
hYP

)=-10, D(Ghyp-rhyp)=2S.

C
2=2

o

G2 (2i3,3i2,3) 0-- 0 -- 0 -- 0 -- 0 -- 0 -- 0 -- 0

o

D(G2 (2i3,3i2,3)=-2, D(Ghyp)=-9, D(Ghyp-rhyp) =20.

C
2=2

o

o

G2 (2 i 3,3i3,3) 0-- 0 -- 0 -- 0 -- 0 -- 0 -- 0 -- 0 -- 0

o

D(Gh -rh )=16.
yp 2 yp

C =2
o

o

G
3

(2 i a) : 0--0- ••• --0---0--0--0

o
o

o

G4 (2iaiP,q)
I a I P ---,

O_-j-···ii-···- o

o q :

LI
where (p,q)=(3,q), 3sqs6, and (p,q)=(4,4).
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G5 (2;p,q,r,s)

D(G4 (2;a;p,q»=4(pq-2p-2q) , D(GhYP )=4 (-pq+p+q) , D(Ghyp-rhYP)=4pq.

I~
q :

r-P~
o-.~.u=.... -o

1 I r 1

. s

C
2

=2 IJ
where p~q~r~s~2, and 2>1/p+1/q+1/r+1/s~3/2;

D(G5(2;p,q,r,S)=3pqrS-2pqr-2qrS-2rsp-2Spq~O,

D(Ghyp)=-2pqrs+pqr+qrs+rsp+spq, D(Ghyp-rhYP)=pqrs.

Gh has five ends:yp

G
6

(2;a,b)
~--- a I b I

0--0-- ••• --0-- ••• --0--0

I
o o o

C
2 >O. Since G (C) is

Thus, D(G-rhYP»o and

C 0

and

H1 •

rhil . H

I i

H •
t

It follows that G i8 linearly independent and D(G)<O since G is

hyperbolic. Applying (2.2) to D=rh and then to C, we get
- - - - yp - - -
D(Gh )=D(H1 )···D(Ht ) (2-D(H1-r1)/D(H1)-···-D(Ht-rt)/D(Ht»<O

- yp
D(Gh (C»=

- yp - 2 - - - -
=D(H1 )···D(Ht ) (-C (2-D(H1-r1)/D(H1)- .•. -D(Ht-rt)/D(Ht»-1)SO.

It follow the statements 1 - 5.

To get the last statement 6, we should find all possible sets

(H1 ,r1 ;·.·; Ht,rt ) such that

2 < D(H1-r1)/D(H1)+ ... +D(Ht-rt)/D(Ht) s5/2.

For an elliptic tree H=An , Dm' E6 , E7 or Es and its vertex r let

I(H,r)=D(H-r)/D(H).

One can find very easy the full list of such pairs with

D(G
6

(2;a,b»=o, D(Gh )=-16, D(Gh -rh )=32.yp yp yp
Proof. Gh -rh is orthogonal to C withyp yp

hyperbolic, it follows that G-rh is elliptic.
- yp
D(Hi»O. G(C) has the form

I(H,r)S5/2:
r (1)
0--0-- ••• --0

I q I
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1(A ,r(1»=1-1/(1+q)~1/2, where q~1i
q (2) . r(2)

(A
1
+

q
,r). 0--0-0- ••• -0

I q I

1(A1+q,r(2»=2-4/(2+q)~1, where q~2i
(3) • r(3)

(A
2
+,r). 0--0--0-0- ... -0

q I q 1

I(A2+ ,r(3»=3-9/(3+q)~3/2, where q~3;
q (4) r(4)

(A ,r): 0--0--0--0-0- ... -0

3+q ,I q J

1(A3+q,r(4»=4-I6/(4+q)~2, where q~4;
(5) r(5)

(A
9
,r ): 0-0-0-0-0-0-0-0-0

1(Ag ,r(5»=5/2.

(o,r(k»:
n

o

with 1(0 r(k»=k where n-2~k~1;n' ,
(0 ,r(n-I»: r(n-1) 0 __ 0 - ••• _ 0 _ ••• - 0

n I
o

with I(On,r(n-l»=n/4~5/4, where n~5;

(E
6
,r(1»: r(l) 0 -- 0 -- 0 -- 0 -- 0

I

0-- 0 -- 0 -- 0 -- 0 -- 0

with I(E6 ,r(1»=4/3i
(E

6
,r(2» :

with I(E
6
,r(2»=2;

(E
7

, r (7) ) :

o

0--0--0--0--0

I (2)or

with I(E7 ,r(7»=3/2;
(E

7
, r (1) ) :

with I(E7 ,r(1»=2i

(ES ,r(8» :

o

(1)r 0--0--0--0--0--0

I
o

0-- 0 -- 0 -- 0 -- 0 -- 0 -- 0

o

with I(E8 ,r(8»=2.

