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Abstract

In a recent series of papers M. W. Wong has studied a degenerate
elliptic partial differential operator related to the Heisenberg group.
It turns out that Wong’s example is best understood when replaced
in the context of the phase-space Weyl calculus we have developed
in previous work; this approach highlights the relationship of Wong’s
constructions with the quantum mechanics of charged particles in a
uniform magnetic field. Using Shubin’s classes of pseudodifferential
symbols we prove global hypoellipticity results for arbitrary phase-
space operators arising from elliptic operators on configuration space.

Key index: degenerate elliptic operators, hypoellipticity, phase-space
Weyl calculus, Shubin symbols

Introduction

In a recent series of interesting papers [23, 24, 25] M. W. Wong discusses
various properties of the partial differential operator

W = −1
2

(ZZ + ZZ) (1)

where Z and Z are the vector fields on R2 defined by

Z =
∂

∂z
+

1
2
z , Z =

∂

∂z
+

1
2
z. (2)
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Writing z = x+ iy the operator W has the explicit form

W = −∆− i
(
x
∂

∂y
− y ∂

∂x

)
+

1
4

(x2 + y2) (3)

where ∆ is the usual Laplace operator in the x, y variables. It turns out that
Wong’s results are only the “top of an iceberg” because the operator (3) can
be viewed as the phase-space version of the Hermite operator −∆ + x2 ob-
tained by using a quantization procedure we have introduced in previous
work. To understand this, let us make the two following independent obser-
vations:

• The operator W has a well-known meaning in physics. Consider in
fact an electron with mass m and charge e placed in a strong uni-
form magnetic field B directed along the z axis: B = (0, 0, Bz). The
Hamiltonian operator is, in a particular choice of gauge (see Section
2),

H = − ~2

2m
∆ + i~ωL

(
y
∂

∂x
− x ∂

∂y

)
+
mω2

L

2
(x2 + y2) (4)

where ωL is the “Larmor frequency”. This operator reduces to Wong’s
operator (3) if x and y are swapped and units are chosen so that ~ = 1,
m = 1/2, and ωL = 1; the spectrum of the operator (4) is well-known;
it consists of the sequence “energy levels” EN = (2N + 1)~ωL (see
Subsection 2.1); the spectrum of W is thus given by the sequence of
numbers, EN = 2N +1 for N = 0, 1, ..., a fact which Wong rediscovers
in [23] using complicated calculations involving the Wigner formalism
and special function theory.

• On the other hand, a straightforward calculation shows that we can
rewrite the operator W more compactly as

W =
(
−i ∂
∂x
− 1

2
y

)2

+
(
−i ∂
∂y

+
1
2
x

)2

; (5)

setting p = −y this operator becomes

W =
(
−i ∂
∂x

+
1
2
p

)2

+
(
i
∂

∂p
+

1
2
x

)2

(6)

which makes apparent that W is obtained from the harmonic oscillator
Hamiltonian H(x, p) = 1

2(p2 + x2) using the “quantization rules”

x −→ X = i
∂

∂p
+

1
2
x , p −→ P = −i ∂

∂x
+

1
2
p (7)
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we have studied and exploited in [9, 10] in connection with the phase
space Schrödinger equation of Torres-Vega and Frederick [19, 20]; no-
tice that X and P satisfy the same commutation relation [X,P ] = i
as satisfied by the operators x and −i∂/∂x.

This paper consists of two parts. In the first part (Sections 1–2) we will
focus on the “phase space Weyl calculus” aspect of Wong’s operator and its
generalizations; we also briefly review our previous definitions and results
from [9, 10]. In the second part of this paper (Section 3) we show that our
phase-space Weyl calculus together with Shubin’s pseudodifferential calculus
(Shubin [18], Chapter IV) allows us not only to recover (in a trivial way)
the global hypoellipticity of Wong’s operator W , but to prove that every
operator

Ã = a(i ∂∂p + 1
2x,− i ∂∂x + 1

2p)

obtained by replacing formally (x, p) by (i ∂∂p+ 1
2x,−i ∂∂x+ 1

2p) in any positive-
definite quadratic form a = a(x, p) is globally hypoelliptic (we will in fact
prove a 2n-dimensional statement, allowing the symbol a to be defined on
R2n).

