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DENOMINATORS OF BERNOULLI POLYNOMIALS

OLIVIER BORDELLES, FLORIAN LUCA, PIETER MOREE,
AND IGOR E. SHPARLINSKI

ABSTRACT. For a positive integer n let

m’ﬂ = H D,

sp(n)=p

where p runs over primes and s,(n) is the sum of the base p digits of
n. For all n we prove that 3, is divisible by all “small” primes with
at most one exception. We also show that 3,, is large, has many
prime factors exceeding 1/n, with the largest one exceeding n2%/37.
We establish Kellner’s conjecture, which says that the number of
prime factors exceeding /n grows asymptotically as k+/n/logn
for some constant k with k = 2. Further, we compare the sizes of
B, and P, +1, leading to the somewhat surprising conclusion that
although B, tends to infinity with n, the inequality B, > B, 41 is
more frequent than its reverse.

1. INTRODUCTION

1.1. Motivation. For positive integers n and b = 2 let s,(n) be the sum
of the base b-digits of n. The product

mn = H p
p prime: sp(n)=p

has been introduced by Kellner and Sondow [13]. Although a priori
this could be an infinite product, it is actually a finite product which
terminates for p > (n + 1)/2, see [12,13].

The relevance of this quantity is due to its link with denominators
of Bernoulli polynomials

= (n
B.(X) = By X" F
()= Y (1) B
k=0
where By, is the £ Bernoulli number. We also define the polynomials
B.(X) = B,(X) - B,
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2 O. BORDELLES, F. LUCA, P. MOREE, AND I. E. SHPARLINSKI

which are of interest due to their connection to power sums, namely
we have

NZ _ B, (N )
see [12-14]. It is shown in [12,13] that the denominator of the polyno-
mial B, (X) is B, thus

BB (X) € Z[X].

The celebrated von Staudt—Clausen theorem, see [9, Theorem 118|,
fully describes the denominator of B,, for an even n as the product of
prime p with p — 1 dividing n:

[T »

p: p—1|n

Recall that B; = 1 and B,, = 0 and thus 9Q,, = 1 for odd n > 1. One
thus sees that the denominator of B, (X) is lem [B,,, Q,.].

In this paper, we prove some results about small and large prime
factors of 3,,. Kellner [12] has also introduced and studied the decom-
position

where
$o= [[p ad B =] »
p<y/n p>/n
sp(n)=p sp(n)=p

Note that the definitions of B, with strict inequalities on p in both, are
correct since s,(p?) = 1 if n = p? with p a prime. Hence, p t B, even if
p = 4/n holds for a prime p. Motivated by the link with Bernoulli poly-
nomials Kellner [12] has initiated the study of the arithmetic structure

of B, and P;.
Let, as usual, w(m) and P(m) be the number of distinct prime factors
of m and the largest prime factor of m, respectively.

Conjecture 1.1. (Kellner [12, Conjecture 1].) For n > 192 we have

P(PBn) > v/n.

Conjecture 1.1 is equivalent with the conjecture that for n > 192
we have B > 1 and is established, up to the numerical value of the
threshold 192, in a much stronger form in Theorem 1.4.
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Conjecture 1.2. (Kellner [12, Conjecture 2].) There is some absolute
constant k > 0 such that

WOBE) = (e + o(1)) Y

logn

as n — 0.

In this paper we will show that this conjecture is true with x =
2. Moreover, we provide a much sharper estimate (Theorem 1.5) for
w(PB;") than conjectured by Kellner.

Aside from our results on these two conjectures, we improve some
of the results on B,, and P that have been given by Kellner [12] and
also obtain several new results.

After introducing some further required notation in Section 1.2, we
will state our results in Section 1.3.

1.2. Notation. For a real number x we write |x| and {z} for its integer
and fractional parts, respectively.

For a positive integer k£ and a positive real number x we write log;

for the iteratively defined function given by log; x = max{l,Inzx},
where Inz is a natural logarithm of = and log, * = max{1,log,_; x}
for k = 2. We will also use the functions e(x) = exp(2miz) and

U(r) =z —|x] -3
We recall the definitions of w(m) and P(m) from Section 1.1 as the

number of distinct prime factors of m and the largest prime factor of
m, respectively. The von Mangoldt function is defined by

A(m) log p if m is a power of a prime p;
m —
0 otherwise.

Another standard notation we use is 7(z) for the counting function of
primes p < x.

We also define § to be the Erdds—Ford—Tenenbaum constant
(1.1) §=1—(1+1Inln2)/In2 = 0.08607....

Throughout the paper, the letters p and ¢ always denote a prime
number.

