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I. INTRODUCTION

Self-dual and Einstein 4-manifolds are of particular interest to both mathemati

cians and physicists. Many new examples of such geometries were discovered through

the development of the Euclidean approach to quantum gravity. There the zero

temperature vacuum state of the gravitational field can be thought of as a Ricci-flat

metric with certain asymptotic behavior. This leads to, so-called, asymptotically 10

cally Euclidean (ALE) Ricci-flat manifolds. A special case of such geometries, which

is now completely understood, are the hyperkähler ALE instantons. These are Rie

mannian 4-manifolds with 8U(2) holonomy graup for which some neighborhood of

infinity has a finite covering [; diffeomorphic to the eomplement of the unit ball in F.
If Xi is the natural coordinate on Jii then the metric 9ij = Oij +hij on [; tends to the

standard Euclidean metric with 8P(hij ) = O(r-4- p ), where r is the proper distance.

The fall-off conditions given here are these of Ref. 1. (Weaker conditions can often

be found in some mathematical physics literature referring to the ALE metrics, see

for example Ref. 2).

The first example of the hyperkähler ALE metric was constructed by Eguchi and

Hanson3 . It describes the Kähler Ricci-flat metric on the cotangent bundle of the

complex projective line. At the same time Calabi4 gave a description of hyperkähler

metrics on T*(cP(n) and the Eguchi-Hanson metric is precisely the Calabi metric

on T*(JJP(l). More examples were given later by Gibbons and Hawking5. They

were called multi-Eguchi-Hanson metrics. In the independent work of Hitchin6 the

multi-Eguchi-Hanson metrics were obtained as metrics on the minimal resolution

of the singularity of (J}2/7Lk. In the same work Hitchin conjectured the existence

of such metrics on the minimal resolution of (/}2/r where r c SU(2) is any discrete

subgroup. This conjecture was finally proven by Kronheimer1,7. He used the quotient

techniques of Hitchin et al.S to describe these metries explicitly and showed that any

ALE hyperkähler manifold is isometrie to a member of one of the families obtained

in his construction.

The ALE hyperkähler manifolds are examples of self-dual Einstein manifolds for

which classificatian results were obtained. In general case our understanding of such

geometries is far from satisfactory. Very little is known about non-compact case. If

the manifold is compact, we have the well-known result of Hitchin9 which says that,
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if the scalar curvature K. of a compact self-dual Einstein manifold M is non-negative,

then

(i) M is isometrie to S4 or rc p 2 with their canonical metries (K. > 1),

(ii) M is either flat or its universal covering is a 1(3 surface with the Calabi-Yau

metric (K. = 0).

Again, not much is known if M is compact and has negative scalar eurvature,

and the only examples here are eompact quotients of the hyperbolic 4-ball.

If M is not a manifold but rather a V -manifold, or a Riemannian orbifold, then

the Hitehin's result no longer applies. Examples of infinitely many non-symmetrie

self-dual Einstein metrics with positive scalar curvature on compact orbifolds were

constructed by Galicki and Lawson lO . All of them are metrics on the weighted pro

jective spaces a:P;,q,S' However, even with the powerful technique of the quaternionie

quotient, it is not easy to find new examples of such metrics with only orbifold sin

gularities. In this paper we show that the orbifolds of Galicki and Lawson are special

cases of a more general construction. For any ALE family of hyperkähler spaces

M(r,~) we obtain a new family of eompact self-dual Einstein orbifolds with positive

sealar curvat ure 0 (r, ~, b). JUBt as in the case of the Kronheimer's construct ion1,7, the

metrics are given only implicitly as quaternionic quotients of some quaternionie pro

jective space. Their explicit calculation would involve solving a large set of quadratic

constraints. However, in principle, our orbifolds provide a large family of local self

dual and Einstein metrics with positive cosmological constant.

The paper is organized as follows: In Sect. 11 we review the necessary facts about

the geometry of the hyperkähler and the quaternionie Kähler quotients. In Sect. III

we describe our construction of O(r,~, b). In Sect. IV we discuss the quaternionic

associated bundle of ocr,~, b) and its twistor space. Finally, in Sect. V we describe

some simple examples.