Notation

We denote by S(Rn) the Schwartz space of all smooth complex-valued func-
tions on Rn which decrease, together with their derivatives, faster than the
inverse than any polynomial when |x| → ∞. The dual S ′(Rn) of S(Rn) is
the space of tempered distributions on Rn.

Operators acting on functions (or distributions) defined on Rn will be
denoted by capital letters A,B,C... while operators acting on functions (or
distributions) defined on Rn defined on the symplectic space (R2n, σ) will
denoted by covering capital letters with a tilde: Ã, B̃, C̃... Functions on Rn

will usually be denoted by lower-case Greek letters ψ, φ... while functions on
R2n are denoted by upper-case Greek letters Ψ,Φ, ... We will use standard
multi-index notation: if α = (α1, .., αn) is a sequence of non-negative integers
we write xα = xα1

1 · · · xαn
n if x = (x1, ..., xn), and Dα

x = (−i)|α|∂α1
x1
· · · ∂αn

xn

with |α| = α1 + · · ·+ αn.
We will denote by σ the standard symplectic form on the vector space

Rn × Rn ≡ R2n:
σ(z, z′) = p · x′ − p′ · x

for z = (x, p), z′ = (x′, p′). The symplectic group of (R2n, σ) will be denoted
by Sp(n): it is the group of all linear automorphisms s of R2n such that
σ(sz, sz′) = σ(z, z′) for all z, z′ ∈ R2n.
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1 Phase-Space Weyl Calculus

For proofs and a detailed exposition we refer to de Gosson [10] (the phase
space calculus was introduced in de Gosson [8, 9] following a suggestion in
the paper by Grossmann et al. [13]).

1.1 Definitions

LetA : S(Rn)−→S ′(Rn) be a continuous linear operator. In view of Schwartz’s
kernel theorem there exists a distribution K ∈ S ′(Rn × Rn) such that

Af(x) =
∫

Rn

K(x, y)f(y)dy

(the integral being interpreted as a partial distribution bracket). The Weyl
symbol of A is by definition (see e.g. [10], Theorem 6.12) the tempered
distribution a given by

a(x, p) =
∫

Rn

e−ip·yK(x+ 1
2y, x−

1
2y)dy.

Defining the twisted Weyl symbol aσ as being the symplectic Fourier trans-
form of a, that is

aσ(z) =
(

1
2π

)n ∫
R2n

e−iσ(z,z′)a(z)dz

the operator A is given by the Bochner integral

A =
(

1
2π

)n ∫
R2n

aσ(z0)T (z0)dz0; (8)

here T (z) is the Heisenberg–Weyl operator defined by

T (z0)ψ(x) = ei(p0·x−
1
2
p0·x0)ψ(x− x0) (9)

if z0 = (x0, p0). The operator A can be (at least formally) shown to act on
ψ ∈ S(Rn) by the formula

Aψ(x) =
(

1
2π

)n ∫
Rn×Rn

eip·(x−y)a(
1
2

(x+ y), p)ψ(y)dpdy.

We now associate to A an operator Ã : S(R2n)−→S ′(R2n) by the formula

Ã =
(

1
2π

)n ∫
R2n

aσ(z0)T̃ (z0)dz0 (10)
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where T̃ (z0) acts on S ′(R2n) via

T̃ (z0)Ψ(z) = e−
i
2
σ(z,z0)Ψ(z − z0). (11)

Observe that the operators T̃ (z0) satisfy the same canonical commutation
relations as the Heisenberg–Weyl operators T (z0) namely

T̃ (z1)T̃ (z0) = eiσ(z1,z0)T̃ (z0)T̃ (z1) (12)

hence they correspond as we will see below to some unitary representation
of the Heisenberg (not on L2(Rn) but on a closed subspace of L2(R2n)).

