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ZAGIER FORMULA AND A NEW
KIND OF SELBERG ZETA FUNCTIONS

ALEXEI B. VENKOV

1. INTRODUCTION

We start from formulating the results. Let I'z be the modular group I'z =
PSL(2,Z) and let Z(s;T'z) be the Selberg zeta function.In the half-plane Res > 1
it is defined by means of the absolute convergent product

z(sT)= [[ [Ta-~P)~ )

{P}pz k=0

where {P}r, run through the set of all primitive hyperbolic conjugacy classes in
Tz, WN(P)is a norm of P. It is well known that Z(s;T') can be extended mero-
morphically to s € C and Z(s;I") satisfies some functional equation. All these
properties of Z(s;T") are related to the Selberg trace formula.

The main result of this paper is the definition of a new kind of zeta functions.
They depend on the integer parameter n > 1. For Res > A > 1 they are defined
by means of the absolute convergent product

2(s:Tim) = [] (1= N(P)=) FFr o
{Plrg

¢p(t) is some zeta function (see the main part of the paper) c¢(n) is a constant
depending on n only.
We prove that the logarithmic derivative

Z7'(s;Tz;m) :—3 Z(s;Tz;n)

can be extended meromorphically to the half-plane Res > 0 at least. We avoid in
this paper some analytic difficulties which are not principal. We consider mainly
the case n = 1 and instead of I'z we examine some special cycloidal subgroups I'.

These zeta functions Z(s;T';n) are related to special Zagier formula which we
call to mind now.

In the paper {1] Don Zagier derived the Selberg trace formula for the modular
group examined the regularized integral

(1) reg |3 hle,ve) Bl )du)

velz
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2 ALEXEI B. VENKOV

for s € C which is close to the pole of E(z,s) s =1. Here k(z,2')isa PSL(2,R)
invariant kernel on the hyperbolic plane H, E(z, s) is the Eisenstein-Maass series.
We integrate in (1) over the fundamental domain of the modular group in H. The
measure u is defined by the Poincaré metric on H.

The left hand side of the Zagier formula is as in the case of the Selberg trace
formula the sum over the conjugacy classes in I'z.

reg Y [ K(:,75)B (s, 9)du)

{7irg Fy

From the other side we make use of the expansion in eigenfunctions of the auto-
morphic Laplacian A(I'z) for the Poincaré series

(2) Kr(z,z') Zk (z,7v2")

~ver

PILIERED Zh()\ Ju;(2)v;(2')+

~er

-I—i[ h(1/4 +r*)E(2,1/2 4+ ir)E(2',1/2 + ir)dr

{v;} is the basis of all eigenfunctions of the discrete spectrum of A(T'z), k(z,2') =
k(u(z,2')),u(z, 2') is the Selberg fundamental invariant of two points z, 2’ € H, h())
is the Selberg transformation of function k(t).

Finally, the integral (1) is computed by means of the zeta functions of Rankin-
Selberg type. We still remember that the integral (1) diverges and we make use of
appropriate its regularization.

In this way obtained Zagier formula for general ”s” looks complicated but it is
interesting and very important formula. The Selberg trace formula follows from
the Zagier formula as the residue at pole s = 1.

The important observation is that Zagier formula (general) is simplified for s =
2k + 1,k € Z,k > 1. For these values of s we define zeta functions and we prove
their analytic continuation theorem.

In principle we can define zeta functions of this type from more general integral

JEC)ILERBLTE

~v€r

in the following cases 1) f(z) = E(2,2k + 1),k € Z,k > 1. 2) f(z) = vj(z) is an
eigenfunction of the discrete spectrum of A(T'). 3)

52) = (sa(e)52)"om € Zom 22

is the operator on the upper half plane, y = Imz > 0, ¢(z) is an analytic form of the
weight 2, the dash means the complex conjugation, I' is some subgroup of a finite
index I' C I'z.
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We consider here only the case 1) and in more details k = 1.
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2. The main part. Let H be the upper half plane H = {z € Cly = Imz > 0}. For
beginning we do not suppose that group I' is very special. The following assumption
is sufficient. T is a cofinite group acting on H, T" has no elliptic elements and I" has
only one parabolic generator §: 2z — z + 1.