11. HYPERKÄHLER AND QUATERN10NIC KÄHLER QUOTIENTS

We begiOn by recalling basic definitions of hyperkähler and quaternionie Kähler

geometries. We also briefly review the quotient constructions of Ref. 8 and Ref. 10.
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Let (M, < ',' » be a hyperkähler manifold, i.e. M is a 4n-dimensional Rie

mannian manifold with three parallel complex structures Ji E End(TA1), i = 1,2,3
where

(2.1)

Let the metric < ',' > be Hermitian with respect to all three complex structures.

We can define three symplectic forms wi(X, Y) = (JiX, Y), X, Y E f(TA!). Let

G x M --+ M be a compact action on M by isometries commuting with all three

complex structures. We call such isometries hyperkählerian. Let g be the Lie algebra

of G. Then there is a hyperkähler moment map

defined as
. i d i VtvW =< J.1., >,

(2.2)

(2.3)

where V E g €I f(TM).

Let ebe an invariant element of g*0Rsp(1) under the coadjoint action Ad* 0 id

of G. Now, suppose M(e) = J.1.- 1(e)jG is a smooth Riemannian manifold. Consider

the inclusion and projection maps

(2.4)

Theorem 2.1 If M(e) is a manifold, then its induced Riemannian metric is hy

perkählerian8.

The above construction was recently used by P. Kronheimer to obtain families

of the hyperkähler ALE spaces for all discrete subgroups f of SU(2) (cf. Ref. 1,7).

\Ve describe his construction using quaternionie notation and leaving out details. We

refer the reader to the original articles.

Let M = Elrl be the Ifl-dimensional quaternioruc vector space, where Irl is the

order of f. For every r, one cau uniquely define a Lie group G(f) c U(lrl)jU(l)
and its representation in Sp(lfl)

G(r) 3 9 --+ A(g) E Sp(lr\).

4
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The group G(r) acts on Hlfl 3 wby hyperkähler isometries as

g·ilJ = A(g)w.

The momentum mapping p.: Hlfl -t g*~Rsp(l) is defined as follows

< p.(w), X >= ~dA(X)w,

(2.6)

(2.7)

where A(g) = exp(dA(X)), X E g, and <.,. > is the natural pairing on g* x g.
One obtains the Kronheimer's ALE spaces M(f,~) as the quotient of 1l-1(~) ={w E

Hlfl: p(w) = ~} by G(f). The quotient is a smooth Riemannian manifold if

and only if ( is an element of a "good set" (see Ref.I). The set of all invariant

elements of g* ®R sp(l) is given by T* ®R sp(l) where T is the Lie algebra of the

center of G(r). As T is identified with the Cartan subalgebra of one of root systems

An, Dn , E6, E7, Eg associated to the set of all irreducible representations of f, the

"good set" consists of ~ E T* ®R sp(l) whose components are regular.

In the next chapter we will demonstrate that one can generalize this construction

to obtain non-zero scalar curvature quaternionie analogues of all the hyperkähler ALE

spaces. First, let us recall the quaternionic reduction of Galicki and Lawson lO .

Let N be a 4n-dimensional quaternionic manifold. There is a quaternionic struc

ture on N, i. e. a rank 3 vector bundle V C End(TM) of endomorphisms in a 10

cal frame described by J1, J2, J3 satisfying relations (1.1). Let 9 be a Riemannian

metric on N, Hermitian with respect to J1, J2, J3. Then we can isomorphically

identify the bundle V with a subbundle of A2T* M spanned by w 1 , w2 , w3 . Now

o = w1 /\ w1 +w2 /\ w2 +w3 /\ w3 is a globally defined 4-form on N. If \70 ~ 0, where

\7 is the Levi-Civita connection of 9, then the holonomy of N reduces to a subgroup

of Sp(~)·Sp(l) and N is a quaternionie Kähler manifold.

Let G act on N by quaternionic isometries, i.e. preserving f1, and let the scalar

curvature K of N be non-zero. As demonstrated in Ref. 10, for any vector field Vx of

the G-action on N generated by X E 9 there exists a unique section Ix of the bundle

V defined as

\7Ix = E wa(Vx)C9 Wo:'

0'=1,2,3

We define a· "zero level" set as

N :) /-1(0) = {y E N: /x(y) = 0, X E g}.
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Theorem 2.2 JE the quotient j-l (O)jG is a smooth maniEold, then its induced

metric is quaternionie I(ähle~O.