For φ ∈ S(Rn), ||φ||L2 = 1, we define an operator Uφ : L2(Rn) −→
L2(R2n) by the formula

Uφψ(z) =
(π

2

)n/2
W (ψ, φ)(1

2z) (13)

where W (ψ, φ) is the cross-Wigner transform of the pair (ψ, φ):

W (ψ, φ)(x, p) =
(

1
2π

)n ∫
Rn

e−ip·yψ(x+ 1
2y)φ(x− 1

2y)dy.

We will call Uφ the wave-packet transform with window φ; is essentially the
short-time Fourier transform Vφ used in time-frequency analysis and defined
by

Vφ(x, ω) =
∫

Rn

e−2πiω·tψ(t)φ(t− x)dt.

When φ is a Gaussian both Uφ and Vφ are closely related to the Bargmann
transform [1].

We have (de Gosson [10], Theorem 10.6 p. 312):

Theorem 1 Let φ ∈ S(Rn). Then:
(i) Uφ is an isometry of L2(Rn) on a closed subspace Hφ of L2(R2n);
(ii) We have U∗φUφ = I on L2(Rn) and the operator Pφ = UφU

∗
φ is the

orthogonal projection in L2(R2n) onto the space Hφ;
(iii) The intertwining formulae

T̃ (z0)Uφ = UφT (z0) , ÃUφ = UφA (14)

hold for all φ ∈ S(Rn).
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In particular (iii) implies that we have(
1
2xj + i ∂

∂pj

)
Uφψ = Uφ(xjψ) (15a)(

1
2pj − i

∂
∂xj

)
Uφψ = Uφ(−i ∂

∂xj
ψ) (15b)

for all ψ ∈ S(Rn). This motivates the following notation: if Ã is the phase-
space operator with symbol a we will write

Ã = a(1
2x+ i ∂∂p+, 1

2p− i
∂
∂x).

1.2 The composition property

We will need the following composition property:

Proposition 2 (i) Assume that the compose AB of the Weyl operators ex-
ists and is a Weyl operator. Then ÃB̃ exists as well and we have ÃB̃ = ÃB.

(ii) If the Weyl operator R has kernel KR ∈ S(Rn × Rn) then R̃ has
kernel K eR ∈ S(R2n × R2n).

Proof. (i) See de Gosson [10], Proposition 10.13, p. 320. (ii) The Weyl
symbol r of R is related to the kernel KR of R by the formula

r(x, p) =
∫

Rn

e−ip·yK(x+ 1
2y, x−

1
2y)dy

hence r ∈ S(R2n) if KR ∈ S(Rn×Rn) from which follows that we also have
rσ ∈ S(R2n) where rσ is the symplectic Fourier transform of r. We have,
using (10),

R̃Ψ(z) =
(

1
2π

)n ∫
R2n

rσ(z0)e−
i
2
σ(z,z0)Ψ(z − z0)dz0

that is, setting u = z − z0:

R̃Ψ(z) =
(

1
2π

)n ∫
R2n

rσ(z − u)e−
i
2
σ(z,z−u)Ψ(u)du.

Since σ(z, z − u) = −σ(z, u) the kernel of R̃ is thus given by the formula

K eR(z, u) =
(

1
2π

)n
e

i
2
σ(z,u)rσ(z − u). (16)

The function (z, u) 7−→ rσ(z − u) being in S(R2n × R2n) so is K eR.
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1.3 Symplectic covariance

Since we are in the business of Weyl operators, let us study the symplectic co-
variance properties of the corresponding phase space operators. Recall that
the symplectic group Sp(n) has a double covering which can be faithfully
represented by a group of unitary operators acting on L2(R2n); that group
is called the metaplectic group and we will denote it by Mp(n). The stan-
dard “metaplectic covariance formula” for Weyl calculus reads as follows:
for s ∈ Sp(n) let S be any of the two operators in Mp(n) corresponding
to s. Then if A has Weyl symbol a the operator SAS−1 has Weyl symbol
a ◦ s−1. In de Gosson [7] we proved that if s has no eigenvalue equal to one,
then

S =
(

1
2π

)n i±ν√
| det(s− I)|

∫
R2n

exp
[
i

2
Msz

2

]
T (z)dz (17)

where MS = MT
s is the symplectic Cayley transform defined by

MS = 1
2J(s+ I)(s− I)−1

and ν an integer (the “Conley–Zehnder index”) that need not preoccupy us
here; in addition we showed that every S ∈ Mp(n) can be written as the
product of exactly two operators of the type above. In view of formula (10)
the operator S determines naturally a phase-space operator

S̃ =
(

1
2π

)n i±ν√
| det(s− I)|

∫
R2n

exp
[
i

2
Msz

2

]
T̃ (z)dz (18)

satisfying the second intertwining relation (14) in Theorem 1.