It follows, we have the following and only following

for (Hl,rli ... i Ht,rt ) with 2<I=I(H1 )+ ... +I(Ht )s5/2:

{(On,r(n-l»}, n=9,lO with I=n/4;

{(Ag ,r(5»} with 1=5/2;

{(A3+q ,r(4»}, q=5,6 with I=4-16/(4+q);

possibilities
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with 1=5/2;

with 1=5/2;
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{(A2+ ,r(3»}, 7sqs15, with I=3-9/(3+q);

((ES ,f(8»,(A
1
,r(l») with 1=5/2;

{(E
7
,r(1»,(A

l
,r(1»} with 1=5/2;

{(E7 ,r(7»,(D
n

,r(1»} with 1=5/2;

{(E
7
,r(7»,(A

3
,r(2»} with 1=5/2;

{(E7 ,r(7»,(Aq ,r(1»}, q~2, with I=5/2-l/(q+l);

{(E6 ,r(2», (Al,r(l»} with 1=5/2;

{(E6 ,r(1»',(D
n
,r(l»} with 1=7/3;

{(E6 ,r(l»,(A
3
,r(2»} with 1=7/3;

{(E6 ,r(l»,(A
q
,r(I»}, q~3, with 1=7/3-1/(I+q);

{ (D , r (4) ) , (D , r (4) )} wi th 1=5/ 2 ;
5 (rn-I) 5 (1)

{(D ,r ),(D,r )}, m=5,6, with 1=m/4+1;
m (4) n (2) .

{(Ds,r ),(A1+q ,r )}, q=2,3, wlth I=l3/4-4/(2+q);
{(D

6
,r(5»,(A

3
,r(2»} with 1=5/2;

{(D5 ,r(4»,(Aq ,r(I»}, q~4, with 1=9/4-l/(l+q);

{(D6 ,r(5», (A ,r(I»}, q~2, with 1=5/2-1/(I+q) i

((D7 ,r(6»,(A
Q
,r(1»), 1~Q~3, with 1=11/4-1/(1+Q);

(7) q (1) .
{(Ds,r ),(A1,r )}, wlth 1=5/2;
(0 r(2» (A r(l»} with 1=5/2-
~ n' , 1" ,
{ (D , r (1) ) , (A , r (3) )} wi th 1=5/2 ;

n (1) 5 (2)
{(Dn,r ),(AI+q,r )}, 3sqs6, with 1=3-4/(2+q);
{(A

7
,r(4»,(A

l
,r(1»} with 1=5/2;

1(A ,r(3», (A ,r(2»} with 1=5/2;
5 (3) 3 (1)

1 (A2+p ,r ),(Aq,r )}, where p~3, q~l, 2>9/(3+p)+l/(1+q)~3/2,

with 1=4-9/(3+p)-l/(1+Q);
(2) (2)

{(A1+p ,r ),(AI+q,r )}, where 2sp~q, 2<q, 1/(2+p)+1/(2+Q)~3/S,

with 1=4-4/(2+p)-4/(2+q)

{(A l +p ,r(2», (Aq ,r(1»}, where p>2, q~1, 1>4/(2+p)+1/(1+q)~1/2,

with I=3-4/(2+p)-l/(l+q);

{(E
7
,r(7», (A

l
,r(l», (Al,r(l»}, with 1=5/2_

{(E6 ,r(l»,(Ap ,r(l»,(Aq ,r(l»}, where 1~p~q, 1/(l+p)+1/(l+q)~5/6,

with I=10/3-l/(1+p)-1/(1+Q) i
\

{(D5 ,r(4»,(Ap ,r(l»,(A
q

,r(1»}, where l~p~q, l/(l+p)+1/(1+q)~3/4,

with I=l3/4-l/(1+p)-l/(l+Q);

{(D reS»~ (A r(l» (A r(l»}
6' , l' , l' ,

{(Dm,r(l», (Dn,r(l», (A
1
,r(1»}

{(Dm,r(l», (A
3
,r(2», (A

l
,r(l»}

{(D r (l» (A r(l» (A r(l»} h 1 1,
" "