Define
(1.2) 5.(x) = eclorm)Plomam)™% o 00 5 ()

Note that 0.(x)logz « d.,(x) for any 0 < ¢ < c.
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The exponential integral is given by

(1.3) Ei(z) = JOO 6T_tdt (x > 0),

see [1, Eq. (5.1.1)]. )

As usual A = O(B), A « B, B » A are equivalent to |A| < ¢|B| for
some absolute constant ¢ > 0, whereas A = o(B) means that A/B — 0.

1.3. Results. Our first result shows that all “small” primes p, with at
most one exception, divide 3,,, where “small” depends on n in a way
which is made precise in the following statement.

Theorem 1.3. For any fixed € > 0 there exists n. such that for all n >
ne, all primes p < (1/2 — €)log, n/logs n, with at most one exception,

divide B,,.

Remark 1. As 2 t Pon, we see that the exceptional prime sometimes
exists.

Next we obtain reasonably tight upper and lower bounds on the
number of prime divisors and the largest prime divisor of 3,,.

Theorem 1.4. We have
P(P,) = P(B) » n7.

This result implies that there exists ny such that Conjecture 1.1 is
true with 192 replaced by ny.

It is useful to recall that we always have P(,,) < n/2 + 1 (see [12,
13]), and it is easy to see that for any prime p we have P(Ba,—1) = p.

We establish a stronger form of Conjecture 1.2.
Theorem 1.5. There exists ¢ > 0 such that, for any positive integer n
sufficiently large,

w(P;)) = nE; (logv/n) + O (vné. (Vn)),
where the exponential integral is defined in (1.3) and the function . is

given in (1.2).

Successive integration by parts yield that for any positive integer
N=>1

N-—1
e " (—1)™m! © et
El(ﬂf) = T Z x—m + (—1)NN'J FN+ dt,
m=0 z

from which we immediately deduce the following estimate.
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Corollary 1.6. For all positive integers n, N, with n sufficiently large,

Z Y129 (j — 1)ly/n O(2N+1N!\/ﬁ)

(logn)i (logn)N+1

in particular Conjecture 1.2 holds true with k = 2.

The following estimate is derived in a similar way.

Theorem 1.7. There exists a constant ¢ > 0 such that asymptotically

log B = Vi + 0 (i, (Vi)
where the function o, is defined in (1.2).

Finally, we look at how 33, changes as we move from n to n + 1.
Since B, tends to infinity with n by Theorems 1.3 and 1.4, it follows
that the inequality 3,+1 > ‘B, holds infinitely often. Surprisingly
though, the reverse inequality is much more frequent and in fact even
in a strict sense, namely we have B, > B, .1 with frequency about
In2 = 0.6931.... However, we also show that the equality B,, = B, 11
holds for infinitely many n as well.

Theorem 1.8. For any x > 3 we have:

(i) the divisibility Pni1 | P holds for all except maybe at most
O(z(log, 2)~°(logs 2)~Y/?) positive integers n < x;

(i) the divisibility Pri1 | Pn and the inequality B, > Pri1 hold
simultaneously for at least (In2 + o(1)) x positive integers n < x
as x — o0;

(iii) the equality B, = Pqg1 holds for all except maybe at most
O(m(x)(logy x)~¢) primes q < x, where ¢ > 0 is an absolute
constant.

We remark that Kellner and Sondow [14, Theorem 4] have shown
that for odd n > 1 the quotient B,, /B,.+1 is an odd integer, except that
Bo/Bni1 = 2if n = 28 — 1 for some k = 2. One can also find in [14]
several more results about the possible values of the ratios B,,/PB,+1
for n of special structure.

1.4. Underlying techniques. It is probably interesting to note that in
our approach we use a combination of various elementary, Diophantine
and analytic techniques.

In particular, for the proof of Theorem 1.3 we employ lower bounds
of linear forms in logarithms due to Matveev [16].
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For the proof of Theorem 1.4 we use a result about the distribution of
fractional parts of reciprocals of primes as well as bounds of exponential
sums with reciprocals due to Baker and Harman [2, 3].

Finally, we use a recent improvement due to McNew, Pollack and
Pomerance [17] of a result of Erdés and Wagstaff [6] on the count of
positive integers n divisible by shifted primes (see also [7]), as well as
a result of Luca, Pizarro-Madariaga and Pomerance [15] about shifted
primes divisible by another shifted prime.