Proposition 3 Let s ∈ Sp(n) and

Ã = a(1
2x+ i ∂∂p ,

1
2p− i

∂
∂x)

B̃ = (a ◦ s−1)(1
2x+ i ∂∂p ,

1
2p− i

∂
∂x).

We have B̃ = S̃ÃS̃−1 where S̃ ∈ Mp(n) is any of the two metaplectic oper-
ators corresponding to s.

Proof. It is an immediate consequence of the usual symplectic covariance
formula

(a ◦ s−1)(x,−i ∂∂x) = Sa(x,−i ∂∂x)S−1

for Weyl operators (see de Gosson [10], Chapter 10, §10.3.3). Alternatively,
it follows from the metaplectic covariance relation S̃T̃ (z)S̃−1 = T̃ (sz).
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2 Alternative Quantizations

2.1 Some physical considerations

For the physical background we refer the reader to Landau and Lifshitz [16]
or Messiah [17]. Consider an electron placed in a strong uniform magnetic
field B directed along the z axis: B = (0, 0, Bz); if A is a vector potential
defined by B = ∇r ×A (r = (x, y, z)) the Hamiltonian function is

H =
1

2m

(
p− e

c
A
)2

(19)

with p = (px, py, pz). Choosing the vector potential A such that A =1
2(r×

B) (“symmetric gauge”) and disregarding the unessential component pz, the
Hamiltonian H takes the particular form

Hsym =
1

2m
(p2
x + p2

y)− ωLLz +
mω2

L

2
(x2 + y2)

with ωL = eBz/2mc (“Larmor frequency”) and Lz = xpy−ypx is the angular
moment in the z direction. The corresponding quantum operator is given
by

Hsym = − ~2

2m
∆ + i~ωL

(
y
∂

∂x
− x ∂

∂y

)
+
mω2

L

2
(x2 + y2) (20)

where ∆ is the Laplacian in the x, y variables. As already observed in the
Introduction this operator reduces to Wong’s operator (3) if units are chosen
appropriately.

Suppose now we choose the vector potential as A = (−Bzy, 0, 0) (this is
called the “Landau gauge” in Physics); then the Hamiltonian function takes
the simple form

HLan =
1

2m

[(
px +

eBz
c
y

)2

+ p2
y

]

and the corresponding the quantum operator is

HLan = − ~2

2m
∆− i~ωy ∂

∂x
+

1
2
mω2y2 (21)

where ω = eBz/2mc is the “cyclotron frequency”. It is easy to determine the
spectrum of HLan (which is the same as that of Hsym since a change of gauge
does not affect the spectrum). Noticing that x does not appear explicitly in
the function HLan the momentum px is thus a conserved quantity; setting
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ψ(x, y) = e
i
~pxxφ(y) it is easy to check that the eigenvalue problem HLanψ =

Eψ reduces to

− ~2

2m
d2φ

dy2
+

1
2
mω2(y − y0)2 = Eψ

where y0 = −pxc/eBz; but this is just the eigenvalue problem for a translated
harmonic oscillator with mass m and frequency ω, whose spectrum consists
of the sequence

EN = (N + 1
2)~ω , N = 0, 1, 2, ...

Choosing appropriate units, we recover the spectrum of Wong’s operator W
as announced in the Introduction.

