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ELLIPTIC HYPERGEOMETRIC FUNCTIONS

V. P. SPIRIDONOV

Introduction. The wonderful book by Andrews, Askey, and Roy [2] is mainly
devoted to special functions of hypergeometric type – to the plain hypergeomet-
ric series and integrals and their q-analogues. Shortly before its publication there
appeared first examples of hypergeometric functions of a new type related to elliptic
curves. A systematic theory of elliptic hypergeometric functions was constructed
in 2000-2004 over a short period of time. The present complement reviews briefly
the status of this theory by the fall of 2011. It repeats where possible the structure
of the book [2], and it is substantially based on author’s thesis [66] and survey [70].

The theory of quantum and classical completely integrable systems played a cru-
cial role in the discovery of these new special functions. An elliptic extension of
the terminating very-well-poised balanced q-hypergeometric series 10ϕ9 with dis-
crete values of parameters appeared for the first time in elliptic solutions of the
Yang-Baxter equation [28] associated with the exactly solvable models of statistical
mechanics [19]. The same terminating series with arbitrary parameters appeared
in [78] as a particular solution of a pair of linear finite difference equations, the
compatibility condition of which yields the most general known (1+1)-dimensional
nonlinear integrable chain analogous to the discrete time Toda chain. An elliptic
analogue of Euler’s gamma function depending on two bases p and q of modulus
less than 1, which already appeared in Baxter’s eight vertex model [7], was inves-
tigated in [56], and in [64] a modified elliptic gamma function was constructed for
which one of the bases may lie on the unit circle. General elliptic hypergeometric
functions are defined by the integrals discovered in [61], which qualitatively differ
from the terminating elliptic hypergeometric series. The appearance of such math-
ematical objects was quite unexpected, since no handbook or textbook of special
functions contained any hint of their existence. However, the generalized gamma
functions related to elliptic gamma functions and forming one of the key ingre-
dients of the theory were constructed long ago by Barnes [6] and Jackson [34].
The most important known application of the elliptic hypergeometric integrals was
found quite recently – they emerged in the description of topological characteristics
of four-dimensional supersymmetric quantum field theories [23, 30, 74, 75].

This is a complement to the book by G. E. Andrews, R. Askey, and R. Roy, Special Functions,
Encyclopedia of Math. Appl. 71, Cambridge Univ. Press, Cambridge, 1999, written for its

Russian edition (to be published by the Independent University press, Moscow, 2012).

1



2 V. P. SPIRIDONOV

Generalized gamma functions. In the beginning of XXth century Barnes [6]
constructed the following multiple zeta function:

ζm(s, u;ω) =
∑

n1,...,nm∈Z≥0

1
(u+ Ω)s

, Ω = n1ω1 + · · ·+ nmωm, Z≥0 = 0, 1, . . . ,

where u, ωj ∈ C. This series converges for Re(s) > m provided all ωj lie on
one side of a line passing through the point u = 0 (this forbids accumulation
points of the Ω-lattice in compact domains). Using an integral representation for
analytical continuation of ζm in s, Barnes also defined the multiple gamma function
Γm(u;ω) = exp(∂ζm(s, u;ω)/∂s)|s=0. It has the infinite product representation

1
Γm(u;ω)

= e
∑m

k=0 γmk
uk

k! u
∏′

n1,...,nm∈Z≥0

(
1 +

u

Ω

)
e
∑m

k=1(−1)k uk

kΩk , (1)

where γmk are some constants analogous to Euler’s constant (in [6], the normal-
ization γm0 = 0 was used). The primed product means that the point n1 = . . . =
nm = 0 is excluded from it. The function Γm(u;ω) satisfies m finite difference
equations of the first order

Γm−1(u;ω(j))Γm(u+ ωj ;ω) = Γm(u;ω), j = 1, . . . ,m, (2)

where ω(j) = (ω1, . . . , ωj−1, ωj+1, . . . , ωm) and Γ0(u;ω) := 1/u. The function
Γ1(ω1x;ω1) essentially coincides with the Euler gamma function Γ(x). The plain,
q-, and elliptic hypergeometric functions are connected to Γm(u;ω) for m = 1, 2, 3,
respectively.

Take m = 3 and assume that ω1,2,3 are pairwise incommensurate quasiperiods.
Then define three base variables:

q = e2πi
ω1
ω2 , p = e2πi

ω3
ω2 , r = e2πi

ω3
ω1 ,

q̃ = e−2πi
ω2
ω1 , p̃ = e−2πi

ω2
ω3 , r̃ = e−2πi

ω1
ω3 ,

where q̃, p̃, r̃ denote the τ → −1/τ modular transformed bases. For |p|, |q| < 1, the
infinite products

(z; q)∞ =
∞∏

j=0

(1− zqj), (z; p, q)∞ =
∞∏

j,k=0

(1− zpjqk)

are well defined. It is easy to derive equalities [34]

(z; q)∞
(qz; q)∞

= 1− z,
(z; q, p)∞
(qz; q, p)∞

= (z; p)∞,
(z; q, p)∞
(pz; q, p)∞

= (z; q)∞. (3)

The odd Jacobi theta function (see formula (10.7.1) in [2]) can be written as

θ1(u|τ) = −i
∞∑

n=−∞
(−1)neπiτ(n+1/2)2eπi(2n+1)u

= ip1/8e−πiu (p; p)∞ θ(e2πiu; p), u ∈ C,
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where p = e2πiτ . The modified theta function (see Theorem 10.4.1 in [2])

θ(z; p) := (z; p)∞(pz−1; p)∞ =
1

(p; p)∞

∑
k∈Z

(−1)kpk(k−1)/2zk (4)

plays a crucial role in the following. It obeys the following properties:

θ(pz; p) = θ(z−1; p) = −z−1θ(z; p) (5)

and θ(z; p) = 0 for z = pk, k ∈ Z. We denote

θ(a1, . . . , ak; p) := θ(a1; p) · · · θ(ak; p), θ(at±1; p) := θ(at; p)θ(at−1; p).

Then the Riemann relation for products of four theta functions takes the form

θ(xw±1, yz±1; p)− θ(xz±1, yw±1; p) = yw−1θ(xy±1, wz±1; p) (6)

(the ratio of the left- and right-hand sides is a bounded function of the variable
x ∈ C∗, and it does not depend on x due to the Liouville theorem, but for x = w
the equality is evident).

Euler’s gamma function can be defined as a special meromorphic solution of the
functional equation f(u + ω1) = uf(u). Respectively, q-gamma functions are con-
nected to solutions of the equation f(u+ω1) = (1−e2πiu/ω2)f(u) with q = e2πiω1/ω2 .
For |q| < 1, one of the solutions has the form Γq(u) = 1/(e2πiu/ω2 ; q)∞ defining the
standard q-gamma function (it differs from function (10.3.3) in [2] by the substi-
tution u = ω1x and some elementary multiplier). The modified q-gamma function
(“the double sine”, “non-compact quantum dilogarithm”,“hyperbolic gamma func-
tion”), which remains well defined even for |q| = 1, has the form

γ(u;ω) = exp
(
−

∫
R+i0

eux

(1− eω1x)(1− eω2x)
dx

x

)
, (7)

where the contour R + i0 coincides with the real axis deformed to pass clockwise
the point x = 0 in an infinitesimal way. If Re(ω1),Re(ω2) > 0, then the integral
converges for 0 < Re(u) < Re(ω1 + ω2). Under appropriate restrictions on u
and ω1,2, the integral can be computed as a convergent sum of the residues of
poles in the upper half plane. When Im(ω1/ω2) > 0, this yields the expression
γ(u;ω) = (e2πiu/ω1 q̃; q̃)∞/(e2πiu/ω2 ; q)∞, which can be extended analytically to the
whole complex u-plane. This function, serving as a key building block of the q-hy-
pergeometric functions for |q| = 1, was not considered in [2] and [31]; for its detailed
description see [24, 35, 38, 56, 81] and the literature cited therein.

In an analogous manner, elliptic gamma functions are connected to the equation

f(u+ ω1) = θ(e2πiu/ω2 ; p)f(u). (8)

Using the factorization (4) and equalities (3), it is easy to see that the ratio

Γ(z; p, q) =
(pqz−1; p, q)∞

(z; p, q)∞
(9)

satisfies the equations

Γ(qz; p, q) = θ(z; p)Γ(z; p, q), Γ(pz; p, q) = θ(z; q)Γ(z; p, q).
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Therefore the function f(u) = Γ(e2πiu/ω2 ; p, q) defines a solution of equation (8)
valid for |q|, |p| < 1, which is called the (standard) elliptic gamma function [56]. It
can be defined uniquely as a meromorphic solution of three equations: equation (8)
and

f(u+ ω2) = f(u), f(u+ ω3) = θ(e2πiu/ω2 ; q)f(u)

with the normalization f(
∑3

m=1 ωm/2) = 1, since non-trivial triply periodic func-
tions do not exist. The reflection formula has the form Γ(z; p, q)Γ(pq/z; p, q) = 1.
For p = 0, we have Γ(z; 0, q) = 1/(z; q)∞.