2. PROOF OF THEOREM 1.3

2.1. Sums of digits of integers in different bases. Let a,b > 2 be
fixed multiplicatively independent integers. It is shown by Senge and
Straus [18], that if K is any fixed number, then there are only finitely
many positive integers n such that the sum of digits of n in both bases
a and b is at most K. This has been made effective by Stewart [19]
who, in particular, gives a lower bound

log, n
-1
~ logsn + C(a, b)

for all n > 25, where C(a,b) is some constant depending on a and b.

(2.1) Sa(n) + sp(n)

The constant C(a,b) is not made explicit in [19]. Here we do so,
as this is important for our purposes, and may also be of independent
interest. As in [19], our approach is based on lower bounds for linear
forms in logarithms, where we use the bound of Matveev [16]. We
only need it for logarithms of rational numbers rather than in its full
generality for logarithms of algebraic numbers. We note that for us
only the asymptotic dependence of C(a,b) on a and b is important,
but we also use this as an opportunity to derive a completely explicit
expression for C'(a, b).

Let p = r/s be a rational number in reduced form (so, (ged(r, s) = 1
and s > 1). Then its height is defined as

h(r/s) = max{log|r|,log s}.

Let a, ..., ax be rational numbers not zero or +1. We put A; = h(«;)
for v = 1,..., k. We let dy,...,d; be nonzero integers and denote
max{|d|,...,|dg|} by D. Let

k

(2.2) A= Haf" -1
i-1

The result below follows from [16, Corollary 2.3], and the details have
been worked out as [5, Theorem 9.4].
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Lemma 2.1. If A # 0, then

k
log [A] > —1.4- 3053k (1 + log D) | [ As.

i=1
We are now ready to present a more explicit version of inequal-

ity (2.1).

Lemma 2.2. Assume that a and b are coprime integers = 2. Let B >

max{a, b}. Then the inequality

- log, n
logsn + C(a, b)

holds with C(a,b) = log(2 - 10*?(log B)?) for all n > exp(10**(log B)*).

Sq(n) + sp(n)

Proof. We follow [19, pp. 66-69] with the appropriate modifications.
Consider the following a-ary and b-ary expansions of n > a + b:

n=aa™ +aa™+- - +aa", aqef{l,...;a-1}, 1<i<r,
no=b1b" + byb 4+ - £ hb", bief{l,....b—1}, 1<i<t,
where

my>--->m, >0 and {4 >0 > --->0=0.

We put
¥ = cglog,n,

with ¢y an explicit constant depending on B to be found later. We now
consider the intervals

6, =(0,9], Gy = (9,9, ..., Op= 09",
where k satisfies the inequalities
logn
9 k < kJrl.
(2.3) v Tlog B <

We assume k > 1 in (2.3). We now show that for an appropriate ¢y and
sufficiently large n each interval @, contains either a term of the form
my —m; for i = 2,...,r or a term of the form ¢, — ¢; for j =2,...,¢.
Let us suppose that it is not so. Then there is s with 1 < s < k such
that @, does not contain any m; —m,; and any ¢; — ¢;. So, let u, v be
given by

(2.4) my—m, <O my —myg = 0%

(2.5) R N R
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Note that, since n > B2,
my = logn >logn_1> logn T
log a log a 4log B

and a similar inequality holds for ¢;. Write

\%

n=a"a, + (, and n= bévﬁb + G,
with
g =a1a™ ™ 4,  and By =bb" T 4+ 4 By
Clearly, ¢, € [0,a™+1*1) and ¢, € [0, b+171). We then have
(2.6) |aga™ — Bpb™| < max{(,, ¢} < max {a™ T o

We show that the left hand side of (2.6) is nonzero. In order to do so,
recall that

logn
. < 195—1 19]6 e
ma My, < < 410gB7
SO
( ) logn logn
My = myq — (my —my,) = —
! ! log a 4log B
Zlogn_ B logn >3logn_ - logn
loga 4log B ~ 4loga 2loga’

provided n > B*. In particular, a™* > y/n. A similar argument shows
that b > \/n. Since a and b are coprime, it follows that if the left
hand side of (2.6) is zero, then a™a, = b3, so a™ | B, and b* | ay,.
In particular, both «, and a™* exceed \/n, so

n=a"a, +( =a"a, >\/n-\/n=n,
a contradiction. Assuming that the maximum on the right hand side
of (2.6) is b+1*1 we divide both sides of (2.6) by Bb‘, getting
b6v+1+1 1
< .
blv ﬁb blo—Lus1—1

A similar inequality holds when the maximum on the right hand side
of (2.6) is a™=+1 1 namely

(2.7) [(A/B)a™b™" — 1| <

1

aml—mu+1—1 '

(2.8) ((B/A)a™™b" — 1| <

So, we are all set to apply Lemma 2.1 to find a lower bound on the left
hand side of (2.7) or (2.8).
We take

=3, oar=(A/B), ay=am, az=>b,
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and
(dla d27 dS) = 8(17 mu7 _ZU)7
where ¢ € {+1}. More precisely, we set

e c—1ifin (26) we have max {amu+1+17b&;+1+1} _ bfv+1+1
(and thus (2.7) holds);

e e = —1if in (2.6) we have max {a@™w1 T plor1tll = gmuertl

(and thus (2.8) holds).

