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ABSTRACT. In this paper we set up a Kolyvagin system machinery for Euler systems of rank r
(in the sense of Perrin-Riou) associated to a self-dual Galois representation T , building on our
previous work on Kolyvagin systems of Rubin-Stark units and generalizing the results of Kato,
Rubin and Perrin-Riou. Our machinery produces a bound on the size of the classical Selmer
group attached to T in terms of a certain r × r determinant; a bound which remarkably goes
hand in hand with Bloch-Kato conjectures. At the end, we present an application based on a
conjecture of Perrin-Riou on p-adic L-functions, which lends further evidence to Bloch-Kato
conjectures.
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INTRODUCTION

Fix once and for all an odd prime p. Let R be a local Noetherian ring with maximal ideal m
and a finite residue field F which has characteristic p. In [MR04], Mazur and Rubin determine
the structure of a Selmer group attached to a Galois representation T (which is free of finite rank
over R) in terms of a Kolyvagin system, when the core Selmer rank (in the sense of Definition
4.1.11 of loc.cit.) is one. In fact, when the core Selmer rank is one, they prove that the module
of Kolyvagin systems is cyclic and it is therefore possible to choose ‘the best’ Kolyvagin system
(which they call a primitive Kolyvagin system, it is by definition a generator for the cyclic
module of Kolyvagin systems) which may be used to obtain the best possible bound on the
associated Selmer group. Further, in most of the classical examples given in loc.cit., a primitive
Kolyvagin system is obtained from an Euler system via Kolyvagin’s descend.

When the core Selmer rank is r > 1, the whole picture is more complicated. In this case,
one would hope that a certain Euler system of rank r (in the sense of [PR98]) would give rise
to the sought for Kolyvagin systems via

(1) obtaining an Euler system (in the sense of [Rub00]; these correspond to Euler systems
of rank one in the terminology of [PR98]), following the recipe of [PR98, §1.2.3],

(2) applying Kolyvagin’s descend on these Euler systems of rank one.

The basic issue in this case is that the module of Kolyvagin systems is no longer cyclic1 and
the procedure above leaves us with many choices.

Fix a totally real number field k, and write Gk for its absolute Galois group. Only in this
paragraph, let T denote the rank one Gk-representation T = Zp(1)⊗ χ−1, where χ is a totally
even character χ : Gk → Z×p of finite order. In this case, it turns out that the core Selmer
rank2 X (T ) equals [k : Q]. When k 6= Q, the machinery of [MR04] is not sufficient as it is
to treat this example. The Euler system of rank r = [k : Q] in this setting is obtained from
(conjectural) Rubin-Stark elements [Rub96]. The author has studied this example extensively
in [Büy07a, Büy07c] and has developed a Kolyvagin system machinery to make use of this
most basic example of an Euler system of rank r > 1.

Note that one feature of the Galois representation T = Zp(1) ⊗ χ−1 studied in [Büy07a,
Büy07c] is that it is totally odd in the sense that(

Indk/QT
)−

= Indk/QT.

This property is essential for the treatment of [Büy07a, Büy07c, Büy08]. The aim of this article
is to generalize the methods of [Büy07a, Büy07c, Büy08] in order to develop an appropriate

1In fact Howard [MR04, Appendix B] shows that the F-vector space of Kolyvagin systems for the residual repre-
sentation T/mT is infinite dimensional.
2The reader who is experienced with the terminology of [MR04] might have realized that we talk about the core
Selmer rank for a Galois representation without referring to a Selmer structure. When we say core Selmer rank
of a Galois representation T , we implicitly mean the core Selmer rank for the canonical Selmer structure on T ;
this (generically, see [MR04, Theorem 5.2.15] for details) equals

X (T ) = rankR

(
Indk/QT

)− (= d− in the language of [PR98])

when R is an integral domain: The rank of the minus eigenspace for the complex conjugation acting on the
induced representation. Note that we may alternatively write

X (T ) = [k : Q] · rankR T −
∑
v|∞

rankR H0(kv, T )

where kv is the completion of k at the infinite place v.
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Kolyvagin system machinery for Galois representations T which are self-dual3 in the sense
that there is a skew-symmetric isomorphism T

∼→ HomR(T,R(1)). Many important Galois
representations fall in this category:

(1) T = Tp(E) is the p-adic Tate module of an elliptic curve E/k; k 6= Q,
(2) A/Q is an abelian variety of dimension g > 1 and T = Tp(A).

Before we state the main results of this paper, we fix our notation and set the hypotheses
which we will refer to in the main body of our article.

Notation and Hypotheses. For any field K, let GK be the Galois group of a fixed separable
closure of K. Throughout, k is a fixed totally real number field and k∞ is the cyclotomic Zp-
extension of k. We set Γ = Gal(k∞/k) and Λ = Zp[[Γ]] as usual. We write kn for the unique
sub-extension of k∞/k of degree pn, and set Γn = Gal(kn/k). Our first hypothesis which we
will assume for our Iwasawa theoretical results is the following:

(H.Iw.) Every prime ℘ ⊂ k above p totally ramifies in k∞/k.
For any prime λ ⊂ k, we fix a decomposition groupDλ ⊂ Gk. We will occasionally identify
Dλ by the absolute Galois group of the completion kλ. We denote the inertia subgroup inside
Dλ by Iλ. We write Frλ ∈ Dλ/Iλ for the Frobenius element.

Let O be the ring of integers of a finite extension Φ of Qp with m being its maximal ideal
and F = O/m its residue field. Write µµµpn for the (Galois module of) pn-th roots of unity,
and set Zp(1) = lim←−µµµpn and µµµp∞ = lim−→µµµpn . We define O(1) := O ⊗Zp Zp(1), and for any
O[[Gk]]-module M , we write M(1) := M ⊗O O(1) (allowing Gk act both on M and O(1)).
We also define M∗ = Hom(M,Φ/O)(1), the Cartier dual of M ; and M∨ = Hom(M,Φ/O),
the Pontryagin dual of M .

For any field K and a topological abelian group A which is endowed with a continuous
action of GK , we write H i(K,A) for the i-th group cohomology H i(GK , A) computed with
continuous cochains. We also define

A∧ := Hom(Hom(A,Qp/Zp),Qp/Zp)

to be the p-adic completion of A.
For any commutative ring R, an ideal I ⊂ R and an R-module A, we write A[I] for the

submodule of A consisting of elements that are killed by all I . For x ∈ R, we write A[x] for
A[Rx].

Let T be a free O-module of finite rank, endowed with a continuous action of Gk. Suppose
further that T is self-dual, i.e., there exists a skew-hermitian isomorphism

(0.1) T
∼−→ HomO(T,O)(1).

In particular, the O-rank of T is even; write 2d for this rank. We define

r := d · [k : Q] = rankO(Indk/QT )− = rankO(Indk/QT )+ =
∑
v|∞

rankOH0(kv, T ),

where kv stands for the completion of k at the infinite place v. Note that the third equality
above follows from our assumption that T is self-dual, and the second equality follows from
the third. We also remark that r defined above is exactly what Perrin-Riou [PR98] calls d−.

Write T = T⊗Λ, where we allowGk act on both T and Λ. (The action ofGk on Λ is induced
from the canonical surjection Gk � Γ.) Define V = T ⊗O Φ, and V ∗ = Hom(V,Φ)(1).

3In fact, in slightly greater generality than this; see Remark 3.10 below.
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Fix a set P of (non-archimedean) primes of k which does not contain any prime above p and
any prime at which T is ramified. Following [MR04, Definition 3.1.6], we define Ps (s ∈ Z+)
as the set of primes λ ⊂ k at which T is unramified, which do not lie above p and which satisfy:

(1) T/(msT + (Frλ − 1)T ) is a free O/ms-module of rank one,
(2) Iλ := spanO {Nλ− 1, det(1− Frλ|T )} ⊂ ms.

For any group ∆, and a O[∆]-module M , we write ∧sM for the sth exterior power of M
computed in the category of O[∆]-modules. For example, we will be dealing below with
exterior powers of the sort ∧sH i(K,M), where K is a finite extension of k with Galois
group ∆, and M is an O[[Gk]]-module. This naturally makes H i(K,M) an O[∆]-module
and ∧sH i(K,M) is calculated in the category of O[∆]-modules.

Below we record a list of properties which will play a role in what follows:

(H.1) T/mT is an absolutely irreducible F[[Gk]]-representation.
(H.2) There is a τ ∈ Gk such that τ = 1 on µµµp∞ and the O-module T/(τ − 1)T is free of

rank one.
(H.3) H1(k(T,µµµp∞), T/mT ) = H1(k(T,µµµp∞), T ∗[m]) = 0, where k(T,µµµp∞) = k(T )(µµµp∞) ⊂

k, and k(T ) is the smallest extension of k such that the Gk-action on T factors through
Gal(k(T )/k).

(H.4) p > 4.
(H.5) The set of primes P satisfies Pt ⊂ P ⊂ P1 for some t ∈ Z+.
(H.T) (Tamagawa Condition) (T ⊗ Φ/O)Iλ is O-divisible for any prime λ ⊂ k prime to p.

(H.nE) (Non-exceptionality) H0(kp, T
∗) := ⊕℘|pH

0(k℘, T
∗) = 0.

(H.D) (A condition on ‘denominators’) H0(k℘,∞, T ) = 0 for every ℘|p.
(H.pS) The representation V is potentially semistable (in the sense of [FPR94, §I.2]) at any

place ℘ dividing p.
(H.O) (Ordinarity) The Galois representation T is ordinary at all primes ℘ ⊂ k above p in the

following sense: There exists a O[Gk℘ ]-stable submodule F+T ⊂ T (depending on ℘)
such that

F±T ∼−→ HomO(F∓T,O)(1)

as Gk℘-modules (under the isomorphism induced from (0.1)) and F−T := T/F+T is
free as a O-module. We also set

F+T := F+T ⊗ Λ ; F−T := T/F+T = F−T ⊗ Λ.

(H.TZ) (Trivial zero condition) Under (H.O),

H0(kp,F−T ⊗ Φ/O) = 0.

We will not need the truth of all of these hypotheses for all of our results, and we will care-
fully state which of these hypotheses are in effect before stating each claim. Finally, we remark
that the hypotheses H.1-5 are already present in [MR04, §3.5]. A variant of the hypotheses
H.6 of loc.cit. will appear shortly (in fact, we will show that it holds for the cases of interest
in this paper).

Statements of the Main Results. For a Galois representation T as above, assume that the
hypotheses H.1-H.5, H.nE and H.D hold true. Suppose that c(r) = {c(r)K } is an Euler system
of rank r, in the sense of Definition 2.1 below. For any number field F , define

locs
p : H1(F, T ) −→ H1

s (Fp, T ),



On Euler systems of rank r and their Kolyvagin systems 5

where H1
s (Fp, T ) is the singular quotient (see §1.2.1). We write locs

p also for the induced map
∧rH1(F, T ) → ∧rH1

s (Fp, T ). Let H1
F∗BK

(k, T ∗) denote the Bloch-Kato Selmer group attached
to T ∗ (see §1.3.1).

Theorem A (Corollary 3.6). In addition to the hypotheses above, suppose that H.pS holds for
T . Then

#H1
F∗BK

(k, T ∗) ≤ [∧rH1(k, T ) : O · locs
p(c

(r)
k )].

See Theorem 3.9 below for our Iwasawa theoretic main result, which proves that the char-
acteristic ideal of an appropriately defined Greenberg Selmer group divides the characteristic
ideal of a certain Λ-module determined by the Euler system c(r).

We illustrate one concrete application of our technical results, which relies on Perrin-Riou’s
conjectures [PR95] on p-adic L-functions (see Conjectures 1 and 2 below). Suppose that V =
T ⊗ Φ is the p-adic realization of a pure, self-dual motive M defined over k. Assume in
addition that V is crystalline at p, and that 1 is not an eigenvalue for the Frobenius acting on
Dcris(V ). Let L(M, s) denote the complex L-function associated toM.

Theorem B (Theorem 3.14). Assume Conjectures 1 and 2 of Perrin-Riou, as stated in §3.3.2
and §3.3.3 below. If L(M, 0) 6= 0, then the Bloch-Kato Selmer group H1

F∗BK
(k, T ∗) is finite.

Furthermore, the proof of Theorem 3.14 gives a bound on the size H1
F∗BK

(k, T ∗) that is ex-
plicitly related to the L-value, which goes hand in hand with the Bloch-Kato conjectures.

Although the existence of the Euler system of rank r which is used to prove Corollary 3.6,
Theorems 3.9 and 3.14 is conjectural, the existence of the derived classes (which play an
essential role in the proofs) is not, thanks to the results of [MR04] and [Büy07b].

1. PRELIMINARIES: LOCAL CONDITIONS AND SELMER GROUPS

1.1. Selmer structures on T . The notation that we have set above is in effect.
We first recall Mazur and Rubin’s definition of a Selmer structure, in particular the canonical

Selmer structure on T and T.

1.1.1. Local conditions. Let R be a complete local noetherian ring, and let M be a R[[Gk]]-
module which is free of finite rank over R. In this paper, we will be interested in the case
when R = Λ or its certain quotients, and M is T or its relevant quotients by an ideal of
Λ. (For example, taking the quotient by the augmentation ideal of Λ will give us O and the
representation T .)

For each place λ of k, a local condition F (at λ) on M is a choice of an R-submodule
H1
F(kλ,M) of H1(kλ,M). For the prime p, a local condition F at p will be a choice of an R-

submodule H1
F(kp,M) of the semi-local cohomology group H1(kp,M) := ⊕℘|pH

1(k℘,M),
where the direct sum is over all the primes ℘ of k which lie above p.

For examples of local conditions see [MR04] Definitions 1.1.6 and 3.2.1.
Suppose that F is a local condition (at λ) on M . If M ′ is a submodule of M (resp., M ′′ is a

quotient module), then F induces local conditions, which we still denote by F , on M ′ (resp.,
on M ′′), by taking H1

F(kλ,M
′) (resp., H1

F(kλ,M
′′)) to be the inverse image (resp., the image)

of H1
F(kλ,M) under the natural maps induced by

M ′ ↪→M, M � M ′′.
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Definition 1.1. Propagation of a local condition F on M to a submodule M ′ (and a quotient
M ′′) ofM is the local conditionF onM ′ (and onM ′′) obtained following the procedure above.

