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TRACE NORM ESTIMATES FOR PRODUCTS OF INTEGRAL
OPERATORS AND DIFFUSION SEMIGROUPS

Michael Demuth
Peter Stollmann

Günter Stolz
Jan van Casteren

Abstract
We give trace norm estimates for products of integral operators and for diffusion

semigroups. These are applied to differences of heat semigroups. A natural example
of an integral operator with finite trace which is not trace dass is given.

INTRODUCTION

We prove two trace dass criteria. The first, Theorem 1, provides an estimate for the trace
norm of the product of two integral operators. The second, Theorem 3, concerns differences
of diffusion semigroups. Both results are inspired by the same circle of problems, namely the
search for trace estimates for differences of heat semigroups, which in turn are a powerful
tool in the investigation of spectral properties of the associated Hamiltonians. The according
applications are indicated in Section 3. Let us now give a little more details concerning the
following sections.

Section 1 is devoted to a proof of Theorem 1 which states that

IIABlitr ~ JIIA[·, xI1l2I1 B [x, ·1I12dm{X),

if A~ B are operators with kerneis A[·,·}, B[·,·] and the L2-norms in the integral are assumed
to exist. As one immediately notices, this encludes the well-known case that A., Bare
Hilbert-Schmidt, but it is much more general: The kerneis A, B do not even have to define
bounded operators in L2 • We then relate the above estimate to Corollary 2, which is the key
to the results of the second section. There we treat differences of ultracontractive diffusion
semigroups. The advantage of Theorem 3 in comparison with the results of [9] is the fact
that we do not have to assurne the validity of a Feynman-Kac formula or even the existence
of a stochastic process. This enables the easy application to Neumann boundary problems
given in Corollary 5. We end the third section by giving an example which darifies some
aspects of the trace norm estimates for semigroup differences: We show that an additional
Dirichlet boundary condition on a set of finite capacity can lead to a semigroup difference
which is not trace dass, hut is a Hilbert-Schmidt operator with finite trace. This shows
that a conjecture in [9] is wrong. Moreover it appears to be the first Ilnatural" example of
an operator with positive continuous kernel and finite trace which, nevertheless, is not trace
dass.
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1. INTEGRAL OPERATORS

We assurne throughout that (X, 21, m) is a q-finite measure space and we are concerned with
trace dass operators on L2 = L2(X,21,m) which we denote by ~1 = ~I(L2)' We use 1I·lltT
for the trace norm on ~1 and write (~2, ('[')HS) for the Hilbert Schmidt operators, where

(AIB)HS = trace(B*A).

A measurable function A[·,·] : X x X ~ C such that

(Aflg) = JJA[x,y]f(y)g(x)dm(x)dm(y),

or, equivalently,

Af(o) = JA[o,y]f(y)dm(y)

is said to be a kernel for the operator A.

THEOREM 1 Let A, B : X x X -+ C be measurable such that A[·, x], B[x,·] E L2

for a.e. x E X and

(1)

(2)

Then there is a trace class operator AB : L2 --t L2 with kernel

AB[x, y] =JA[x, z]B[z, y]dm(z)

such thal

II ABlitT ~JII A[o, z]1I2I1 B [z, o]1I2dm(z)

PROOF. Set h(z):= IIA["z]1I2,g(z):= 11B[z"1I12' With the convention g-l(X):= 0 where
g(x) = 0, we write Mg-t for the corresponding multiplication operator. It follows that

IBf(x)1 = IJB[x,y]f(y)dm(y)1 ~ g(x)lIflh,

so that Mg-l B : L2 -+ Loo is defined and has norm less than 1. Similarly,

By assumption hg E LI, so that

M(hg)l/'l Mg-l B : L2~ L2

is bounded. As a composition oi a so-called Carleman operator with an L2-multiplication
it is even Hilbert-Schmidt with Hilbert-Schmidt norm less than
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The same argument gives that

Hence the composition
AB := AMh-t M(hg)l/'J M(hg)l/7. Mg-l B

is a trace dass operator which satisfies (2). It requires only a straightforward calculation to
show that the kernel has the asserted form. 0

The original proof of the following Corollary given in [10] is quite similar to the ahove praof
of the Theorem (write AB = AM<Jll/7.1VI<Jll/7.M<Jl-l B).

COROLLARY 2 Let A E lJ3(LI, L2 ), B E lJ3(L2 , Ld and assume that there exists
a «I> in LI such that IBI1 ::; 4- for every f in the unit ball 01 L2 . Then

IIAB lItT::; IIAII . 114> 111.

This lemma will be the key to the results in the following section. Apart from its applications
in Section 3, it proved to be a very useful tool in the spectral theoretic investigations of [10].