The modified elliptic gamma function, which is well defined for |q| = 1, has the
form [64]

G(u;ω) = Γ(e2πi u
ω2 ; p, q)Γ(re−2πi u

ω1 ; q̃, r). (10)
It yields the unique solution of three equations: equation (8) and

f(u+ ω2) = θ(e2πiu/ω1 ; r)f(u), f(u+ ω3) = e−πiB2,2(u;ω)f(u)

with the normalization f(
∑3

m=1 ωm/2) = 1. Here

B2,2(u;ω) =
u2

ω1ω2
− u

ω1
− u

ω2
+

ω1

6ω2
+

ω2

6ω1
+

1
2

denotes the second order Bernoulli polynomial appearing in the modular transfor-
mation law for the theta function

θ
(
e−2πi u

ω1 ; e−2πi
ω2
ω1

)
= eπiB2,2(u;ω)θ

(
e2πi u

ω2 ; e2πi
ω1
ω2

)
. (11)

One can check [22] that the same three equations and normalization are satisfied
by the function

G(u;ω) = e−
πi
3 B3,3(u;ω)Γ(e−2πi u

ω3 ; r̃, p̃), (12)
where |p̃|, |r̃| < 1, and B3,3(u;ω) is the third order Bernoulli polynomial

B3,3

(
u+

3∑
m=1

ωm

2
;ω

)
=
u(u2 − 1

4

∑3
m=1 ω

2
m)

3ω1ω2ω3
.

The functions (10) and (12) therefore coincide, and their equality defines one of
the laws of the SL(3; Z)-group of modular transformations for the elliptic gamma
function [26]. From expression (12), the function G(u;ω) is seen to remain mero-
morphic when ω1/ω2 > 0, i.e. |q| = 1. The reflection formula for it has the form
G(a;ω)G(b;ω) = 1, a + b =

∑3
k=1 ωk. In the regime |q| < 1 and p, r → 0 (i.e.,

Im(ω3/ω1), Im(ω3/ω2) → +∞), expression (10) obviously degenerates to the mod-
ified q-gamma function γ(u;ω). Representation (12) yields an alternative way of
reduction to γ(u;ω); a rigorous limiting connection of such a type was built for the
first time in a different way by Ruijsenaars [56].

As shown by Barnes, the q-gamma function 1/(z; q)∞ where z = e2πiu/ω2 and
q = e2πiω1/ω2 , Im(ω1/ω2) > 0, equals the product Γ2(u;ω1, ω2)Γ2(u− ω2;ω1,−ω2)
up to the exponential of a polynomial. Similarly, the modified q-gamma function
γ(u;ω) equals up to an exponential factor to the ratio Γ2(ω1 +ω2− u;ω)/Γ2(u;ω).
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Since θ(z; q) = (z; q)∞(qz−1; q)∞, the Γ2(u;ω)-function represents (in the sense
of the number of divisor points) “a quarter” of the θ1(u/ω2|ω1/ω2) Jacobi theta
function. Correspondingly, one can consider equation (8) as a composition of four
equations for Γ3(u;ω) with different arguments and quasiperiods and represent the
elliptic gamma functions as ratios of four Barnes gamma functions of the third
order with some simple exponential multipliers [29, 64]. For some other important
results for the generalized gamma functions, see [42, 47].

The elliptic beta integral. It is convenient to use the compact notation

Γ(a1, . . . , ak; p, q) := Γ(a1; p, q) · · ·Γ(ak; p, q),
Γ(tz±1; p, q) := Γ(tz; p, q)Γ(tz−1; p, q), Γ(z±2; p, q) := Γ(z2; p, q)Γ(z−2; p, q)

for working with elliptic hypergeometric integrals. We start consideration from the
elliptic beta integral discovered by the author in [61].

Theorem 1. Take eight complex parameters t1, . . . , t6, and p, q, satisfying the con-
straints |p|, |q|, |tj | < 1 and

∏6
j=1 tj = pq. Then the following equality is true

κ

∫
T

∏6
j=1 Γ(tjz±1; p, q)

Γ(z±2; p, q)
dz

z
=

∏
1≤j<k≤6

Γ(tjtk; p, q), (13)

where T denotes the positively oriented unit circle and κ = (p; p)∞(q; q)∞/4πi.

The first proof of this formula was based on the elliptic extension of Askey’s
method [3]. A particularly short proof was given in [67]. It is based on the partial
q-difference equation

ρ(z; qt1, t2, . . . , t5; p, q)− ρ(z; t1, . . . , t5; p, q)
= g(q−1z)ρ(q−1z; , t1, . . . , t5; p, q)− g(z)ρ(z; t1, . . . , t5; p, q),

where ρ(z; t; p, q) is the integral kernel divided by the right-hand side expression in
equality (13) with t6 replaced by pq/t1 · · · t5 and

g(z) =
∏5

k=1 θ(tkz; p)∏5
k=2 θ(t1tk; p)

θ(t1
∏5

j=1 tj ; p)

θ(z2, z
∏5

j=1 tj ; p)
t1
z
.

A similar p-difference equation is obtained after permutation of p and q. Jointly
they show that the integral

∫
T ρ(z; t; p, q)dz/z is a constant independent of the

parameters tj (to see this just integrate the equations). Taking a special limit
of parameters tj such that integral’s value is asymptotically given by the sum of
residues of a fixed pair of poles (see below), one finds this constant.

The elliptic beta integral (13) defines the most general known univariate exact
integration formula generalizing Euler’s beta integral. For p → 0, one obtains the
Rahman integral [43] (see Theorem 10.8.2 in [2]), which reduces to the well known
Askey-Wilson q-beta integral [4] (see Theorem 10.8.1 in [2]) if one of the parameters
vanishes. The binomial theorem 1F0(a;x) = (1 − x)−a (see formula (2.1.6) in [2])
was proved by Newton. The q-binomial theorem 1ϕ0(t; q;x) = (tx; q)∞/(x; q)∞ (see
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Ch. 10.2 in [2]) was established by Gauss and several other mathematicians. These
formulas represent the simplest plain and q-hypergeometric function identities. At
the elliptic level, this role is played by the elliptic beta integral evaluation, i.e.
formula (13) can be considered as an elliptic binomial theorem.

Replace in formula (13) T by a contour C which separates sequences of the
integrand poles converging to zero along the points z = tjq

kpm, k,m ∈ Z≥0, from
their reciprocals obtained by the change z → 1/z, which go to infinity. This allows
one to lift the constraints |tj | < 1 without changing the right-hand side of formula
(13). Substitute now t6 = pq/A, A =

∏5
k=1 tk, and suppose that |tm| < 1, m =

1, . . . , 4, |pt5| < 1 < |t5|, |pq| < |A|, and the arguments of t1, . . . , t5, and p, q are
linearly independent over Z. Then the following equality takes place [20]:

κ

∫
C

∆E(z, t)
dz

z
= κ

∫
T

∆E(z, t)
dz

z
+ c0(t)

∑
|t5qn|>1, n≥0

νn(t), (14)

where ∆E(z, t) =
∏5

m=1 Γ(tmz±1; p, q)/Γ(z±2, Az±1; p, q) and

c0(t) =
∏4

m=1 Γ(tmt±1
5 ; p, q)

Γ(t−2
5 , At±1

5 ; p, q)
, νn(t) =

θ(t25q
2n; p)

θ(t25; p)

5∏
m=0

θ(tmt5)n

θ(qt−1
m t5)n

qn.

We have introduced here a new parameter t0 with the help of the relation
∏5

m=0 tm =
q and used the elliptic Pochhammer symbol

θ(t)n =
n−1∏
j=0

θ(tqj ; p) =
Γ(tqn; p, q)
Γ(t; p, q)

, θ(t1, . . . , tk)n :=
k∏

j=1

θ(tj ; p)n

(the indicated ratio of elliptic gamma functions defines θ(t)n for arbitrary n ∈ C).
The multiplier κ is absent in the coefficient c0 due to the relation limz→1(1 −
z)Γ(z; p, q) = 1/(p; p)∞(q; q)∞ and doubling of the number of residues because of
the symmetry z → z−1.

In the limit t5t4 → q−N , N ∈ Z≥0, the integral over the contour C (equal to
the right-hand side of equality (13)) and the multiplier c0(t) in front of the sum of
residues diverge, whereas the integral over the unit circle T remains finite. After
dividing all the terms by c0(t) and going to the limiting relation, we obtain the
Frenkel-Turaev summation formula

N∑
n=0

νn(t) =
θ(qt25,

q
t1t2

, q
t1t3

, q
t2t3

)N

θ( q
t1t2t3t5

, qt5
t1
, qt5

t2
, qt5

t3
)N

, (15)

which was established for the first time in [28] by a completely different method.
For p → 0 and fixed parameters, formula (15) reduces to the Jackson sum for a
terminating 8ϕ7-series (see Ex. 16 in Ch. 10 and formula (12.3.5) in [2]). We
stress that all terminating elliptic hypergeometric series identities like identity (15)
represent relations between ordinary elliptic functions, i.e. they do not involve
principally new special functions in contrast to the elliptic hypergeometric integral
identities.
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General elliptic hypergeometric functions. Definitions of the general ellip-
tic hypergeometric series and integrals were given and investigated in detail in [62]
and [64], respectively. So, a formal series

∑
n∈Z cn is called an elliptic hypergeo-

metric series if cn+1 = h(n)cn, where h(n) is some elliptic function of n ∈ C. This
definition is contained implicitly in the considerations of [78]. It is well known [5]
that an arbitrary elliptic function h(u) of order s + 1 with the periods ω2/ω1 and
ω3/ω1 can be represented in the form

h(u) = y
s+1∏
k=1

θ(tkz; p)
θ(wkz; p)

, z = qu. (16)

The equality h(u+ω2/ω1) = h(u) is evident, and the periodicity h(u+ω3/ω1) = h(u)
brings in the balancing condition

∏s+1
k=1 tk =

∏s+1
k=1 wk. Because of the factorization

of h(n), in order to determine the coefficients cn it suffices to solve the equation
an+1 = θ(tqn; p) an, which leads to the elliptic Pochhammer symbol an = θ(t)n a0.
The explicit form of the bilateral elliptic hypergeometric series is now easily found
to be

s+1Gs+1

(
t1, . . . , ts+1

w1, . . . , ws+1
; q, p; y

)
:=

∑
n∈Z

s+1∏
k=1

θ(tk)n

θ(wk)n
yn,

where we have chosen the normalization c0 = 1. By setting ws+1 = q, ts+1 =: t0,
we obtain the one sided series

s+1Es

(
t0, t1, . . . , ts
w1, . . . , ws

; q, p; y
)

:=
∑

n∈Z≥0

θ(t0, t1, . . . , ts)n

θ(q, w1, . . . , ws)n
yn. (17)

For fixed tj and wj , the function s+1Es degenerates in the limit p → 0 to the
basic q-hypergeometric series s+1ϕs satisfying the condition

∏s
k=0 ts = q

∏s
k=1 ws.

