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Abstract. We prove a character formula for any finite-dimensional irreducible repre-
sentation V' of the “queer” Lie superalgebra g = ¢(n). If expresses chV in terms of the
multiplicities of the irreducible g-subquotiens of the cohomology groups of certain domi-
nant g-bundles on the II-symmetric projective spaces (i.e. on the homogeneous superspaces
G/ P whose reduced space is a projective space, where G = Q(n)). We also establish re-
curent relations for the above multiplicities and this enables us to compute explicitly chV
for any given V. This provides a complete solution to the Kac character problem for the
Lie superalgebra ¢(n). Finally we consider the particular cases of ¢(2), ¢(3) and ¢{4) in

which we compare the new character formula with the generic character formula of [P4].



Introduction

In this paper we solve the Kac character problem posed in [K2], i.e. the problem of
computing the character of any irreducible finite-dimensional representation, for the Lie
superalgebra g = q(n). Our solution is based on the same general ideas as the second
author’s solution of the Kac character problem for gl(m|n), [S2], but in the case of g(n)
the argurent is almost entirely geometric. The homogeneous superspaces we consider
are Manin’s [I-symmetric flag supermanifolds. In 1982 Manin constructed the flag super-
manifolds corresponding to all classical series of simple Lie supergroups, and in particular
constructed the IT-symmetric flag superspaces corresponding to Q(n) (or to the the simple
Lie supergroup PSQ(n)), sce [M1] and [M2]. The standard reference today is Manin’s
monograph {M3]. Immediately after constructing the flag supermanifolds (of all types cor-
responding to the different series of classical simple Lie superalgebras) Manin formulated
the problem of finding an analogue of Borel-Weil-Bott’s theorem (or theory) for this casc.
It was quite clear that the cohomology of the flag supermanifolds deserves by itself to be
calculated, but Manin’s hope was that this cohomology should also give an approach to
calculating the characters of the irreducible representations. A

This problem of Manin turned out to be a difficult one. Some progress was made during
the 80’s (see for instance [P3]) where, roughly speaking, a Borel-Weil-Bott type theorem
was proved for typical representations. Later (see [PS1] and [P4]) the theory (in a gen-
eral D-module version inspired by the celebrated work of Beilinson and Bernstein) was
extended to generic representations. Finite-dimensional singly atypical (but not necessar-
ily generic) gl(m|n)-modules have been studied in [HIKT]. However the case of arbitrary
finite-dimensional irreducible representations remained esscntially intractable until the pa-
pers [S1] and [S2], where Kac’s character problem was solved for gl{m|n) by a mixture of
algebraic and geomectric techniques. The method developed there by the second author
enables us to carry out Manin’s program also for the II-symmetric projective superspaces
and in particular to give a gecometry based complete solution of Kac’s character problem
for g = ¢q(n).

Let us describe the contents of the paper. The objective of section 1 is to present and
explain the results. In subsections 1.1 and 1.2 we fix the notations. In subsection 1.3
we state our main results in four theorems and two corollaries. The character formula
of Theorem 1 reduces the problem of calculating the character of an irreducible finite-

dimensional g-module to calculating the multiplicities of the irreducible g'-subquotients



(where g’ = g(n — k)) of the cohomologies of dominant g'-linearized bundles on the II-
symmetric projective superspaces of G' = Q(n—k) for k =1,...,n—2. Theorems 2 and 3
establish recurrent relations which reduce the calculation of the above multiplicities to the
calculation of the multiplicities of the trivial irreducible representation in the cohomologies
of a certain bundle (corresponding to the highest weight of the adjoint representation) on
the Il-symmetric projective superspace. Theorem 4 calculates the latter multiplicities
explicitly. Together, Theorems 1-4 provide a complete solution to the Kac character
problem for g = g(n). Subsection 1.4 is devoted to examples: we compute explicitly the
characters of all irreducible finite-dimensional ¢(2)-, ¢(3)- and ¢(4)-modules and compare
the results with the approximation given by the generic character formula of [P4).
Section 1 contains practically no proofs. Since the proofs are quite technical we have
chosen to present them in a separate section. This is section 3. In section 2 we prove some

auxiliary results which are needed in the proofs of the main results.
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1. Preliminaries and Statement of Main Results

1.1. Algebraic preliminaries

The ground field is C. All vector spaces are automatically assumed to be Zq-graded and
a subscript ¢ or ; (to any Zs-graded object such as vector space or sheaf) always refers
to the Zj-grading. Tl denotes the functor of parity change. The dimension of a vector
space V = Vo @ V; is by definition k + e, where k = dim Vg, £ = dimIIVy, and € is a
formal odd variable with €2 = 1. One has dim [IV = ¢ -dim V. If dimV = k + le, we set
|dim V| := k + . The upper index * denotes dual space.