We start now from the regularization of the Zagier integral. (see [1]) Let ©(z, %)
be some special incomplete theta-series

> wy(v2)),y(z) = Imz,

YEl o \T
2k41
y*'t, 1/4<y <Y
Yir(k) = .
0, otherwise

Y > 0 is some fixed number, I'o, C I is the subgroup generated by S.
Let k(t) € C§°(0,00). The following assertions are valid (see [2])
1) The series ). 1 k(u(z,72')) converges absolutely for all z,2' € H.
2) There is the spectral decomposition (2) (we formaly change I'z to T).
3) The integral

(3) [ 3 Mtz 12) (e t)du)

~v€r

converges absolutely. Besides, this integral is equal to

(4) Z (2,72))0(z, ¥i )dp(z) =
{v}r

=Zh(,\j) ] o (2)2O(z, i) du(z)+

+—/ R(1/4+1%) L E(z,1/2 + ir)[*©(z, x)du(z)dr

where {7} run through the set of all conjugacy classes in I' with representatives
v, Fy is the fundamental domain of the centralizer I, of the element v € T' in
T u(z,2) = L=z

!

The functions h(\), k(t) are connected with each other by the following trans-
formation

2 S = Qw), k() = -1 [ 24
(4) Qe* +e7* —2) = g(u)
h(1/4+7%) = [72 g(u)e'™du, =5 f_ (1/4 + r¥)e~"dr
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For deriving the desired formula we have to find the asymptotic behavior at
Y — oo of each term in the formula (4) and thus we obtain the regularization of
the Zagier integral.

We consider (4) in more details. We start from the left hand side. The set
of all conjugacy classes in + is subdivided for the identity, hyperbolic classes and
parabolic classes.

a) The identity term in the formula (4) is equal to

£0) [ O, b)d(a / /dm = k(0 )—+5L30

b) The parabolic terms in formula (4) The zero coefficient of the Fourier series
expansion of the Eisenstein-Maass series is equal to

1
f E(z + iy, 2k + 1)dz = y** ' 4+ o (2k + 1)y~ %
0

where ¢(s) is the automorphic scattering matrix (one dimensional) (see [2]).
The sum of all parabolic terms in (4) is

o0 [a's) 2
6) 22 f ”—2 Wy + 202k )Y [ R Ry + o)
n=1

Yo

The second sum in (6) is equal to
o0
2%k g, _ (422K
w(2k + 1) E n“‘“ / DR dt = 2zp(2k+1)c(2k+1)/0 E(t“)t“" dt

¢(s) is the Riemann zeta function.
The first sum in (6) is computed in the following way

2k 2k
) Z j M dy =~ KOS = k)

+ Z da: g gy (yermine = Y -2]00 k(t2)dt—
s YR k+1  Jo

Y2k Y .
— k(0 +Zf dt/ y?Edy k(t?)etmny!

Making use of the integral Green formula 2k times at ”t” we continue the equality

(7)

1 oo d2 frlntY -1
= main terms + Z Wf dt (dt“ (t )) it + o(1)
n#0 —oe

Y =00

oo 1 2 eZ?rin z _ e—?‘n‘in x
= main terms+2z——.——/ My ( ) - dz + o(1)
n 0 ‘

= (2min)2k+1 Y o0
y2k+1 © Y2k (=1)k
= : : - Mok (0)C(2k + 1 1
g2 ke K(0) g + (e Mar(O)C (2K + 1) + o))
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where My(t?) = S5 k(t?) and Mpi(0) = ERLE(0) ().
Finally, the whole contribution to (4) from the parabolic conjugacy classes is