There are some problems with the convergence of the infinite series (17), and we
therefore assume its termination due to the condition tk = q−NpM for some k and
N ∈ Z≥0, M ∈ Z. The additive system of notation for these series (see, e.g., Ch.
11 in [31] or [66]) is more convenient for consideration of certain questions, but we
skip it here.

The series (17) is called well-poised if t0q = t1w1 = . . . = tsws. In this
case the balancing condition takes the form t1 · · · ts = ±q(s+1)/2t

(s−1)/2
0 , and the

functions h(u) and s+1Es become invariant under the changes tj → ptj , j =
1, . . . , s − 1, and t0 → p2t0. For odd s and balancing condition of the form
t1 · · · ts = +q(s+1)/2t

(s−1)/2
0 , one has the symmetry t0 → pt0 and s+1Es becomes

an elliptic function of all free parameters log tj , j = 0, . . . , s− 1, with equal periods
(such functions were called in [62, 66] totally elliptic functions). Under the four
additional constraints ts−3 = q

√
t0, ts−2 = −q

√
t0, ts−1 = q

√
t0/p, ts = −q

√
pt0,

connected to doubling of the argument of theta functions, the series are called
very-well-poised. In [63], a special notation was introduced for the very-well-poised
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elliptic hypergeometric series:

s+1Es

(
t0, t1, . . . , ts−4, q

√
t0,−q

√
t0, q

√
t0/p,−q

√
pt0

qt0/t1, . . . , qt0/ts−4,
√
t0,−

√
t0,
√
pt0,−

√
t0/p

; q, p;−y
)

(18)

=
∞∑

n=0

θ(t0q2n; p)
θ(t0; p)

s−4∏
m=0

θ(tm)n

θ(qt0t−1
m )n

(qy)n =: s+1Vs(t0; t1, . . . , ts−4; q, p; y),

where the balancing condition has the form
∏s−4

k=1 tk = ±t(s−5)/2
0 q(s−7)/2, and for

odd s we assume the positive sign choice for preserving the symmetry t0 → pt0. If
y = 1, then y is omitted in the series notation. Summation formula (15) gives thus
a closed form expression for the terminating 10V9(t0; t1, . . . , t5; q, p)-series.

A contour integral
∫

C
∆(u)du is called an elliptic hypergeometric integral if its

kernel ∆(u) satisfies the system of three equations

∆(u+ ωk) = hk(u)∆(u), k = 1, 2, 3, (19)

where ω1,2,3 ∈ C are some pairwise incommensurate parameters and hk(u) are some
elliptic functions with periods ωk+1, ωk+2 (we set ωk+3 = ωk). One can weaken the
requirement (19) by keeping only one equation, but then there appears a functional
freedom in the choice of ∆(u), which should be fixed in some other way.

Omitting the details of such considerations from [64, 66], we present the general
form of permissible functions ∆(u). We suppose that this function satisfies the
equations (19) for k = 1, 2, where

h1(u) = y1

s∏
j=1

θ(tje2πiu/ω2 ; p)
θ(wje2πiu/ω2 ; p)

, h2(u) = y2
∏̀
j=1

θ(t̃je−2πiu/ω1 ; r)
θ(w̃je−2πiu/ω1 ; r)

,

|p|, |r| < 1 and
∏s

j=1 tj =
∏s

j=1 wj ,
∏`

j=1 t̃j =
∏`

j=1 w̃j . If we take |q| < 1, then
the most general meromorphic ∆(u) has the form

∆(u) =
s∏

j=1

Γ(tje
2πi u

ω2 ; p, q)

Γ(wje
2πi u

ω2 ; p, q)

∏̀
j=1

Γ(t̃je
−2πi u

ω1 ; q̃, r)

Γ(w̃je
−2πi u

ω1 ; q̃, r)

m∏
k=1

θ(ake
2πi u

ω2 ; q)

θ(bke
2πi u

ω2 ; q)
ecu+d, (20)

where the parameters d ∈ C and m ∈ Z≥0 are arbitrary, and ak, bk, c are connected
with y1 and y2 by the relations y2 = ecω2 and y1 = ecω1

∏m
k=1 bka

−1
k . It appears

that the function h3(u) cannot be arbitrary – it is determined from expression (20).
For |q| = 1 it is necessary to choose ` = s in formula (20) and fix parameters

in such a way that the Γ-functions are combined to the modified elliptic gamma
function G(u;ω) (it is precisely in this way that this function was built in [64]):

∆(u) =
s∏

j=1

G(u+ gj ;ω)
G(u+ vj ;ω)

ecu+d, (21)

where the parameters gj , vj are connected to tj , wj by the relations tj = e2πigj/ω2 ,

wj = e2πivj/ω2 , and y1,2 = ecω1,2 . The integrals
∫

C
∆(u)du with kernels of the
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indicated form define elliptic analogues of the Meijer function. For even more
general theta hypergeometric integrals, see [64].

We limit consideration to the case when both ` and m in (20) are equal to zero.
The corresponding integrals are called well-poised, if t1w1 = . . . = tsws = pq.
The additional condition of very-well-poisedness fixes eight parameters ts−7, . . . ,
ts = {±(pq)1/2, ±q1/2p, ±p1/2q,±pq} and doubles the argument of the elliptic
gamma function:

∏s
j=s−7 Γ(tjz; p, q) = 1/Γ(z−2; p, q). The most interesting are the

very-well-poised elliptic hypergeometric integrals with even number of parameters

I(m)(t1, . . . , t2m+6) = κ

∫
T

∏2m+6
j=1 Γ(tjz±1; p, q)

Γ(z±2; p, q)
dz

z
,

2m+6∏
j=1

tj = (pq)m+1, (22)

with |tj | < 1 and “correct” choice of the sign in the balancing condition. They
represent integral analogues of the s+1Vs-series with odd s, “correct” balancing
condition and the argument y = 1, in the sense that such series appear as residue
sums of particular pole sequences of the kernel of I(m). Note that I(0) coincides
with the elliptic beta integral.

Properties of the elliptic functions explain the origins of hypergeometric notions
of balancing, well-poisedness, and very-well-poisedness. However, strictly speaking
these notions are consistently defined only at the elliptic level, because there are
limits to such q-hypergeometric identities in which they are not preserved any more
[45, 63, 84]! The fact of unique determination of the balancing condition for series
(18) with odd s and integrals (22) (precisely these objects emerge in interesting
applications) illustrates a deep internal tie between the “elliptic” and “hypergeo-
metric” classes of special functions. Multivariable elliptic hypergeometric series
and integrals are defined analogously to the univariate case – it is necessary to
use systems of finite difference equations for kernels with the coefficients given
by elliptic functions of all summation or integration variables [62, 64], which is a
natural generalization of the approach of Pochhammer and Horn to functions of
hypergeometric type [2, 32].

An elliptic analogue of the Euler-Gauss hypergeometric function. Take
eight parameters t1, . . . , t8 ∈ C and two base variables p, q ∈ C satisfying the
constraints |p|, |q| < 1 and

∏8
j=1 tj = p2q2 (the balancing condition). For all |tj | < 1

an elliptic analogue of the Euler-Gauss hypergeometric function 2F1(a, b; c;x) (see
Ch. 2 in [2]) is defined by the integral [66]

V (t) ≡ V (t1, . . . , t8; p, q) := κ

∫
T

∏8
j=1 Γ(tjz±1; p, q)

Γ(z±2; p, q)
dz

z
, (23)

i.e. by the choice m = 1 in expression (22). Note that it can be reduced to both Eu-
ler and Barnes type integral representations of 2F1-series. For other admissible val-
ues of parameters, the V -function is defined by the analytical continuation of expres-
sion (23). From this continuation one can see that the V -function is meromorphic
for all values of parameters tj ∈ C∗ when the contour of integration is not pinched.
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To see this, compute residues of the integrand poles and define the analytically
continued function as a sum of the integral over some fixed contour and residues
of the poles crossing this contour. More precisely,

∏
1≤j<k≤8(tjtk; p, q)∞V (t) is

a holomorphic function of parameters [44]. As shown in [69], the V -function has
delta-function type singularities at certain values of tj ’s.

The first nontrivial property of function (23) consists in its reduction to the
elliptic beta integral under the condition for a pair of parameters tjtk = pq, j 6= k
(expression (13) appears from t7t8 = pq). The V -function is evidently symmetric
in p and q. It is invariant also under the S8-group of permutations of parameters
tj isomorphic to the Weyl group A7. Consider the double integral

κ

∫
T2

∏4
j=1 Γ(ajz

±1, bjw
±1; p, q) Γ(cz±1w±1; p, q)

Γ(z±2, w±2; p, q)
dz

z

dw

w
,

where aj , bj , c ∈ C, |aj |, |bj |, |c| < 1, and c2
∏4

j=1 aj = c2
∏4

j=1 bj = pq. Using
formula (13) for integration over z or w (the permutation of the order of integrations
is permitted), we obtain the following transformation formula:

V (t) =
∏

1≤j<k≤4

Γ(tjtk, tj+4tk+4; p, q)V (s), (24)

where |tj |, |sj | < 1, and{
sj = ρ−1tj , j = 1, 2, 3, 4
sj = ρtj , j = 5, 6, 7, 8 ; ρ =

√
t1t2t3t4
pq

=
√

pq

t5t6t7t8
.