It turns out that the harmonic oscillator operator (“Hermite operator”)

HHer =
~2

2m
∂2

∂x2
+

1
2
mω2x2 (22)

as well as the operators Hsym and HLan are all obtained from the Hamilto-
nian function

H =
1

2m
p2 +

1
2
mω2x2

by applying different quantizations rules:

• HHer corresponds to the standard prescription (x, p) −→ (x,−i~ ∂
∂x);

• Hsym corresponds to the rule (x, p) −→ (i~ ∂
∂p + 1

2x,−i~
∂
∂x + 1

2p);

• HLan corresponds to the rule (x, p) −→ (i~ ∂
∂p + 1

2x,−i~
∂
∂x).

Let us generalize this discussion to more general operators.

2.2 Extension; Bopp quantization

As seen above, there is a certain arbitrariness in the definition of our phase-
space Weyl operator Ã associated with A. If we replace the “quantum
translation operator” T̃ (z0) defined by (11) by any operator satisfying the
canonical commutation relations (12) we will obtain another operator having
similar properties as Ã. Assume for instance that we define (choosing units
in which ~ = 1),

T̃ ′(z0)Ψ(z) = ei(p0·x−
1
2
p0·x0)Ψ(z − z0)

which amounts to extending the Heisenberg–Weyl operator (9) in a trivial
way by allowing them to act on phase-space functions. The corresponding
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phase-space Weyl operator is obtained by replacing definition (10) by the
expression

Ã′ =
(

1
2π

)n ∫
R2n

aσ(z0)T̃ ′(z0)dz0.

This choice corresponds to the quantization rules

xj −→ X = i
∂

∂pj
+

1
2
xj , pj −→ −i

∂

∂xj
(23)

studied in de Gosson [8]; setting y = −p this quantizes the harmonic oscil-
lator Hamiltonian into the operator

W ′ = −∆ + x2 − 2ix
∂

∂y
(24)

in place of Wong’s operator (3) (see de Gosson [9] for a discussion of other
possible quantizations compatible with the canonical commutation relations,
and their interpretation in terms of classical phases).

It is noteworthy that the quantization rules (x, p) −→ (X,P ) listed above
obey the canonical commutation rules [X,P ] = i~ and thus correspond
to different (but of course isomorphic) representations of the Heisenberg
group (the rule (x, p) −→ (x,−i~ ∂

∂x) corresponds to the usual Schrödinger
representation). There are of course other choices. One easily verifies that
for any quadruple of real numbers (α, β, γ, δ) such that αδ − βγ = 1 the
operators

X = αx+ iβ~
∂

∂p
, P = γp+ iδ~

∂

∂x
(25)

satisfy [X,P ] = i~ and therefore define a bona fide quantization rule for
which the statements in Theorem 1 remain true for an adequate redefinition
U

(α,β,γ,δ)
φ of the transform Uφ for which the intertwining relations (14) should

be replaced by(
αx+ iβ~

∂

∂p

)
U

(α,β,γ,δ)
φ ψ = U

(α,β,γ,δ)
φ (xjψ)(

γp+ iδ~
∂

∂x

)
U

(α,β,γ,δ)
φ ψ = U

(α,β,γ,δ)
φ (−i~ ∂

∂xj
ψ).

Applying the rules (25) to the harmonic oscillator Hamiltonian one ob-
tains a whole class of degenerate elliptic operators:

Ã(α,β,γ,δ) = −1
2

(
δ2

∂2

∂x2
+ β2 ∂

2

∂p2

)
− i
(
αβx

∂

∂p
− δγp ∂

∂x

)
+

1
4

(α2x2 + γ2p2).
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We notice that the choice α = γ = 1, β = −δ = 1/2 yields the so-called
“Bopp quantization” (Bopp [3]) rules

XBopp = x+ i
~
2
∂

∂p
, PBopp = p− i~

2
∂

∂x

which play an important role in deformation quantization. Still, physically,
the phase-space quantization choice

X̃ =
1
2
x+ i~

∂

∂p
, P̃ =

1
2
p− i~ ∂

∂x
(26)

has particular symmetry properties which makes it more attractive; it seems
to play a role in the study of quantum gravity (Isidro and de Gosson [14, 15]).