As in the previous case, both the metric and the quaternionic structure are in

duced. by the inclusion and projection maps. In the case when the action of G on

j-l(O) is not free but only locally free, the quotient yields a quat~rnionie Kähler

orbifold.

Using this theorem one can obtain families of compaet 4-dimensional orbifolds

Op,q(l), q,p E~, q::'; p, (q,p) = I, with self-dual Einstein metries of positive

scalar curvature. Let N = Hpn 3 [uo,ü] and let G = U(l) act on N as folIows:

(2.10)

The zero level set for this action is

(2.11)

and

The singular structure of Op,q(n) was described in Ref. 10,11. Op,q(l) is a 4-dimensi

onal compact orbifold with positive scalar curvature seH-dual Einstein metric at all

regular points. The metrie is not locally symmetrie and Op,q(l) is smoothly equivalent

to O!piq,p+q,p+q for (p+q) odd and a:P:J~'f±.1 for (p+q) even. The orbifold Op)(l)
is an analogue of the Eguchi-Hanson hyperkä6ler metric which is r = ~2 case in the

Kronheimer's construction. In the next section we will see that this is a special

situation. There are orbifold analogues of all other hyperkähler ALE spaces.

111. QUOTIENT CONSTRUCTION OF ORBIFOLDS

Consider the quaternionie projective spaee P(H x Elfi), where r is a discrete

subgroup of. SU(2). Let the Kronheimer group G(f) act on P(H x Elfl) as follows

G(f) 3 9 : g. [uO, tt) = [b(g)uO, A(g)ü)

6
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where A: G(r) ----+ sp(lrl) is the representation of G(f) in Sp(lrl) as in (2.5) and

b: G(f) ----+ Sp(l) is a group homomorphism. The above action is well-defined on

P(H x Hlfl) for any choice of the homomorphism b. The zero section level for this

action can be described by the following constraints

Hplrl :J /-1(0) = {[UD, it] E HPIfI : uOdb(X)uO + tt7dA(X)ü = 0, X E Q}, (3.2)

where Q is the Lie algebra of G(f).

Lemma 3.1 Let db(X) = -~(X), (db = -~), ~ E Q* ® sp(I). The action (3.1) on

/-1(0) is then locally Eree iE ~ is in the ](ronheimer's "good set".

Praa!" The vector field on j-1 (0) associated to X E 9 vanishes if there exists

,,\ E H* such that

(db(X)uO l dA(X)it) = (~o, ü)"\.

Take the Hermitian product of the bot~ sides with (UO, ü)

(3.3)

(3.4)

However, the left-hand side in (3.4) vanishes on /-1(0) and therefore .\ = 0 as

luol2 + litl2 > O. Hence, the vector field Vx vanishes on /-1 (0) E H plfl if and

only if (db(X)uO, dA(X)ü) = (0,0).

We need to considet two cases:

Gase 1. Let Uo E H plrl be an open set such that uo =1= o. Since uo =1= 0 then

db(X) = O. Let w= ituÜ1. In terms of wwe can write

/-1(0) n Uo = {[I, w]: ~dAw = ~}. (3.5)

But if ~ is in the "good set" then the action of A(g) on w is free and therefore its

vector field dA(X)w is nowhere zero. Hence dA(X)it cannot vanish on /-1(0) n Uo.

Gase 2. Let U1 = H plfl \ Uo. Then

(3.6)

However, as
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dAit i:- 0 unless i1 = O. This is because the action A(g)t1, it E Hlfl is free on

{it E Hlrl: ttfdAiI = O} away from i1 = 0 (see Ref. 1).

Since 0 = it f/. /-1(0) nut, dA(X)it I: 0 there and the action of G(r) is locally

free on 1-1(0) n U1.•

It follows now from the Theorem 2.2 that

Theorem 3.2 Jf db(X) = -~(X) where b: G(r) -----7 Sp(l) is a homomorphism

and ~ is the Kronheimer's "good set" then O(r,~,b) _ 1-1(0)jG(r) is a compact

4-dimensional orbifold with self-dual Einstein metric of positive scalar curvature at

all regular parts.