Y2 2 V(=R (2R)!
2k+1/ k(2" )t ~ )Qk +(27T)2k Il k5(0)C(2k + 1)+

+ 2p(2k + 1)¢(2k + 1) foo E(t%)t**dt + o(1)

Y=o

¢) The hyperbolic terms in (4)
Let P be a primitive hyperbolic element. We let A'(P) denote its norm. There
exists the element g(P) € PSL(2,R) with the property

N(P)z = g(P™")Pg(P)z

for all = € H. The whole contribution to (4) from the hyperbolic classes is equal to

(8)
N(P) @ ] N(P)m +N(P)"m _9
2 Z / sinZ¢p / K ( sinZe ) E(g(P)z,2k+1)+ o(1)

{P}r m=1 P Y =00

where {P} run through the set of all primitive hyperbolic conjugacy classes in I'.
We denote w(P,m) = N(P)™ + N(P)~™ —2. We let E’{P}r‘ denote the sum in
(8) over the all pairs {P}r, {P~'}r. We rewrite (8) now

(©) Z Z / sin?p ( 51};2::)) /;N(P) d (E(g(P)z,2k + 1)+

{P}r m=1 P
+E(g(P™")2,2k + 1)) + o(l),z = pe“’

Y=o

It follows from the definition of the Eisenstein-Maass series

N(P) '
(10) j %(E(Q(P)z,zk £1)+ B(g(P™Y)z, 2k +1)) =

o0
1
—_ H 2k+1 dt . tZk
(sin™" ) /0 ((1 4 2tcos p + t2)2k+1 T

ST Y e
_ 2)2k+1 2k+1
(1 — 2tcosp + t?) T /T |ed|

where vy run through the set of all double cosets ooy p, ¢, d are the matrix elements

19(P) = (Z Z)

We let (p(s) denote the corresponding Zagier zeta function

Crls)= ) |_ji"|3

C
YEl\I'/Tp
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The integral

. *° ' 1 1
11) (sin?*H? / dt - %%
(1) (si 2 o (1 + 2tcosp + £2)2k+1 * (1 — 2tcos ¢ + t2)26+1

is computed by means of the residues theory and it is equal to

oo

Z akgctgugo

£=0

are are some constants. We write down these constants later for k = 1. After some
obvious transformations we find that the formula (9) is an expression of the form

oo k )
Z Cp(2k +1) Z Z E(P,::ﬁi : /0 712k (t 4+ w(P,m))dt + o(1)

Y 500

We introduce some notation

o0
/ 712k (1 + w)dt = Qu(w)
0

Obviously, @Q.(w) = Q(w) from the formula (5).

Therefore we computed the asymptotic behavior at ¥ — oo of the left hand side
of the formula (4). We proceed now to the right hand side of this formula. Here
we shall limit ourselves to more special discrete groups.

We suppose that eigenfunctions of the discrete spectrum of the automorphic
Laplacian A(T") are only constant and the cusp forms which have property to be
even or odd functions

+v;(-7) = v;(2),

and there is no other eigenfunctions of the discrete spectrum of A(T"). It is the
serious restriction of the group I' but, in particular, some arithmetical groups I'
have this property. The right hand side of the formula (4) is an expression of the
form

h(O /9 Jok)du(z) + > k() /]UJ 120(z, Y )du(z)+

>0

+_ﬁf h(1/4 + r?) /|E'z 1/2 4 ir)PO(z, i) du(z)

where Ao = 0, vo(z) = w(F)™'/2, j > 0 run through the set of all eigenfunctions of
the discrete spectrum of A(I") which are cusp forms.
For j > 0 we have A\; > 0 and

Z) = Z Pj(n)\/ﬂK,-rj (2ﬂ|n|y)62ﬂinr

n#0



ZAGIER FORMULA AND A NEW KIND OF SELBERG ZETA FUNCTIONS 7

p;(n) are Fourier coefficents, K,(z) is the modified Bessel function, 1/4 4+ r? = );.
For the Eisenstein-Maass series we have the same Fourier decomposition