Since by assumption a and b are multiplicatively independent, these
events are clearly mutually exclusive, and so the choice of ¢ is well-
defined.

Obviously, we have

1 1 1
max{m,, {,} = max ogn , og T < 98 o logn,
log a log b log 2

so we can take D = 2logn. Furthermore, A; = loga and A3 = logb.
As for Ay, we have

h(ar) < max{log a,, log B} < max {log(a™ "™ *"), log(b" ~**+1)}
<max{m; —m, + 1,0, — €, +1}1log B < (¢9*' +1)log B
< 205 !log B,
so we take A; = 20° !log B. Now Lemma 2.1 combined with inequal-
ities (2.7) or (2.8) tells us that
—1.4 x 30% x 3*°(1 + log(21og n))29* ! (log a)(log b) (log B)
< —max{log(a™ "=+ Tog (b 1)}
Assuming that n > 230 (so that 2log,n > 1 + log(2logn)), we derive
max{(m; — my41 — 1) loga, (¢, — £, — 1) log b}
< 6-10"9* (log a)(log b)(log B)(log, n).
Since by inequality (2.4)
I

max {my — my1 — 1,0 —lyy1 — 1} =097 = 1> )

for s > 1, we see that
195
5 < 6 - 1095 1 (log B)?log, n,
giving
¥ < 12 - 10" (log B)? log, n,
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which is false if we choose ¢y = 2 - 10'%(log B)?. It remains to establish
the starting value for n such that £ > 1. That is,
logn

v .
= 4log B

This is equivalent to

logn

(2.9) > 4co(log B)?.

log, n
The right hand side above is 8 - 10'?(log B)?. The inequality

x>A

log x
is fulfilled when x > 2Alog A, provided that A > e. We now take
A = 10"(log B)? and we see that (2.9) holds, provided that
logn > 2-10"%(log B)*(1310g 10 + 3log, B).

Since log, B < log B, B > 3, and 13log 10 + 3 < 33, it follows that the
desired inequality holds for logn > 10%(log B)*. Thus indeed, each
interval @, for s = 1,...,k contains one of m; —m; or ¢; — {; for
1=1,...,r,0or j=1,...,t. Hence, r — 1+ s — 1 > k. Therefore,

sa(n) +sp(n)=r+s=k+2=(k+1)+1
. log((logn)/(41og B))

log
_logyn + (log¥ — log(4log B))

B logsn + log ¢

+1

Y

on recalling that ¥ = c¢qloglogn. Clearly, ¥ > 4log B. Thus the
inequality
1
o logn
logsn + C
holds with C' = log(2 - 10**(log B)?), which concludes the proof. =

Sq(n) + sp(n)

2.2. The proof of Theorem 1.3. Let ¢ > 0 be arbitrary. We consider
the primes p < B with B = log,n. Then, as n — o0, we have

C = log(2 - 10" (log B)?) = 2log,n + O(1).
Further, we need to check that n > exp(10'®(log B)*). This is equiva-
lent to logn > 10'(logy n)?*, which holds for all n > exp(10'®). Thus,
assuming n is this large, for any two distinct primes p, g < B, it follows
by inequality (2.1) that, as n — oo, the inequality
log, n

spln) + ) > (1+ 0(1)) 52
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holds uniformly in primes p,q < B. If in particular we take P =
(1/2—¢)log, n/logs n, it follows that for every n > n., there is at most
one prime ¢ < log, n such that

sq(n) < P.

For all other primes p < log,n, we then have s,(n) = P. So, if in
addition we also have p < P, then s,(n) = P > p, so p | B,. Thus,
indeed, for all € > 0, there exists n. such that if n > n., then all primes
p < (1/2 — ¢)logy n/logs n divide B,, with at most one exception.