, w ere ~p~q, q> ,m p q
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1/(1+p)+1/(1+q)~1/2, with I=3-1/(1+p)-1/(1+q) i

{ (A5 ' r (3) ) , (A1 ' r ( 1) ) , (A1 ' r (1) ) }, wi th 1=5/2 i

{ (A3 ' r ( 2) ) , (A3 ' r ( 2) ) , (A1 ' r ( 1) )} wi th I =5/2 i
(2) (1) (1)

{(A1+p ,r ), (Aq,r ), (Ar,r )} where p~2, lsqsr,

3/2S4/(2+p)+1/(1+q)+1/(1+r)<2, with I=4-4/(2+p)-1/(1+q)-1/(1+r)i

{(A
p
,r(l», (A

q
,r(l»,(A

r
,r(l»} where lspsqsr,

1/2s1/(1+p)+1/(1+q)+1/(1+r)<1, with I=3-1/(1+p)-1/(1+q)-1/(1+r) i

{ (D , r (1) ) , (A1 ' r ( 1) ) , (A1 ' r ( 1) ) , (A1 ' r ( 1) ) }, wi th 1=5/2 i
n (2) (1) (1) (1) . _ •{(A3 ,r ),(A1 ,r ),(A1 ,r ),(A1 ,r )}, w1th 1-5/2,

{ (A r (1» (A r (1» (A r (1» (A r (1) )} where 1 1p' , q' , r' , s' spsqsrss, s> ,
3/2s1/(1+p)+1/(1+q)+1/(1+r)+1/(1+s),

with I=4-l/(1+p)-1/(1+Q)-1/(1+r)-1/(1+s) i
(1) (1) (1) (1) (1) .

{(A1 ,r ),(Äl,r ),(Al,r ),(Al,r ),(Ä1,r )}, w1th 1=5/2.

If we draw the trees corresponding to all this possibilities, we

get all trees of the Theorem and one additional tree corresponding to

the case {(Dn , r (2) ) , (Al' r (1) ) }. The last tree i5 impossible by the

Proposition 2.1.2. The same Proposition gives the additional inequa­

lities: if p~3 then asl, if q~3 then aS4, if q~4 then a~2 for the
2tree G1(C iP,q,ria) ••

Proposition 2.2.2. 1. Let C2~2 and the hyperbolic connected compo­

nent G1 =Gh ~". Let G., lsisk, are all connected components of Gyp ~

which are connected by the edge CV. ,V.EG., vith C, and G., k<i~l are
~ ~ ~ J

"allother connected components of G (disconnected vith C).

Then all connected components G., 2sisl are elliptic and
- - - - ~ 21. D(G(C) )=D(G l )D(G2 )·· ·D(GI ) (-C -

-D(G1-vl)/D(G1)-D(G2-V2)/D(G2)- -D(Gk-Vk)/D(Gk» s 0,

where
2-' - - - - -

2sC SD(Gl-vl)/(-D(Gl»-D(G2-v2)/D(G2)- -D(Gk-vk)/D(Gk».
2. rk G(C)=#G(C) lf the right inequality above 1s strongß and

rk G(C)=#G(C)-l 1f this inequality 1s an equality.

3. If ~ is a parabolic subtree of the tree G1=Ghyp ' then

rn(~,vl)~min m(G.,v.), 2sisk.
~ ~

Proof. Use the formula (2.2) for B=C and the Proposition 2.1.4 .•

Remark 2.2.3. If Ghyp=0, then all restrietions for the tree G(C)

we can give here follow from the Propositions 2.1.1 - 2.1.5. We would

like to emphasis the difference of this case from the case G
h

~".
2 2 yp

For the case Ghyp=" the C (equivalently, the dimlcl=C /2+1) may be

arbitrary large.•
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2.3. The case c2=o and C~O. Here we have the

Theorem 2.3.1. Let C
2=o and C~O, and the Ghyp~0, let r hyp be

the vertex of the Ghyp joined to C.

Then all conneeted components H1 , ... ,H
t

of the Ghyp-rhyp are para­

bolie or el11ptic. Let r 1 be the vertex of Hi joined. to r hyp . Then

m(H.,ri )=1 if the component H. 1s parabolic, and min m(H.,r.)=1 if
~ ~ ~ ~

the component H. 1s elliptic. The rk G(C)=#G(C)-p where p is the num­
~

ber of parabolie eomponents from H1 , ... ,H
t

.