Throughout this paper £ will denote a fixed vector space of dimension n + ne, n > 2.
Q(F) is the Lie supergroup of endomorphisms of E which preserve a given odd isomorphism
Mg : ES E with 114 = id. ¢(E) is the Lic superalgebra of Q(E), i.e. ¢(E) = LieG, where

Lie denotes the Lie superalgebra functor. E is the tautological representation of g and G.



Let b be a fixed Cartan subsuperalgebra of g, i.e. a nilpotent self-normalizing Lie subsu-
peralgebra of g (sce for instance [PS2]). Then dim h = n+ne and b is a Cartan subalgebra
of go = gl(Fy). The roots A of g (sce [PS2]) are nothing but the roots of gl(Ey):

A={s,~—sj|1§i';éj§n},

€1,...,En being a standard basis in . For each o € A the dimension of the root space g(®)
is 1+¢e. W denotes the Weyl group of gg. (W is a symmetric group of order n.) The weights
are by definition the elements of h. If A € ), we will usually write A = (Aq,..., A,), where
the standard coordinates A\; of A are its coordinates with respect to g;, i.e. A= Z?=1 AiE;.
We set also #X = #{i | Ay #0}. A={Aebhi i \i—A; € ZVij, 1 <i,j<n}isthe
set of integral weights. We say that a weight A is a reduced expression of a weight A if
X is obtained from A by replacing a maximal number of pairs of coordinates A;, A; with
Ai+A; = 0 by pairs of the form 0,0. For instance, when n =5 (1,1,1,-1,-1) is a weight and
all its reduced expressions are (1,0,0,0,0), (0,1,0,0,0), and {0,0,1,0,0). If A = (A1,...,An)
and o = g; — €5, we say that A is a-typical when A; + A; # 0 and that A is a-atypical when
Ai + A; = 0. The set of all a-atypical weights will be denoted by b; A, := ANk},

Z denotes the center of the envcloping algebra U(g). Z is a commutative C-algebra and

there is a canonical injective algebra homomorphism, the Harish-Chandra homomorphism
HC:Z < §(ho)",

sec [Sert] or [P4], and by definition, for cach A € b, #* : Z — C is the unique homomor-

phism which makes the diagram

z B Suw
N AW
C

commutative, AW : § (b)Y — C being the natural homomorphism induced by A. The
image of HC has been first described by Sergeev in [Serl]. Sergeev’s result implies the

following statement (for the proof see [P4]):

Proposition 1.1. #* = X & X e W - %, where A and % are (arbitrarily) reduced

expressions respectively of A and y. |

If 8 : Z — C is a central character (i.e. simply an algebra homomorphism) we set
#0 = #;\, A being the reduced expression of any weight A for which 6 = 6*. Proposition
1.1 implics that #6 is well defined. We define the parity @ of 6 as #6 (mnod 2).
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We fix b to be the Borel subsuperalgebra hdn (P denoting semi-direct sum of Lie super-
algebras), where n = @aca+ 8™, At = {g; —¢; | ¢ < j}. All other Borel subsuperalgebras
of g which contain b are b EB(GBQG,U(A+)Q(“)) for w € W\{id}. In particular when w = w,,
is the element of maximal length we obtain the Borel subsuperalgebra b~ opposite to b:
b= =h3In",n" = Baca-=—a+o.

As usual b defines a partial order <, on hy:

<y & x+ Z ke =p for some k, €Z. .
acAt

The parabolic subsuperalgebras of g (i.c. the Lie subsuperalgebras of g which contain
b) are in bijective correspondence with the parabolic subalgebras of go. Throughout this
paper p will denote an arbitrary parabolic subsuperalgebra (such that p O b) and p*, for
k=1,...,n—1, will denote the maximal proper parabolic subsuperalgebras: the roots
A(p*) of p* are by definition {&; —€j,¢, —e4|i <4, k>p>q¢>1, n>p>qg>k+1}.
For any p C g, WP will denote the Weyl group of the semi-simple part of p considered
as a subgroup of W. Finally, it is a straightforward but important observation that for
every p there is a unique Lie subsupergroup P — G (which is by definition a parabolic
subsupergroup) such that LieP = p. P* where k = 1,... ,n — 1 and Lie P* = p* are the
maximal proper parabolic subsupergroups of G with B «— P,