For example, if I is an ideal of R, then a local condition on M induces local conditions on
M/IM and M [I], by propagation.

Definition 1.2. Define the Cartier dual of M to be the R[[Gk]]-module

M∗ := Hom(M,µp∞)

where µp∞ stands for the p-power roots of unity.

Let λ be a prime of k. There is the perfect local Tate pairing

< , >λ : H1(kλ,M)×H1(kλ,M
∗) −→ H2(kλ, µp∞)

∼−→ Qp/Zp

Definition 1.3. The dual local condition F∗ on M∗ of a local condition F on M is defined
so that H1

F∗(kλ,M
∗) is the orthogonal complement of H1

F(kλ,M) under the local Tate pairing
< , >λ.

1.1.2. Selmer structures and Selmer groups. Notation from §1.1.1 is in effect throughout this
section.

Definition 1.4. A Selmer structure F on M is a collection of the following data:

• a finite set Σ(F) of places of k, including all infinite places and primes above p, and
all primes where M is ramified.
• for every λ ∈ Σ(F) a local condition (in the sense of §1.1.1) on M (which we view

now as a R[[Dλ]]-module), i.e., a choice of R-submodule

H1
F(kλ,M) ⊂ H1(kλ,M)

If λ /∈ Σ(F) we will also write H1
F(kλ,M) = H1

f (kλ,M), where the module H1
f (kλ,M) is the

finite part of H1(kλ,M), defined as in [MR04] Definition 1.1.6.
For a Selmer structureF onM and for each prime λ of k, defineH1

F∗(kλ,M
∗) := H1

F(kλ,M)⊥

as the orthogonal complement ofH1
F(kλ,M) under the local Tate pairing. The Selmer structure

F∗ on M∗ (with Σ(F) = Σ(F∗)) defined in this way will be called the dual Selmer structure.

Definition 1.5. If F is a Selmer structure on M , we define the Selmer module H1
F(k,M) to be

the kernel of the sum of the restriction maps

H1(Gal(kΣ(F)/k),M) −→
⊕

λ∈Σ(F)

H1(kλ,M)/H1
F(kλ,M)

where kΣ(F) is the maximal extension of k which is unramified outside Σ(F). We also define
the dual Selmer structure in a similar fashion; just replace M by M∗ and F by F∗ above.

Example 1.6. In this example we recall [MR04, Definitions 3.2.1 and 5.3.2].

(i) Let R = O and let M be a free R-module endowed with a continuous action of Gk,
which is unramified outside a finite set of places of k. We define a Selmer structure
Fcan on M by setting

Σ(Fcan) = {λ : M is ramified at λ} ∪ {℘ ⊂ k : ℘|p} ∪ {v|∞}
and



On Euler systems of rank r and their Kolyvagin systems 7

– if λ ∈ Σ(Fcan), λ - p∞, we set

H1
Fcan

(kλ,M) = ker[H1(kλ,M) −→ H1(kunr
λ ,M ⊗ Φ)],

where kunr
λ is the maximal unramified extension of kλ,

– if ℘|p, we set
H1
Fcan

(k℘,M) = H1(k℘,M).

The Selmer structure Fcan is called the canonical Selmer structure on M .
(ii) Let now R = Λ be the cyclotomic Iwasawa algebra, and let M be a free R-module

endowed with a continuous action of Gk, which is unramified outside a finite set of
places of k. We define a Selmer structure FΛ on M by setting

Σ(FΛ) = {λ : M is ramified at λ} ∪ {℘ ⊂ k : ℘|p} ∪ {v|∞},
and H1

FΛ
(kλ,M) = H1(kλ,M) for λ ∈ Σ(FΛ). The Selmer structure FΛ is called the

canonical Selmer structure on M.
As in Definition 1.1, induced Selmer structure on the quotients M/IM is still de-

noted byFΛ. Note thatH1
FΛ

(kλ,M/IM) will not usually be the same asH1(kλ,M/IM).
In particular, when I is the augmentation ideal inside Λ, the Selmer structure FΛ on M
will not always propagate to Fcan on M := M⊗ Λ/I.

However, when M = T and T = T ⊗Λ as in the Introduction, FΛ on T does propagate to Fcan

on T , under the hypotheses H.T and H.nE.

Remark 1.7. When R = Λ and T = T ⊗ Λ (which is one of the cases of interest), the Selmer
structure Fcan defined in [Büy07b, §2.1] on the quotients T ⊗ Λ/(f) may be identified, under
the hypotheses H.T and H.nE, by the propagation of FΛ to the quotients T⊗Λ/(f), for every
distinguished polynomial f ∈ Λ. Indeed, for every prime λ ⊂ k, the submodule

H1
Fcan

(kλ, T ⊗ Λ/(f)) ⊂ H1(kλ, T ⊗ Λ/(f))

is the image of the canonical map H1(kλ, T ⊗ Λ) → H1(kλ, T ⊗ Λ/(f)), by the proofs
of [Büy07b, Proposition 2.10 and 2.12]. By definition, H1

FΛ
(kλ, T ⊗ Λ/(f)) is exactly the

same thing.

Definition 1.8. A Selmer triple is a triple (M,F ,P), where F is a Selmer structure on M
and P is a set of primes as in the Introduction, namely a set of non-archimedean primes of k
disjoint from Σ(F).

1.2. Modifying local conditions at p. When the core Selmer rank of a Selmer structure (in
the sense of [MR04], see also §1.4 below) is greater than one, it produces a Selmer group which
is difficult to control using the Kolyvagin system machinery of Mazur and Rubin. We will see
in §1.4 that Fcan on T (resp., FΛ on T = T ⊗ Λ) has core Selmer rank r := d · [k : Q] where
d = 1

2
rankO T (under the hypotheses H.nE). Hence, to be able to utilize the Kolyvagin system

machinery, we need to modify Fcan and FΛ appropriately. This is what we do in this section.

1.2.1. Local conditions at p over k.

Lemma 1.9. Under the hypotheses H.nE and H.D,

H1(kp, T ) :=
⊕
℘|p

H1(k℘, T )

is a free O-module of rank 2r.
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Proof. All the references here are to [Büy07c, Appendix] and the results quoted here are orig-
inally due to Perrin-Riou.

By Theorem A.8(i), Λ-torsion submodule H1(kp,T)tors is isomorphic to ⊕℘|pT
Hk℘ , where

Hk℘ = Gal(k℘/k℘,∞), and this module is trivial thanks to H.D. Theorem A.8(ii) now con-
cludes that the Λ-module H1(kp,T) is free rank 2r. Furthermore,

coker[H1(kp,T) −→ H1(kp, T )] = H2(kp,T)[γ − 1],

where γ is any topological generator of Γ. Since we assumed H.nE holds, it follows from [Büy07b,
Lemma 2.11] that H2(kp,T) = 0, hence the map

H1(kp,T) −→ H1(kp, T )

is surjective. Lemma now follows. �

Bloch and Kato [BK90, §3] define a subspace H1
f (k℘, V ) ⊂ H1(k℘, V ) by letting

H1
f (k℘, V ) := ker

(
H1(k℘, V ) −→ H1(k℘, V ⊗Bcris)

)
,

where Bcris is Fontaine’s crystalline period ring. We propagate the Bloch-Kato local condition
H1

f (k℘, V ) on V to T :

H1
f (k℘, T ) := ker

(
H1(k℘, T ) −→ H1(k℘, V )

H1
f (k℘, V )

)
= ker

(
H1(k℘, T ) −→ H1(k℘, V ⊗Bcris)

)
We define the singular quotient as H1

s (k℘, T ) := H1(k℘, T )/H1
f (k℘, T ). Note that H1

s (k℘, T )

is a free O-module as it injects, by definition, into H1(k℘, V )/H1
f (k℘, V ).

Assume until the end of §1.2.1 that V satisfies H.pS. In this case, it is well known that
H1

f (k℘, V ) and H1
f (k℘, V

∗) are orthogonal complements under the local Tate pairing (see
[FPR94, Proposition I.3.3.9(iii)]). Since we assumed that T is self-dual, we conclude from
Lemma 1.9 the following:

Proposition 1.10. Both O-modules

H1
f (kp, T ) :=

⊕
℘|p

H1
f (k℘, T ), and H1

s (kp, T ) :=
⊕
℘|p

H1
s (k℘, T )

are free of rank r.

Fix an O-rank one direct summand L ⊂ H1(kp, T ) such that

L ∩H1
f (kp, T ) = {0}.

We will also write L for the (isomorphic) image of L inside H1
s (kp, T ) under the surjection

H1(kp, T ) −→ H1
s (kp, T ).

Definition 1.11. Define the L-modified Selmer structure FL on T as follows:

• Σ(FL) = Σ(Fcan),
• if λ - p, H1

FL(kλ, T ) = H1
Fcan

(kλ, T ),
• H1

FL(kp, T ) := H1
f (kp, T )⊕ L ⊂ H1(kp, T ) = H1

Fcan
(kp, T ).
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1.2.2. Local conditions at p over k∞. Recall that k∞ denotes the cyclotomic Zp-extension of
k, and Γ = Gal(k∞/k). Assume that the hypothesis H.Iw. holds in this section. Let k℘ denote
the completion of k at ℘, and let k℘,∞ denote the cyclotomic Zp-extension of k℘. We may
therefore identify Gal(k℘,∞/k℘) by Γ for all ℘|p and henceforth Γ will stand for any of these
Galois groups. Let Λ = Zp[[Γ]] be the cyclotomic Iwasawa algebra, as usual. We also fix a
topological generator γ of Γ, and set X = γ − 1 (and we occasionally identify Λ by the power
series ring Zp[[X]]).

Lemma 1.12. Suppose H.nE and H.D holds. Then

H1(kp,T) := ⊕℘|pH
1(k℘,T)

is a free Λ-module of rank 2r.

Proof. This is already proved in the first part of the proof of Lemma 1.9. �

Assume H.O and H.TZ until the end of §1.2.2. We define the Greenberg local conditions
at p by setting

H1
Gr(k℘,T) := ker

(
H1(k℘,T) −→ H1(k℘,F−T)

)
.

By definition, there is an exact sequence of Λ-modules

(1.1) 0 −→ F−T γ−1−→ F−T −→ F−T −→ 0.

Taking Gk℘-invariance of the sequence (1.1) and using H.TZ and Nakayama’s lemma, we
conclude that H0(k℘,F−T) = 0. This in return implies that the map

H1(k℘,F+T) −→ H1(k℘,T)

(induced from the Gk℘-cohomology of the sequence 0→ F+T→ T→ F−T→ 0) is injective
and the image of H1(k℘,F+T) is exactly H1

Gr(k℘,T).

Proposition 1.13. Let r℘ := [k℘ : Qp] · rankO F+T .

(i) H1(k℘,F+T) is a free Λ-module of rank r℘.
(ii) The natural map

H1(k℘,F+T) −→ H1(k℘,F+T )

is surjective.
(iii) H1(k℘,F+T ) is a free O-module of rank r℘.

Proof. The long exact sequence of the Gk℘-cohomology yields an exact sequence

H0(k℘,F−T) −→ H1(k℘,F+T) −→ H1(k℘,T).

As explained above, one may deduce from H.TZ that H0(k℘,F−T) = 0, so it follows from
Lemma 1.12 that H1(k℘,F+T) is Λ-torsion free. (i) now follows from [Büy07c, Theorem
A.8(ii)].

Long exact sequence of the Gk℘-cohomology of the sequence

0 −→ F+T γ−1−→ F+T −→ F+T −→ 0

gives
coker

(
H1(k℘,F+T) −→ H1(k℘,F+T )

)
= H2(k℘,F+T)[γ − 1].

As in the proof of Lemma 1.9,

H2(k℘,F+T)[γ − 1] = 0 ⇐⇒ H0(k℘, (F+T )∗) = 0,
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and the latter vanishing follows from the condition

(1.2) F−T ∼−→ HomO(F+T,O)(1)

of H.O, and the hypotheses H.TZ. This completes the proof of (ii). (iii) follows at once from
(i) and (ii). �

Corollary 1.14. The Λ-module

H1
Gr(kp,T) :=

⊕
℘|p

H1
Gr(k℘,T)

is free of rank r.

Proof. As a consequence of (1.2), rankO F+T = 1
2
rankO T, hence

∑
℘|p r℘ = r. �

Definition 1.15. Fix a Λ-rank one direct summand L ⊂ H1(kp,T) such that L ∩H1
Gr(kp,T) =

{0}. Define the L-modified Selmer structure FL on T as follows:

• Σ(FL) = Σ(FΛ),
• if λ - p, H1

FL
(kλ,T) = H1

FΛ
(kλ,T),

• H1
FL

(kp,T) := H1
Gr(kp,T)⊕ L ⊂ H1(kp,T) = H1

FΛ
(kp,T).

Remark 1.16. Note that we used two different approaches to choose local conditions in §1.2.1
(over k) and in §1.2.2 (over k∞). Starting from H1

Gr(kp,T), we may consider the image of
H1

Gr(kp,T) under the canonical map

H1(kp,T) −→ H1(kp, T )

and denote this image by H1
Gr(kp, T ) ⊂ H1(kp, T ). The choice H1

Gr(kp, T ) ⊂ H1(kp, T ) will
be called the Greenberg local condition on T . It is easy to see (thanks to Proposition 1.13(ii)
and (iii)) that H1

Gr(kp, T ) coincides with the image of H1(kp,F+T ) ↪→ H1(kp, T ). In several
cases of interest, the Selmer group determined by the Bloch-Kato definition agrees with the
Selmer group determined by the Greenberg definition.