Proof. Use the Propositions 2.1.3 and 2.1.4 •

Remark 2.3.2. If Gh =0, then all restrictions for the tree G(C),yp
we can give here, follow from the Propositions 2.1.1 - 2~1.5••

2.4. The case C=O. In this case G(C)=G. The problem i8 to classify

hyperbolic trees Ghyp . In [M], G.Maxwell investigated the case rk

Gh = #Gh · Fortunately, it i8 necessary only to reformulate hisyp yp
results to consider the general case which we need.

Theorem 2.4.1. Let G be a connected tree of nonsingular -2 curves

on a K3 surface. Then one of the two cases (a) or (b) holds:

(a) There exists a vertex r of G such that all connected cornpo­

nents H1 , ... ,H
t

of Gh ~r are parabolic or elliptic. If one of these
yp -

eomponents H1 , ..• ,H
t

is parabolic, then G is hyperbolic. If all the

eomponents H1 , ... ,H
t

are elliptic then G is hyperbolic iff

D(HI-rl)/D(HI)+···+D(Ht-rt)/D(Ht»2
where r. is the vertex of H. joined to r. If G is hyperbolic, then

~ ~

rk G=#G-max{a-l,O}

where a 1s the number of parabolic components from HI, .•• ,H
t

•

(b) There exists an edge r Ir2 of G such that all eonnected

components of G-{rI r 2 } are elliptic and.l if GI is the eonnected

component of G-r2 containing r l and G2 is the connected components of

G-rI containing r 2' then both GI and G2 are hyperbolie. In th1s

situation the rnatrices of GI ,G2 and Gare hyperbolic iff D(GI)<O,

be all connected components of G.-r., j=l,2, and
J J

H .. Joined to the r .. Then the last inequali-
J~ J

equivalent to

Al=D(Hll-rll)/D(Hll)+···+D(Hlk -r1k )/D(Hlk »2,
1 I 1

A2=D(H21-r21)/D(H21)+···+D(H2k -r2k )/D(H2k »2,
.22 2

- -D(G2 )<O and D(G)~O.

Let H.I, ..• ,H.kJ J j
r .. be a vertex of the
J~

ties are

and
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(Al -2) (A2-2)Sl.

The rk G=#G if the last inequality is strong~ and rk G=#G-1 if the

last inequality is equality.

Proof. This is similar to [M]. We leave details to the reader.•

The Theorem 2.4.1 is sufficient to draw (in principle) all

possible trees G of -2 curves on the K3 surfaces. An additional

restrietions for these trees give the Propositions 2.1.1 - 2.1.5. For

example, all connected trees with slO vertices are either elliptic or

parabolic, or hyperbolic (it is mentioned in [M]), and the full list

of these trees one can find in [H]. Only the following tree with sIO

vertices contradicts to these propositions and, hence, is impossible

on K3 surfaces:

o o

0--0--0--0--0--0

o o

2.5. Remark. Here we only mentioned the most important and rude

conditions for trees G(C). We hope to give other more delicate neces­

sary and .sufficient conditions in further pUblications. This problem

is a little similar to the problem of a description of all possible

singularities of quartic singular K3 surfaces. You can see the series

of Urabe's articles devoted to this subject; see CU], for example.

But our problem is much more complicated. It is arithmetic and is

:connected with the existence of an embedding of the corresponding to

G(C) lattice into K3 cohomology lattice (it is an even unimodular

lattice of the signature (3,19)). One can use here the discriminant

form technique (see [N]).

§ 3. Fixed part of Weil linear systems on singular K3 surfaces.

3.1. General case. Let Y be a singular K3 surface and ~:X~Y the

minimal resolution of singularities of Y. Let ~ =Lb.F.,where b.~O are
s J J J

integers and F. are components cf the exceptional divisor of ~. Let DJ _
be an effective divisor on X. A complete Weil linear system D on Y is

the image IDI=u*(ID+~sl), where ID+~sl is the complete linear system

on X and we consider all possible b.~O. It is very easy to see that
J

this image is stabilized if b. are increased. Like in the § 1, we
J

want to describe the mcving part and the fixed part of the linear

system n. Evidently, the fixed part 1s the image of the fixed part ~

of the linear system ID+~sl. And the fixed components part of IBI is

the image u*(~ ) of the part ~ =~-A • It 1s not difficult to prover r s
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that when b.»O then all components F. of A belong to the fixed part
J J s

of the linear system ID+As I. We suppose that b j'>O' er it is more

convenient to suppose that the all bj=+OO.