The condition db = -~ clearly puts further restrictions on ( We observe that ,

according to the result of S. Salamon12 , the twistor space Z(r,~, b) of O(r,~, b) is

a compact Kähler-Einstein orbifold of complex dimension 3 and of positive scalar

curvature. \Ve will discuss the quotient construction of zer, (, b) in the next chapter.

Let us briefly describe the relationship between the Kronheimer's ALE spaces and

our orbifolds O(r,~, b). One can consider two different actions of the group G(r) on

1-1(0) n Uo C Hlfl:

p': G(r) X j-l(O) 3 (g,W) -t A(g)wb(g)-l E 1-1(0). (3.7)

Then the the Kronheimer's ALE space is obtained as the quotient of i- 1(0) n Uo by

the first action and our orbifold O(r,~, b) with one point removed (uQ = 0) is the

quotient of the same space by the second action. We have

,
M(r,~) ?- /-1(0) nUO ~ O(r,~,b) \ {pt.}. (3.8)

Let us point out that, although topologically both M(r,~) and O(f,~, b) are quotients

of the same space by p and p', the metrics on /-1 (0) n Uo are different in those two

constructions. In the first case we must take the fiat metric on Hlfl and restriet

it to j-l(O)" n Uo. In the second case we take the Fubini-Study metric on Hlfl :::
Hplfl \ {pt.}.
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If we replace H plrl by the quaternionic hyperbolic space H Hlrl = P(Hlf1,1)

we get 4-dimensional orbifold Einstein metrics with negative scalar curvature. In this

case the construction can sometimes lead to complete examples13.

IV. THE ASSOCIATED BUNDLE OF O(r,~, b) AND ITS TWISTOR

SPACE

Notice that our extension of the action of G(r) on P(Rlf l+l) can be lifted to a

hyperkähler action on the quaternionic vector space Rlr l+l as follows

g' (UO, ü) (b(g)uO, A(g)i1), (4.1)

with A and b as before. The momentum map for this action ji: Rlr l+l --t g*®sp(l)

. reads

< il(ud, ü), X >= uodb(X)uO + tadA(X)it, X E g. (4.2)

Lemma 4.1 Let db = -~ E g*®sp(l). Then G(r) acts freelyo~ jl-l(O)nUO where

uo ={(uD, t1) E Hlr l+l: uO f. O} if ~ is in tbe "good set".

Proof" Since

jl-l(O) = {(uO, ü) E Hlfl+1 : uOdb(X)uO + \fdA(X)t1 = 0, X E Q}. (4.3)

Let w= iIuÜI on jL-I(D) n UO. In the w-coordinates

Suppose

(b(g)uO,A(g)i1) = (UO,ü).

On p-l(D)nUO we then mllSt have beg) = id. Since G(r) acts on (uO, tÜ) E jL-I (O)nUO
as follows

(uo,iii) --t (b(g)uo,A(g)wb(g)-l),

9

(4.5)



the condition that beg) = id implies that A(g)w = w. But A(g) acts freely on w if

wE {w E Hlrl: e= ~dAw} and eis in the "good set". •

Let Ul = Hlrl+l \ Uo ~ Hlfl. Then G(r) acts on Ul

(4.6)

It is easy to see that G(r) act freely on (Rlr l+1 \ {O}) n jl-l(O). Hence M(f, e) =

(Hlfl+l \ {O}) n il-1(0)) IG(r) is a smooth 8-dimensional hyperkähler manifold. It

follows from the above remark and the work of Swann14 that we have the following

fiberation

(4.7)

where M(r,e, b) is the quaternionie associated bundle of ocr, e, b). ocr, e, b) can also

be interpreted as a certain Spei) quotient of its associated bundle where Spei) acts

by isometries rotating hyperkähler 2-forms15,16. (Or the H* IZ2 quotient, where H*

acts by the quaterniome multiplication from the left). The manifold M(r, e, b) rep

resents a very special case of the hyperkähler geometry. It admits an isometrie Sp(I)

action rotating the hyperkähler structure. Moreover, M(r, e, b) has a hyperkähler

potentiaI14,15, i.e. there exists a function v on M(r, e, b) such that its hyperkähler

metric 9 is given by 9 = V 2v. Other examples of hyperkähler manifolds with such

properties are furnished by the instanton moduli spaces and the nilpotent adjoint

orbits of complex Lie groups15.