1.3. Global duality and a comparison of Selmer groups. In this section, we compare clas-
sical Selmer groups (which we wish to relate to the L-values) to modified Selmer groups (for
which we are able to apply the Kolyvagin system machinery and compute in terms ofL-values).
The necessary tool to accomplish this comparison is the Poitou-Tate global duality.

1.3.1. Comparison over k. We first define the classical (Bloch-Kato) Selmer structure and
Selmer group for T (resp., for T ∗). Let FBK denote the Selmer structure on T given by

• Σ(FBK) = Σ(Fcan) = Σ(FL),
• For λ - p, H1

FBK
(kλ, T ) = H1

Fcan
(kλ, T ) = H1

FL(kλ, T ),
• H1

FBK
(kp, T ) = H1

f (kp, T ) ⊂ H1(kp, T ) = H1
Fcan

(kp, T ).

Following the procedure of Definition 1.3, define also F∗BK on T ∗. Then, by definition, we
have the following exact sequences:

0 // H1
FBK

(k, T ) // H1
FL(k, T )

locs
p // L

0 // H1
F∗L

(k, T ∗) // H1
F∗BK

(k, T ∗)
loc∗p //

H1
F∗BK

(kp,T ∗)

H1
F∗L

(kp,T ∗)
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where locs
p is the compositum locs

p : H1(k, T ) → H1(kp, T ) → H1
s (kp, T ). The Poitou-

Tate global duality theorem (c.f., [Rub00, Theorem I.7.3], [Mil86, Theorem I.4.10], [MR04,
Theorem 2.3.4]) allows us to compare the image of locs

p to the image of loc∗p:

Proposition 1.17. There is an exact sequence

0→
H1
FL(k, T )

H1
FBK

(k, T )

locs
p−→ L

(loc∗p)∨

−→
(
H1
F∗BK

(k, T ∗)
)∨
→
(
H1
F∗L

(k, T ∗)
)∨
→ 0,

where the map (loc∗p)
∨ is induced from localization at p and the local Tate pairing between

H1(kp, T ) and H1(kp, T
∗).

Corollary 1.18. The quotientH1
F∗BK

(k, T ∗)/H1
F∗L

(k, T ∗) is finite if and only if locs
p(H

1
FL(k, T )) 6=

0.

Proof. Since L is a free O-module of rank one, this is immediate from Proposition 1.17. �

Corollary 1.19. SupposeH1
FBK

(k, T ) = 0. Let c ∈ H1
FL(k, T ) be any class. Then the following

sequence is exact:

0→
H1
FL(k, T )

O · c
locs

p−→ L
O · locs

p(c)
−→

(
H1
F∗BK

(k, T ∗)
)∨
−→

(
H1
F∗L

(k, T ∗)
)∨
→ 0.

Proof. Note that the assumption H1
FBK

(k, T ) = 0 forces the map locs
p to be injective. Corollary

follows from Proposition 1.17. �

Remark 1.20. The assumption that H1
FBK

(k, T ) = 0 may seem like an unreasonably strong
assumption at the moment, however, we will be able to rephrase this assumption in terms of an
Euler system of rank r later on.

1.3.2. Comparison over k∞. For a fixed topological generator γ of Γ, set γn := γpn , and let
Ln ⊂ H1(kp,T/(γn − 1)T) be the image of L under the map H1(kp,T) → H1(kp,T/(γn −
1)T). Let FLn denote the Selmer structure on T/(γn − 1)T, which is obtained by propagating
the Selmer structure FL on T to its quotient T/(γn − 1)T. The propagated Selmer structure
from FGr on T to the quotient T/(γn − 1)T will still be denoted by FGr.

By Shapiro’s lemma, one may canonically identify H1(k,T/(γn − 1)T) by H1(kn, T ); and
for every prime λ ⊂ k, one may identify H1(kλ,T/(γn − 1)T) by H1((kn)λ, T ); c.f., [Rub00,
Appendix B.4 and B.5]. This way, we may view FLn and FGr as Selmer structures on the
Gkn-representation T .

Repeating the argument of Proposition 1.17 for each field kn (instead of k) with Selmer
structures FGr and FLn and passing to inverse limit we obtain the following:

Proposition 1.21. The following sequences of Λ-modules are exact:

(i) 0→
H1
FL

(k,T)

H1
FGr

(k,T)

locs
p−→ L−→

(
H1
F∗Gr

(k,T∗)
)∨
−→

(
H1
F∗L

(k,T∗)
)∨
→ 0.

If further H1
FGr

(k, T ) defined in Remark 1.16 vanishes, then,

(ii) for any class c ∈ H1
FL

(k,T),

0 −→
H1
FL

(k,T)

Λ · c
locs

p−→ L
Λ · locs

p(c)
−→

(
H1
F∗Gr

(k,T∗)
)∨
−→

(
H1
F∗L

(k,T∗)
)∨
−→ 0.
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Proof. We give a sketch of the proof. As in Proposition 1.17, we have an exact sequence

0 −→
H1
FLn

(kn, T )

H1
FGr

(kn, T )

locs
p−→ Ln−→

(
H1
F∗Gr

(kn, T
∗)
)∨
−→

(
H1
F∗Ln

(kn, T
∗)
)∨
−→ 0

for each n. Passing to inverse limit (and making use of [Rub00, Proposition B.1.1]) we obtain
the exact sequence of (i).

For (ii), note that there is an injection H1
FGr

(k,T)/(γ − 1) ↪→ H1
FGr

(k, T ) induced from the
exact sequence

H1(k,T)
γ−1−→ H1(k,T) −→ H1(k, T ).

Therefore, our assumption thatH1
FGr

(k, T ) = 0 implies, by Nakayama’s lemma, thatH1
FGr

(k,T) =
0. (ii) now follows from (i). �

1.4. Kolyvagin systems for modified Selmer structures. Throughout §1.4 we assume that
the hypotheses H.1-5 hold for T . Assume in addition that H.nE and H.T (also H.O when-
ever we refer to Greenberg’s local conditions) hold.

One may apply [MR04, Lemma 3.7.1] to verify that all the three Selmer triples (T,FBK,P),
(T,FGr,P) and (T,FL,P) satisfy the hypothesis H.6 of [MR04, §3.5] (with base field Q
in their treatment replaced by k). Therefore, the existence of Kolyvagin systems for these
Selmer structures will be decided by their core Selmer ranks (c.f., [MR04, Definition 4.1.8
and 4.1.11]). Let X (T,F) denote the core Selmer rank of the Selmer structure F on T , for
F = FBK,FGr or FL.

Proposition 1.22. X (T,FBK) = X (T,FGr) = 0.

Proof. It follows from our assumption that T is self-dual that

H1
FBK

(k, T/mT ) ∼= H1
FBK

(k, T ∗[m]), and H1
FGr

(k, T/mT ) ∼= H1
FGr

(k, T ∗[m]).

Proposition now follows from the definition of the core Selmer rank (see [MR04, Definition
5.2.4 and Proposition 5.2.5]) .

�

Proposition 1.23. X (T,FL) = 1.

Proof. By [MR04, Definition 5.2.4 and Proposition 5.2.5] and [Wil95, Proposition 1.6]

X (T,F) = dimFH
1
F(k, T/mT )− dimFH

1
F∗(k, T

∗[m]) =

dimFH
0(k, T/mT )− dimFH

0(k, T ∗[m])−
∑

λ∈Σ(F)

{
dimFH

0(kλ, T/mT )− dimFH
1
F(kλ, T/mT )

}
Applying this formula with F = FL and F = FBK we see that

X (T,FL)−X (T,FBK) = dimFH
1
FL(kp, T/mT )− dimFH

1
FBK

(kp, T/mT )

and this equals one by the very definition of the L-modified Selmer structure. We already know
by Proposition 1.22 that X (T,FBK) = 0 and the proof follows.

Note that if we assumed H.O (instead of assuming H.pS), and used FGr of Remark 1.16
(instead of FBK) in order to define H1

FL(kp, T ) = H1
Gr(kp, T ) ⊕ L, the same proof would lead

us to the identical result about X (T,FL). �

Remark 1.24. When H.nE holds, one may also check using [MR04, Theorem 5.2.15] that
X (T,Fcan) = r.
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1.4.1. Kolyvagin systems over k. We write KS(T,FL,P) for theO-module of Kolyvagin sys-
tems for the Selmer triple (T,FL,P). We refer the reader to [MR04, Definition 3.1.3] for a
definition of this module. Assume that the hypotheses H.1-5 and H.nE (also H.O whenever
we refer to Greenberg’s local conditions) hold.

Proposition 1.25. The O-module KS(T,FL,P) is free of rank one, generated by a Kolyvagin
system κ ∈ KS(T,FL,P) whose image (under the canonical map induced from reduction mod
m) in KS(T/mT,FL,P) is nonzero.

Proof. This is immediate after Proposition 1.23 and [MR04, Theorem 5.2.10]. �

Remark 1.26. Note that the choice of a rank one direct summand L ⊂ H1(kp, T ) makes our
approach somewhat unnatural. This issue is addressed in this paragraph. Put

(1.3) H1(kp, T ) =
r⊕

i=1

Li ⊕H1
f (kp, T )

(where each Li is a free O-submodule of H1(kp, T ) of rank one) and consider

(1.4)
r∑

i=1

KS(T,FLi
,P) ⊂ KS(T,Fcan,P).

Claim. The sum in (1.4) is in fact a direct sum.

Proof. Assume contrary: Suppose there exist κκκi ∈ KS(T,FLi
,P) such that

∑r
i=1κκκ

i = 0, and
not all κκκi = 0; say without loss of generality κκκ1 6= 0. Then

κκκ1 = −
∑
i6=1

κi ∈
∑
i6=1

KS(T,FLi
,P).

This means, for every η ∈ N (P) (:= square free products of primes in P)

(1.5) L1/IηL1 3 locs
p(κ

1
η) = −

∑
i6=1

locs
p(κ

i
η) ∈

⊕
i6=1

Li/IηLi

Here Iη :=
∏

λ|η Iλ ⊂ O, and for λ ∈ P , the ideal Iλ ⊂ O is as defined in the introduction.
The equality of (1.5) takes place in

H1
s (kp, T/IηT ) :=

H1(kp, T/IηT )

H1
f (kp, T/IηT )

,

where H1
f (kp, T/IηT ) is the image of H1

f (kp, T ) under the surjective (thanks to H.nE) map

H1(kp, T ) � H1(kp, T/IηT ),

which is induced from the surjection T � T/IηT . We therefore have a decomposition

H1(kp, T/IηT ) ∼= H1
f (kp, T/IηT )⊕

r⊕
i=1

Li/IηLi.

Since
(⊕

i6=1 Li/IηLi

)
∩ L1/IηL1 = {0}, it follows from (1.5) that locs

p(κ
1
η) = 0, i.e.,

locp(κ
1
η) ∈ H1

f (kp, T/IηT )

for every η ∈ N (P). This means κκκ1 ∈ KS(T,FBK,P). On the other hand KS(T,FBK,P) = 0
by Proposition 1.22 and [MR04, Theorem 5.2.10(i)], hence we proved κκκ1 = 0, a contradiction.

�
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As in [Büy08, Remark 1.27], we pose the following:
Question: Is the direct sum

r⊕
i=1

KS(T,FLi
,P) ⊂ KS(T,Fcan,P)

independent of the choice of the decomposition (1.3)?
When the answer to this question is affirmative, we would have a canonical rank r sub-

module of KS(T,Fcan,P). It would be even more interesting to see if this rank r submod-
ule descends from Euler systems (via the Euler systems to Kolyvagin systems map of Mazur
and Rubin [MR04, Theorem 3.2.4]). Below, we construct such a (rank r) submodule of
KS(T,Fcan,P) which descends from an Euler system of rank r (in case it exists); however,
this module does depend on the decomposition (1.3).

1.4.2. Kolyvagin systems over k∞. For every s,m ∈ Z+ and for a fixed topological generator
of γ of Γ, write Ts,m = T/(ps, (γ − 1)m).

Definition 1.27.(Compare to [MR04, Definition 3.1.6].) Define the module of Λ-adic Kolyva-
gin systems as

KS(T ⊗ Λ,FL,P) := lim←−
s,m

lim−→
j

KS(Ts,m,FL,Pj),

where KS(Ts,m,FL,Pj) is the module of Kolyvagin systems for the Selmer structure FL on
the representation Ts,m, as in [MR04, Definition 3.1.3].

The analogue of [MR04, Theorem 5.2.10], which we used to prove Proposition 1.25, for the
big Galois representation T has been proved by the author in [Büy07b, Theorem 3.23]. Under
the hypotheses H.1-5, H.nE, H.T and H.O, this result together with Proposition 1.25 (now
using FGr on T (instead of FBK) to define FL on T ) can be used to show:

Proposition 1.28. The Λ-module of Kolyvagin Systems KS(T,FL,P) for the Selmer structure
FL on T is free of rank one. Furthermore, the canonical map

KS(T,FL,P) −→ KS(T,FL,P)

is surjective.