E(z,8) =y° + 0(s)y" 7" + D du(8)yK,_y 2(27|n]y)e? ™"
n#0

We make use of these decompositions for the transformation of (12). We have
a) The contribution of vo to (12)
From the definition of O(z,v) we have

dy Q v
i [ otemante) = figy [* 8 [t = S8+ o)
b) The contribution of the cusp forms to (12)
(13) S2H) [ Ol (e)Pduz) =
1>0

= h(}, /E 2,2k + 1)|v;(2)?|du(z) + o(1)

i>0 Yoo
The last integral is the Rankin-Selberg convolution and it is equal to
1 T?%(k+1/2)
4r2k+l (k4 1)
where ((2k + 1;v;) is the Rankin-Selberg zeta function
o Jei(n)]
C(siv) =) o=
n=1
I'(s) is the Euler function. As a result (13) is equal to

1 I2(k+1/2)
T TR T ) Zh VD (k +1/2 4+ 1r;)? c(zk+1uj)+}9g20

IT(k 4+ 1/2 +ir;)12¢(2k + 1;v;)

c¢) The contribution of the Eisenstein-Maass series to (12)
We have

(14)
: T2 2, Yk z i 2 zZydr =
4ﬂ/‘ h(1/4 + )fp@( k)| B(z,1/2 + ir) P dp(z)d

o0 oo 1
=57 [_rasaer / L[ w12 +indr =

y2k+1 ) O(1/247) opti—i
- — lf‘d
27r GE T 1) h(1/4+r )dr+ f h(1/4 +r )2k+1_2irY r+
@(1/2 =1r) opr142ir
+_/ A(1/4+ 77 2k+1+2¢7~y dr
! (k+1/2)/ 2 2 ,
1/4 T(k +1/2 % +1,E(-,1/2 d
1672542 T(2k + 1) J_uo h(1/4 + r*)IT(k + 1/2 + )| ((2k + (,1/2 +1r))dr
+ o(1)

Yoo
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where the Rankin-Selberg zeta function for the Eisenstein-Maass series is defined
by the formula

(s B 1/2+ir) =Y ldn(l/i:r ir)|?
n=1

The integrals with the function ¢ are computed using the theory of residues.
The functions h and ¢ are meromorphic (analytic). The only pole of the ¢(s) in
the half plane Res > 1/2 is the simple pole at s = 1 with the residue equal to
p(F)~!. We remember also the functional equation ¢(s)o(1 — s) = 1. Finally (14)
is equal to

VI 0) - ytao)—L 4 L Sh(=k? = Kyp(k + 1)+
% +10) T ok 14

(F)
1 I*(k+41/2 (2 e .
16r2krz I‘E2k++ {)) MR+ 1724 )2k + 1, B(, 1/2 4 dr))dr

+ o(1)

Y 0

_|_

Therefore we found the asymptotic behavior at Y — 0o of each term in the formula
(4) and as a result we proved the following assertion.

Theorem 1. Let k(t) be a function k(t) € C§°(R*) then the following formula is
valid

4 oo &k
D e+ DD W@(w(ﬂm))*—

{P}I‘ m=1 {=0
k ! oo
((2 1)) C(2k+1)2—k)k“)(0)+2¢(2k+1)g(2k+1)/ 125k (t)dt =
0]
k+1)h(~k* -k 1 T*k+1/2)
ztp( )2( ) 42k+1 P(Zk-l—{) Zh T (k +1/2 4 ir; )|2 C(2k +1,v)+

1 T2k+1/2)
16725+2 T(2k + 1)

¥ | R PG /2 iRk + 1, B /2 i)

This Zagier formula is simplified essentially when k = 1. Besides we can rewrite
it in terms of a function A(A) but not a function k(t) like in the Selberg trace
formula.