This fundamental relation was derived by the author in [64], where the function V (t)
appeared for the first time. It represents an elliptic analogue (moreover, integral
generalization) of Bailey’s transformation for four non-terminating 10ϕ9-series [31].

Repeat transformation (24) once more with the parameters s3,4,5,6, playing the
role of t1,2,3,4, and permute parameters t3, t4 with t5, t6 in the resulting expression.
This yields the relation

V (t) =
4∏

j,k=1

Γ(tjtk+4; p, q) V (T
1
2/t1, . . . , T

1
2/t4, U

1
2/t5, . . . , U

1
2/t8), (25)

where T = t1t2t3t4, U = t5t6t7t8 and |T |1/2 < |tj | < 1, |U |1/2 < |tj+4| < 1, j =
1, 2, 3, 4. Now equating the right-hand sides of relations (24) and (25), and express-
ing parameters tj in terms of sj , one obtains the third relation

V (s) =
∏

1≤j<k≤8

Γ(sjsk; p, q)V (
√
pq/s1, . . . ,

√
pq/s8), (26)

where |pq|1/2 < |sj | < 1 for all j.
Consider the Euclidean space R8 with the scalar product 〈x, y〉 and an orthonor-

mal basis ei ∈ R8, 〈ei, ej〉 = δij . The root system A7 consists of the vectors
v = {ei − ej , i 6= j}. Its Weyl group consists of the reflections x → Sv(x) =
x− 2v〈v, x〉/〈v, v〉 acting in the hyperplane orthogonal to the vector

∑8
i=1 ei (i.e.,
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the coordinates of the vectors x =
∑8

i=1 xiei satisfy the constraint
∑8

i=1 xi = 0),
and it coincides with the permutation group S8.

Connect parameters of the V (t)-function to the coordinates xj as tj = e2πixj (pq)1/4.
Then the balancing condition assumes the form

∑8
i=1 xi = 0. The first V -function

transformation (24) is now easily seen to correspond to the reflection Sv(x) for the
vector v = (

∑8
i=5 ei −

∑4
i=1 ei)/2 having the canonical length 〈v, v〉 = 2. This

reflection extends the group A7 to the exceptional Weyl group E7. Relations (25)
and (26) were proved in a different fashion by Rains in [44], where it was indicated
that these transformations belong to the group E7.

Denote by V (qtj , q−1tk) elliptic hypergeometric functions contiguous to V (t) in
the sense that tj and tk are replaced by qtj and q−1tk, respectively. The following
contiguous relation for the V -functions is valid

t7θ
(
t8t

±1
7 /q; p

)
V (qt6, q−1t8)− (t6 ↔ t7) = t7θ

(
t6t

±1
7 ; p

)
V (t), (27)

where (t6 ↔ t7) denotes the permutation of parameters in the preceding expression
(such a relation was used already in [61]). Indeed, for y = t6, w = t7, and x = q−1t8
the Riemann relation (6) is equivalent to the q-difference equation for V -function’s
integrand ∆(z, t) =

∏8
k=1 Γ(tkz±1; p, q)/Γ(z±2; p, q) coinciding with (27) after re-

placement of V -functions by ∆(z, t) with appropriate parameters. Integration of
this equation over the contour T yields formula (27). Substitute now the symmetry
transformation (26) in (27) and obtain the second contiguous relation

t6θ
( t7
qt8

; p
) 5∏

k=1

θ
( t6tk

q
; p

)
V (q−1t6, qt8)− (t6 ↔ t7) = t6θ

( t7
t6

; p
) 5∏

k=1

θ(t8tk; p)V (t).

An appropriate combination of these two equalities yields the equation

A(t)
(
U(qt6, q−1t7)− U(t)

)
+ (t6 ↔ t7) + U(t) = 0, (28)

where we have denoted U(t) = V (t)/Γ(t6t±1
8 , t7t

±1
8 ; p, q) and

A(t) =
θ(t6/qt8, t6t8, t8/t6; p)
θ(t6/t7, t7/qt6, t6t7/q; p)

5∏
k=1

θ(t7tk/q; p)
θ(t8tk; p)

. (29)

Substituting tj = e2πigj/ω2 , one can check that the potential A(t) is a modular
invariant elliptic function of the variables g1, . . . , g7, i.e. it does not change after
the replacements gj → gj + ω2,3 or (ω2, ω3) → (−ω3, ω2).

Now denote t6 = cx, t7 = c/x, and introduce new variables

εk =
q

ctk
, k = 1, . . . , 5, ε8 =

c

t8
, ε7 =

ε8
q
, c =

√
ε6ε8
p2

.

In terms of εk the balancing condition takes the standard form
∏8

k=1 εk = p2q2.
After the replacement of U(t) in formula (28) by some unknown function f(x),
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we obtain a q-difference equation of the second order which is called the elliptic
hypergeometric equation:

A(x) (f(qx)− f(x)) +A(x−1)
(
f(q−1x)− f(x)

)
+ νf(x) = 0, (30)

A(x) =
∏8

k=1 θ(εkx; p)
θ(x2, qx2; p)

, ν =
6∏

k=1

θ

(
εkε8
q

; p
)
. (31)

We have already one functional solution of this equation

f1(x) =
V (q/cε1, . . . , q/cε5, cx, c/x, c/ε8; p, q)

Γ(c2x±1/ε8, x±1ε8; p, q)
, (32)

where it is necessary to impose the constraints (in the previous parametrization)√
|pq| < |tj | < 1, j = 1, . . . , 5, and

√
|pq| < |q±1t6|, |q±1t7|, |q±1t8| < 1, which can

be relaxed by analytical continuation. Other independent solutions can be obtained
by the multiplication of one of the parameters ε1, . . . , ε5, and x by powers of p or
by permutations of ε1, . . . , ε5 with ε6.

Denote εk = e2πiak/ω2 , x = e2πiu/ω2 , and F1(u; a;ω1, ω2, ω3) := f1(x). Then one
can check that equation (30) is invariant with respect to the modular transformation
(ω2, ω3) → (−ω3, ω2). Therefore one of the linear independent solutions of (30) has
the form F2(u; a;ω1, ω2, ω3) := F1(u; a;ω1,−ω3, ω2). The same solution would be
obtained if we repeat the derivation of equation (30) and its solution (32) after
replacing Γ-functions by the modified elliptic gamma function G(u;ω). This shows
that F2-function is well defined even for |q| = 1. Different limiting transitions
from the V -function and other elliptic hypergeometric integrals to q-hypergeomet-
ric integrals of the Mellin-Barnes or Euler type are described in [66, 68] and much
more systematically in [11, 15, 17, 47].

Biorthogonal functions of the hypergeometric type. In analogy with the
residue calculus for the elliptic beta integral (14), one can consider the sum of
residues for a particular geometric progression of poles of the V -function kernel
for one of the parameters. This leads to the very-well-poised 12V11-elliptic hyper-
geometric series the termination of which is guaranteed by a special discretization
of the chosen parameter. In this way one can rederive contiguous relations for
the terminating 12V11-series of [78, 79] out of the contiguous relations for the V -
function, which we omit here. For instance, this yields the following particular
solution of the elliptic hypergeometric equation (30):

Rn(x; q, p) = 12V11

(
ε6
ε8

;
q

ε1ε8
,
q

ε2ε8
,
q

ε3ε8
,
qp

ε4ε8
,
qp

ε5ε8
, ε6x,

ε6
x

; q, p
)
, (33)

where pq/ε4ε8 = q−n, n ∈ Z≥0 (we recall that
∏8

k=1 εk = p2q2). Properties of the
Rn-function were described in [64], whose notation passes to ours after the replace-
ments t0,1,2 → ε1,2,3, t3 → ε6, t4 → ε8, µ→ ε4ε8/pq, and Aµ/qt4 → pq/ε5ε8.

Equation (30) is symmetric in ε1, . . . , ε6. The series (18) is elliptic in all param-
eters, therefore function (33) is symmetric in ε1, . . . , ε5 and each of these variables
can be used for terminating the series. A permutation of ε1, ε2, ε3, ε5 with ε6 yields
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Rn(z; q, p) up to some multiplier independent on x due to an elliptic analogue of
the Bailey transformation for terminating 12V11-series [28], which can be obtained
by degeneration from equality (24).

The same contiguous relations for the 12V11-series yield the following three term
recurrence relation for Rn(x; q, p) in the index n:

(z(x)− αn+1)ρ(Aqn−1/ε8) (Rn+1(x; q, p)−Rn(x; q, p)) + (z(x)− βn−1) (34)
×ρ(q−n) (Rn−1(x; q, p)−Rn(x; q, p)) + δ(z(x)− z(ε6))Rn(x; q, p) = 0,

where

z(x) =
θ(xξ±1; p)
θ(xη±1; p)

, αn = z(qn/ε8), βn = z(Aqn−1),

ρ(t) =
θ
(
t, ε6

ε8t ,
qε6
ε8t ,

qt
ε1ε2

, qt
ε2ε3

, qt
ε1ε3

, q2tη±1

A ; p
)

θ
(

qt2ε8
A , q2t2ε8

A ; p
) ,

δ = θ

(
q2ε6
A

,
q

ε1ε8
,
q

ε2ε8
,
q

ε3ε8
, ε6η

±1; p
)
.