Let ID+Asl=ICI+A, where Ici i8 the moving part and A i8 the fixed

part. Then A=A +A where A is the part defined by the all componentsr s s
F. of the multiplicity +00 and A =A-A . Then the rnultiplicity a i of an

J r s
irreducible component r.. of A i8 defined and is a finite natural

~ r
number. It defines the mUltiplic1ties of the corresponding irreducib-

le components u*(ri ) of the fixed part u*(A) of the complete linear

system Inl. As in § I, we define the graph G(C,A). Its difference

fram the situation of the § 1 1s that vertices of its subgraph G(A)

are of the two kinds:

Black vertices of the mUltiplicity +00 corresponding to the

components F. of the exceptional divisor of Ui
J

White vertices of the finite multiplicity a.eN, corresponding to
~

the irreducible components u*(ri ) of the -fixed part of Inl.

Thus, the problem we should solve, is the same as in the § 1: To

describe all possible graphs G(C,A) of this kind such that

IC+AI=IC!+A. It is a particular case of the problem we have solved in

the § I, and it 1s necessary to reformulate the results of § 1 in

this situation only.

The analog of the condition (*) is the condition

(**) Ici 5atisfies the condition (i), (ii), or (lii) of the

·Proposition 0.1, A=Ar+As ' where är=Lairi , aiE~, and As=LbjFj , bj=+oo

(or b.,>O), and all r. and F. are irreducible -2 curve. (For the graph
J ~ J

G(C,A), the vertices ri are called white and the vertices F
j

black.)

If Icl=mlEI where E 15 an elliptic curve and rn~2 then there does not

exist more than one irreducible component R of A such that E·R~li if

here rn~4, then the vertex R is white and has the mUltiplicity a=l.

Our question is: If (**) holds, when

IC+AI=lcl+A ? (3.1)

Theorem 3.1.1. Let C+A be a divisor on a nonsingular K3 surface X

vhich satisfy the condition (**) above ..

Then IC+AI=ICI+A (equivalently, IU*(C+A) I=u*( ICI )+u*(A) for the

contraction u of the all black curves F.), if and only if G(C,A) is a
.J ... ",. tIIItt,t/I #IV .""

tree and G(C,A) has not a subtree T=Dm, E6 , E7 , Es' Dm(C) , E6 (C),

E7 (C), ES(C) Bm(C) or G2 (C) of the Theorem 1.1. It means that if the

tree G(C,Ared ) contains the subtree Tred (red means the reduction),
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then there exists a vertex v of T which is a white vertex of the tree

G (C, A) and i ts mul tipli ci ty in G (C, A) is strongly less than the

mUltiplicity of the vertex v in the subtree T.