2. DIFFUSION SE~IIGROUPS

We call a semigroup U = (U(t); t ~ 0) a. diffusion semigroup if the following conditions are
satisfied

• U(t) E '13(L2 ) is selfadjoint for all t ~ 0.

• U(t) induces a bounded operator on Lv for all t 2: ü,p E [1, CXJ)

• U is positivity preserving, Le. U( t)1 2: °for 1 2: 0, t ~ 0.

If furthermore,

• U(t) induces a bounded operator frDlll L} to Loo for all t > 0

we speak of an ultracontractive diffusion semigroup. To simplify notation, we denote by
IIAllv,q the norm of an operator [rom L1' to Lqand we use

. for °< q < 1. There is a natural order for positivity preserving semigroups which comes
from the order of functions, namely

V::; U:{:::::> Vt ~ 0,/ ~ 0: V(t)f::; U(t)f.

The main result of this section deals with differences of semigroups which obey this order
relation.
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THEOREM 3 Assume that U, V are ultracontraetive diffusion
semigroups satisfying V ::; U and set D(t) := U(t) - V(t) for t 2: o.
If D(t)l E L 1/ 2 for some t > 0 then

lIU(2t) - V(2t)lltr ::; IID(t)1111/211D(t)Il~:~(JIU(t)lh,2 + IIV(t)lh,2)'
We single out· one step in the proof of Theorem 3 which can be thought of as a Cauchy
Schwarz inequality for positivity preserving operators. For integral operators it cau easily be
deduced from the usual Cauchy-Schwarz inequality. In the proof below we make essential use
of the existence of a lifting for u-fini te measure spaces (see [6, 4] for background information).

LEMMA 4 Assume thai A : L2 -+ L2 is posiiivity preserving and induces a
bounded operator from Lp to Lq for all p, q E [1, 00], p ::; q. Then, for f E L2 :

IAfl ::; (AI)l/2. (A(lfI 2))I/2.

PROOF. Denote by ..coo the essentially bounded measurable functions (not equiv
alence c1asses!). Since m is u-finite there exists a lifting A, by which we understand a linear
multiplicative (hence order preserving) mapping

A : Loo --+ ..coo ,

such that Af is a function in the equivalence dass f. For fixed x E X set

qx: L2 x L2 --+ C,qx(!,g):= A(A(fg))(x).

As A is linear and positive, qx is a positive sesquilinear form. The Cauchy-Schwarz inequality
implies

IA(A(fg))(x)1 .::; (i\(AlfI 2)(x))1/2. (A(AlgI 2 )(x))1/2
fo~ all x EX. Since Af is a representative of f, we may take g E L 2 , 0 ::; 9 ::; 1 in the last
inequality and obtain

IA(fg)1 .s; (AlfI 2 )1/2 . (A1)1/2,

since Ag ::; Al. Approximating the constant function 1 from below by a sequence gn such
that 0 ::; 9n ~ 1, gn E L2 and taking the limit n -+ 00 gives the desired inequality. 0

PROOF of Theorem 3. First note that, by the semigroup property of U and V,

D(2t) = U(t)D(t) + D(t)V(t).

By Lemma 4, for Ilfll2 ~ 1,

lD(t)f(x)1 ::; (D(t)l(x))I/2. (D(t)lfI 2(x))I/2

::; (D(t)1(x))1/211D(t)II~:;' =: 4>(x).

Hence we can apply Corollary 2 and obtain

11 U( t )D(t) lItT < 114>lh . IIU(t)lh,2
= 1I D(t) 1111/211 D(t) 11 ~:~ 11 U(t) Ih,2.

By the salne arguments

11 D(t)V (t) 11 tr = IIV(t)D(t)lltT

< I1 D(t) 11h/211 D(t) 11 ~:~ 11 V (t) 111,2,

so that the asserted estimate follows. 0
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3. APPLICATIONS AND EXAMPLES

In this section we want to illustrate the above theorems by some applications. Although we
are interested in more general Hamiltonians (see [2)) we restrict ourselves to the Laplacian on
Rd in order to keep preliminary definitions and technicalities at aminimum.' We denote the
heat semigroup by U(t) := e1

/
2ßt and write 6.g,,6.~ for the Dirichlet, respectively Neumann

Laplacian on an open set E C IRd
• The latter are selfadjoint operators on L2 (E), and we

extend the semigroups they generate in the obvious way to all of L2 (lR d
) = L2(E) EB L2 (EC)

by setting U€ := e1/ 2ßEt EB O. With the analogous notation for the Neumann operator we
note in passing that

Ur ~ u, ug 5: U~,

while u~ 't U apart from trivial cases. While U, U€ are always ultracontractive (see [1],
Section 2.1, especially Example 2.1.8), this is not the case for U~ (tbe Neumann Laplacian
need not even have compact resolvent). By p.::c we denote the Wiener measure for particles
starting in x and get:

COROLLARY 5 Let 4JE,t := p.::c{X" E Be for some s ~ t} for any open E C }Rd.