Here A = ε1ε2ε3ε6ε8, and ξ and η are arbitrary gauge parameters, ξ 6= η±1pk, k ∈
Z. The initial conditions R−1 = 0 and R0 = 1 guarantee that all the dependence
on the variable x enters only through z(x), and that Rn(x) is a rational function
of z(x) with poles at the points α1, . . . , αn.

The elliptic hypergeometric equation for the Rn-function can be rewritten in the
form of a generalized eigenvalue problem D1Rn = λnD2Rn for some q-difference
operators of the second order D1,2 and discrete spectrum λn [64]. We denote by φλ

solutions of an abstract spectral problem D1φλ = λD2φλ, and by ψλ solutions of the
equation DT

1 ψλ = λDT
2 ψλ, where DT

1,2 are the operators conjugated with respect
to some inner product 〈ψ|φ〉, i.e. 〈DT

1,2ψ|φ〉 = 〈ψ|D1,2φ〉. Then 0 = 〈ψµ|(D1 −
λD2)φλ〉 = (µ − λ)〈DT

2 ψµ|φλ〉, i.e. the function DT
2 ψµ is orthogonal to φλ for

µ 6= λ. As shown by Zhedanov [86] (see also [78, 79]), this simple fact can be
used for a formulation of the theory of biorthogonal rational functions generalizing
orthogonal polynomials. Analogues of the functions DT

2 ψµ for Rn(z; q, p) have the
form

Tn(x; q, p) = 12V11

(
Aε6
q

;
A

ε1
,
A

ε2
,
A

ε3
, ε6x,

ε6
x
,
qp

ε4ε8
,
qp

ε5ε8
; q, p

)
, (35)

which are rational functions of z(x) with poles at the points β1, . . . , βn.
Denote Rnm(x) := Rn(x; q, p)Rm(x; p, q) and Tnm(x) := Tn(x; q, p)Tm(x; p, q),

where all the 12V11-series terminate simultaneously because of the modified termi-
nation condition ε4ε8 = pm+1qn+1, n,m ∈ Z≥0. The functions Rnm now solve not
one but two generalized eigenvalue problems which differ from each other by the
permutation of p and q.
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Theorem 2. The following two-index biorthogonality relation is true:

κ

∫
Cmn,kl

Tnl(x)Rmk(x)

∏
j∈S Γ(εjx

±1; p, q)
Γ(x±2, Ax±1; p, q)

dx

x
= hnl δmn δkl, (36)

where S = {1, 2, 3, 6, 8}, Cmn,kl denotes the contour separating sequences of points
x = εjp

aqb (j = 1, 2, 3, 6), ε8pa−kqb−m, pa+1−lqb+1−n/A, a, b ∈ Z≥0, from their
x→ x−1 reciprocals, and the normalization constants have the form

hnl =

∏
j<k, j,k∈S Γ(εjεk; p, q)∏

j∈S Γ(Aε−1
j ; p, q)

hn(q, p) · hl(p, q),

hn(q, p) =
θ(A/qε8; p)θ(q, qε6/ε8, ε1ε2, ε1ε3, ε2ε3, Aε6)n q

−n

θ(Aq2n/qε8; p)θ(1/ε6ε8, ε1ε6, ε2ε6, ε3ε6, A/qε6, A/qε8)n
.

This theorem was proved in [64] by direct computation of the integral in the
left-hand side with the help of formula (13). The appearance of the two-index
orthogonality relations for functions of one variable is a new phenomenon in the
theory of special functions. It should be remarked that only for k = l = 0 there
exists the limit p → 0 and the resulting functions Rn(x; q, 0), Tn(x; q, 0) coincide
with Rahman’s family of continuous 10ϕ9-biorthogonal rational functions [43]. A
special limit Im(ω3) → ∞ in the modular transformed Rnm and Tnm leads to the
two-index biorthogonal functions which are expressed as products of two modu-
lar conjugated 10ϕ9-series [66]. A special restriction for one of the parameters in
Rn(x; q, p) and Tn(x; q, p) leads to the biorthogonal rational functions of a discrete
argument derived by Zhedanov and the author in [78] which generalizes Wilson’s
functions [85]. All these functions are natural generalizations of the Askey-Wilson
polynomials [4].

Note that Rnm(x) and Tnm(x) are meromorphic functions of the variable x ∈ C∗
with essential singularities at x = 0,∞ and only for k = l = 0 or n = m = 0 do
they become rational functions of some argument depending on x. The continu-
ous parameters biorthogonality relation for the V -function itself was established in
[69]. The biorthogonal functions generated by the three-term recurrence relation
(34) after shifting n by an arbitrary (complex) number are not investigated yet. A
generalization of the described “classical” biorthogonal functions to the “semiclassi-
cal” level associated with the higher order elliptic beta integrals (22) was suggested
by Rains in [49].

Elliptic beta integrals on root systems. Define a Cn (or BCn) root system
analogue of the constant κ: κn = (p; p)n

∞(q; q)n
∞/(2πi)n2nn!. Describe now a Cn-

elliptic beta integral representing a multiparameter generalization of integral (13),
which was classified in [21] as an integral of type I.
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Theorem 3. Take n variables z1, . . . , zn ∈ T and complex parameters t1, . . . , t2n+4

and p, q satisfying the constraints |p|, |q|, |tj | < 1 and
∏2n+4

j=1 tj = pq. Then

κn

∫
Tn

∏
1≤j<k≤n

1
Γ(z±1

j z±1
k ; p, q)

n∏
j=1

∏2n+4
m=1 Γ(tmz±1

j ; p, q)

Γ(z±2
j ; p, q)

dz1
z1

· · · dzn

zn

=
∏

1≤m<s≤2n+4

Γ(tmts; p, q). (37)

Formula (37) was suggested and partially confirmed by van Diejen and the author
in [21]. It was proved by different methods in [44, 50, 66, 67]. It reduces to one of
Gustafson’s integration formulas [33] in a special p→ 0 limit.

Theorem 4. Take complex parameters t, t1, . . . , t6, p and q restricted by the condi-
tions |p|, |q|, |t|, |tm| < 1 and t2n−2

∏6
m=1 tm = pq. Then,

κn

∫
Tn

∏
1≤j<k≤n

Γ(tz±1
j z±1

k ; p, q)

Γ(z±1
j z±1

k ; p, q)

n∏
j=1

∏6
m=1 Γ(tmz±1

j ; p, q)

Γ(z±2
j ; p, q)

dz1
z1

· · · dzn

zn

=
n∏

j=1

(Γ(tj ; p, q)
Γ(t; p, q)

∏
1≤m<s≤6

Γ(tj−1tmts; p, q)
)
. (38)

In order to prove formula (38), consider the following (2n− 1)-tuple integral

κnκn−1

∫
T2n−1

∏
1≤j<k≤n

1
Γ(z±1

j z±1
k ; p, q)

n∏
j=1

∏5
r=0 Γ(trz±1

j ; p, q)

Γ(z±2
j ; p, q)

×
∏

1≤j≤n

1≤k≤n−1

Γ(t1/2z±1
j w±1

k ; p, q)
∏

1≤j<k≤n−1

1
Γ(w±1

j w±1
k ; p, q)

×
n−1∏
j=1

Γ(w±1
j tn−3/2

∏5
s=1 ts; p, q)

Γ(w±2
j , w±1

j t2n−3/2
∏5

s=1 ts; p, q)
dw1

w1
· · · dwn−1

wn−1

dz1
z1

· · · dzn

zn
, (39)

with the parameters p, q, t and tr, r = 0, . . . , 5, lying inside the unit circle and such
that tn−1

∏5
r=0 tr = pq. Denote the integral in the left-hand side of equality (38)

by In(t, t1, . . . , t5; p, q). Integration over the variables wj with the help of formula
(37) brings expression (39) to the form Γn(t)In(t, t1, . . . , t5; p, q)/Γ(tn) (after denot-
ing t6 = pq/t2n−2

∏5
j=1 tj). Because the integrand is bounded on the integration

contour, we can change the order of integrations. As a result, integration over
the variables zj with the help of formula (37) brings expression (39) in the form
Γn−1(t)

∏
0≤r<s≤5 Γ(trts)In−1(t, t1/2t1, . . . , t

1/2t5; p, q), i.e. we obtain the following
recurrence relation in the dimensionality of the integral of interest n:

In(t, t1, . . . , t5; p, q) =
Γ(tn; p, q)
Γ(t; p, q)

∏
0≤r<s≤5

Γ(trts; p, q) In−1(t, t1/2t1, . . . , t
1/2t5; p, q).
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Iterating it with known initial condition (13) for n = 1, one obtains formula (38).
Integral (38) was constructed by van Diejen and the author in [20] and classified

as of type II in [21] where from the described proof is taken. This proof models
Anderson’s derivation of the Selberg integral described in [2] (see Theorem 8.1.1
and Sect. 8.4). It also represents a direct generalization of Gustafson’s method
[33] of derivation of the multiple q-beta integral obtained from formula (38) after
expressing t6 via other parameters, removing the multipliers pq with the help of the
reflection formula for Γ(z; p, q), and taking the limit p → 0. A number of further
limits in parameters leads to the Selberg integral – one of the most important known
integrals because of many applications in mathematical physics [27]. Therefore
formula (38) represents an elliptic analogue of the Selberg integral (an analogous
extension of Aomoto’s integral described in Theorem 8.1.2 of [2] is derived in [44]).
It can be interpreted also as an elliptic extension of the BCn Macdonald-Morris
constant term identities.