Proof. Theorem 3.23 of [Büy07b] is proved for the canonical Selmer structure FΛ = Fcan on
T, under the condition that X (T,Fcan) = 1. Under the running hypotheses, which in particular
imply (Proposition 1.23) that X (T,FL) = 1, the proof of [Büy07b, Theorem 3.23] applies
verbatim for the Selmer structure FL on T. �

Remark 1.29. In this remark, we do not assume any longer that T is self-dual. Let d+ =
rankO(Indk/Q T )+, the rank of the (+1)-eigenspace of the action of a complex conjugation on
Indk/Q T . Let H1

f (kp, T ) (resp., H1
Gr(kp,T)) be as in §1.2.1 (resp., as in §1.2.2). Remark 1.24

still holds, and if we assume

(1.6) d+ = rankOH1
f (kp, T ) (resp., d+ = rankΛH

1
Gr(kp,T)),

it is not hard to see that Propositions 1.22, 1.23 and 1.25 (resp., Proposition 1.28) hold as well
under their running hypotheses (with FL (resp., with FL) still defined as in Definition 1.11
(resp., Definition 1.15)). We note that if T is self-dual and H.pS (resp., H.O) holds, then (1.6)
is satisfied.
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2. EULER SYSTEMS OF RANK r AND THE EULER SYSTEMS TO KOLYVAGIN SYSTEMS MAP

Suppose k, T, r and P are as above. We write N = N (P) for the collection of integral
ideals τ ⊂ k which are square free products of primes in P . As before, we write k(q) for
the maximal p-extension of k inside the ray class field of k modulo q and let Frq denote an
arithmetic Frobenius at q in Gk. If τ = q1 · · · qs is an ideal in N , we let k(τ) denote the
compositum

k(τ) := k(q1) · · · k(qs),
and set kn(τ) := kn ·k(τ). We write C = {kn(τ) : τ ∈ N , n ∈ Z≥0}, andK =

⋃
F∈C F . We set

∆τ = Gal(k(τ)/k) and ∆τ
n = Gal(kn(τ/k)) = ∆τ×Γn. Finally, define4 TD = Hom(T,O(1))

and let
Pq(x) := det(1− Fr−1

q · x|T
D) ∈ O[x]

be the Euler factor at the prime q ∈ P associated with the Galois representation TD.
For any finite groupG and a finitely generated Zp[G]-moduleM we define (following [Rub96,
§1.2])

∧r
0M := {m ∈Qp ⊗ ∧rM : (ψ1 ∧ · · · ∧ ψr)(m) ∈ Zp[G]

for every ψ1, . . . , ψr ∈ HomZp[G](M,Zp[G])}.
where the exterior power is calculated in the category of Zp[G]-modules.

Definition 2.1. An Euler system of rank r is a collection c = {ckn(τ)} such that

(i) ckn(τ) ∈ ∧r
0H

1(kn(τ), T ),
(ii) for τ ′|τ and n ≤ n′

Corrkn(τ)/kn′(τ ′)

(
ckn(τ)

)
=

∏
q|τ
q-τ ′

Pq(Fr−1
q )

 ckn′ (τ
′)

where Corrkn(τ)/kn′(τ ′) is the map induced from the corestriction

Corkn(τ)/kn′(τ ′) : H1(kn(τ), T ) −→ H1(kn′(τ
′), T ).

We note that the∧rH1(kn(τ), T ) is the r-th exterior power of the Zp[∆
τ
n]-moduleH1(kn(τ), T )

in the category of Zp[∆
τ
n]-modules.

Remark 2.2. Note that we demand the collection c to be integral in a weaker sense than [PR98,
§1.2.2]. This, of course, is inspired from [Rub96], and this weaker version is sufficient for our
purposes.

Remark 2.3. For any number field K, let

locp : ∧r
0H

1(K,T ) −→ ∧r
0H

1(Kp, T )

(resp.,
locs

p : ∧r
0H

1(K,T ) −→ ∧r
0H

1
s (Kp, T ))

be the map induced from
H1(K,T ) −→ H1(Kp, T )

4Note that TD ∼= T since we assume T is self-dual. This definition may therefore seem unnecessary, yet we still
introduce it for a good comparison with the notation of [PR98, Rub00, MR04].
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(resp., from the compositum

H1(K,T ) −→ H1(Kp, T ) −→ H1
s (Kp, T )).

Suppose c = {ckn(τ)} is an Euler system of rank r. Then our results regarding the freeness of
the semi-local cohomology from §1.2.1 and §1.2.2 above, together with [Rub96, Example 1 on
page 38] show that

(2.1) ∧r
0H

1(Kp, T ) = ∧rH1(Kp, T ) and ∧r
0 H

1
s (Kp, T ) = ∧rH1

s (Kp, T ).

Here the equalities are induced from the canonical inclusion ∧rM ↪→ Qp ⊗ ∧rM . It follows
from 2.1 that

locp(ckn) ∈ ∧rH1((kn)p, T ) and locs
p(ckn) ∈ ∧rH1

s ((kn)p, T ).

Remark 2.4. The ‘Euler factors’ Pq(Fr−1
q ) which appear in the distribution relation (ii) above

matches with the Euler factors in [PR98, Rub00] but differ from the Euler factors chosen
in [MR04, Definition 3.2.3]. However, thanks to [Rub00, §IX.6], it is possible to go back and
forth between these two choices and [MR04, Theorem 3.2.4] still applies.

Remark 2.5. Suppose r = 1. In this case

∧r
0H

1(K,T ) = ∧rH1(K,T ) = H1(K,T )

for any number field K ⊂ K (where the first equality is [Rub96, Proposition 1.2(ii)]) and our
definition agrees with Perrin-Riou’s definition [PR98, §1.2.1] of an Euler system of rank one;
and these both agree with Rubin’s [Rub00, Definition II.1.1 and Remark II.1.4] definition of
an Euler system. We also will henceforth call an Euler system of rank one simply an ‘Euler
system’.

2.1. Euler systems to Kolyvagin systems map. We first recall what Mazur and Rubin call
the Euler systems to Kolyvagin systems map. Suppose T,P and K are as above. Let ES(T ) =
ES(T,K) denote the collection of Euler systems (i.e., Euler systems of rank one in the sense
of Definition 2.1) for (T,K). Fix a topological generator γ of Γ and set γn = γpn , and let mΛ

be the maximal ideal of Λ = O[[Γ]].

Definition 2.6. For F = FΛ or FL, we set

KS′(T,F,P) := lim←−
m,n

lim−→
j

KS(T/(pm, γn − 1)T,F,Pj),

where KS(T/(pm, γn − 1)T,F,Pj) is the Λ/(pm, γn − 1)-module of Kolyvagin systems (in
the sense of [MR04, Definition 3.1.3]) for the Selmer structure F propagated to the quotient
T/(pm, γn − 1)T.

Remark 2.7. We introduced the module KS′(T,F,P) above because, after applying Koly-
vagin’s descent procedure [Rub00, §IV] (modified appropriately in [MR04, Appendix A])
on an Euler system, one obtains elements of KS′(T,FΛ,P). On the other hand, it is not
hard to see that the module KS′(T,F,P) defined above is naturally isomorphic to the module
KS(T,F,P) of Definition 1.27, using the fact that each of the collections {pm, γn − 1}m,n

and {pm, (γ − 1)n}m,n forms a base of neighborhoods at zero. Furthermore, using the fact
that the collection {mα

Λ}α∈Z+ also forms a base of neighborhoods at zero, one may identify
these two modules Kolyvagin systems by the generalized module of Kolyvagin systems de-
fined in [MR04, Definition 3.1.6]. By slight abuse, we will write KS(T,F,P) for any of
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the three modules of Kolyvagin systems given by three different definitions (i.e., by Defini-
tions 1.27 and 2.6 here; and by [MR04, Definition 3.1.6]). For our purposes in this section, we
will use Definition 2.6 to define this module.

Consider the following hypotheses:

KS1. T/(Frq − 1)T is a cyclic O-module for every q ∈ P .
KS2. Frp

k

q − 1 is injective on T for every q ∈ P and k ≥ 0.

Theorem 2.8. ([MR04, Theorem 3.2.4 & 5.3.3]) Suppose the hypotheses KS1-2 hold. Then
there are canonical maps

• ES(T ) −→ KS(T,Fcan,P),
• ES(T ) −→ KS(T,FΛ,P)

with the properties that

• if c maps to κκκ ∈ KS(T,Fcan,P) then κ1 = ck,
• if c maps to κκκIw ∈ KS(T,FΛ,P) then

κIw
1 = {ckn} ∈ lim←−

n

H1(kn, T ) = H1(k,T).

Starting from an Euler system of rank r, one first applies Perrin-Riou’s procedure [PR98,
§1.2.3] (based on an idea due to Rubin [Rub96, §6]) to obtain an Euler system. After this,
we would like to apply the Euler systems to Kolyvagin systems map (Theorem 2.8) on these
Euler systems. Note however that Theorem 2.8 will only give rise to Kolyvagin systems for
the coarser Selmer structures FΛ and Fcan (rather than the finer Selmer structures FL and FL).

Let ES(r)(T ) = ES(r)(T,K) denote the collection of Euler systems of rank r. The previous
paragraph is summarized in the diagram below:

ES(r)(T )

R
%%

[PR98] // ES(T )
[MR02]// KS(T,FΛ,P) // KS(T,Fcan,P)

(?)(?)(?)
?�

OO

DΛ //

D

44
KS(T,FL,P) //

?�

OO

KS(T,FL,P)
?�

OO

To be able to obtain Kolyvagin systems for the modified Selmer structures FL and FL, we
need to analyze the structure of semi-local cohomology groups for T and T at p, over various
ray class fields of k. This is carried out in §2.2. We then apply the results of §2.2 in §2.3 to
choose carefully a mapR such that the image of the mapR determines the correct submodule
(?)(?)(?) ⊂ ES(T ), on which the Euler systems to Kolyvagin systems map restricts to DΛ and D;
and gives (see §2.4) Kolyvagin systems for the modified Selmer structures FL and FL.

2.2. Semi-local preparation. Throughout §2.2 we will assume H.nE and H.D hold true.

Lemma 2.9. For every kn(τ) ∈ C, the corestriction maps
(i) H1(kn(τ)p, T ) −→ H1(k(τ)p, T ),

(ii) H1(k(τ)p, T ) −→ H1(kp, T ),
(iii) H1(kn(τ)p, T ) −→ H1(kp, T )

on the semi-local cohomology at p are all surjective.
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Proof. The cokernel of the map

H1(k(τ),T) = lim←−
n

H1(kn(τ)p, T ) −→ H1(k(τ)p, T )

is given by H2(k(τ)p,T)[γ − 1], where γ is any topological generator of Γ = Gal(k∞/k).
Since it is known that (c.f., [PR94]) H2(k(τ)p,T) is a finitely generated O-module, it follows
that

H2(k(τ)p,T)[γ − 1] = 0 ⇐⇒ H2(k(τ)p,T)/(γ − 1) = 0.

Since the cohomological dimension of the absolute Galois group of any local field is 2,

H2(k(τ)p,T)/(γ − 1) ∼= H2(k(τ)p,T/(γ − 1)) = H2(k(τ)p, T ).

It therefore suffices to check that

H2(k(τ)p, T ) :=
⊕
v|p

H2(k(τ)v, T ) = 0,

which, via local duality is equivalent to checking that H0(k(τ)v, T
∗) = 0 for each v|p.

Write Dτ
v for the decomposition group of v inside Gal(k(τ)/k) := ∆τ . We may iden-

tify Dτ
v ⊂ ∆τ by the local Galois group Gal(k(τ)v/k℘) where ℘ ⊂ k is the prime below v.

Since ∆τ is generated by the inertia groups at the primes dividing τ , all of which act trivially
on T ∗ (since τ ∈ N (P), by definition), it follows that H0(k(τ)v, T

∗) = H0(k℘, T
∗), and

H0(k℘, T
∗) = 0 since we assumed H.nE, and thus (i) is proved.

Now set Tτ := Indk(τ)/k T . The semi-local version of Shapiro’s lemma (which is explained
in [Rub00, §A.5]) gives an isomorphism

H1(k(τ)p, T ) ∼= H1(kp, Tτ )

and the map
Corτ : H1(kp, Tτ ) ∼= H1(k(τ)p, T ) −→ H1(kp, T )

is induced from the augmentation sequence

0 −→ Aτ · Tτ −→ Tτ −→ T −→ 0,

where Aτ is the augmentation ideal of the local ring O[∆τ ]. The argument above shows that
the cokernel of Corτ is dual to

H0(kp, (Aτ · Tτ )
∗) := ⊕℘|pH

0(k℘, (Aτ · Tτ )
∗).

Furthermore,

(Aτ · Tτ )
∗ := Hom(Aτ · Tτ ,Φ/O(1)) = Hom(Aτ · Tτ ,Φ/O)⊗O(1),

and Hom(Aτ · Tτ ,Φ/O) = Aτ · Hom(Tτ ,Φ/O), hence

H0(kp, (Aτ · Tτ )
∗) ↪→ H0(kp, T

∗
τ ).

It therefore suffices to show that H0(kp, T
∗
τ ) = 0. By local duality this is equivalent to proving

H2(kp, Tτ ) = 0, which by the semi-local Shapiro’s Lemma equivalent to showH2(k(τ)p, T ) =
0, which again by local duality equivalent to the statementH0(k(τ)p, T

∗) = 0; and this we have
already verified in the first two paragraphs of this Proof. This completes the proof of (ii).

(iii) clearly follows from (i) and (ii). �

Proposition 2.10. For every τ ∈ N (P):
(i) The semi-local cohomology group H1(k(τ)p, T ) is a free O[∆τ ]-module of rank 2r.

(ii) For every n ∈ Z≥0, the semi-local cohomology group H1(kn(τ)p, T ) is a free O[∆τ
n]-

module of rank 2r.
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Proof. We start with the remark thatH1(k(τ)p, T ) is a freeO-module of rank 2r · |∆τ |. Indeed,
this may be proved following the proof of Lemma 1.9 (again relying on the hypotheses H.nE
and H.D). Further, we know thanks to Lemma 2.9 that the map H1(k(τ)p, T ) → H1(kp, T )
(which could be thought of as reduction modulo the augmentation ideal Aτ ⊂ O[∆τ ]) is
surjective. Nakayama’s Lemma and Lemma 1.9 therefore imply thatH1(k(τ)p, T ) is generated
by (at most) 2r elements over the ring O[∆τ ]. Let B = {x1, x2, . . . , x2r} be any set of such
generators. To prove (i), it suffices to check that the xi’s do not admit any non-trivial O[∆τ ]-
linear relation. Assume contrary, and suppose there is a non-trivial relation

(2.2)
2r∑

i=1

αixi = 0, αi ∈ O[∆τ ].