The twistor space of ocr, e, b) can be expressed as a Kähler quotient of M(r, e, b)
by the action of any eircle subgroup U(1) C Spei) with respect to the Kähler structure

that is preserved by this particular U(1). By the theorem of S. Salamonl2 , zer, e, b)

carries a Kähler-Eintein metric of positive scalar curvature. Hence, the Kähler quo

tient of ki(r, e, b) by any U(1) C Spei) is not just Kähler. It is an example of the

Kähler-Einstein" quotient, i.e. it i~ a Kähler quotient of a Kähler-Einstein manifold

with the property that the reduced manifold is Einstein. We can describe all these
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quotients in the following commutative diagram:

Hlf l+l \ {O}

! H* q;p2\fl+l

G(f)
===>

zer, Cb)

./
M(r,~,b)

(5.1)

P(Hlf l+l) ~ CJ(r,~,b)
(4.8)

The horizontal double arrows represent the hyperkähler quotient by c(r), the Kähler

quotient by G(r) ® ([}, and the quaternionic Kähler quotient by c(r) respectively.

Rlf l+l \ {O} ~ o;p2lf l+1 and M(r,~,b) rE:J!'l Z(r,~, b) are the Kähler~Einstein
quotients. Finally, (Cp2lfl+l ~ P(Hlf l+l) and Z(r,~, b) ~ O(r,~, b) are the

twistor fiberations.

v. SOME EXAMPLES

In the following section we consider some simple examples.

Example 5.1 Let r = 2Z2. Then G(r) = U(l) and Hlfl = H 2. Let g = eit E

U(l). Then A : U(l) ----4 Sp(2) is given by the diagonal action

A(g) = (e~t eqt )
or

H 2 3 (ut, U2) ~ (eitut, eitu2).

The hyperkähler moment map reads

(5.2)

Now, it is easy to see that

1l-1(~)/U(1)= T*(J)P(l).

Consider a group homomorphism b : U(l) ----4 Sp(l). As U(l) is Abelian any such

homomorphism ,is given by a number p and

_ it
g - e , beg) = e

ppt
,

11
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where p = -p E sp(1). By rotating the quaternionic structure on uo we can always

choose p = i and p E LZ+. Consider the action of U(1) on Hp2 E (UO,UI,U2] in

homogeneous coordinates

(5.4)

The quaternionic moment map is then

(5.5)

Comparing with (2.11) shows that the quotient

The diagram (3.8) in this case gives

M(7L2'P)

!

0(LZ2,P) ~ Op,1(1)

(5.6)

(5.7)

Here M(7L2) p) is the associated bundle of the orbifold Op,1(l). For p = 1 01,1(1) =
(fJp2 and its associated bundle is the singular limit of T*CP2.

Example 5.2 Let r = 7L3 and G(f) = U(1) x U(1). If 9 = (eis, eit ) E U(1) x U(1)

we have

A(g) = (e~S ei(p-s) g) E Sp(3).
o 0 e-d

Thus, the Kronheimer's construction gives the following action of U(l) x U(l) on H3:

and the hyperkähler momentum maps is

(5.8)

Now

(5.9)
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where ~ E R 2 ~R sp(l) is in the "good set", is the two-center multi-Eguchi-Hanson

metric. The element ~ in the "good set" means here that ~l -f:. -~2. Now we consider

a homomorphism b : U(I) x U(I) -t Sp(l)

b(eis, eil) = eias+ibt E Sp(I), a, b E 7L.

so that the action of U(I) x U(I) extends to HpS ::3 [UO,Ul,U2,U3) as

and the quaternionic moment maps is

(5.10)

(5.11)

(5.12)

Consider the Sp(1)-invariant zero seetion 11-1 (g) .in H p3. For any a, b E ~ \ {O},

a i- -b the action of U(l) x U(l) is locally free on 11-1 (g) E H p3. Hence

(5.13)

is a compact 4-dimensional orbifold with self-dual Einstein metric and positive scalar

curvature.