Proof. This follows from the Theorem 1.1.•

3.2. Nef case. We use notations of 3.1. Here we want to consider

the case when a linear system IBI on a singular K3 surface Y is nef

or numerically ample (in the sense of Mumford intersection pairing on

anormal surface [Mu). This case is the most interesting for appli­

cations (for Fano threefolds, for example). We use the following

trivial
* -Lemma 3.2.1. D is nef 1ft u (D) is nef. In other vords, iE ve nor-

malize weights b. of black vertices F. of the !:J. by the condition
J J

F.·(C+A)=O (here b. are rational numbers) and not change weights a.
J J ~

of the white vertices r. (here a. are natural numbers), then for any
~ ~

white curve r i we have the inequality: ri·(C+A)~O. If IBI is ample,

the last inequalities are strong: r.-(C+A»O_ •
~

Thus, it is natural to give the

Definition 3.2.2. The graph G(C,!:J.) i6 called convex below if for

the weights {b.} of the black vertices F. satisfying to the condition
J J

F.-(C+!:J.)=O, the condition r.·(C+A)~O holds for the white vertice5 r .•
J ~ ~

In other word6, for any component U of the !:J. the inequality U'(C+A)~O

holds, and, if U i5 black, thi5 inequality i5 the equality. A diagram

G;( C, A) is called strongly convex below if i t is convex below and for

any white vertex r. a strong inequality r.· (C+!:J.) >0 holds. It i5
~ , ~

sufficient to prove this conditions for connected components A. of A
~

only.•

From the Theorem 3.1.1 and the Lemma 3.2.1, we get

Theorem 3.2.3. Under the conditions of the Theorem 3.1.1,

lu*(C+A) 1=u*(ICI)+u*(!:J.) and u*(C+!:J.) is nef

if and only if G (C, A) satisfies the Theorem 3.1.1 for the weights

b.=+oo of the black vertices F. and the tree G(C,!:J.) is convex below
J J

for the weights b j of the black vertices F j satisfying to the

condition F j - (C+A)=O of the Definition 3.2.2. If 0'* (C+A) is ample,

then this tree G(C,A) should be additionally strongly convex_ •

As an example, let us consider the case when C2>0 and G(A) has the

form A or D • We denote 0 a white vertex, • a black vertex, and 0 am m
vertex which may be either white or black. Then we get the following

possible trees G(C,!:J.) on the K3 surfaces over abasie field of chara-
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The

(A ,1):m

(D , m) :rn

cteristic 0, where Co is the weight of the vertex (white or black)
~

satisfying to the eonditions of the Definition 3.2.2:

Ci l
I

8-·· .8-8- 0 - ••• -8
I i-I i c i +1 m

where the chains of weights 0, Cl' ..• co, and co, ••• , C , ° are convex
~ ~ m

below and (co-co 1)+(C.-Co+I)Sl. Sinee m~19, the
~ ~- ~ ~

max{cl, .•. ,co, .•• C }=cosi(rn+I-i)/(m+l)~(rn+I)/4~5 .
~ m ~

. I cl c 3 c 4 cm(Dm' 1) • Co -0 -- 0 -- 0 -- •••• - 0

I
o C

2
where the chains l,c1 ,c3 , and O'C2 'C 3 ' and c 3 ,c4 ' .•. 'Cm'O are convex

below and c3-cI+C3-C2~C4. Since m~19, the

maX{I,CI,C2,···Crn}=maX{1,C3}s(m-2)/2~17/;<9.

01
I

(Dm,i), 3<i<rn: • --0--0-- ••• 0 -- ••• -0--0--0-•••-0

C3/2 IC3 c 4 Ck =l c i - I Ci c i +1 c rn
C;/2

The chains of weights c 3 ' c 4 ' · · · , Ck=l, ... Co I' Co and co, •.. C , ° are
~- ~ ~ m

eonvex below, and c~c3' and (co-c. 1)+(Co-Co+1)~1.

max{c1, .. ,c }=co~ (i+1-k) ( 1-1) ~(rn+2-k)2/~4(~~1-k))~81/17<5.
rn ~ (rn+l-k)

1.l.2_~_~_..••_~_ 0 C •
I

Ij2

We should emphasize that this diagrams are possible for an arbit­

rary even C
2

>O and an arbitrary dirn Ier* (C+A) ) I=C
2 /2+1, and here the

moving part CJ"*!CI of ler*(C+A)) I is not a peneil. A multiplieity of

the fixed part eomponents of ler*(C+A)) I may be >1, but ~8 (and the

ease of the maximum multiplieity 8 is possible). This shows the dif­

ferenee of the nef and ample linear systems on singular K3 surfaees

comparing with the nonsingular case. But here the hyperbolic

component Ghyp (A)=0. We eonsider an opposite example below.

3.3. The case rk pie Y=l. More generally , we consider the case

when CJ"*(D1 )2>o for any irreducibie component Di of a general member

D=~DiEIC+Arl. This case is eharaeterized by the following conditions:

an every elliptic component of G(A) contains blaek vertices only: the

tree G(A) does not contain parabolic components; if v i8 a white ver­

tex of Gh (A) and N(v) is the maximum connected subtree of Gh (A)yp yp
which contains only the one white vertex v, then N(v) i8 hyperbolic.

Using this condition8 and the theory above, we get the following
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description of Gh (C,A) if it has a white vertex v of a mUltiplicity
yp -

~2 (equivalently, IDI has a fixed component of a mUltiplicity ~2):

This case is the most interesting for applications .
•

We get that for a white vertex v of a multiplicity >1 the tree

N(v) is one of the following trees:
...--- p -----,

p~7;

p.__ .-
I
02

r
_._--~--_._- -_. , 1/2>1/p+1/r,

r.-_. -_. ---~--_._- r~7;

p.__ .- _._-~ p~7;

P.--

r
· -_. --. ---4---·--

I r I
-_. --.....,.2~I·-- ... -- .