Write S = {δxj : δ ∈ ∆τ , 1 ≤ j ≤ 2r}, note that by our assumption on the set B, the set S
generates H1(k(τ)p, T ) as anO-module, and |S| = 2r · |∆τ | = rankOH1(k(τ)p, T ). Equation
(2.2) can be rewritten as ∑

δ,j

aδ,j · δxj = 0

with aδ,j ∈ O. Since we already know that H1(k(τ)p, T ) is O-torsion free, we may assume
without loss of generality that aδ0,j0 ∈ O× for some δ0, j0. This in return implies that

δ0xj0 ∈ spanO(S − {δ0xj0}),

hence H1(k(τ)p, T ) is generated by S − {δ0xj0}. This, however, is a contradiction since we
already know that the O-rank of H1(k(τ)p, T ) is 2r · |∆τ | = |S|, hence it cannot be generated
by |S| − 1 elements over O. The proof of (i) is now complete.

(ii) is proved in an identical fashion, now considering the augmentation map

H1(kn(τ)p, T ) −→ H1(k(τ)p, T ),

which is surjective thanks to Lemma 2.9. �

Let K0 ⊂ K be the composite of all fields k(τ), where τ runs through the set N = N (P).
Set ∆∆∆ := Gal(K0/k).

Corollary 2.11. lim←−n,τ
H1(kn(τ)p, T ) is a free O[[Γ×∆∆∆]]-module of rank 2r and the natural

projection maps
lim←−
n,τ

H1(kn(τ)p, T ) −→ H1(km(η)p, T )

are surjective for all m ∈ Z≥0 and η ∈ N .

Proof. Immediate after Proposition 2.10. �

2.3. Choosing the correct homomorphisms. In this section we use the results from §2.2 to
choose useful homomorphisms which will be utilized in §2.4 to construct Kolyvagin systems
for the modified Selmer structure FL (resp., FL) on T (resp., on T). This will be carried out
in two steps: Under the hypotheses H.pS on T , we will make our choice of homomorphisms
in §2.3.1 and use the results of this section in §2.4.1 to construct an element of KS(T,FL,P)
out of an Euler system of rank r. For the Iwasawa theoretic results, we will assume H.O, and
we will show how to choose the useful homomorphisms in §2.3.2. This choice will be utilized
in §2.4.2 to construct an element of KS(T,FL, T ) starting from an Euler system of rank r.
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2.3.1. Choice of Homomorphisms: Potentially semi-stable case. In this section, we assume
that the hypothesis H.pS holds along with H.nE and H.D. Let L ⊂ H1(kp, T ) be as
in §1.2.1. As before, we denote the (isomorphic) image of L under H1(kp, T ) → H1

s (kp, T )
also by L.

Proposition 2.12. There exists a decomposition of the O[[Γ×∆∆∆]]-module of rank-2r

Vp := lim←−
n,τ

H1(kn(τ)p, T ) = L(r)L(r)L(r) ⊕LsLsLs

with a distinguished rank one direct summandLLL ⊂ LsLsLs with the following properties:
Under the maps induced from the corestriction map

lim←−
n,τ

H1(kn(τ)p, T ) −→ H1(kp, T ),

(1) L(r)L(r)L(r) (and therefore alsoLsLsLs) is a free O[[Γ×∆∆∆]]-module of rank r,
(2) L(r)L(r)L(r) projects onto H1

f (kp, T ), andLsLsLs onto H1
s (kp, T ),

(3) LLL projects onto L.

The proof of Proposition 2.12 is elementary linear algebra and will be left out not to digress
from our main course.

Definition 2.13. For kn(τ) = K ∈ C, let LK (resp., L(r)
K ; resp., Ls

K) be the image of LLL (resp.,
L(r)L(r)L(r); resp.,LsLsLs) under the (surjective) projection map Vp → H1(Kp, T ).

Note that LK (resp., L(r)
K and Ls

K) is a free Zp[Gal(K/k)]-module of rank one (resp., of rank
r) for all K ∈ C, and that

(XK′)Gal(K′/K) = XK

for X = L,L(r) and Ls; for all K ⊂ K ′. When K = k, note that LK = L and L(r)
K =

H1
f (kp, T ) by definition (Proposition 2.12).
We write

r−1∧
Hom(LsLsLs,O[[Γ×∆∆∆]]) := lim←−

K∈C

r−1∧
HomO[∆K ](Ls

K ,O[∆K ]).

Here ∆K = Gal(K/k) and the inverse limit is with respect to the natural maps induced from

Ls
K −→ (Ls

K′)Gal(K′/K)

and the isomorphism

O[∆K′ ]Gal(K′/K)−̃→O[∆K ]

NK′

K 7−→ 1

for K ⊂ K ′.
Localization at p followed by the projection onto the “singular quotient” Ls

K gives rise to a
map

locs
p : H1(K,T )

locp−→ H1(Kp, T ) −→ Ls
K ,

which induces a canonical map
r−1∧

Hom(LsLsLs,O[[Γ×∆∆∆]]) −→ lim←−
K∈C

r−1∧
HomO[∆K ](H

1(K,T ),O[∆K ]).

The image of Ψ ∈
∧r−1 Hom(LsLsLs,O[[Γ×∆∆∆]]) under this map will still be denoted by Ψ.
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Proposition 2.14. Suppose c(r) = {c(r)K }K∈C
is an Euler system of rank r. For any

{ψK}K∈C
= Ψ ∈

r−1∧
Hom(LsLsLs,O[[Γ×∆∆∆]]),

define
H1(K,T ) 3 cK,Ψ := ψK(c

(r)
K ).

Then the collection {cK,Ψ}K∈C
is an Euler system for the Gk-representation T .

We will sometimes denote the Euler system {cK,Ψ}K∈C
by {ckn(τ),Ψ}n,τ .

Proof. This is proved in [PR98, §1.2.3]. See also [Rub96, Proposition 6.6] for the treatment in
the particular case T = Zp(1). �

Proposition 2.15. For any K ∈ C, the projection map
r−1∧

Hom(LsLsLs,O[[Γ×∆∆∆]]) −→
r−1∧

HomO[∆K ](Ls
K ,O[∆K ])

is surjective.

Proof. Obvious since all Ls
K , for K ∈ C, are free O[∆K ]-modules. �

If one applies the Euler systems to Kolyvagin systems map of Mazur and Rubin (c.f., [MR04,
Theorem 5.3.3]) on the Euler system {cK,Ψ}K∈C

above, all one gets a priori is a Kolyvagin
system for the (coarser) Selmer structureFcan, and in general not for the (finer) Selmer structure
FL. Below, we will choose these homomorphisms Ψ carefully so that the resulting Kolyvagin
system is indeed a Kolyvagin system for the modified Selmer structure FL (resp., FL) on T
(resp., on T).

Definition 2.16. We say that an element

{ψK}K∈C
= Ψ ∈

r−1∧
Hom(LsLsLs,O[[Γ×∆∆∆]])

satisfies HL if for any K ∈ C one has ψK(∧rLs
K) ⊂ LK .

We now construct a specific element

Ψ0 ∈
r−1∧

Hom(LsLsLs,O[[Γ×∆∆∆]])

that satisfies HL (and which, in a certain sense, is the best possible choice).
Fix an O[[Γ×∆∆∆]]-basis

{Ψ(1)
LLL , . . . ,Ψ

(r−1)
LLL }

of the free O[[Γ ×∆∆∆]]-module HomO[[Γ×∆∆∆]](LsLsLs/LLL,O[[Γ ×∆∆∆]]) of rank r − 1. This in return
fixes a basis {ψ(i)

LK
}r−1

i=1 for the freeO[∆K ]-module HomO[∆K ] (Ls
K/LK ,O[∆K ]) for allK ∈ C;

such that {ψ(i)
LK
}

K∈C
are compatible with respect to the surjections

HomO[∆K′ ]
(Ls

K′/LK′ ,O[∆K′ ]) // HomO[∆K ](Ls
K/LK ,O[∆K ])

for all K ⊂ K ′. Note that the homomorphism
r−1⊕
i=1

ψ
(i)
LK

: Ls
K/LK −→ O[∆K ]r−1
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is an isomorphism of O[∆K ]-modules, for all K ∈ C. Let ψ(i)
K denote the image of ψ(i)

K under
the canonical injection

HomO[∆K ](Ls
K/LK ,O[∆K ]) � � // HomO[∆K ](Ls

K ,O[∆K ]).

Note then that the map

ΨK :=
r−1⊕
i=1

ψ
(i)
K : Ls

K −→ O[∆K ]r−1

is surjective and ker(ΨK) = LK .
Define

ϕK := ψ
(1)
K ∧ ψ

(2)
K ∧ · · · ∧ ψ

(r−1)
K ∈

r−1∧
Hom(Ls

K ,O[∆K ]).

For K ⊂ K ′, note that ϕK′ maps to ϕK under the homomorphism∧r−1 Hom(Ls
K′ ,O[∆K′ ]) // // ∧r−1 Hom(Ls

K ,O[∆K ]).

We may therefore regard Ψ0 := {ϕK}K∈C
as an element of

∧r−1 Hom(LsLsLs,O[[Γ×∆∆∆]]). Com-
posing with locs

p : H1(K,T )→ Ls
K , we may further regard Ψ0 as an element of

lim←−
K∈C

r−1∧
Hom(H1(K,T ),O[∆K ]).

Proposition 2.17. Suppose {ϕK}K
= Ψ0 is as above. Then ϕK maps ∧rLs

K isomorphically
onto ker(ΨK) = LK , for all K ∈ C. In particular, Ψ0 satisfies HL.

Proof. The proof is identical to the proof of (the easy half of) [Büy07b, Lemma 3.1], which
also follows the proof of [MR04, Lemma B.1] almost line by line. �

2.3.2. Choice of Homomorphisms: The ordinary case. Throughout §2.3.2 we assume the
hypotheses H.O, H.nE and H.D hold true. Let H1

Gr(kp,T) and L be the submodules of
H1(kp,T) defined in §1.2.2.

We start with the following Proposition whose proof is identical to the proof of Proposi-
tion 2.12:

Proposition 2.18. There exists a decomposition of the O[[Γ×∆∆∆]]-module of rank-2r

Vp := lim←−
n,τ

H1(kn(τ)p, T ) = L(r)L(r)L(r) ⊕LsLsLs

with a distinguished rank one direct summandLLL ⊂ LsLsLs with the following properties:

(1) L(r)L(r)L(r) andLsLsLs) are both free O[[Γ×∆∆∆]]-modules of rank r,

Under the maps induced from the corestriction

lim←−
n,τ

H1(kn(τ)p, T ) −→ lim←−
n

H1((kn)p, T ) = H1(kp,T),

(2) L(r)L(r)L(r) projects onto H1
Gr(kp,T), andLsLsLs onto H1

s (kp,T) := H1(kp,T)/H1
Gr(kp,T),

(3) LLL projects onto L.
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Having defined L(r)L(r)L(r), LsLsLs andLLL, we may proceed as in §2.3.1 and define L(r)
K , Ls

K and LK as
above; and use these to define a particular element

Ψ0 ∈
r−1∧

Hom(LsLsLs,O[[Γ×∆∆∆]])

in an identical fashion. We also note that

H1(kp,T) ⊃ L = {Lkn} ⊂ lim←−
n

H1((kn)p, T ).

Definition 2.19. We say that an element

{ψK}K∈C
= Ψ ∈

r−1∧
Hom(LsLsLs,O[[Γ×∆∆∆]])

satisfies HL if for any K ∈ C one has ψK(∧rLs
K) ⊂ LK .

Although the definition of the property HL is identical to the definition of HL (Defini-
tion 2.16), we wish to distinguish between these two in order to remind us that we used Green-
berg’s local conditions as a start for one, and Bloch-Kato local conditions for the other. Finally,
we note that the following (almost identical) version of Proposition 2.17 holds:

Proposition 2.20. Let Ψ0 = {ϕK}K
be as above. Then ϕK maps ∧rLs

K isomorphically onto
ker(ΨK) = LK , for all K ∈ C. In particular, Ψ0 satisfies HL.

Remark 2.21. The diagram in §2.1 now looks as follows:

ES(r)(T )

Ψ0 &&

[PR98] // ES(T )
[MR02] // KS(T,FΛ,P) // KS(T,Fcan,P)

Ψ0(ES(r)(T ))
?�

OO

DΛ //

D

44
KS(T,FL,P) //

?�

OO

KS(T,FL,P)
?�

OO

where Ψ0(ES(r)(T )) stands for the collection of Euler systems (of rank one) obtained from
Euler systems of rank r, following the procedure of Perrin-Riou and Rubin (Proposition 2.14)
with the choice Ψ0 ∈

∧r−1 Hom(LsLsLs,O[[Γ×∆∆∆]]). In the following section, we verify that the
restriction of the Euler systems to Kolyvagin systems map of [MR04] on Ψ0(ES(r)(T )) really
restricts to the maps DΛ and D.

Remark 2.22. Since the mapsH1
s (kp.T) −→ Ls

kn
, for n ∈ Z+, are all surjective (by our choices

made in Proposition 2.18) andH1
s (kp,T) (resp., Ls

kn
) is a free Λ-module (resp.,O[Γn]-module)

of rank r, it follows that there is a canonical isomorphism

lim←−
n

∧r
O[Γn]Ls

kn
∼= ∧r

Λ lim←−
n

Ls
kn

= ∧r
ΛH

1
s (kp,T).

This and Proposition 2.20 show that ϕ∞ = {ϕkn}n maps
∧r H1

s (kp,T) isomorphically onto
L = lim←−n

Ln.
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2.4. Kolyvagin systems for modified Selmer structures (bis). We are now ready to construct
Kolyvagin systems5 for the L-modified Selmer structure FL on T (resp., L-modified Selmer
structure FL on T) starting from an Euler system of rank r, for each choice of a compatible
homomorphisms Ψ ∈

∧r−1 Hom(LsLsLs,O[[Γ ×∆∆∆]]) that satisfies HL (resp., HL). These classes
will be utilized in the following section to demonstrate the main outcomes of this machinery.