3. THE PROOF OF THEOREM 1.4
3.1. Fractional parts of reciprocals of primes. We will use the follow-
ing result from [2, Proposition 2]:

Lemma 3.1. For all v and w that satisfy
2

9

v37/20 <w<w

and are sufficiently large, we have

#<p : 2v<p<3v, v >1-— ad > v .
P 1602 vlogw

3.2. Concluding the proof. We now derive one of our main technical
results.

Lemma 3.2. For all n and v that satisfy
VT << 02,

and are sufficiently large, we have

#{p : 2v<p<3v, p|Pi}>»

vlogn

Proof. Let p be a prime counted in Lemma 3.1 taken with w = n, that

is,
>80
P 1602
Clearly, p? > 4v? > n. Thus, writing n in base p, we have n = ap +9,
where

a=|n/p|=n/p-1,

n np
b=p{—}=>p— )
p{p} p 1602

and
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Thus,
2
n - np n P
= b= - — —1= —(1- -
sp(n) = a+ p p 1602 P P ( 16112)
n 9 m
>p+—(1l—-—=]|—-1=p+—-—-1>p,
Ty ( 16) P T6p P
assuming p (and hence, n) is sufficiently large. O
Now we are home and dry.
The proof of Theorem 1.4. Apply Lemma 3.2 with v = n?%/%7. |

4. PROOF OF THEOREMS 1.5 AND 1.7

4.1. Preliminary comments. The proofs of both Theorems 1.5 and 1.7
may be unified in only one proof by making use of the number « € {0, 1}.
Indeed, our method also works if the number « is any real non-negative
number. However, this generalization does not seem to bring added
value and is left to the interested reader.

4.2. Tools. We start with the following simple result.

Lemma 4.1. Let € {0,1}. For any real numbers € € (0,1), x = 2 and
l<zrf<y<z<zx

2 Qx : yJ - ED (logp)™ < 2e7(y + 1)(log z)".

Z2<p<sx p

Proof. Aslogp < logx for p < z, it suffices to show that the inequality
holds if k = 0. We write

s (B2 2,

z<p<zx 2<psz x/p<m<(z+y)/p

Collecting together products k = mp € (z,z + y| and changing the
order of summation we obtain

> (5 -[2)- & e 3o
z<p<w p p r<k<z+y plk r<k<z+y S
Z<p<sT

Since for k € (z,z + y| we have

log k B log(z + vy) B log(2x) _2

logz = logz  logy €

Y

the result now follows. O
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Corollary 4.2. Let k€ {0,1} and a € (n="/"%,1). Then

Z QE S J - FD (log p)* « av/n(logn)”.

iijapen \LP p(p—1) p

Proof. 1f p > \/n/a, then
n—p n—vnja _n(l+a)(l-a)

ay/n — —— > ay/n — = > 0,

p—1 Vnja—1 n—a

where we used that (n—p)/(p—1) = (n—1)/(p—1) — 1 is a decreasing
function for p > 2. Consequently,

ﬁ/épgn qg ! pZo_—pl)J N ED (logp)"
L ({%J N ED (log p)",

Vn/a<p<n

and the proof is achieved on invoking Lemma 4.1 with = = n, y = ay/n,

= +/n/a and € = 1/16. O

Lemma 4.3. Let k€ {0,1} and let M be a positive integer. For any real
valued function g : Z — R and any positive integer H we have

> (logp) (g + g(p))

M<p<2M

o= logM P iy (10gp)”e<n£> e(hg(p))‘

h<H M<p<2M

Proof. For any 0 < [t| < 1 we put ®(t) = wt(1 — |¢]) cot(wt) + |¢t|. Note
that 0 < ®(t) < 1 for 0 < [t| < 1.

We follow the proof of [4, Corollary 6.2]. It follows from the result of
Vaaler [20], which we use in the form given by [4, Theorem 6.1], that
for any real number z > 1 and any positive integer H,

(4.1) Yz)=— @(H’il) Z%MRH(@,

0<|h|<H

where the error term Ry () satisfies

1 |h|
(4.2) Ra(2)] < 57 - > (1 - H—H) e(hx).

|h|<H
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The right-hand side of (4.2) does not look like, but is in fact a non-zero
real number since it can be shown, cf. [4, Exercise 3, p. 350], since we
have the identity

H 2

e(hx)
h=0

2 (I_H‘}—ﬂl> e(hx):Hlﬂ

\h|<H

Using (4.1) with z = n/p + g(p), multiplying by (logp)” and summing
over all the primes p in (M, 2M] yields the estimate

IR R ) B

M<p<2M

where

e X () X ompre (S ngt)).