Note now that [l acts on the category of representations of any Lie superalgebra or Lie
supergroup but a particular representation may not be II-invariant. In this paper we will
restrict ourselves to considering only Il-invariant representations, i.e. we will assume that
any representation considered is IT-invariant. In the case of g (respectively G, p, P, etc.)
we will call such modules g-modules (resp. G-, p™-modules, etc.), and an irreducible
g'-module (resp. GM-module, ctc.) is a gH-module with no proper gfl-submodule (1.e. with
no proper Il-invariaint g-submodule).

Most of the g-modules (p™-modules, etc.), we will consider are going to be finite-
dimensional (with obvious exceptions such as Verma modules) and therefore if the contrary
i1s not explicitly stated or is not completely clear from the context, all representations
considered will be assumed finite-dimensional. The category of finite-dimensional g'I-
modules (resp. pl-modules, etc.) will be denoted by (g''-mod); (resp. by (p™-mod); etc).
If V! is an irreducible gM-submodule of a finite-dimensional g™-module V, [V : V1] will
denote the multiplicity of V* in V, i.e. the number of times V! occurs as a g'-composition
factor of V.



If § : Z - C is a central character and V is a g''-module, then V' will be the direct
summand of V characterized by the property that the g'-composition factors of V? coincide
with all composition factors of V' on which Z acts via 6.

It is easy to see that the standard outer automorphism on gg interchanging by with by
extends to an automorphism of g which interchanges b and b~. If w is the induced functor

*

on the category of gM-modules, we set VV := w(V)*. By definition, a g'-module V is
contragradient iff V¥V ~ V.,
Any irreducible h™-module v is determined by a weight A € b} via which by acts on v,

so we will denote the family of irreducible h™-modules by vy. It is easy to verify that
dimvy = 2[#’\/2](1 +€)

(cf. [P2]). If V is a gM-module, its generalized weight spaces V() are automatically b-
modules. We set suppV = {X € b5 | VO #£ 0}. The formal character chV of V is by

definition the expression

Z dim V) et
pEsuppV

A highest weight g'-module with highest weight X is any (possibly infinite-dimensional)

IT-invariant g-quotient of the Verma module
M(X) :==U(g) ®up) va -

V(A) will denote the unique irreducible (as a g-module) quotient of M (), and we will
assume that dimV(A) < co. Z acts via #* on M()) and thus on any highest weight
g"l-module with highest weight A. The category O is by definition the category of all (in
general infinite-dimensional) gM-modules which admit a finite gUl-filtration whose factors
are highest weight modules. For any fixed central character 8, Of is the full subcategory
of O consisting of gM-modules on whose composition factors Z acts via 6.

If p is a parabolic subsuperalgebra, we set
My(A) == U(p) ®u(s) a

and denote by V,(A) the unique irreducible (as p-module) quotient of My()). Vo(})
will denote the irreducible gif-module with highest weight A and V,,(A) will denote the
irreducible pll-module with highest weight .

AT is by definition the set of dominant integral weights, i.c.
AT:={A €A |dimV(}) < oo}

6



and it is proved in [P2] that in coordinate form there is the following description of At:

/\:(A1,...,)\H)GA+

{

AeA, M2 A fori<y, and A; = A; implies A; = A; = 0.

By AJ we will denote the bp-dominant weights in A, i.e. A = {A = (A1,...A,) € A |
A > A; for i < j}; obviously AT € Af. For cach o € A we set also AL = At nh, and
for cach parabolic subsuperalgebra we set A := {A € A | dim V() < co}. 1If 5 is a Lie
subsuperalgebra of p or of g, we say that A is s-typical in p, or respectively in g, if A is
a-typical for all roots @ of p (resp. of g) which are not roots of s.

A complex of gll-modules

RS VR VLI
is a resolution of V(A) iff M®/imd® ~ V(A), kerd® = imd**! for all i > 0. A resolution of
V()) is a Bernstein-Gelfand-Gelfand resolution (or BGG-resolution for short) of V(A) iff
MO® ~ M(A), and for each i, M* is an object of O%" and M is frec as a U(n~)-module.
One can show casily that for BGG-resolution each M* admits a filtration whose quotients
are Verma modules. It is also straightforward to prove (following the same lines as in the

proof of a similar statement in section 2.1 of [PS1]) that for every A (not necessarily for
A€ AT) V(X) admits a BGG-resolution.