2.4.1. Kolyvagin systems over k (bis). Theorem 2.8 gives a map

ES(T ) −→ KS(T,Fcan,P)

where
KS(T,Fcan,P) := lim←−

α

(lim−→
j

KS(T/mαT, Fcan,P ∩ Pj))

is the (generalized) module of Kolyvagin systems for the Selmer triple (T,Fcan,P) and Fcan is
the canonical Selmer structure on T as in Example 1.6 (and its propagation to the quotients of
T ). One of the main attributes of this map is that if an Euler system

{
ckn(τ)

}
n,τ

= c ∈ ES(T )

maps to the Kolyvagin system κ =
{
{κτ (α)}τ∈Nj

}
α

under this map, then

(2.3) κ1 lim←−α
κ1(α) ∈def lim←−α

H1(k, T/mαT ) = H1(k, T )

ck ∈ H1(k, T ).

Let κΨ0 =

{{
κΨ0

τ (α)
}

τ∈Nj

}
α

be the image of the Euler system c(r)
Ψ0

=
{
c
(r)
kn(τ),Ψ0

}
n,τ

,

which itself is obtained from an Euler system c(r) = {c(r)K }K∈C of rank r via Proposition 2.14
applied with Ψ0 = {ϕK}K∈C above. Thus the equation (2.3) reads

(2.4) κΨ0
1 = c

(r)
k,Ψ0

= ϕk(c
(r)
k ).

Theorem 2.23. κΨ0 :=
{{
κΨ0

τ (α)
}

τ∈N

}
α
∈ KS(T,FL,P).

Here
KS(T,FL,P) = lim←−

α

(lim←−
j

KS(T/mαT,FL,P ∩ Pj))

is the (generalized) module of Kolyvagin systems for the L-modified Selmer structure FL on
T .

Remark 2.24. We could have used any element Ψ ∈
∧r−1 Hom(LsLsLs,O[[Γ ×∆∆∆]]) in Theo-

rem 2.23 that satisfies HL (rather then the particular element Ψ0) and still obtain Kolyvagin
systems for the L-modified Selmer structure.

For the rest of this section the integer α will be fixed, and we denote the element κΨ0
τ (α) ∈

H1(k, T/mαT ) by κΨ0
τ . Note that the statement of Theorem 2.23 claims for each τ ∈ Nα that

κΨ0
τ ∈ H1

FL(τ)(k, T/m
αT ),

where FL(τ) is defined as in [MR04, Example 2.1.8]. However, [MR04, Theorem 5.3.3]
already concludes that

κΨ0
τ ∈ H1

Fcan(τ)(k, T/m
αT ).

5which we proved to exist in §1.4.
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Since FL and Fcan determine the same local conditions outside p, it suffices to prove the fol-
lowing in order to prove Theorem 2.23:

Proposition 2.25. Let

locs
p : H1(k, T/mαT ) −→ H1

s (kp, T/m
αT ) :=

H1(kp, T/m
αT )

H1
f (kp, T/mαT )

be the localization map into the semi-local cohomology at p, followed by the projection onto
the singular quotient. Then

locs
p(κ

Ψ0
τ ) ∈ L/mαL ⊂ H1

s (kp, T/m
αT ).

Proposition 2.25 will be proved below. We first note that H1
f (kp, T/m

αT ) is by definition the
propagation of H1

f (kp, T ). Similarly,

H1
f (kp, T/m

αT )⊕ L/mαL = H1
FL(τ)(kp, T/m

αT )

is the propagation of the L-modifed condition H1
FL(τ)(kp, T ) := H1

f (kp, T )⊕ L at p. Let{
κ̃Ψ0

τ (α) ∈ H1(kp, T/m
αT )

}
τ∈Nα

be the collection that [Rub00, Definition 4.4.10] associates to the Euler system
{
c
(r)
kn(τ),Ψ0

}
n,τ

.

Here we write κ̃Ψ0
τ (α) for the class denoted by κ[k,τ,α] in loc.cit. Since we have fixed α until the

end of this section, we will safely drop α from the notation and denote κ̃Ψ0
τ (α) by κ̃Ψ0

τ . Note
that Equation (33) in [MR04, Appendix A] relates this class to κΨ0

τ .

Lemma 2.26. If locs
p(κ̃

Ψ0
τ ) ∈ L/mαL then locs

p(κ
Ψ0
τ ) ∈ L/mαL as well.

Proof. Obvious using Equation (33) in [MR04, Appendix A]. �

Let Dτ denote the derivative operator of Kolyvagin, defined as in [Rub00, Definition
4.4.1]. Rubin [Rub00, Definition 4.4.10] defines κ̃Ψ0

τ as a canonical inverse image ofDτc
(r)
k(τ),Ψ0

(mod mα) under the restriction map6

H1(k, T/mαT ) −→ H1(k(τ), T/mαT )∆τ

.

Therefore, locs
p(κ̃

Ψ0
τ ) maps to locs

p

(
Dτc

(r)
k(τ),Ψ0

)
(mod mα) under the map7

H1
s (kp, T/m

αT ) −→ H1
s (k(τ)p, T/m

αT )∆τ

(:=
(
Ls

k(τ)/m
αLs

k(τ)

)∆τ

).

Under this isomorphism, L/mαL ⊂ H1(kp, T/m
αT ) is mapped isomorphically onto the rank

one O/mαO-module
(
Lk(τ)/m

αLk(τ)

)∆τ , by the definition of Lk(τ) and by the fact that Lk(τ) is
a free O[∆τ ]-module. The diagram below summarizes the discussion in this paragraph:

H1(kp, T/m
αT )

∼ // H1(k(τ)p, T/m
αT )∆τ

L/mαL ∼ //
?�

OO

(
Lk(τ)/m

αLk(τ)

)∆τ
?�

OO

6This restriction map is an isomorphism if we assume (H.3): The kernel and cokernel of this map are both anni-
hilated by #(T/mαT )Gkτ . Furthermore, (T/mαT )Gk(τ) = (T/mαT )Gk since ∆τ = Gal(k(τ)/k) is generated
by the inertia groups at the primes of k dividing τ ; and all of these act trivially on T/mαT . On the other hand it
follows from hypotheses (H.3) (c.f., [MR04, Lemma 3.5.2]) that (T/mαT )Gk = 0.
7This map is also an isomorphism thanks to H.nE.
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Proposition 2.27. locp(κ̃
Ψ0
τ ) ∈ L/mαL.

Proof. Since locp is Galois equivariant locp(Dτc
(r)
k(τ),Ψ0

) = Dτ locp(c
(r)
k(τ),Ψ0

). Furthermore,

locp

(
c
(r)
k(τ),Ψ0

)
∈ Lk(τ),

since Ψ0 satisfies HL. On the other hand, by [Rub00, Lemma 4.4.2], the class Dτc
(r)
k(τ),Ψ0

(mod mα) is fixed by ∆τ , which in return implies that

locp

(
c
(r)
k(τ),Ψ0

)
(modmα) ∈

(
Lk(τ)/m

αLk(τ)

)∆τ

.

This shows that locp(κ̃
Ψ0
τ ) maps into L/mαL by the discussion in the paragraph preceding the

statement of this Proposition. �

Proof of Proposition 2.25. Immediate after Lemma 2.26 and Proposition 2.27. �

By the discussion following the statement of Theorem 2.23, this also completes the proof of
Theorem 2.23.

2.4.2. Kolyvagin systems over k∞ (bis). For F = FΛ or FL, recall

KS(T,F,P) := lim←−
α,n

(lim−→
j

KS(T/(mα, γn − 1)T,F,P ∩ Pj)),

the (generalized) module of Λ-adic Kolyvagin systems for the Selmer structure8 F on T. Our
definition slightly differs from that of Mazur an Rubin [MR04, Definition 3.1.6], however, as
noted in Remark 2.7, it is possible to identify their generalized module Kolyvagin systems with
ours using the fact that both {(mα, γn− 1)}α,n and {mβ

Λ}β (where mΛ is the maximal ideal of Λ)
forms a base of neighborhoods at 0.

Suppose that Ψ0 ∈
∧r−1 Hom(LsLsLs,O[[Γ×∆∆∆]]) is as in §2.3.2; in particular Ψ0 satisfies HL.

Let c(r) = {c(r)K }K∈C be any Euler system of rank r and let cΨ0 = {ckn(τ),Ψ0} be the Euler
system of rank one obtained from c(r) via Proposition 2.14 applied with Ψ0. As before, let

κκκΨ0,Iw ∈ KS(T,FΛ,P)

be the image of cΨ0 under the Euler system to Kolyvagin system map of Theorem 2.8. The
proof of the following Theorem is very similar to the proof of Theorem 2.23 above and will be
skipped; see also the proofs of [Büy07c, Theorem 3.23] and [Büy07a, Theorem 2.19].

Theorem 2.28. κκκΨ0,Iw ∈ KS(T,FL,P).

Remark 2.29. We know (by the definition of the Euler systems to Kolyvagin systems map)
that

κΨ0,Iw
1

lim←−α,n
κΨ0,Iw

1 (α, n) ∈ lim←−α,n
H1(k,T/(mα, γn − 1)T) = H1(k,T)def

{ckn,Ψ0}n

{
ϕkn(c

(r)
kn

)
}

n

∈ lim←−n
H1(kn, T ) = H1(k,T).def

Remark 2.30. In this paragraph, T is no longer assumed to be self-dual. Suppose (1.6) holds
for T . As in Remark 1.29, we note that the results of §2.4 (under their running hypotheses)
apply verbatim for T with this property.
8As usual, we write F also for the propagation of T to the quotients T/(mα, γn − 1)T.
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3. APPLICATIONS

Throughout this section, the hypotheses H.1-H.5, H.nE,H.D are in effect.

3.1. Applications over k. Aside from the hypotheses we assumed above, suppose in §3.1 that
the hypothesis H.pS holds as well.

We start with proving a bound on the size of the dual Selmer group H1
F∗L

(k, T ∗), which we
will use, together with the comparison result from §1.3.1, to obtain a bound on the classical
Selmer group.

Theorem 3.1. Under the running hypotheses,

|H1
F∗L

(k, T ∗)| ≤ |H1
FL(k, T )/O · κΨ0

1 |,

with equality if and only if the Kolyvagin system κκκΨ0 ∈ KS(T,FL,P) is primitive (in the sense
of [MR04, Definition 4.5.5]).

Proof. This is the standard application of κκκΨ0 ∈ KS(T,FL,P), see [MR04, Corollary 5.2.13].
�

Consider the following condition on the Euler system c(r) of rank r:

(H.nV) locs
p

(
c
(r)
k

)
6= 0.

Lemma 3.2. Suppose (H.nV) holds. Then locs
p(κ

Ψ0
1 ) 6= 0, in particular, κΨ0

1 6= 0.

Proof. The following equalities follow from the definitions:

(3.1) locs
p(κ

Ψ0
1 ) = locs

p (ck,Ψ0) = locs
p

(
ϕk

(
c
(r)
k

))
= ϕk

(
locs

p

(
c
(r)
k

))
.

Since ϕk : ∧rH1
s (kp, T ) → L is an isomorphism and since we assumed (H.nV), Lemma

follows. �

Corollary 3.3. If (H.nV) holds, then

(i) H1
F∗L

(k, T ∗) is finite,
(ii) H1

FL(k, T ) is a free O-module of rank one.

Proof. By Lemma 3.2 and [MR04, Corollary 5.2.13(i)] applied with κκκΨ0 ∈ KS(T,FL,P), it
follows that H1

F∗L
(k, T ∗) is finite.

We have H1(k, T )tors
∼= H0(k, T ⊗ Φ/O) for the O-torsion submodule H1(k, T )tors. As

explained in [MR04, Lemma 3.5.2], it follows from our hypothesis H.3 thatH0(k, T⊗Φ/O) =
0. We therefore conclude that H1

FL(k, T ) ⊂ H1(k, T ) is O-torsion free, hence it is a free O-
module. Using [MR04, Corollary 5.2.6], we conclude that

rankO
(
H1
FL(k, T )

)
= rankO

(
H1
FL(k, T )

)
− corankO

(
H1
F∗L

(k, T ∗)
)

= X (T,FL)−X (T ∗,F∗L) = 1,

where X (T,FL) and X (T ∗,F∗L) denote the core Selmer rank, see §1.4. �

Corollary 3.4. If (H.nV) holds, then H1
FBK

(k, T ) = 0.
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Proof. By Lemma 3.2, we have locs
p(κ

Ψ0
1 ) 6= 0, in particular, the map locs

p : H1
FL(k, T )→ L is

non-trivial. Since both H1
FL(k, T ) and L are freeO-modules of rank one, it follows that locs

p is
injective, i.e.,

H1
FBK

(k, T ) = ker

(
H1
FL(k, T )

locs
p−→ L
)

= 0.

�

Theorem 3.5. Under the hypothesis (H.nV),

|H1
F∗BK

(k, T ∗)| ≤ |L/O · locs
p(κ

Ψ0
1 )|,

and we have equality if and only if κκκΨ0 ∈ KS(T,FL,P) is primitive.

Proof. This follows from Theorem 3.1 and Corollary 1.19 applied with the class c = κΨ0
1 ∈

H1
FL(k, T ). Note that Corollary 1.19 applies thanks to Corollary 3.4. �

Corollary 3.6. (i) |H1
F∗BK

(k, T ∗)| ≤ | ∧r H1
s (k, T )/O · locs

p(c
(r)
k ) | .

(ii) Suppose (H.nV) holds. We then have equality in (i) if and only if the inequality of
Theorem 3.5 is an equality.

Proof. By construction,

ϕk : ∧rH1
s (kp, T )

∼ // L

locs
p(c

(r)
k )

� // locs
p(κ

Ψ0
1 )

If (H.nV) fails, then there is nothing to prove, hence we may assume without loss of generality
that (H.nV) holds. In this case, Corollary follows from Theorem 3.5 and the diagram above.

�

3.2. Applications over k∞. Along with the hypotheses we set at the beginning of §3.3.4, sup-
pose also that H.T, H.O and H.TZ hold. Recall that we write char(M) for the characteristic
ideal of a finitely generated Λ-module M , with the convention that char(M) = 0 unless M is
Λ-torsion.