3 Hypoellipticity in the Schwartz space S(Rn)

Let us now study the question of global hypoellipticity for a class of phase-
space operators generalizing those of Wong.

3.1 Global hypoellipticity and Shubin symbols

Let A be a partial differential operator (or more generally, a pseudodif-
ferential operator). One says that A is hypoelliptic (in the usual sense) if
Aψ ∈ C∞(Rn) implies that ψ ∈ C∞(Rn). Recall that the partial differential
operator

A(x,D) =
∑
|α|≤m

aα(x)Dα
x , aα ∈ C∞(Rn)

(or, more generally, a classical pseudodifferential operator) is said to be
elliptic if its principal symbol

am(x, p) =
∑
|α|=m

aα(x)pα

has the property that am(z) = 0 if and only if z = 0. An elliptic operator
is hypoelliptic (in the usual sense), as is easily seen by constructing an
approximate inverse, or parametrix (see for instance Shubin [18] or Trèves
[21]). More precisely B (resp. B′) is called a left (resp. right) parametrix if

BA = I +R (resp. AB′ = I +R′)

where R and R′ are smoothing operators, that is R,R′ : S ′(Rn) −→ C∞(Rn)
(equivalently, R and R′ have smooth kernels). The hypoellipticity of an
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elliptic operator easily follows using the existence of a left parametrix; as-
sume in fact that Aψ = φ is in C∞(Rn). Then ψ = Bφ − Rψ is also in
C∞(Rn): we have Bφ ∈ C∞(Rn) because φ ∈ C∞(Rn) and, on the other
hand Rψ ∈ C∞(Rn) because R is smoothing.

For our purposes the notion of ordinary hypoellipticity as just described
is rather useless, because it gives no possibility of controlling the behaviour
at infinity. It is preferable to use the notion of global hypoellipticity as
introduced by Shubin [18], Corollary 25.1, p. 186 (also Boggiatto et al. [2],
p.70). We will say that a linear operator A : S ′(Rn) −→ S ′(Rn) is globally
hypoelliptic if

ψ ∈ S ′(Rn) and Aψ ∈ S(Rn) =⇒ ψ ∈ S(Rn). (27)

Shubin [18] (Chapter IV, §23) has introduced very convenient classes
of globally hypoelliptic operators. Let HΓm1,m0

ρ (R2n) (m0,m1 ∈ R and
0 < ρ ≤ 1) be the complex vector space of all functions a ∈ C∞(Rn) for
which there exists R ≥ 0 such that for |z| ≥ R the following estimates hold:

C0|z|m0 ≤ |a(z)| ≤ C1|z|m1 (28a)

|Dα
z a(z)| ≤ Cα|a(z)||z|−ρ|α| (28b)

with C0, C1, Cα ≥ 0. The main properties we will need are summarized in
the following Theorem:

Theorem 4 (Shubin) Let a ∈ HΓm1,m0
ρ (R2n) and A the Weyl operator

with symbol a.
(i) There exists a Weyl operator B with symbol b ∈ HΓ−m1,−m0

ρ (R2n)
such that BA = I + R1 and AB = I + R2 where R1, R2 have kernels in
S(Rn × Rn)

(ii) The operator A is globally hypoelliptic.

(Note that (ii) immediately follows from (i)). We will call the operator
B a Shubin parametrix ofA.

In the context of Wong’s operator W the following example is crucial:

Example 5 The Hermite operator −∆ + |x|2 is globally hypoelliptic: it suf-
fices to note that the Weyl symbol of −∆ + |x|2 is a(z) = |z|2 and thus
trivially satisfies the estimates (28) with m0 = m1 = 2, ρ = 1).

In next subsection we generalize this example.
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3.2 Main result

We claim that:

Theorem 6 Assume that the Weyl symbol a of A is in HΓm1,m0
ρ (R2n)

(hence A is a globally hypoelliptic pseudodifferential operator). Then the
phase-space operator Ã is globally hypoelliptic:

Ψ ∈ S ′(R2n) , ÃΨ ∈ S(R2n) =⇒ Ψ ∈ S(R2n).