1.2. Geometric preliminaries

For any parabolic subsupergroup P of G the quotient G/P in the category of super-
schemes exists and coincides with one of Manin’s flag superspaces of Il-symmetric flags.
More precisely, in the notation of [M3], G/P = Fllgpecc(ai]|ar, ..., aklak, E). In our nota-
tion the type of the flags is a; +a;e, .. ., ag + age, which is nothing but the type of the flag
in E whose stabilizer in Greq' is Preq. The reduced submanifold (G/P)red = Gred/Pred is
the usual flag variety Fspecc(ar, ..., ax, Ep). Ogyp denotes the structure sheaf of G/P. It
is endowed with a canonical finite Greq-subsheaf (and Og,p-module) filtration whose ad-
joint factors are the symmetric powers of the conormal bundle N(‘G /PYeea/G/P Of (G/P)red
in G/P. The corresponding graded sheaf of algebras is S (N(*G/P)md/G/P)' (Note that
the supersymmetric algebra S (W, (*G /Prea/C/ P is simply a Grassmann algebra because the

rank of M/p,.y/6/p 85 O(G/p)..-module is purely odd). Furthermore N(*G/Pmd)/G/P is

1By the subscript poq we indicate reduction modulo nilpotents on any supermanifold.



nothing but the cotangent bundle of (G/P);eq with changed parity. For n > 2 the super-
manifold G/ P never splits, i.e. for any P G/P is not isomorphic to the split supermanifold
((G/P)rea, S ( (‘G/P)m.l/G/P)' This follows immediately from a result of I.Skornyakov (un-
published) which claims that for n > 2 the Picard group of G/P (which by definition is
the group of equivalence classes of even invertible Og/p-modules on G/P) is trivial, i.c.
its only element is the class of Og/p.

If v is any h-semisimple finite-dimensional p™-module, we denote by Og,p(v) the g-
linearized Og/p-module “induced” from p in the standard way. This means in particular
that the po-module structure on the geometric fibre of Og/p(v)rca = O(G/P)ea ®0g,p
Og,p(v) over the closed point Preq of (G/P)req is nothing but v considered as a py-module.
The cohomology H (G/P, Ogyp(v)), which by definition is the usual sheaf cohomology of
the sheaf O¢,p(v) on the topological space (G/ P)req, is endowed with a canonical g-module
structure. When P = B we will sometimes write Og,g()), where Og,p(A) is by definition
the g-linearized Og,p-module induced from the irreducible b!l-module of highest weight
A. We define also Og/p(v)Y as Og,p(vY), where vV := wy(v)*, wp being the functor on
the category (p'-mod); induced by the standard outer authomorphism on b + pg,.

By Frobenius duality (in its version which applies to induced g'-lincarized Og/p-

modules),
(1.1) Hom,u (V, v) = Homyu(V, H*(G/P,Og/p(v)))

for any g''-module V. This implies that if v is an irreducible p"-module, H*(Og,p(v)) is

an indecomposable p/l-module cquipped with a canonical surjection of p-modules
(1.2) HY(G/P,0qp(v)) = v

(the latter being nothing but restriction of global sections to the geometric fibre at the
closed point Preq of (G/P)yeq). If VP(w) is the unique irreducible g™-module which adinits
a surjection of p!'-modules

VP(w) = v,

(1.1) implies that there is a canonical injection of gM-modules
(1.3) VP(v) = HY(G/P,Ogp(v))

such that the following natural diagram commutes:
VP(v) —— HYG/P,0g/p(v))

N 4



If P = B, (1.2) means that H(G/B, Og/p())) is b-lowest weight gM-module with lowest
weight A, and (1.3) means that the irreducible gl-module V*()) with b-lowest weight ) is
a canonical submodule of HY(G/B, Og,5(N)).

1.3. The main results

Our objective in this paper is to establish the four theorems and two corollaries stated
in this subsection.