In analogy with the one dimensional case [64], it is natural to expect that the
multiple elliptic beta integrals define measures in the biorthogonality relations for
some functions of many variables generalizing relations (36). In [44, 45], Rains has
constructed a system of such functions on the basis of integral (38). These functions
generalize also the Macdonald and Koornwinder orthogonal polynomials, as well as
the interpolating polynomials of Okounkov. For a related work see also [18]. A
systematic investigation of the limiting cases of univariate and multiple elliptic
biorthogonal functions is performed in [16]. In this sense, the results obtained in
[44, 45] represent to the present moment the top level achievements of the theory
of elliptic hypergeometric functions of many variables. In particular, the following
BCn-generalization of transformation (24) was proved in [44]:

In(t1, . . . , t8; t; q, p) = In(s1, . . . , s8; t; q, p), (40)

where

In(t1, . . . , t8; t; q, p) = κn

∏
1≤j<k≤8

Γ(tjtk; p, q, t)

×
∫

Tn

∏
1≤j<k≤n

Γ(tz±1
j z±1

k ; p, q)

Γ(z±1
j z±1

k ; p, q)

n∏
j=1

∏8
k=1 Γ(tkz±1

j ; p, q)

Γ(z±2
j ; p, q)

dzj

zj
,

{
sj = ρ−1tj , j = 1, 2, 3, 4
sj = ρtj , j = 5, 6, 7, 8 ; ρ =

√
t1t2t3t4
pqt1−n

=

√
pqt1−n

t5t6t7t8
, |t|, |tj |, |sj | < 1,

and Γ(z; p, q, t) =
∏∞

j,k,l=0(1− ztjpkql)(1− z−1tj+1pk+1ql+1) is the elliptic gamma
function of the higher level connected to the Barnes gamma function Γ4(u;ω). In
[72], this symmetry transformation is represented in the star-star relation form of
solvable models of statistical mechanics, and equality (38) is represented in the
star-triangle relation form which used an elliptic gamma function of even higher
order related to Γ5(u;ω)-function.
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There are about 10 proven exact evaluations of elliptic beta integrals on root
systems. In particular, in [64] the author has constructed three different integrals
for the An root system (two of them have different evaluation formulas for even and
odd values of n). In [76], Warnaar and the author have found one more An-integral
which appeared to be new even after degeneration to the q- and plain hypergeo-
metric levels. Another BCn-integral has been constructed in [13, 48]. Very many
new multiple elliptic beta integrals and symmetry transformations for their higher
order generalizations were conjectured in [74, 75].

Let us describe a generalization of the elliptic beta integral (38). Take 10 parame-
ters p, q, t, s, tj , sj , j = 1, 2, 3, of modulus less than 1 such that (ts)n−1

∏3
k=1 tksk =

pq and define the An-integral

In(t1, t2, t3; s1, s2, s3; t; s; p, q) =
(p; p)n

∞(q; q)n
∞

(n+ 1)!(2πi)n
(41)

×
∫

Tn

∏
1≤i<j≤n+1

Γ(tzizj , sz
−1
i z−1

j ; p, q)

Γ(ziz
−1
j , z−1

i zj ; p, q)

n+1∏
j=1

3∏
k=1

Γ(tkzj , skz
−1
j ; p, q)

n∏
j=1

dzj

zj
.

Then for odd n one has

In(t1, t2, t3; s1, s2, s3; t; s; p, q) = Γ(t
n+1

2 , s
n+1

2 ; p, q)

×
∏

1≤i<k≤3

Γ(t
n−1

2 titk, s
n−1

2 sisk; p, q)
(n+1)/2∏

j=1

3∏
i,k=1

Γ((ts)j−1tisk; p, q) (42)

×
(n−1)/2∏

j=1

(
Γ((ts)j ; p, q)

∏
1≤i<k≤3

Γ(tj−1sjtitk, t
jsj−1sisk; p, q)

)
,

and for even n one has

In(t1, t2, t3; s1, s2, s3; t; s; p, q) =
3∏

i=1

Γ(t
n
2 ti, s

n
2 si; p, q)

× Γ(t
n
2−1t1t2t3, s

n
2−1s1s2s3; p, q)

n/2∏
j=1

(
Γ((ts)j ; p, q) (43)

×
3∏

i,k=1

Γ((ts)j−1tisk; p, q)
∏

1≤i<k≤3

Γ(tj−1sjtitk, t
jsj−1sisk; p, q)

)
.

These An-elliptic beta integrals were discovered by the author in [64]. As indicated
in [74], the limit s → 1 reduces the odd n evaluation formula (42) to (38), i.e. we
have a generalization of the elliptic Selberg integral of [20, 21]. The observation
that the type II BCn-hypergeometric identities can be obtained from the type II
relations for A2n−1 and A2n root systems was first made in [77] at the level of
multiple q-hypergeometric series. It was also suggested there that the multiple
elliptic biorthogonal rational functions associated with elliptic beta integrals (42)
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and (43), the existence of which was conjectured by the author long ago [64], should
also generalize the Rains biorthogonal functions [44, 45] to An root system. The
possibilities for constructing these functions were discussed in [73].

In [74], the following symmetry transformation was conjectured for a two pa-
rameter extension of the A2n−1-integral (41):

∫
T2n−1

∏
1≤j<k≤2n

Γ(tzjzk, sz
−1
j z−1

k ; p, q)

Γ(z−1
j zk, zjz

−1
k ; p, q)

2n∏
j=1

4∏
k=1

Γ(tkzj , skz
−1
j ; p, q)

2n−1∏
j=1

dzj

zj

=
∏

1≤i<j≤4

(
Γ(sn−1sisj , t

n−1titj ; p, q)
n−2∏
m=0

Γ(t(st)msisj , s(st)mtitj ; p, q)
)

(44)

×
∫

T2n−1

∏
1≤j<k≤2n

Γ(szjzk, tz
−1
j z−1

k ; p, q)

Γ(z−1
j zk, zjz

−1
k ; p, q)

2n∏
j=1

4∏
k=1

Γ
(

4

√
S

T
tkzj ,

4

√
T

S
skz

−1
j ; p, q

) 2n−1∏
j=1

dzj

zj
,

where
∏2n

j=1 zj = 1, the balancing condition reads (st)2n−2ST = (pq)2, S =
∏4

k=1 sk

and T =
∏4

k=1 tk, and |s|, |t|, |sj |, |tj |, | 4
√
T/Ssj |, | 4

√
S/Ttj | < 1. As shown in [74],

for s → 1 this formula passes to the Rains transformation (40) and there are also
two more similar symmetry transformations. Because the integrals in (44) have only
S4 × S4 × S2 permutational symmetry in the parameters instead of the S8-group
of (38), these three Weyl group transformations lead not to the E7-group, but to
a much smaller group. Consideration of the analogous symmetry transformations
for integrals on the root system A2n has not been completed yet.

Integral analogues of the Bailey chains. The Bailey chains, discovered by
Andrews, serve as a powerful tool for building constructive identities for hypergeo-
metric series (see Ch. 12 in [2]). They describe mappings of given sequences of
numbers to other sequences with the help of matrices admitting explicit inversions.
So, the most general Bailey chain for the univariate q-hypergeometric series sug-
gested in [1] is connected to the matrix built from the 8ϕ7 Jackson sum [10]. An
elliptic generalization of this chain for the s+1Vs-series was built in [63], but we do
not consider it here, as well as its complement described in [83]. Instead we present
a generalization of the formalism of Bailey chains to the level of integrals discovered
in [65].

We say that two functions α(z, t) and β(z, t) form an elliptic integral Bailey pair
with respect to the parameter t, if they are connected by the relation

β(w, t) = κ

∫
T

Γ(tw±1z±1; p, q)α(z, t)
dz

z
, (45)

where |tw|, |t/w| < 1 and α(z, t) is analytical function of variable z near T.
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Theorem 5. For a given elliptic integral Bailey pair α(z, t) and β(z, t) with respect
to the parameter t, the functions

α′(w, st) =
Γ(tuw±1; p, q)

Γ(ts2uw±1; p, q)
α(w, t),

β′(w, st) = κ
Γ(t2s2, t2suw±1; p, q)
Γ(s2, t2, suw±1; p, q)

∫
T

Γ(sw±1x±1, ux±1; p, q)
Γ(x±2, t2s2ux±1; p, q)

β(x, t)
dx

x
,

where w ∈ T, form a new Bailey pair with respect to the parameter st, and the
functions

α′(w, t) = κ
Γ(s2t2, uw±1; p, q)

Γ(s2, t2, w±2, t2s2uw±1; p, q)

∫
T

Γ(t2sux±1, sw±1x±1p, q)
Γ(sux±1; p, q)

α(x, st)
dx

x
,

β′(w, t) =
Γ(tuw±1; p, q)

Γ(ts2uw±1; p, q)
β(w, st)

form a new Bailey pair with respect to the parameter t.

The proof is quite simple. In the first case, it is necessary to substitute the key
relation for β(x, t) in the definition of β′(w, st), to change the order of integrations
and to take off one of the integrations with the help of the elliptic beta integral (there
are certain restrictions on the parameters needed for the validity of this procedure).
The second relation is proved in a similar manner. These chain substitution rules
introduce two new parameters u and s at each step of their application. In fact, the
described substitutions are related to one another by the inversion of the integral
operator entering the definition of integral Bailey pairs [76].