Proof. Let B be a Shubin parametrix of A: BA = I + R where R is
an operator with kernel in S(Rn × Rn). Writing ÃΨ = Ψ′ we have Ψ =
B̃Ψ′−R̃Ψ. Clearly BΨ′ ∈ S(R2n) hence B̃Ψ′ ∈ S(R2n) so it suffices to show
that R̃Ψ ∈ S(R2n) for all Ψ ∈ S ′(R2n); for this it suffices to show that the
kernel of R̃ is in S(Rn × Rn), but this follows from Proposition 2, (ii).

Quadratic forms on R2n are very interesting objects: they can be viewed
as the Hamiltonians functions generalizing the harmonic oscillator. We recall
the following very useful symplectic diagonalization result, which goes back
to Williamson [22]: for every real positive-definite symmetric matrix there
exists s ∈ Sp(n) such that sTMs = D where D is a diagonal matrix of the

type
(

Λ 0
0 Λ

)
the diagonal entries of Λ consisting of the moduli ω1, ..., ωn

of the eigenvalues of JM (these are precisely of the type ±iωj since JM is
equivalent to the antisymmetric matrix M1/2JM1/2).

Theorem 6 has the following interesting consequence:

Corollary 7 Let a be a positive-definite quadratic form on R2n: a(z) =
1
2Mz · z with M = MT > 0.

(i) The associated phase space operator

Ã = a(1
2x+ i ∂∂p ,

1
2p− i

∂
∂x)

obtained by the quantization rule (26) is globally hypoelliptic.
(ii) There exists s ∈ Sp(n) such that the operator B̃ = S̃ÃS̃−1 with

symbol b = a ◦ s−1 is given by the formula

B̃ =
n∑
j=1

ωj
2

[(
1
2x+ i ∂∂p

)2
+
(

1
2p− i

∂
∂x

)2]
.

Proof. (i) It suffices to show that a ∈ HΓm1,m0
ρ (R2n) for some m1,m0, ρ.

Writing STMS = D with S and D as above, and ordering the entries of D
so that ω1 ≤ · · · ≤ ωn we have

ω1

2
|z|2 ≤ a(z) ≤ ωn

2
|z|2.
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We have |sz| ≤ ||s|| · |z| and |s−1z| ≤ ||s−1|| · |z| hence there exist constants
C0, C1 such that C0|z|2 ≤ a(z) ≤ C1|z|2 which is condition (28a) with m0 =
m1 = 2. Let α be a multi-index; if |α| > 2 then |Dα

z a(z)| = 0. Suppose
|α| ≤ 2; in view of the homogeneity of a there exists Cα > 0 such that

|Dα
z a(z)| ≤ Cα|z|2|z|−|α| = C ′αa(z)|z|−|α|

so that condition (28b) holds with ρ = 1. The statement (ii) is an obvious
consequence of the fact that if a(z) = 1

2Mz · z then

b(z) = a(s−1s) =
n∑
j=1

ωj
2

(x2
j + p2

j ).

(Of course, in the first part of the proof of Corollary 7 we could have
used standard diagonalization of the symbol a by orthogonal matrices).

4 Concluding Remarks

A question which poses itself is whether the global hypoellipticity of Section
3 can be generalized to other functional spaces than the Schwartz space
S(R2n). As has been pointed out to me by Franz Luef (NuHAG, Vienna),
this might very well be the case if one considers Feichtinger’s [5, 6] weighted
modulation spaces Mp,q

v (also see Gröchenig [12], Chapter 11 for a study of
these spaces). The main interest of modulation spaces comes from the fact
that they allow a simultaneous control of both local regularity and decay
at infinity. Besides their intrinsic interest in Functional Analysis, they play
an important role not only in time-frequency analysis (for which they were
originally designed), but also in the study of the regularity of the solutions
of Schrödinger’s equation as we have shown in [11]. We will come back to
this important question in a forthcoming paper.

Another fact which is certainly worth to be scrutinized is the following.
As we pointed out several times in this paper, a change of phase-space quan-
tization seems to correspond to a change of gauge. Is there any “universal
rule” behind this property which we only checked for physical operators
associated with a magnetic field?
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