Let us start by introducing some more notation. For any parabolic subsupergroup P of

G and any two weights A\, p € AT, we set

(1.4) i (A, ) 1= [ (G P, Oy p (Vi (wh, 0 wm (M) 5 V(1)

where w,, {respectively w?,) is the element of maximal length in W (resp. WP) and

(1.5) I}"(G/P, OG/p(Vp(wfn o w,(A))) =
{ HY(G/P,0g;p(Vs(wh, o wm(A)))) fori>0
HY(G/P, Oa/p(Ve(wh, o wm(A))))/V(X) fori=0.

(Note that V(A) admits a canonical surjection of p-modules V(A) = V,(wh, o w,,(A)) and

therefore there is a canonical injection of g-modules
V(A) = HY(G/P,Ogp(Vy(wh, 0 wm(N))) )

In the special case when P = P! we will omit the subscript pi and will write simply
m* (A, ) instead of mi,, (A, ). If now k, £ are two non-negative integers such that k+£ < n,

let G** be the Lie subsupergroup of G' with Lie superalgebra

#t=p3( P ),

aeAk,l

where A*¢ = {e; — ¢, | k < j,p < n — £}. If furthermore (P*%)! is the parabolic Lie
subsupergroup of G** whose Lie superalgebra is (p¥9)! = h @ (®ae(A*v’)‘ g{®)), where
(AR = {e; —epeq—er | k<ji<p<n—{ k+1<s<q<n—4~}, wecan define
m};,g(A, 1) by formula (1.4) with G replaced by G**, P replaced by (P*%)!, p replaced by
(p*)!, and wP, (respectively wy,) replaced by the element of maxinal length in the Wey!
group of the semisimple part of (p**#)! (resp. the Weyl group of the semisimple part of

g*t). Obviously m*(A, u) = m} o (X, ).



Fix now A = (A1,...,An) € AT, I Ap # 0, Mgy = - = Ap_1 = 0, Ap # 0, set
p(A) ;== pln--npFnpt-tn..onptl If A = 0 put p(A) = g. P(A) is the Lie
subsupergroup of G with Lie P(A) = p(A). Put

a(A) = EchOg/pny(va) ,

where Ech stands for the Euler character of a g-linearized cheaf, i.e the alternating sum
of characters of its cohomology groups. One verifies immediately (using Borel-Weil-Bott’s
theorem for (G/P(A))req, cf. [P3]) that

a(A) = du;m - Z sgnw - w [ eMo . H 14+e )] ,

wew acAt\(A+NA(p(A)))

where po = %Zaeaﬁ « and D is the Weyl denominator for go = gl(Fp), ie. D =

E'wew Sgnw . e’-‘“(po)_

Let A be the infinite-dimensional vector space over C with basis e* where A runs over
AT. H, is the finite-dimensional subspace of H spanned by e” for all v € At with v < A.

Consider the lincar operator

where for any p, v € At g, , are the integers
Ay p = Z(“l)j[Hj(G/P(V)} OG/P(U)(VP(U)(w?nFU) O’LU,,,,(V)))) : V(“)] .

Furthermore, for any £ = 1,...,n — 1 we define the linear operators

ay:H—-H

a(e”) ZpGA-l' (ZjZO(—l)jm}i_l,O(u, HE e") if v, #0
k —_—

0 lf Ve = D
Theorem 1.

(a) The restriction of a to Hy is an isomorphism

a’\ = apy, - Ha st Ha

10



for any A = (A1,...,A,) € AT, and
(1.6) chV(A)= ) b}, olu),
jLShA

where b , are the matrix coefficients of the inverse operator b* := (a*)~! in the

basis ¥, v <y A of Hy. When A1 = 0 or A,, =0 one has simply
chV(A) =a()) .
(b) Forany k=1,...,n—1, H, is ay-invariant, and

a* = (id+a)o...o(id+a}_;),

n—1
where aﬁ : Hy — H, is the restriction of a;, to Hx.-

The next three theorems establish recurrent relations which make it possible to compute

explicitly 7n{_1)0(u, 1) for all ¥ <, A, and therefore (by Theorem 1(b)) also a,,,.

Theorem 2. If P+ B is any parabolic subsupergroup of G and A € AT is p-typical in g

(p := Lie P), then the canonical injection
V(A) = HD(G/P, OG/P(VD(van 0w (A))))
is an isomorphism and

HYG/P,Oq/p(Vp(wh, owm(A)))) =0 fori>0.

Corollary 1. If XA € A* is p-typical in g (p being an arbitrary parabolic subsuperalgebra
of g), then

(1.7) mp(A, 1) =0 foralli>0andall p At .