We proceed as in the previous section: We first prove a bound for the characteristic ideal of
the dual Selmer group H1

F∗L
(k,T∗)∨, which we use, together with Proposition 1.21, to obtain a

bound on the characteristic ideal of the (Pontryagin dual of the) classical Selmer group.
Let κκκΨ0,Iw ∈ KS(T,FL,P) be the Λ-adic Kolyvagin system obtained from an Euler system

of rank r as in §2.4.2. Note that κκκΨ0,Iw maps to κκκΨ0 ∈ KS(T,FL,P) under the map

KS(T,FL,P) −→ KS(T,FL,P).

We note thatFL in this section is defined using the Greenberg local condition (see Remark 1.16),
whereas FL that we used in the previous section is defined by relaxing Bloch-Kato local con-
ditions (see §1.2.1).

Theorem 3.7. Under the running hypotheses:

(i) char
(
H1
F∗L

(k,T∗)∨
) ∣∣∣ char

(
H1
FL

(k,T)/Λ · κΨ0,Iw
1

)
.

(ii) The divisibility in (i) is an equality if κκκΨ0 ∈ KS(T,FL,P) is primitive.
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Proof. (i) is [MR04, Theorem 5.3.10(i)], and the assertion (ii) follows from [MR04, Theorem
5.3.10(iii)], once we check thatκκκΨ0,Iw is Λ-primitive (in the sense of [MR04, Definition 5.3.9]),
provided that κκκΨ0 ∈ KS(T,FL,P) is primitive. This is what we verify now.

Let T be the residual representation T/mΛT = T/pT . For a Kolyvagin system κκκ ∈ KS(T)
(resp., κ ∈ KS(T )), let κκκ (resp., κ) denote the image of κκκ (resp., κ) under the map KS(T) →
KS(T ) (resp., under the map KS(T ) → KS(T )). Since κκκΨ0,Iw maps to the element κκκΨ0 under
the map KS(T) → KS(T ), it is clear that κκκΨ0,Iw = κκκΨ0 , and we henceforth write κ for both.
By our assumption that κκκΨ0 is primitive, it follows that κ 6= 0. This proves that the image of
κκκΨ0,Iw under the map KS(T)→ KS(T/pT) is non-zero for any height-one prime p ⊂ Λ; since
we have a commutative diagram

κκκΨ0,Iw
_

��

∈ KS(T)

��

**VVVVV

KS(T/pT)
tthhhhh

κ ∈ KS(T )

and κ 6= 0. �

Corollary 3.8. Suppose the hypothesis (H.nV) holds.

(i) char
(
H1
F∗Gr

(k,T∗)∨
) ∣∣∣ char

(
L/Λ · locs

p(κ
Ψ0,Iw
1 )

)
.

(ii) The inequality of (i) is an equality if and only if κκκΨ0 is primitive.

Proof. As in Corollary 3.4, (H.nV) implies that H1
FGr

(k, T ) vanishes. (i) now follows from
Theorem 3.7(i) and Proposition 1.21(ii) applied with the class c = κΨ0,∞

1 ∈ H1
FL

(k,T). The
assertion (ii) is immediate from Theorem 3.7(ii). �

Define c(r)k∞
:= {c(r)kn

}n ∈ lim←−n
∧r

0H
1(kn, T ). Recall that the subscript ‘0’ here is to remind

us that the elements {c(r)kn
} are allowed to have denominators. As explained in Remark 2.2,

the singular projections of these elements have no denominators: locs
p(c

(r)
kn

) ∈ ∧rH1
s ((kn)p, T ).

Hence,
locs

p(c
(r)
k∞

) := {c(r)kn
} ∈ lim←−

n

∧rH1
s ((kn)p, T ) = ∧rH1

s (kp,T),

where the last equality is because each H1
s ((kn)p, T ) is a free O[Γn]-module of rank r and the

maps H1
s (kp,T)→ H1

s ((kn)p, T ) are all surjective.

Theorem 3.9. Under the hypotheses of Corollary 3.8,

(i) char
(
H1
F∗Gr

(k,T∗)∨
) ∣∣∣ char

(
∧rH1

s (kp,T)/Λ · locs
p(c

(r)
k∞

)
)
,

(ii) the divisibility in (i) is an equality if and only if κκκΨ0 is primitive.

Proof. Recall ϕ∞ = {ϕkn}n , which we defined in Remark 2.22. By definition, we have the
following diagram:

ϕ∞ : ∧rH1
s (kp,T)

∼ // L

locs
p(c

(r)
k∞

)
� // locs

p(κ
Ψ0,∞
1 )

(i) now follows from Corollary 3.8(i) and the diagram above, and (ii) is immediate after Corol-
lary 3.8(ii). �
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Remark 3.10. In this remark, we no longer assume that T is self-dual. As in Remarks 1.29 and
2.30 above, we note that the results of §3.1 and §3.2 apply (under their running hypotheses) for
T which satisfies (1.6).

3.3. Perrin-Riou’s (conjectural) p-adic L-functions. Rubin [Rub00, §VIII] sets up a con-
nection between Euler systems of rank r and p-adicL-functions via the work of Perrin-Riou [PR94,
PR95]. We will apply the results of §3.1 and §3.2 with the (conjectural) Euler system of Perrin-
Riou and Rubin. Since these Euler systems arise from p-adic L-functions, Corollary 3.6 and
Theorem 3.9 will relate Selmer groups to L-values.

3.3.1. The setting. For notational convenience, we restrict ourselves to the case Φ = Qp and
O = Zp. Let Qp(1) = Qp ⊗ Zp(1) and Q(j) = Qp(1)

⊗j for every j ∈ Z. We also write
V (j) = V ⊗Qp(j) for a Galois representation V , and V ∗ = Hom(V,Qp(1)). Throughout this
section, we assume that the Gk-representation V = T ⊗ Qp is the p-adic realization Mp of a
(pure) motive M/k in the sense of [FPR94, §III.2.1.1]. Write w = w(M) for the weight of M
and let L(M, s) denote the L-function of M . This is defined as an Euler product

L(M, s) =
∏

`

L`(M, s)

which is absolutely convergent in the half-plane <(s) > 1 + w
2

. We will assume without loss
that k = Q; as in general one could consider the induced representation Indk/QT in place of T .
We will suppose further that the representation V = Mp is crystalline at p.

Write M̌ for the dual motive. We shall be interested in the case of a self-dual motive M ∼→
M̌(1). In this case, we have w = −1, and s = 0 is the center of symmetry of the conjectural
functional equation that the associated complex L-function L(M, s) satisfies. Serre’s [Ser86,
§3] general recipe implies that the Archimedean factor L∞(M, s) at infinity is non-vanishing
at s = 0, hence the central point s = 0 is critical in the sense of Deligne [Del79].

Example 3.11. In the examples below, suppose k is an arbitrary totally real field.

1. Let A be an abelian variety over k. Set M = h1(A)(1). The p-adic realization of M
is given by Mp = Qp ⊗ Tp(A). Falting’s [Fal83] proof of the Tate conjecture implies
that the motive M determines the abelian variety A up to an isogeny over k. Let A∨

denote the dual abelian variety, and fix a polarization f : A → A∨. This isogeny in-
duces an isomorphism of motives h1(A)

∼→ h1(A∨) and the Weil pairing shows that
M

∼−→ M̌(1), i.e., M is self-dual. One has L(M, s) = L(A/k, s+ 1), where L(A/k, s)
is the Hasse-Weil L-function attached to A. The study of L(M, s) at the central critical
point s = 0 therefore amounts to the study of L(A/k, s) at s = 1. The representa-
tion V is crystalline at p if and only if A has good reduction at p (by the work of
Fontaine [Fon79] for the “if” part of this statement; and the “only if” part by Coleman
and Iovita [CI99], see also [Mok93] for the case when A/Qp is potentially a product of
Jacobians).

2. Suppose that f is a cuspidal Hilbert eigenform of even parallel weight (w,w, . . . , w)
(for brevity, we say of weight w ∈ 2Z+), of level n ⊂ Ok and central character ϕ.
Thanks to [Shi78, Proposition 1.3], there exists a number field Lf such that its ring
of integers Of := OLf

contains the values of ϕ and all Hecke eigenvalues θf (a)
for (a, n) = 1. Let p be any prime of Lf above p. The work of Carayol [Car86],
Wiles [Wil88], Taylor [Tay89] and Blasius and Rogawski [BR93] attaches f a motive
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M such that the p-adic realization Mp = Vp(f) is an irreducible [Tay95] two dimen-
sional representation ofGk over Lf,p. (When k = Q, this construction is due to Eichler,
Shimura, Deligne [Del71] and Scholl [Sch90].) At least when p is large enough, Bla-
sius and Rogawski show that Vp(f) is crystalline at p if (p, n) = 1. Let Ak denote
the idéles of k, and suppose χ : Ak/k

× → L×f is a character such that ϕ = χ−2. As
Nekovář explains in [Nek06, §12.5.5], the Gk-representation V = Vp(f)(w/2) ⊗ χ is
self-dual in the sense that V ∼→ Hom(V,Qp(1)).

Let BdR denote Fontaine’s [Fon82] field of p-adic periods; it is a discretely valued field
whose valuation ring contains Qp. There is a natural descending filtration · · · ⊃ Bi

dR ⊃ Bi+1
dR ⊃

. . . , which is obtained by letting Bi
dR ⊂ BdR to be the set of elements whose valuation is at

least i. For an arbitrary Galois representation W (which is finite dimensional over Qp) and a
finite extension L of Qp, write DdR(L,W ) = H0(L, BdR ⊗W ), and DdR(Qp,W ) = DdR(W ).
The filtration on BdR induces a decreasing filtration {Di

dR(W )}i∈Z on DdR(W ). One always
has

dimLDdR(L,W ) ≤ dimQpW

by [Fon82, §5.1] and the GL-representation W is called de Rham if dimL(DdR(L,W )) =
dimQp(W ). A GQp-representation W is de Rham if and only if it is de Rham as a GL-
representation; and one has

L⊗Qp DdR(W )
∼−→ DdR(L,W ),

if W is de Rham.
For any de Rham representation W of GL as above, Bloch and Kato [BK90] construct a

canonical homomorphism

exp∗ : H1(L,W ) −→ D0
dR(L,W )

called the dual exponential map. By its construction, it factors through the singular quotient
H1

s (L,W ). In Section 3.3.2 below, we will explain Perrin-Riou’s [PR94] interpolation of the
dual exponential maps for crystalline9 representations (which we define next), as one climbs
up the cyclotomic tower.

Let Bcris be Fontaine’s crystalline period ring, see [Fon94] for its construction and other
properties we note here. For a GQp-representation W as above, let Dcris(W ) = H0(Qp, Bcris ⊗
W ) be Fontaine’s filtered vector space associated to W which is endowed by a Frobenius
action. If W is also a GQ-representation, we set

Dcris(F,W ) = Dcris(IndF/QW )

for a finite abelian extension F of Q which is unramified above p.
For any GQp-representation W , it is known that Dcris(W ) ⊂ DdR(W ), and hence

dimQp Dcris(W ) ≤ dimQp DdR(W ) ≤ dimQpW,

and we say that W is crystalline if dimQp Dcris(W ) = dimQpW. Hence, if W is crystalline, then
W is de Rham as well, and one has Dcris(W ) = DdR(W ).

We define final more ring which plays an important role in what follows. Define G∞ :=
Gal(Q(µµµp∞)/Q) = ∆×Γ where ∆ = Gal(Q(µµµp)/Q) is a finite group of order prime to p, and
Γ is defined as before. Set Gn = Gal(Q(µµµpn)/Q). Fixing a topological generator γ of Γ, we

9Kato claims in [Kat04, Remark 16.5] that this assumption is not necessary and refers to his preprint with Kurihara
and Tsuji [KKT96].
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may identify Zp[[G∞]] by the power series ring Zp[∆][[γ − 1]] over the group ring Zp[∆]. For
any integer h ≥ 1, set

Hh =

{∑
n≥0,
δ∈∆

an,δ · δ · (γ − 1)n ∈ Qp[∆][[γ − 1]] :

lim
n→∞

|an,δ|p · n−h = 0, for every δ ∈ ∆

}
,

where | · |p is the p-adic norm on Qp, normalized by setting |p|p = 1
p
. Define H∞ = lim−→h

Hh.

Any continuous character χ : G∞ → Q×
p induces a homomorphismH∞ → Q×

p , which we still
denote by χ. We write ρcyc for the cyclotomic character

ρcyc : G∞
∼−→ Z×p

and following [PR94, §4.1.5], we say that ρ is a geometric character ofG∞ if there is an integer
j = jρ such that ρ−j

cyc · ρ = χρ is a character of finite order.
Finally, for every field F and a GF -module T which is free of finite rank over Zp, write

H1
∞(F, T ) = lim←−

n

H1(F (µµµpn), T ),

and if W = T ⊗Qp, write H1
∞(F,W ) = Qp ⊗H1

∞(F, T ).

3.3.2. Perrin-Riou’s extended logarithm and conjectures. We are now ready to state Perrin-
Riou’s theorem [PR95, Theorem 1.2.5], following [Kat04, Theorem §16.4].

Theorem 3.12 (Perrin-Riou). Suppose W is a GQ-representation which is finite dimensional
as a Qp-vector space. Assume W is de Rham at p and Dcris(W

∗) ⊂ D0
dR(W ∗). Then for every

finite extension F of Q which is unramified above p, there is a unique homomorphism

LogF : H1
∞(F,W ) −→ H∞ ⊗Qp Dcris(F,W )

which satisfies the following properties (i)-(ii), for every η ∈ Dcris(W
∗) and for every integer

j ≥ 1:

(i) Let LogF
η be the composite map

LogF
η : H1

∞(F,W )
LogF

−→ H∞ ⊗Qp Dcris(F,W )
η−→ H∞ ⊗Qp F,

where the second map is induced from the canonical pairing

DdR(W )×Dcris(W
∗) −→ Qp

and from
Dcris(F,W ) ⊂ DdR(F,W ) ∼= F ⊗DdR(W ).