0<|h|<H M<p<2M

and

L= ), (logp)Ry (% + g(p)) :

M<p<2M

Now

PAEY ﬁh’ > (logp)“e<%h+h9(p))|

0<|h|<H M<p<2M
1 1 . [ nh

100l 2 omre (") ethaton),
T < " | M<p<om p
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and by (4.2) we have

Lol < ), (logp)” ‘RH (% + g(p)>‘

M<p<2M
1 ( || ) nh
< 1——=—=] > (logp)e( — +hg(p)
2H+2, }EH Hi1) 4, P
1 1 h
= Z (logp)”® + (1 )
2H + 2 MipgaM H+1 i H+1
x Re ( Z (logp)“e | — + hg(p )
M<p<2M
1
< >, (logp)"
2H +2 ) o
nh
1 Z > (logp)Te <—> e (hg(p))|,
h<H M<p<2M p

where in the third line the cases h = 0 and |h| > 0 are separated,
concluding the proof. O

Lemma 4.4. Let k € {0,1} and letn = 1 and M > 2 be positive integers.
For a prime p, define

n—p
glp)=0 or  glp) =
(p) (p) o= 1)
Then for any positive integer H we have
e
> (ogp)v (= +g(p)
M<p<2M p
1 1 nh
_— - 14— A(m
« (log M )1+ h;qh ( * M2> M<N<2M ;LN ( >‘

N M N nH +\/ log H
H(log M)=% = M32(log M)'=* = (log M)'—*
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Proof. From Lemma 4.3,

> (logp)e (g + 9(@)‘

M<p<2M

<<% Z (logp)“+2%

M<p<2M h<H

>, (ogp)e (%) e (hg(p))

M<p<2M

5 togyre (™) e(hg(p»‘.

M<p<2M

M
 H(og M)y 2.5

h<H

Now since

nh - 2nh
plp—1) = M?

lhg(p)| < (M <p<2M),

we get by Abel summation

>, (logp)ie (%) e(hg(p))|

M<p<2M

Y

>, (logp)~e <%>

M<p<N

< [ 1+ nh
— m
M2 M<Na<X2M

and by Abel summation again

>, (logp)~e <%>

M<p<N

2
= (logM)l—“MIE?i{N o

D L(logp) e (%)‘

<ps

s o ()

M<m<L

1

The asserted estimate follows on putting everything together. |

We also recall that using [8, Theorem 9] with k£ = 2 we obtain
Lemma 4.5. If M < 2%/°/5, then, for any N € (M,2M]

5 ame(?)

M<m<N

<17 (M) V> (log 16M) /4.
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Lemma 4.6. Let k € {0,1}. There exists some absolute constant ¢ > 0
such that, for any large real number t > 1 we have

(logp)" _ —1
;p(p e Fu(t) + 0 (t716:(t)),

where Fy(t) = Ei(logt) and Fy(t) =t~

Proof. We recall the Prime Number Theorem in the form
m(u) = li(u) + O (ude,(w)),
where li(u) is the logarithmic integral

“odt

— 0
L Togt (4> 0)

li(u) =

the function 6, is defined in (1.2) and ¢q > 0 is an absolute constant
(see [10, Theorem 12.2 and Eq. (12.27)] or [11, Corollary 8.30], for
instance). By partial summation and the Prime Number Theorem in
the above form, we derive

logp)® log p)* logp)*
Z< gp) _Z< gp) +Z (logp)

Splp—1) & P =i —1)

m(t)(logt)* [ m(w) (2(logu)* — r(logu)*")
= — 2 + L ud du
1
+0 (t2(logt)1_ﬁ>
_ <10tgj>” (1i(t) + O (5., (1))
N ftoo 2(log u)* _u:(log w) (h(u) L0 (U6c0<u>>> du
=G(t)+0 (w) ;
where
&) - _h(t)(i#t)n N J:O li(u) (2(10g u)’;g— r(log u)ﬂil) du.

Now, integrating by parts we derive

G(t) - J:O __d_p

u?(log u)t—*

The result follows with any constant ¢ € (0, ¢p). |
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4.3. First step. Let x € {0,1} and define

e 2 (2 g

V/n<p<n

Notice that, if \/n < p < n, then

Oén_p<\/ﬁ,
p

—1
and hence,
-1 —
r _r_nTp < \/—ﬁ < 1,
p=1 p pp-1) »p
so that
(4.3) w(p) =20 and log (p;}) = ;.

We split the sum into two subsums as

EK = Sl +527

Bl B e

—1
(=] [5]) e
iy~ <pzn P Y

and ¢ > 0 is the constant given in Lemma 4.6.

where

S; =

2
V<p<y/ (8e(v/n))
Sy = Z

4.4. The sum Sy;. We use Corollary 4.2 with a = 6. (y/n) obtaining
immediately

(4.4) Sy « v/né. (v/n) (logn)® « v/nd., (v/n)

for some ¢; € (0, ].