This theorem is used analogously to the Bailey lemma for series [2]: one takes
initial α(z, t) and β(z, t), found, say, from formula (13), and generates new pairs
with the help of the described rules. Equality (45) for these pairs leads to a binary
tree of identities for elliptic hypergeometric integrals of different multiplicities. As
an illustration, we would like to give one nontrivial relation. With the help of
formula (13), one can easily verify the validity of the following recurrence relation

I(m+1)(t1, . . . , t2m+8) =

∏
2m+5≤k<l≤2m+8 Γ(tktl; p, q)

Γ(ρ2
m; p, q)

(46)

× κ

∫
T

∏2m+8
k=2m+5 Γ(ρ−1

m tkw
±1; p, q)

Γ(w±2; p, q)
I(m)(t1, . . . , t2m+4, ρmw, ρmw

−1)
dw

w
,

where ρ2
m =

∏2m+8
k=2m+5 tk/pq and the integral I(m) was defined in (22). By an

appropriate change of notation of the parameters, we obtain a concrete realization
of the Bailey pairs: α ∝ I(m) and β ∝ I(m+1). For m = 0, substitution of the
explicit expression (13) for I(0) in the right-hand side of (46) yields identity (24).
Other interesting consequences of the recursion (46) (an elliptic analogue of formula
(2.2.2) in [2]) are considered in [66, 69]. Various generalizations of the integral
transformation (45) to root systems and their inversions are described in [76].
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Connection to the representation theory. Plain hypergeometric functions
are connected to matrix elements of the representations of standard Lie groups (see,
e.g., Sect. 9.14 in [2] where the Jacobi polynomials case is considered). Some of the
q-special functions have been interpreted in a similar way in connection to quantum
groups. Therefore it is natural to try to construct elliptic hypergeometric functions
from the representations of “elliptic quantum groups”. The current top result
along these lines was obtained in [54], where the terminating elliptic hypergeometric
series of type I on the An root system was constructed as matrix elements for
intertwiners between corepresentations of an elliptic quantum group. However, the
whole construction is quite complicated and the elliptic hypergeometric integrals
have not been treated in this way yet.

A qualitatively new group-theoretical interpretation of the elliptic hypergeomet-
ric functions has emerged, again, from mathematical physics (see [23, 30, 74, 75]
and references therein). It directly connects the elliptic hypergeometric integrals to
the representations of standard Lie groups. Take a Lie group G×F and a set of its
irreducible representations including the distinguished representation adjG, adjoint
for group G and trivial for F (the “vector” representation). Consider the following
function of this group characters:

I(y; p, q) =
∫

G

dµ(z) exp
( ∞∑

n=1

1
n

ind
(
pn, qn, zn, yn

))
, (47)

where dµ(z) is the G-group invariant (Haar) measure and

ind(p, q, z, y) =
2pq − p− q

(1− p)(1− q)
χadjG(z)

+
∑

j

(pq)rjχRF ,j(y)χRG,j(z)− (pq)1−rjχR̄F ,j(y)χR̄G,j(z)
(1− p)(1− q)

(48)

with some fractional numbers rj . Here χadjG(z) and χRG,j(z), χRF ,j(y) are the
characters of the “vector” and all other (“chiral”) representations, respectively.
They depend on the maximal torus variables za, a = 1, . . . , rankG, and yk, k =
1, . . . , rankF .

For G = SU(N) one has z = (z1, . . . , zN ),
∏N

j=1 zj = 1, and∫
SU(N)

dµ(z) =
1
N !

∫
TN−1

∆(z)∆(z−1)
N−1∏
a=1

dza

2πiza
,

where ∆(z) =
∏

1≤a<b≤N (za− zb), and χSU(N),adj(z) = (
∑N

i=1 zi)(
∑N

j=1 z
−1
j )− 1.

For special sets of representations entering the sum
∑

j in (48) and some frac-
tional numbers rj formula (47) yields all known elliptic hypergeometric integrals
with interesting properties. It has even deeper group-theoretical meaning in the
context of the representation theory of superconformal group SU(2, 2|1), where 2rj
coincide with the eigenvalues of U(1)R-subgroup generator (“R-charges”) and p, q
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are interpreted as group parameters for generators commuting with a distinguished
pair of supercharges (see the next section).

Take the elliptic beta integral (13) and rewrite it as Ilhs = Irhs, where tk =
(pq)1/6yk, k = 1, . . . , 6. Then Ilhs is obtained from (47) for G = SU(2), F = SU(6)
with two representations: the “vector” one (adj, 1) with χSU(2),adj(z) = z2+z−2+1
and the fundamental one (f, f) with χSU(2),f (z) = z + z−1, rf = 1/6, and

χSU(6),f (y) =
6∑

k=1

yk, χSU(6),f̄ (y) =
6∑

k=1

y−1
k ,

6∏
k=1

yk = 1.

The latter constraint on yk is nothing else than the balancing condition for the
integral in appropriate normalization of parameters, i.e. this notorious condition is
equivalent to the demand that the determinant of special unitary matrices is equal
to 1. For Irhs one has G = 1, F = SU(6) with single representation TA : Φij =
−Φji, i, j = 1, . . . , 6, with

χSU(6),TA
(y) =

∑
1≤i<j≤6

yiyj , rTA
= 1/3.

The elliptic beta integral evaluation formula thus proves the equality of two char-
acter functions on different groups with different sets of representations, which is
a new type of group-theoretical duality. Since the elliptic hypergeometric integrals
are expected to define automorphic functions in the cohomology class of the group
SL(3,Z), this could mean the equivalence of two differently defined automorphic
functions. A physical interpretation of this construction is described in the next
section.

Applications in mathematical physics. The most important known physical
application of elliptic hypergeometric integrals has been found in four dimensional
supersymmetric quantum field theories, where they emerge as superconformal in-
dices.

ForN = 1 supersymmetric theories the full symmetry group isGfull = SU(2, 2|1)×
G × F , where the space-time symmetry group is generated by Ji, J i, i = 1, 2, 3
(SU(2) subgroup generators, or SO(3, 1)-group Lorentz rotations), Pµ, Qα, Qα̇,
µ = 0, . . . , 3, α, α̇ = 1, 2 (supertranslations), Kµ, Sα, Sα̇ (special superconformal
transformations), H (dilations), and R (U(1)R-rotations); G is a local gauge invari-
ance group and F is a global flavor symmetry group. The whole set of commutation
relations between these operators can be found, e.g., in [74]. Choosing a particular
pair of supercharges, say, Q = Q1 and Q† = −S1, one obtains

QQ† +Q†Q = 2H, Q2 = (Q†)2 = 0, H = H − 2J3 − 3R/2. (49)

Then the superconformal index (SCI) is defined by the following trace:

I(y; p, q) = Tr
(
(−1)FpR/2+J3qR/2−J3

∏
k

yFk

k e−βH
)
, R = H −R/2, (50)
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where F is the fermion number operator ((−1)F is simply a Z2-grading operator
in SU(2, 2|1)), Fk are the maximal torus generators of the group F , and p, q, yk, β
are group parameters. The trace in (50) is taken over the Hilbert (Fock) space
of quantum fields forming irreducible representations of the group Gfull. Because
operators R, J3, Fk,H used in the definition of SCI commute with each other and
with Q,Q†, non-zero contributions to the trace may come only from the space of
zero modes of the operator H (or the cohomology space of Q and Q† operators).
Therefore there is no β-dependence. Computation of this trace leads to integral
(47), where the integration over G reflects the gauge invariance of SCI. Function
(48) is called the one-particle states index.

Some of the supersymmetric field theories are related to one another by the
Seiberg electric-magnetic dualities [59], which are not proven yet despite of many
convincing arguments. Equality of SCIs for such theories was conjectured by
Römelsberger and proved in some cases by Dolan and Osborn [23] by identifying
SCIs with the elliptic hypergeometric integrals. A related application to topological
quantum field theories (which is using an elliptic hypergeometric integral identity
of [12]) is discovered in [30]. In [74, 75] many new N = 1 supersymmetric duali-
ties have been found and very many new integral identities have been conjectured,
among which there are relations of a qualitatively new type (e.g., they involve
higher order generalizations of integral (38) with t = (pq)1/K , K = 2, 3, . . .).

We leave it as an exercise to determine what kind of transformation of elliptic
hypergeometric integrals is hidden behind the equality of SCIs for the original
Seiberg duality [59]. In this case one has two theories with F = SU(M)l×SU(M)r×
U(1) (here U(1) is the baryon number preserving symmetry) and different gauge
groups and representations. The “electric” theory has the group G = SU(N) and
the set of representations described in the table below:

SU(N) SU(M)l SU(M)r U(1) U(1)R

f f 1 1 Ñ/M

f 1 f −1 Ñ/M
adj 1 1 0 1

where Ñ = M − N . The “magnetic” theory has the group G = SU(Ñ) with the
representations described in the following table:

SU(Ñ) SU(M)l SU(M)r U(1) U(1)R

f f 1 N/Ñ N/M

f 1 f −N/Ñ N/M

1 f f 0 2Ñ/M
adj 1 1 0 1

The last columns of these tables contain the numbers 2rj – eigenvalues of the
generator of U(1)R-group R. The last rows correspond to the vector superfield rep-
resentation, other rows describe chiral superfields. For N = 2,M = 3 equality of
SCIs is equivalent to the elliptic beta integral, as described in the previous section.
For arbitrary N and M SCIs were computed in [23] (see also [74]). Physically, the
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exact computability of SCIs describes a principally important physical phenomenon
– the confinement of colored particles in supersymmetric theories of strong inter-
actions. The equality of SCIs provides presently the most rigorous mathematical
justification of the Seiberg dualities.