Then for n ≥ 1, for every character χ : Gn → Q×
p which does not factor through Gn−1

and for any x ∈ H1
∞(F,W ), we have

ρj
cycχ

−1
(
LogF

η

)
≈
∑
σ∈Gn

χ(σ)〈σ(exp∗(x−j,n)), (p−jϕ)−n(η)〉.

Here:
– ‘≈’ means equality up to simple non-zero factors which are omitted for brevity,
– ϕ is the (geometric) Frobenius at p,
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– x−j,n is the image of x under the composite

H1
∞(Fp,W )

∼−→ H1
∞(Fp,W (−j)) proj−→ H1(F (µµµpn)p,W (−j)),

– exp∗ is the semi-local Bloch-Kato dual exponential

exp∗ : H1(F (µµµpn),W (−j)) −→ D0
dR(F (µµµpn),W (−j))

⊂ DdR(F (µµµpn),W (−j))
= DdR(F (µµµpn),W )

= F (µµµpn)⊗DdR(W )

– 〈 , 〉 is the pairing

F (µµµpn)⊗DdR(W )×Dcris(W
∗) −→ F (µµµpn)⊗Qp

induced from the pairing DdR(W )×Dcris(W
∗) −→ Qp.

(ii) Suppose η = (1−p−jϕ)η′,with η′ ∈ Dcris(W
∗), and let LogF

η be as in (i). Then for any
x ∈ H1

∞(Fp,W ) we have

ρj
cyc(LogF

η (x)) = (j − 1)! · 〈exp∗(x−j,0), (1− pj−1ϕ−1)η′〉.

Let M/Q be a pure motive. For a geometric character ρ of G∞, set M(ρ) = M(jρ)(χρ). For
every positive integer f, one can then attach M(ρ) a complex L-function with Euler factors at
primes dividing f removed:

Lf(M(ρ), s) =
∏
`-f

L`(M(ρ), s)−1.

Here, for a prime ` 6= p at which the p-adic realization M(ρ)p is unramified, the Euler factor at
` is given by

L`(M, s) = det
(
1− Fr−1

` x |M(ρ)p

) ∣∣∣
s=`−s

.

Let K = Frac(H∞), the fraction field of H∞. Write d− = dimM−
p for the dimension of

the (−1)-eigenspace of a complex conjugation acting on the p-adic realization Mp which we
henceforth assume to be crystalline.

Conjecture 1 (Perrin-Riou [PR95] §4.2.2). For every positive integer f which is prime to p and
to every prime at which Mp is ramified, there exists an element lf(M) ∈ K⊗∧d−Dcris(Mp) and
η = η1 ∧ · · · ∧ ηd− ∈ ∧d−Dcris(M

∗
p ) such that

L
(p)
f (M) = η(lf(M)) ∈ K

is the ‘p-adic L-function’ attached to M , which interpolates the special values of the complex
L-functions attached to twists ofM by geometric characters, with their Euler factors at primes
dividing f removed.

See [PR95, §4.2] for a detailed description of the properties which characterize this p-adic
L-function. The statement above is Rubin’s extrapolation [Rub00, Conjecture VIII.2.1] of
Perrin-Riou’s conjecture by introducing the level f. The interpolation property alluded to above
(roughly) reads as follows:

For every geometric character ρ of G∞ such that χρ(p) · pjρ and χρ(p) · p−jρ−1 are not
eigenvalues of ϕ on Dcris(Mp),

(3.2) ρ−1(L
(p)
f (M)) = Ep(M(ρ))× Lf(M(ρ), 0)

Per∞(M(ρ))
× Perp(M(ρ))
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where Ep(M(ρ)) is the Euler factor at p and Per∞(M(ρ)) (resp., Perp(M(ρ))) is the archimedean
(resp., p-adic) period attached to M(ρ), see [PR95, §3.1 and 4.1.4].

3.3.3. Connection with Euler systems of rank r. Let M/Q be a pure motive as above, and let
Mp be its p-adic realization which is crystalline. Fix a GQ-stable lattice T ⊂ Mp and an
integer B = B(T ) which is divisible by p and all bad primes for Mp. For any integer f, write
Rf = Q(µµµf)

+ for the maximal real field of Q(µµµf) and define

C =
⋃

(f,B)=1
n≥1

Rf(µµµpn).

For notational consistency, we write r = d− = d−(Mp). Recall that an Euler system of rank r

for the pair (T , C) is a collection c(r) =
{
c
(r)
K

}
K⊂C

with the properties that

• c(r)K ∈ ∧r
0H

1(K, T ),
• for K ⊂ K ′ ⊂ C such that K ′/Q is a finite extension,

CorrK′/K (cK′) =

∏
q

Pq(Fr−1
q )

 cK ,

where the product is over all rational primes q - B which does not ramify in K/Q, but
does ramify in K ′/Q.

See §2 above for further details.
Until the end of this section we assume the following conditions hold for T :

(A) H0(Qp(µµµp), T ∗) = 0,
(B) H0(Qp(µµµp∞), T ) = 0.

where T ∗ = Hom(T ,µµµp∞) is as before. The conditions above are the hypotheses H.nE and
H.D with k = Q(µµµp), and as in §1.2.1, one may prove under these conditions that:

(i) H1
∞(Qp, T ) is a free Zp[[G∞]]-module of rank d = dimMp,

(ii) the canonical projection H1
∞(Qp, T )→ H1(Qp(µµµpn), T ) is surjective,

(iii) H1(Qp(µµµpn), T ) is a free Zp[Gn]-module of rank d.

Furthermore, as noted in Remark 2.3, these together with [Rub96, Example (1), page 38] show
that

(1) ∧r
0H

1(Qp(µµµpn), T ) = ∧rH1(Qp(µµµpn), T ),
(2) ∧rH1

∞(Qp, T ) = lim←−n
∧rH1(Qp(µµµpn), T ),

where the exterior products in (1) is taken in the category of Zp[Gn]-modules, whereas in (2),
the exterior products are taken in the category of Zp[[G∞]]-modules.

For any number field K, write as usual

locp : H1(K, T ) −→ H1(Kp, T )

for the localization map at p. If c(r) =
{
c
(r)
K

}
K∈K

is an Euler system of rank r for (T , C),

we may regard locp

(
c
(r)
∞

)
:=
{

locp

(
c
(r)
Q(µµµpn )

)}
n

as an element of ∧rH1
∞(Qp, T ), and apply

Perrin-Riou’s extended logarithm

Log⊗r : ∧rH1
∞(Qp, T ) −→ K⊗ ∧rDcris(Mp)
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on it. Here we write Log for LogQp above.
Finally, assume that the weak Leopoldt conjecture (see [PR95] §1.3) holds for the represen-

tation HomZp(T ,Zp(1)).

Conjecture 2 ([PR95] §4.4 and [Rub00] Lemma VIII.5.1). Assuming the hypotheses above,
there exists an Euler system c(r) =

{
c
(r)
K

}
K∈C

of rank r for (T , C) so that

η
(
Log⊗r

(
locp

(
c(r)∞
)))

= L(p)(M),

where η = η1 ∧ · · · ∧ ηr ∈ ∧rDcris(M
∗
p ), and L(p)(M) = L

(p)
1 (M) is as in Conjecture 1.

We will write Log⊗r
η as a short-cut for the composite

η ◦ Log⊗r : ∧rH1
∞(Qp, T )→ H∞.

3.3.4. Applications. We apply the results of §3.3.4 together with the (conjectural) Euler sys-
tem of rank r given in Conjecture 2.

Suppose V is the p-adic realization of a fixed self-dual pure motive M ∼→ M̌(1) defined
over k = Q and with coefficients in L = Q. As remarked before, taking k = Q is not too
serious as one may always consider Indk/QM in place ofM; and the assumption that L = Q
is only made for notational convenience. The p-adic realization V is then a finite dimensional
Qp-vector space endowed with a GQ-action, which is unramified outside a finite set of places.
We will also assume that V is crystalline at p. Fix a GQ-stable lattice T ⊂ V . We assume until
the end of this paper that T satisfies the hypotheses (A) and (B) from the previous section, as
well as H.1-H.5 from the introduction.

Along with the motiveM/Q, we will consider its Tate-twistsM(j) for very large integers
j; the p-adic realizationM(j)p ofM(j) is V (j) = V ⊗Qp(j). The GQ-representation V (j) is
also unramified outside a finite set of places and is crystalline at p. We write T (j) = T ⊗Zp(j)
which is naturally a lattice inside V (j).

Lemma 3.13. For any j, the hypotheses (A) and (B) hold for T (j).

Proof. (B) obviously holds for T (j) if it holds for T . Let Λ = Zp[[Γ]] with Γ = Gal(Q(µµµp∞)/Q(µµµp))
as usual. The statement of (A) for T is equivalent to the vanishing of H2(Qp(µµµp), T ⊗ Λ) = 0
(see the proof of Lemma 1.9), and the proof of Lemma follows using the natural isomorphism

H2(Qp(µµµp), T ⊗ Λ) −→ H2(Qp(µµµp), T (j)⊗ Λ).

�

Fix a large enough j ∈ 2Z so that D0
dR(V (j)∗) = DdR(V (j)∗). Such an integer j exists

because
D0

dR(V (j)∗) = D0
dR(V ∗(−j)) = D−j

dR (V ∗).

Since we insist that j is even, it follows that r = dim(V −) = dim(V (j)−).
Assume that the weak Leopoldt conjecture is true for the representation Hom(T (j),Zp(1)) ∼=

T (−j), and suppose that the Conjecture 2 holds for M =M(j).

Theorem 3.14. Suppose 1 is not an eigenvalue for the action of ϕ on Dcris(V ), and assume
that L(M, 0) 6= 0. Then the Bloch-Kato Selmer group H1

F∗BK
(Q, T ∗) is finite.
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Remark 3.15. Since V is self-dual, it follows that 1 is an eigenvalue of ϕ acting on Dcris(V ) if
and only if p−1 is an eigenvalue. The assumption that 1 is not an eigenvalue (therefore neither
p−1) rules out the possibility that the p-adic L-function L(p)(M) may have an exceptional zero
at the trivial character of G∞.

Note also that 1 (resp., p−1) is an eigenvalue of ϕ acting on Dcris(V
∗) = Dcris(V ) if and

only if pj (resp., pj−1) is an eigenvalue of ϕ acting on Dcris(V (j)∗). In particular, under the
assumption that 1 is not an eigenvalue for ϕ

∣∣
Dcris(V )

, the operators 1 − p−jϕ and 1 − pj−1ϕ−1

acting on Dcris(V (j)∗) (which appear in the statement of Theorem 3.12(ii)) are both invertible.

Proof of Theorem 3.14. Let c(r)(j) denote the Euler system of rank r for the pair (T (j), C)
predicted by Conjecture 2, where C is as in the previous section. Applying Rubin’s twisting
formalism [Rub00, §VI], we obtain an Euler system c(r) = {c(r)K }K∈C of rank r for (T, C).
Corollary 3.6 gives an inequality

|H1
F∗BK

(Q, T ∗)| ≤ | ∧r H1
s (Q, T )/Zp · locs

p(c
(r)
Q ) |,

and the theorem is proved once we verify that locs
p(c

(r)
Q ) 6= 0.

Let c(r)∞ (j) = {c(r)Q(µµµpn )(j)}n ∈ H1
∞(Q, T (j)), and consider

(3.3) ρj
cycL

(p)(M(j)) = ρj
cycLog⊗r

η

(
locp

(
c(r)∞ (j)

))
where the equality follows from the defining property of c(r)(j). If we take j large enough and
assume that 1 is not an eigenvalue for ϕ

∣∣
Dcris(V )

, one may calculate ρj
cycL

(p)(M(j)) using the
interpolation property of the (conjectural) p-adic L-function L(p)(M(j)) and conclude that

(3.4) ρj
cycL

(p)(M(j)) 6= 0

by our assumption that L(M, 0) 6= 0. On the other hand, the interpolation property of Perrin-
Riou’s extended logarithm (see Theorem 3.12(ii)) shows that the image of locp

(
c
(r)
∞ (j)

)
under

∧rH1
∞(Qp, T (j))

Log⊗r
η−→ H∞

ρj
cyc−→ Qp

coincides with the image of locp

(
c
(r)
Q

)
under

∧rH1(Qp, T )
(exp∗)⊗r

// ∧rDdR(V )
α−1β·η // Qp ,

and since the Bloch-Kato dual exponential exp∗ factors through the singular quotientH1
s (Qp, T ) :=

H1(Qp, T )/H1
f (Qp, T ), this agrees with the image of locs

p

(
c
(r)
Q

)
under the composite

(3.5) ∧rH1
s (Qp, T )

(exp∗)⊗r

// ∧rDdR(V )
α−1β·η // Qp .

Here

α = det(1− p−jϕ|Dcris(V (j)∗)) and β = det(1− pj−1ϕ−1|Dcris(V (j)∗)).

Both α and β are non-zero thanks to our assumption that 1 is not an eigenvalue for ϕ
∣∣
Dcris(V )

(see Remark 3.15).

It then follows from (3.3) and (3.4) that the image of locs
p

(
c
(r)
Q

)
under the map (3.5) is

non-zero, which in return implies that locs
p

(
c
(r)
Q

)
6= 0 and the Theorem is proved. �
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Remark 3.16. The proof of Theorem 3.14 gives a bound on the Bloch-Kato Selmer group
H1
F∗BK

(Q, T ∗) which is closely related to L-values. This lends evidence to Bloch-Kato conjec-
tures.

Remark 3.17. One may possibly prove an Iwasawa theoretic version of Theorem 3.14. How-
ever, the author is unable to state this application of the conjectural Euler System of rank r
(Conjecture 2) and Theorem 3.9 in a satisfactory level of generality because he does not know
how to compare the Bloch-Kato local condition with the Greenberg local condition for a gen-
eral Galois representation, besides the comparison for the Galois representations attached to
elliptic modular forms [Kat04, Lemma 17.9] and for Hilbert modular forms [Nek06, Proposi-
tion 12.5.8].
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