4.5. The sum S;. Using
n—1 n n—
_n, nop
p—1 p plp-1)
and recalling the definition of the function 1 (x), we write

Sl = Sll - 5127




DENOMINATORS OF BERNOULLI POLYNOMIALS 19

where
_ (log p)"(n — p)
S = 2 pp—1)

9

VA<p<y/n (8c(vn)) !

sam 3w (e (Grge) ()

Vn<psy/n (3c(vn))

The main term. For any integer n > 1, we derive from Lemma 4.6 that

x/71<p<\/ﬁz(;5¢(x/ﬁ))_l % =y = £ (&X%) to (L\/\/ﬁﬁ)> '

From [1, Eq. (5.1.19)], we have the inequalities

—x e T
< B <
z+1 1(x) T

which imply that

2 (56\/5 > dc (v/n) de(v/n)

(x > 0),

<

« ,
(vn)) — v/nlog(n/d.(vn)?) — +/n
and also Ja 5.
n (v/n
F
° (cwm) e
so that
l K
((Og_p>> — F, (\/ﬁ) L0 (d:i/\%ﬁ))
vi<peyieymy PP
Therefore,
log p)* log p)*
SV = R =
Vn<p<y/n(de(v/n) "t Va<p<y/n(Se(vn)) !
(4.5) =n Z (iog_p)l) + O (logn)
vi<peyyay~ PP
— nF, (Vi) + O (vias. (vir))
The error term. It remains to prove that, for n sufficiently large,
(4.6) S12| < v/nd. (V).

This estimate follows from the next result, which actually gives a power
saving.

Lemma 4.7. We have Sy < n*9/100+e() g5 n — o0,
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Proof. Split the interval <\/ﬁ,\/ﬁ (5C(ﬁ))_1] into O(logn) dyadic
subintervals of the form (M, 2M], so that

5 towrre (2 o)

Vi<p<y/n (be(vn) !

« max >, (logp)y <E + g(p)) log n,
VR<M<y/n (8e(v/n) ™t M<p<2M p
where, as in Lemma 4.4,
n—p
gp) =0 or qgp) = ——.
) TSy
From Lemmas 4.4 and 4.5
. (N
>, (logp)y (— + g(p))‘
M<p<2M p
1 nh 1/24
T/d+k 227719
« (log M) ZE(”W) (h*n2M*™)
h<H
M nH vV M log H

+

H(log M) | M32(log M)~ (log M)I—*
« <(n26H26M—29)1/24 n (n2H2M19)1/24) (log M)11/4
M nH

VM log H.
T Hog My~ " apr T8

Choose
H— [M53/50n_13/25j

to balance the first and the third terms in the above bound up to
logarithmic factors, which we all replace by n°). We also note that,
since M > 1/n, we have H > 1 provided that n is large enough. Hence,

> (logp) e (% + 9(]9))‘

M<p<2M
« ((n26M—3)1/50 n (nM22)1/25 n (n12M—11)1/25 n M1/2> 0o

Using M = n'/?*°(1) we obtain
10| « (n49/100 41350 n1/4) 0o« p19/100+0(1)

as n — o0, concluding the proof. m|

)
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4.6. Completion of the proof of Theorems 1.5 and 1.7. Follows at once
from (4.3), (4.4), (4.5) and (4.6).

5. THE PROOF OF THEOREM 1.8

5.1. Preliminary considerations. Let us fix some prime p and write n

in base p as
k

we S
i=0
with p-ary digits
a; €{0,...,p— 1}, i=0,....k, and ag #0.
In the above, k = |logn/logp| + 1.

We distinguish the following two cases:

Case 1: ap, #p— 1.
In this case,
n+1=app’+ -+ (ap+1)
is the base p-representation of n + 1. Hence, s,(n + 1) = s,(n) + 1. In
particular, the following events

(51) p ‘ PBri1 and p )( Ba,
and thus,

sp(n+1) =p> su(p),
are simultaneously possible only when

(5.2) sp(n) =p—1.

Case 2: ar, =p— 1.

Let i € [0,k] be such that ay = a1 = -+ = ax_; = p— 1, but
ap—i—1 < p—1. Then

n+1=ap"+ -+ (ap_i_1 + 1)p',
and we obtain
sp(n+1) =aqo+ - -+api1+1<ay+ -+ ag_i—1+ ag <Sp(n).