Theorem 2 implies also the equivalence of a certain category of gl-modules to a category
of pM-modules. Assuming that A € At is p-typical in g, we denote by (g“-mod)&eA’p) the
subcategory of (gM-mod); consisting of g"-modules, all composition factors of which are
p-typical (i.e. their highest weights are p-typical in g) and afford the central character
6*. By 9;‘ we denote the homomorphism of the center of U(hg + pss) (pss being the semi-
stimple part of p) via which this center acts on V,(A), and (pn-mod)ffe:) is by definition the
category of finite-dimensional p-modules, all composition factors of which, considered as

U(ho + pys)-modules, afford the central character 9;‘.

11



A
Corollary 2. If A € AT is p-typical in g, then the categories (gn-mod)gg ) and

A
(pn-mod)(fg") are canonically equivalent.
Theorem 3. Let P := Pl and let A = (Ay,...,A) € AT be p-atypical in g and Ay > 1.
Set « = g1 — ek, k > 1 being the unique index such that Ay + A, = 0.
(a) If Ay > Ay + 1 and Ay < Ag—1 — 1, then

(1.8) mOMA—a) =1, m*(\,A—a) =0 for i>0,
(1.9) mt O\ ) =m T A —a,p) forany pe A*, p# A— o, and any i > 0,
(1.10) mP(A, ) = mY (A — o, ) for any p € AT with #p > #X\, p# X — a,

111) { mO(\, 1) = mr (A — a, 1) + mO(\ — a, ) for any pp e AT
1.11

with #u < #A, p# A —q,
where 7 := z(mod 2) for x € Z..
(b) If \y = Ao+ 1 but A, < Ap—1 — 1, then
(1.12) m* (A, 1) = mi o(A — a, ) for any € AT,
and if Ay > Ay + 1 but Ap, = Ax—1 ~ 1, then
(1.13) mH (A, 1) = 7715’,]_k+1(/\ — o, u) for any p € A7,
(c) If \y = A2+ 1 and A = Ay — 1, then

(1.14)  m®(\,pu) =0, mi(\p) = n‘a‘i’_nl_kﬂ(/\ — a, ) for any p € A" and all i > 0.

Theorem 4. Let P = P!, pPr—1,
(a) IfA=0 (=(0,0,...,0)), then
mib(A, ) =0 forall p € A, pw#0,and alli > 0,
(1.15) mpb (X, 0) =0,
mp(M0)=1fori=1,...,n—1.
(b) If A= (1,0,...,0,-1), then
mb(A p) =0 forall p € A*, p#0, and all i >0,
mb(2,0) =1,
(1.16) .
mp(A,0)=0 for i=1,2,...,n—-3,n—1,
mp2(X,0) = 1.

(¢c) Ifn=2and A= (3,—1), then mb (A, ) =0 for all p € AT and all i > 0.

12



Theorems 2, 3 and 4 provide us with the following procedure for computing ’ITLE’U(/\, i)
forany A € A*,any pe€ AT and alliand £,7> 0,0 < £ <n - 2. When £= 0 one checks

first whether A is pl-typical in g. If yes, then by Corollary 1, mi(X, ) = 0 for all z € AT
y %7
give the answer. Indeed, if Ay = 0, then A = (0,...,0,As,...,A,) and by Corollary 2,

mi(A, ) = mf,)n_t_l_l(/\,u) for any p € AT. If Ay = %, then X = (%,—%,)\3,...,)\,1), and

and all 7. If no, Theorems 3 and 4 apply. For A\; = 0, 5,1, Corollary 2 and Theorem 4

if Ay =1, then A = (1,0,...,0,=1,),,...,A,). Corollary 2 gives respectively m*(A, pu) =
m ,—a(A, ) and mi(A, p) = ™My n_ss1(A 1), and both latter multiplicities are computed
by Theorem 4. When A; > 1 one of the cases in Theorem 3 applies. If it is (a), one
expresses mi(A, i) in terms of mI(A — o, pu). If it is (b) or (c) one expresses m'(\, )
in terms of mj (A — a, p), mf (A — a,p), or m‘i‘_ll()\ — a, u). Continuing this process
one reduces ultimately the computation of m*(), ) to Theorem 4. (Note that in this
computation one applies Theorems 3 and 4 only to the supergroups (Pk")l. However,
as formulated, Theorem 2 applies to any P, Theorem 3 applies to P! only and Theoremn
4 applics to P! and P"~!. The reader will straightforwardly find a symmetric version
of Theorem 3 applying to P*~! (one has to assume that o = ¢ — &, and to define the
corresponding analogs of m;‘q(A, i)). In this way Theorems 3 and 4 should be viewed
as an inductive procedure for calculating the cohomology of the Il-syminctric projective
superspaces G/P! and G/P"~! with cocfficients in any irreducible dominant g-lincarized
locally free sheaf.) The multiplicities mi,o(/\,,u) for £ =1,...,n — 2 are computed by a
completely similar process.