Let us analyze the singular structure of O(7LS; a, b) in the simple case when a =
b = 1. We write H p3 = n~=~Ui where Ui = {[UO, 'Ul, u2, U3] E H p3: ui =I- O}. The

action of U(l) x U(l) is

[uo, ul, u2) U3) (s,t, [ei(s+t)UO, eisul, e i (t-s)U2, e-itu3)

and 11-1 (g) is described by the following constraints

U1 iU1 - U2 iu2 + iIOiuO = 0

(5.14)

U2iu2 - U3iu3 + uOiuQ = O. (5.15)

On Uo we introduce the non-homogeneous coordinates Wi = UiUö1, i = 1,2) 3 and

then

(5.16)
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W2iw2 - W3iw3 = -i.

Let us write Wi = Xi + jYi, i = 1,2,3 where (Xi, Vi) E ([}3 x q;3 ~ E 3. As

we can rewrite both (5.16) and (5.17)

(5.17)

IX212 -!Y212 - (IXlI2 -IVlI2) = 1

IX312 - IY31 2 - (IX212 - IY21 2
) = 1

XIYl = X2Y2 = x3Y3· (5.19)

One can easily see that there are three tori which are fixed on Uo by discrete subgroups

. of U(l) x U(l) namely

T? = {(Xi, Vi) E cr 3 x q:3 : xl = x2 = x3 = Y3 = 0, 21Y21 2 = IYll2 = 2}

T2
2 = {(Xi,yj) E «3 x (C3 : xl = Yl = Y2 = Y3 = 0, IX212 = IX312 = I}

T3
2 = {(Xi,Yi) E q:3 x (j}3 : Xl = x2 = Y2 = Y3 = 0, lyII2 = IX312 = I}

correspondingly by

k1r
rl = ~4 = {es, t) E U(l) x U(l): (s, t) = (T' k1r)}

k7f
r2 = ~4 = {(s,t) E U(l) x U(l): (s,t) = (k1r'T)}

k1r k7f
r3 = ~3 = {(s,t) E U(l) x U(l): (s,t) = (3'3)}

The tori T? are single orbits of the U(l) x U(l) action and they project to three

isolated singular points on the quotient. Using methods similar to these of Ref. 10,

it is easy to see that in the neighborhood of the singular points our orbifold looks like

(J}2/~4, a:2/~4, q:2/LZ3 respectively.

14



There is one more singular point on O(LZ3; 1,1). One can verify it by repeating

the similar calculations for UQ = O. The singularity is easily seen to be q;2Ir =

([}2 / 7h3. This singular point is common for all orbifolds O( LZ3 i a, b), a":l -b. Clearly

O(LZ3i 1,1) is not equivalent to any weighted complex projective 2-space as it has 4

isolated orbifold points.

Similar analysis can be carried out for other quotients. However, the geometry

and the singular structure of O(r,~, b) very much depend on the choice of the ho

momorphism b. We do not know how to describe the geometry of our orbifolds for

all r's and all choices of b. In the scalar curvature going to zero limit locally our

self-dual Einstein orbifold metrics give the hyperkähler ALE metrics of Kronheimer.

It would be interesting to know if O(r,~, b) are the only possible generalizations of

the hyperkähler ALE instantons with this property.

Recently J oyce17 has shown that oue can constr"uct a family of self-d ual metrics on

the connected surn kd:p2 as a quaternionic (hut not quaternionic Kähler) quotient of

H pk+1 by an action of U (1)k. In fact, our orbifold 0 (LZk+1, (, b) is a quaternionic

. Kä~ler quotient of Hpk+l by G(LZk) = U(l)k. The metric on O(LZk+l,(,b) is

not only self-dual but also Einstein and, as a consequence of Hitchin's theorem4, we

necessarily roust have orbifold singularities in the quotient. Joyce uses a different

notion of the moment map and therefore his quotients give smooth seH-dual metrics.

It would be interesting to investigate the relationship between the Joyce's construction

of seH-dual metrics on kfCp2 and our orbifolds O(LZk+l,~, b). We plan to address

some of these questions in our future work.
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