(1) IIU(2t) - ug(2t)ll'tr $ c(t) I <PE,t(X)1/2dx.

(2) If U~ is ultracontraetive, then

IIU(2t) - U~ (2t)II'T ~ c(t)JtPE.t(X)1/2dx.

PROOF. By the Feynman-Kac formula ([3)),

Uf:(t)l(x) = PX{X" E ~ for all s :$ t} :$ XE.

Consequently,

(U(t) - Ug(t))l(x) = 1 -lF{ ... }

- p:r{X" E EC for same s 5: t}.

Theorem 3 implies
lIU(2t) - U~\2t)lltr 5: C(t)llePE,tlll/2'

proving (1). Ir , furthermore, U~ is ultracontractive, we can apply Theorem 3 to the differ
ence U~ - ug, since Uf1 = XE and therefore

(U~(t) - Ug(t))l = 4JE,tXr..

This yields (2). o

We would like to mention that the Neumann heat semigroup is ultracontractive if E has
the extension property (see [1], Theorem 2.4.4, p. 77). Another way to prove part (2) of
tbe above Corollary would be to apply tbe analysis of [9] to the Dirichlet form generated by
the Neumann Laplacian. In order to do so, one faces technical problems related with the
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existence of an a.ssociated process.
In the situation of C.orollary 5(1) it would be desirable to weaken the assumption on tPE,t to
the requirement <PE,t E LI, since the latter is fulfilled for all sets B satisfying cap( BC) < 00

(see the proof of the following lemma), which in turn is a quite natural condition. In [9]
the corresponding statement was formulated as a conjecture. The following lemma and the
subsequent example show, however, that cap(~C) < 00 does not imply IIU(t)-U€(t)lltr < 00.

There is one more reason why we find this example quite interesting: From the results of
[9] it is clear that the semigroup difference in question is a Hilbert-Schmidt operator with
positive continuous kernel. Moreover, it is easy to see that its trace is finite. Thus, according
to aremark of Simon, [7], Remark 2, p. 77 one would expect it to be trace dass, which is not
the case. To introduce our example we have to recall the definition of the Birman-Solomjak
space

11(L2 ) := {f : IRd
-> IR; L (1 If(xWdx)1 /2 < oo},

aEzd Ca

where Co denotes the unit cube centered at 0'; see [7], p. 55.

LEMMA 6 Assume that r := ~c satisfies cap(r) < 00 hut Xr tf. 11(L2 ). Then
l/JE,t E LI hut U(t) - ug(t) tf. 23 1 for any t > O.

PROOF. For the potential theoretic notions used in this proof we refer the reader
to [5], Chapter 3. Recall that

cap(r) = min{JIV'fl 2+ Ifl2dx;f E W;·2,j 2: xd,

where j denotes the quasi-continuous representative of f. The unique minimizing element
er' is called the l-equilibrium potential of rand cau be represented by

er(x) = JG(x,y)dvr(y),

where vr is a measure supported on f with total mass equal to the capacity of f, and G(x, y)
is the kernel of (-~ + 1)-1. Since sUPy JG(x,y)dx = ll(-~ + 1)-111100 ~ 1,

lIerlh = JJG(x,y)dvr(y)dx

- J(J G(x,y)dx)dvr

< cap(r).

Denote r(w) := inf{s > 0; X,,(w) E ~}, the first hitting time oi r. Then

<PE,t( x) = EX {r ~ t} ::; etJE,x {e- T
} = eter(x),

where we used [5], Lemma 4.3.1 in the last step. This proves the first assertion. If
U(t) - ug(t) E ~1 for same t > 0, it follows that Xr(U(t) - U€(t)) E ~1' Since
xr(U(t) - ug(t)) = XrU(t), we may apply [7J, Proposition 4.7, to deduce Xr E 11(L 2 ).

o
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EXAMPLE 7 11 d ;::: 5 and f := Un Bn,where B n is a ball 01 radius r ncentered at (n, O... ,0)
with r n ~ 1/2 we have

cap(f) ::; c 2: r~-2, Ilxrlllt<~) = c' 2: r~/2.
n n

Forrn = 1/2·n-2/ d itfollows that cap(f) < 00 and Xr rt IdL2 ). Consequently, U(t)-U€(t)
is Hilbert-Schmidt with finite trace but not trace dass.
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