Theorems 1-4 give a solution of the Kac character problem for g. Given A € A™* one
calculates the matrix of the operator a* by using Theorem 1 (b) and Theorems 2,3 and 4,
and then obtains chV (A) by Theorem 1 (a).

If A is generic, Le. if A\; 3> Ay fori=1,...,n—1 (3> means “much greater”), then it

is true that

dim vy

(1.17) chV(A) = o z sgnw - w | e*tre . H (I4+e )| 2

weW acAt
A is a-typical

Formula (1.17) is the generic character formula. If A is typical, i.e. A is a-typical for
all « € AT, or if more generally Ay = Ap = 0 whenever A is €, — eg-atypical, then the
right-hand side of (1.17) simply coincides with o(e?).

2The precise meaning of this statement is that there exist positive constants k; such that (1.17) holds

whenever A\j — Ajp > kjfori=1,...,n—-1.
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1.4. Comments and examples

The generic character formula was known previously in three cases: for A € AT with
A =0or A, =0, for a typical A € A, and for a generic A. In the first case it is duc to
Sergeev, [Ser2]. In both other cases it has been established by the first author respectively
in [P2] and [P4]. The typical character formula of [P2] is a particular case of (1.17) and it
extends the pioneering work of V.Kac, [K1], [K2], to the case of g(n). Formula (1.17) was
first proved in [P4] and was inspired by the work of Bernstein and Leites on gi(1 + ne),
[BL].

The rest of this section is devoted to examples. We consider in detail the cases when
n = 2, 3 and 4 and identify all weights A € A™ for which the right-hand side of (1.6) does
not coincide with the right-hand side of (1.17). We then compute the respective differences
in all cases. For n < 4 this replaces the somewhat vague genericity condition by an explicit
description of all A € A™ for which (1.17) is true. We denote by Gen(A) the right-side of
(1.17) for any A € A" .

If n = 2 the generic formula is valid for all A € A*. This follows from [P2] and can also
be casily verified directly. If n = 3, Theorem 2 implies that the generic formula applies to
all weights (A1, A2, A3) € AT with A; + A3 #0. Let Ay + A3 =0and Ay =a#0. Ifa > 1,
(1.12) gives

chV{a+1,a,—a—1)+chV(a,a - 1,1 -a) = EchOg/p1(Vp1(—a — 1,a + 1,a)).
Furthermore,
Ech Og/p1(Vyi(—a—1,a+1,a)) = Gen{a + 1,0, —a — 1) + 6&1(&, a, —a)
where

— 2(1
Genf{a,a, —a) := %)- - Z sgnw - w | el»®=a)+eo H (1-+4e™)

weW acAT
Cl:,l’-'tl —~€3

Since
chV{a,a ~ 1,1 —a) = Gen(a,a— 1,1~ a)

by Theorem 2, we obtain
chV(a+1,a,—a—1) = Gen(a+1,a,—a — 1) + Gen(a, a, —a) — Gen(a,a — 1,1 —a).

14



Finally, a direct calculation shows that
Gen(a,a — 1,1 —-a) = (’}'Egl(a,a, —a),

and this gives

chV{a+1,a,-a—1)=Gen(a +1,a,—a + 1)

fora>1.

For a = 3 (1.12) implies
CI]V(%, %’ —%) = ECh(")G/F'l (Vpl(_%: %: %)):

and clcarly

One verifies directly that C’;\e’n(%, 3.—3) =0, and in this way
chV (3,1 -3) = Gen(3, 3, —3).

Therefore (1.17) holds for any A € AT with Ay - A3 = 0, A2 > 1. One checks in the

same way that (1.17) holds for any A € AT with A} + A3 =0 and A; < —-%, and therefore it
remains to consider the case when A, = 0 and Ay + A3 = 0. For A; = 1 a trivial calculation

shows that
(1.18) chV(1,0,-1) = Gen(1,0,—1) — 2¢hV(0,0,0) .