In [78], a discrete integrable system generalizing the discrete-time Toda chain has
been constructed. A particular elliptic solution of this nonlinear chain equations
has lead to the terminating 12V11-series as a solution of the Lax pair equations.
Derivation of this function from a similarity reduction of an integrable system
equations reflects the essence of a powerful heuristic approach to all special functions
of one variable (it was described in detail in [66] on the basis of a number of other
new special functions constructed in this way). In [37], it was shown that the
same 12V11-series appears as a particular solution of the elliptic Painlevé equation
discovered by Sakai [57]. An analogous role is played by the general solution of the
elliptic hypergeometric equation [66, 68] and some multiple elliptic hypergeometric
integrals [46, 49]. In [8], a different discrete integrable system was deduced from
the semiclassical analysis of the elliptic beta integral.

The first physical interpretation of elliptic hypergeometric integrals was found in
[66, 68], where it was shown that some of the BCn-integrals describe either special
wave functions or normalizations of wave functions in the Calogero-Sutherland type
many body quantum mechanical models. The An-root system case was discussed
in [73]. It is natural to expect that all superconformal indices are associated with
such integrable systems [74].

Another rich field of applications of elliptic hypergeometric functions is connected
with the exactly solvable models of statistical mechanics. As mentioned in the
introduction, elliptic hypergeometric series showed up for the first time as solutions
of the Yang-Baxter equation of IRF (interaction round the face) type. The vertex
form of the Yang-Baxter equation naturally leads to the Sklyanin algebra [60].
Connection of the elliptic hypergeometric functions with this algebra is considered
in [39, 45, 52, 53, 69]. In particular, in [53] Rosengren proved an old conjecture
of Sklyanin on the reproducing kernel, and in [69] an elliptic generalization of the
Faddeev modular double [25] was constructed.

Let us briefly describe how the V -function emerges in this context. The general
linear combination of four Sklyanin algebra generators S0, . . . , S3 can be represented
in the form [45]

∆(a) =

∏4
j=1 θ1(aj + u)
θ1(2u)

eη∂u +

∏4
j=1 θ1(aj − u)
θ1(−2u)

e−η∂u ,

where aj and η are arbitrary parameters and e±η∂uf(u) = f(u ± η). The Casimir
operators take arbitrary continuous values, i.e. one deals in general with the con-
tinuous spin representations. The generalized eigenvalue problem

∆(a, b, c, d)f(u;λ, a, b; s) = λ∆(a, b, c′, d′)f(u;λ, a, b; s),
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where s = a+ b+ c+ d and c+ d = c′ + d′, is exactly solvable and f is given by a
product of 8 elliptic gamma functions. Take the scalar product

〈f, g〉 = κ

∫
T

f(u)g(u)
Γ(z±2; p, q)

dz

z
, z = e2πiu, p = e2πiτ , q = e4πiη,

and consider the conjugated generalized eigenvalue problem induced by it

∆∗(a, b, c, d)g(u;µ, a, b; s) = µ∆∗(a, b, c′, d′)g(u;µ, a, b; s),

where ∆∗ is defined from the equality 〈∆f, g〉 = 〈f,∆∗g〉. Then, the overlap of
two dual bases with the same s-parameter 〈f, g〉 is equal to V (t) for appropriately
chosen parameters tj [69].

In [8], it was shown that the elliptic beta integral can be rewritten as the star-
triangle relation representing another form of the Yang-Baxter equation. This gave
a new continuous spin solution of the latter relation and a new solvable model of sta-
tistical mechanics unifying many previously known cases. The Boltzmann weights
appearing in this construction are identical with the kernel of integral transform
(45). In [72], the most general general solution of the star-triangle relation con-
nected to the hyperbolic beta integrals was found. Also, it was shown that the
symmetry transformations for elliptic hypergeometric integrals can be rewritten
as the “star-star” relation (an IRF type Yang-Baxter equation) leading to new
checkerboard type solvable models of statistical mechanics and their multicompo-
nent generalizations.

As a final example, we mention an interesting application of the discrete elliptic
biorthogonal rational functions of [78] to random point processes related to the
statistics of lozenge tilings of a hexagon (or plane partitions) described in [9].

Conclusion. The main part of the theory of plain hypergeometric functions
has found a natural elliptic generalization, although the similarities start to show
up for a rather large number of free parameters and structural restrictions. We
would like to finish by listing some other achievements of the theory of elliptic
hypergeometric functions. Multiple elliptic hypergeometric series were considered
for the first time by Warnaar [82]. We described mostly properties of the elliptic
hypergeometric integrals, since many results for the series represent their particular
limiting cases being derivable via residue calculus. A combinatorial proof of the
Frenkel-Turaev summation formula is given in [58]. Various generalizations of this
sum to the root systems were found in [20, 51, 64, 82]. Multivariable analogues of
the elliptic Bailey transformation for series were described in [18, 36, 44, 51, 82].
Expansions in partial fractions of the ratios of theta functions and the identities
connected to them were considered by Rosengren in [51] (see also [21, 44, 50]). Such
expansions played an important role in the method of proving elliptic beta integral
evaluations considered in [67]. Some general properties of elliptic hypergeometric
terms were described in [71].

The terminating continued fraction generated by the three term recurrence re-
lation (34) and the Racah type termination condition was computed in [79]. The
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raising and lowering operators connected with rational functions were discussed in
[40, 41, 44, 80]. In particular, in [80] it was shown that the general lowering opera-
tor of the first order can exist only for the elliptic grids. A systematic investigation
of the elliptic determinant formulas connected to the root systems is performed in
the work of Rosengren and Schlosser [55]. Determinants of elliptic hypergeometric
integrals were considered in [50, 64]. Elliptic Littlewood identities were discussed
in [48] where many quadratic transformations for multiple elliptic hypergeometric
functions were conjectured. Some of these conjectures were proved by van de Bult
[14] (for quadratic transformations of the univariate series, see [62, 83]). In [88],
the elliptic hypergeometric series 3E2 with arbitrary power counting argument was
shown to describe some polynomials with a dense point spectrum. Connections to
the Padé interpolation were analyzed in [40, 80, 87].

Solutions of various finite difference equations on the elliptic grid were consid-
ered by Magnus in [40, 41]. As shown in [75], reduction of elliptic hypergeometric
integrals to the hyperbolic level leads to the state integrals for knots in three-
dimensional space. The page limits of the present complement do not allow the
author to cite a number of other interesting results, an essentially more complete
review of the literature is given in papers [66, 70] and [74, 75].

To conclude, elliptic hypergeometric functions are universal functions with im-
portant applications in various fields of mathematics and theoretical physics. They
unify special functions of elliptic and hypergeometric types under one roof and
make them firm, unique, undeformable objects living in the Platonic world of ideal
bodies.

Despite of the very big progress in the development of the theory of elliptic
hypergeometric functions, many open problems still remain. They include the
proof of tens of existing conjectures on evaluations or symmetry transformations
for integrals, a rigorous definition of infinite elliptic hypergeometric series, detailed
investigation of the specific properties of functions when bases are related to roots
of unity, computation of the nonterminating elliptic hypergeometric continued frac-
tion, detailed analysis of the non-self-dual biorthogonal functions of [78] (still rep-
resenting the most complicated known univariate special function of such a kind)
and construction of their multivariable analogues, search of the number theoretic
applications of these functions analogous to those considered in [89], investigation
of their automorphic properties, higher genus Riemann surface generalizations, and
so on.

I am indebted to Yu. A. Neretin for the suggestion to write this complement and
to G. E. Andrews, R. Askey, and R. Roy for an enthusiastic support of this idea.
I am grateful also to H. Rosengren, G. S. Vartanov and S. O. Warnaar for useful
remarks. This work is supported in part by the RFBR grants 05-01-01086 and
11-01-00980 (joint with NRU-HSE grant 11-09-0038) and the Max Planck Institute
for mathematics (Bonn).
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elliptic Painlevé equation, J. Phys. A: Math. Gen. 36 (2003), L263–L272.

[38] S. Kharchev, D. Lebedev, and M. Semenov-Tian-Shansky, Unitary representations of

Uq(sl(2,R)), the modular double and the multiparticle q-deformed Toda chains, Com-
mun. Math. Phys. 225 (2002), 573–609.

[39] H. Konno, Fusion of Baxter’s elliptic R-matrix and the vertex-face correspondence, Lett.

Math. Phys. 72 (3) (2005), 243–258.
[40] A. P. Magnus, Rational interpolation to solutions of Riccati difference equations on

elliptic lattices, J. Comp. Appl. Math. 233 (3) (2009), 793–801.

[41] , Elliptic hypergeometric solutions to elliptic difference equations, SIGMA 5

(2009), 038.

[42] A. Narukawa, The modular properties and the integral representations of the multiple
elliptic gamma functions, Adv. in Math. 189 (2005), 247–267.

[43] M. Rahman, An integral representation of a 10φ9 and continuous bi-orthogonal 10φ9

rational functions, Can. J. Math. 38 (1986), 605–618.
[44] E. M. Rains, Transformations of elliptic hypergeometric integrals, Ann. of Math. 171

(2010), 169–243.
[45] , BCn-symmetric abelian functions, Duke Math. J. 135 (1) (2006), 99–180.
[46] , Recurrences for elliptic hypergeometric integrals, Rokko Lect. in Math. 18

(2005), 183–199.
[47] , Limits of elliptic hypergeometric integrals, Ramanujan J. 18 (3) (2009), 257–

306.

[48] , Elliptic Littlewood identities, arXiv:0806.0871.
[49] , An isomonodromy interpretation of the hypergeometric solution of the elliptic
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