We will not give here the precise definition of the formula and we formulate the
result only
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Theorem 2. In condition of the Theorem 1 the following formula is valid:
(15)

g(minN(P)) 9 1
Z ¢p(3) Z {8 N(P m/2 N(P)—m/2 T 397 (N(P)m/? _N(P)—m/z)a'

{P}r

- / " M1/ TN (P) (” D N ]

1—:r 1+4r
3)C ® h(1/4+1%) ¢(3) /°°

T+ (1/4+ r2)rth(rr) - h(1/4 + r2)dr =

1472 63

—o0

*wm(—) 1 Y
B 2 + 327 j%h(/\ )Ch‘/'l' ¢(3,v5)+
1 /°° h(1/4 4+ 72)(1/4 4 7%)

+1287T2 - C(3,E(,1/241r))dr

We can define now the zeta function of the Selberg type making use of the
formula (15). We choose the test function h()) as follows

2 ) = 1 s(1—s) . 1 _
MU +5s0) = s 2 T35 = 1) G20 5
s(1—s) 1 B 1 a(l—a) 1
T2 1) (-3/2P+7 (@-1/22+7% 20a—1) (a+1/2f+7E T
+a(1——a) = Res > 1, a > Res

22a~1) (a—3/2)%+72’
It is not hard to see that for given test function h(A; s; a) the formula (15) is valid

but the corresponding k function does not satisfy the condition of the Theorem 2.
We introduce now two zeta functions

=TI [Ta-~P)™)

{P}r‘ m=0

o
w

[» =N ¢ BN o o]

H H HH 1-— S—m—k—l)g—%

{P}r m=0 k=01=0

It is not hard to prove also that for Res > A > 1 these products converge
absolutely. Besides the contribution of all hyperbolic classes in the formula (15) for
the function h(1/4 + 72%;5; @) is equal to the following expression

(16)

1 Z] s(l—s) (2 1 Z3 1
D)+ 222 (541 et N |
23—1{21(";)+ o \z Gt V51,6 V% 3)F

9 Z 9s(1 — s) Z; 9s(1 — s) Z}

5 320 im0z T T imonm oz Ot
2 9 zZ
LR A R R vyer T oreney b Chl Ol
9s(1 —s) Z2

T3 o1)Es—9) 7, T
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minus the same expression with the argument a instead of s. The dash in the last
formula means the sign of the derivative of course.
We define now the zeta function

Zo(s) = [] =N (P)™)=P), a(P) =

{P}r

This function is generating for Z,(s), Z2(s). We have

T ((3)
8 In N(P)

Zy(s) = HZO s+m), Za(s) = HH21 s+k+1)=

m=0 k=01=0
00 00 o

= H HHZO(s+n1+k+l)
m=0 k=01{=0
Making use of the formulae (15), (16) we can extend meromorphically the logarith-
mic derivatives ‘
! ! !

a7) 224 70, 2
to the half plane Res > 0 at least if we can prove the meromorphic continuation of
the integral

<) 7.2
(18) /_ %};T—)-h(l/él-i-Tz;s;a)C(3,E(-,l/2+z'r))d-r

We can do it for cycloidal subgroups of the modular group I'z (or for subgroups
with one parabolic generator only) without elliptic generators. As it follows from
the paper [3] the integral (18) is reduced to the integral essentially

const./oo 2 2. . C(3—2i7‘)§(3+2i1’)d

with the Rieman zeta function for these discrete groups. The last assertion is valid
because for any cycloidal subgroup of I'z the Eisenstein-Maass series is almost equal
to the Eisenstein-Maass series of I'z. We will not give here the details of the proof
and we formulate only the result.

Theorem 3. Let I be a cycloidal subgroup of the modular group without elliptic
elements. Then the functions (17) can be extended meromorphically to the half
plane Res > 0 at least.
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