. q

U

r~7,

1>1/p+1/q+l/r,

p

r

r

r------.I
• -- ••• -- • -- 0

3
-- • - ••• -_. ,

I

4 1
--- • -- 0 -- • - ••• -- •

51
--- • -- 0 -- • - ••• -- •

1/2>1/p+1/r;

r~7;

r~7;

It follows very easy that this multiplicity >1 white vertex v of

the G(C,ä) is unique, and G(C,A) has not more then one other white

vertex. We shall denote this vertex C (thus, we permit that C2=-2).

If there exists this additional white vertex C of the mUltiplicity

one, then the tree CUN(v) is one of the following:
p I 1 2

• _. _. - ••• _. -- oC p~7, -2:s;C :s;(7-p)/(p-6) :s;O.
I
02

P r
C ~--. - • - ••• - • - ~ - • - ••• - • ,

I.
1/2>1/p+1/r, -2:S;C2:S;(2p+3r-pr-2)/(pr-2p-2r):S;4.

p r 1
• -_. - _. --- ~ --_. -- •••-_. -- 0 C ,
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1/2>1/p+l/r, -2~C2~(2r+3p-pr-2)/(pr-2p-2r)~4.
r 1 2. __ . __ ._-~-_.-...-._-o C, r~7, -2~C ~(7-r)/(r-6)~O.

I

1 r----- p ---
C 0--·--·- -·---3--·' p~7, -2SC2S(7-P)/(P-6)SO.

r
1· -- • -- • -- 4-- · - ..• - • -- 0 c ,

I
•....------P.--

1 r 1 1
--~2II·-- ... --. -- 0 C

I q

1
• - ••• _. -- 0

3
-- • - ••• - • -- 0 C

I

.

U
-2SC2S(2pq+pr+qr-pqr-p~q))/(pqr-pq-qr-rp)SlO.

p r

l>l/p+l/q+l/r,

.
1/2>1/p+l/r, -2SC2S(2r+3p-pr-2)/(pr-2p-2r)S4.

4 1 r I 1 2.--·--0--·-...-·--0 C, r~7, -2SC s(7-r)/(r-6)sO.
I.
5 1.----- r I 1 2

• --. -- 0 -.-. - ••• -_. -- 0 C , r~7, -2~C s(7-r)/(r-6)sO.
I

It follows very easy' the estimate n2
<20 if Inl ,has a eomponent of

the multiplieity >1. We hope giving more precise deseription of the

case rk pie Y=! in further publications.

We should mention that almost at the same time V.A.Alekseev got

the same results for rk pie Y=1 by other method (using Riemann-Roch

theorem for singular K3 surfaees) and the more streng estimate: n2<13

if Inl has a fixed eomponent ef a multiplieity >1. Of course, the

same estimate follows from the calculations above.

§ 4. Some open questions.

4. 1. Fano threefolds. Let F be Fano threefold with [l-faetorial

terminal singularities, and a good member YEI-KFI, whieh is a singu­

lar K3 surface, exists. Let diml-KF!>O. Then I-KFI Iy is an nonempty
complete ample linear system on the singular K3 surface Y. Thus, same

tree G(C,A), we have deseribed above, corresponds to this linear sys­

tem. We can consider this tree G(C,A) as an invariant of the Fano

threefold F. What are such invariants G(C,A) possible for Fano

threefolds F with ~-factorial terminal singularities?
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4.2. Graded ring of a singular K3 surface. I due to participants

of the conference "Algebraic and Analytic Varieties" Tokyo, August

1990, the Professors Sh.Ishii, M.Reid, M.Tomari and K.Watanabe by the

following very interesting question (see their articles connected

with this subject): What one can say about the graded ring

R(Y) = e HO(Y,O(mD»
m2:0

for a nef effective (or, maybe, noneffective) integral Weil divisor D

on a singular K3 surface Y, its generators and relations. The nonsin­

gular case see in [S-O]. The theory ~e have constructed here gives

all possibilities when it is needed to investigate this ring. Moreo­

ver, this theory permits to interpret a homogeneous constituent

HO(Y,O(mD» of the ring as a some precisely described complete linear

system on the ,nonsingular K3 surface X which is the minimal

resolution of singularities of Y.
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