Hence, for each p with ay = p—1, if p | P41, then we also have p | B,,.
However, the opposite of (5.1), that is

(53) p + sBTL"F]. and p ’ mna

is also possible in this case. Actually this case plays an important role
in our argument in Section 5.2 below.
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5.2. Proof of (i): divisibility. As we have seen, primes p which belong
to Case 2 of Section 5.1 do not appear in the denominator of the ratio
B/ PBri1- We now show that for almost all n < z (with an explicit
bound on the size of the exceptional set) the primes which belong to
Case 1 of Section 5.1 do not appear in the denominator of this ratio
either, and thus we have the desired divisibility.

More precisely, using the characterization of (5.1) given by (5.2), we
we conclude that B, 1 | B, holds for all positive integers n that have
the property that there is no prime p with s,(n) = p—1. It remains to
prove that the complementary set has asymptotic density zero.

Thus, we define

A(z) ={n <z : s,(n) = p—1 for some prime p}.

First of all note that since s,(n) = p — 1, it follows that (p — 1) | n.
McNew, Pollack and Pomerance [17], improving on the previous result
of Erdés and Wagstaff [6], have shown that uniformly in 3 <y < z,

e
(log y)d(logy y)¥/%’

where § is the Erdés—Ford-Tenenbaum constant defined in (1.1). We
also recall that Ford [7] has recently established more precise results,
which however cannot be used to improve our bounds.

We take y = y/logz in (5.4), getting that the number of n € A(x)
such that s,(n) = p— 1 for some p > y is

(54) #{n<z : (p—1)|n for some p =y} «

(5.5) ’ & v

(logy)?y/logyy  (logyx)o4/loggx’

Assume now that p < y. We remark that for each p and

|
k= { Og"| 41,
log p

the condition s,(n) = p — 1 leads to the equation
ap+ - +a,=p—1

on the p-ary digits ao, ..., a; of n (we possibly append some leading
zeros to make all p-ary expansions of the same length). Thus, for each
p there are at most

k
( ;p) < (k+p)P < (p+loga)
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possible values for the string of digits (ao, . . ., ax), and therefore for the
number of such n € A(z). Hence, the total contribution from all p <y
to #.A(x) is at most

(5.6) Z(p +logz)? « (y + logx)¥ < exp (2 v/ 1og x log, x) ,

P<Y

which is negligible when compared with (5.5), and concludes the proof.

5.3. Proof of (ii): divisibility and strict inequality. Since we have
established that B, 11 | P, for almost all n < z, it is enough to produce
a sequence of n of asymptotic density In2 such that for each of them
there exists a prime p with the property (5.3).

Let n < z be of the form n = ap — 1, where p > v/x + 1 and a > 2.
Thena < (z +1)/p <~z +1<p.

In particular, n + 1 = ap with a < p, so
(5.7) sp(n+1)=a<np.

On the other hand, sincen = (a—1)p+p—1, and 2 < a < p, it follows
that

(5.8) sp(n) =a—1+(p—1)=(a=2)+p=p.

Comparing (5.7) and (5.8), we see that we have (5.3). Obviously, each
integer n < x of this form can be generated by only one prime p >
vx + 1. Fixing p, we have that 2 < a < (z + 1)/p. Hence, there are
|(z 4+ 1)/p|—1 = x/p+O(1) possibilities for a. Thus, using the Mertens
formula (see [9, Theorem 427]), we see that we generate

> (z/p+0(1) = zIn2 + o(x)
Vz+l<p<z+1

such integers n < x as x — o0 in this way, concluding the proof.

5.4. Proof of (iii): equality. We take n = ¢ — 1 for a prime ¢ < =z.
Clearly,

sq(n)=q—1<gq and s¢n+1)=1<gq.
Thus,

q )f UM UEE

We remark that ¢ is the only prime that divides n + 1. Thus, Case 2 of
Section 5.1 is impossible for any prime p # ¢. Hence, the only primes
in which ,, and B,,.; may differ are the primes p as in Case 1 of
Section 5.1 for which s,(n) = p—1. In particular, (p—1) | (¢—1) with
p # n. It is shown in [15] that there exists a positive constant ¢ such
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that uniformly in 2 < y < x, we have an analogue of (5.4) for shifted
primes ¢ — 1 in place of n; that is,

5.9 <z : (p—-1 —1) f >yt ————,
(5.9) #{g<z : (p—1)[(¢—1) for some p >y} log 2108 9)°
Again we take y = y/logz and proceeding as in the last part of Sec-
tion 5.2, in particular, using (5.6) and thus ignoring the fact that
n = q — 1 is a shifted prime in this part of the argument, together
with (5.9), we conclude the proof.
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