(V(1,0,-1) is nothing but the direct sum psq(3) @ Ipsq(3), where psq(3) is the simple
subquotient of the Lie superalgebra ¢(3) (psq(3) = s¢(3)/C and ¢(3)/sq(3) = IIC.) For

Ag = 2 Theorems 3 and 4 give

chV/(2,0,-2) + chV (1,0, 1) + 2¢hV(0,0, 0) = EchOg, pr (Vi (=2, 2,0))
1.19
(1.19) = Gen(2,0,-2) + Gen(1,0,-1)

and therefore (1.18) implies
chV'(2,0,-2) = Gen(2,0, -2).
For A = k > 2, according to Theorems 3 and 4
chV(k,0,—k)}+chV(k - 1,0,1 — k) = Gen(k, 0, —k) + Gen(k — 1,0,1 — k),
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and thus induction on k gives immediately
chV (k,0,—k) = Gen(k, 0, - k)

for k& > 2.

Finally it is obvious that
chV(0,0,0) = Gen(0, 0,0)

(V(0,0,0) = C@ IIC = C'*¢), and thus we conclude that for n = 3 chV()\) = Gen()) for
any A € AT except A € (1,0, —1), chV'(A) being given in the latter case by formula (1.18).

The case of n = 4 can be analyzed by the same methods. First of all one notes that
(1.17) holds for any typical A € At as well as for any A € A+ which is p! N p2-typical or
p? N p3-typical on g. This follows from Theorem 2. If A is pl-typical in p or p3-typical,
Theorem 2 and our consideration of the case n = 3 imply that (1.7) holds unless the weight

A is one of the following:

(1.20) A=(k1,0,-1) for k > 1,
(1.21) A=(1,0,-1,¢) for £ < —1.

Theorem 2 applics to these cases too and gives that

1
chV(A) = D Z sgnw - w(chVy(A) - e - H (I1+e %)),
weW acdt, agA(p)

where p = p! for (1.21) and p"~! for (1.22). But ch¥,(A) is given in cach case an obvious

modification of formula (1.20), and a trivial calculation shows that

(1.22) chV(A) = Gen(A) — 2¢hV'(%,0,0,0) in the case of (1.20)
and
(1.23) chV(A) = Gen(A) — 2¢hV(0,0,0,£) in the case of (1.21).

Therefore it remains to consider the case when Ay + Ay = 0. It has two subcases:
Az + Az # 0 and Ap + Az = 0. Assume first that A + Az # 0. Then A = (a,b, ¢, —a),
b+c¢#0. Let a=b+4+1,1e let A= (b+1,b,¢,—b—1). If b > 2, using Theorems 3 and 4

one verifies that
chV(b+1,b,¢,—b— 1)+ chV(b,b—1,¢,1-b) = Gen(b+ 1,b,¢c,—b— 1) + Gen(b, b, c, —b),
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where

— dimw -
Gen(b, b,c, —b) = -#—b) - Z sgnw - w(e®he—0+ro H (I1+e™%)).
weWw acAt
aFfer—ey

But chV(b,b—1,¢,1 —b) = Gen(h,b—1,¢,1 — b), and a direct checking shows that
Gen(b,b—1,¢c,1 - b) = é:;l(b, b, c, —b),

which gives
chV(b+1,b,¢,b—1) = Gen(b+1,b,¢,b—1)

for b > 2. For b = 2 one considers the three possibilities ¢ = 1,0, -1, and (using in
particular formula (1.19)) verifies that (1.17) holds in any of these cases. Let now b = 1.
Then ¢ =0, i.e.

(1.25) A=(2,1,0,-2).
Here a straightforward calculation based on the relations (1.12)—(1.15) gives
(1.26) chV(2,1,0, -2) = Gen(2,1,0,—-2) — 2chV (1,0,0,0) .

In this way we have now fully analyzed the case when A = (b4 1,b,¢,-b—1), b > 0,
b+ ¢ # 0. Using induction on & one verifies now that if A = (b+ k,b,¢c,~b— k) € AT for
k > 2, then

chV(b+k,b,c,—b—k) = Gen(b+k,b,¢c, ~b,—b— k)

for all b > 0 and all c.
The case when A = (b+k,b,¢c, ~b—k) € AT with ¢ < 0, b+c # 0 is complctely analogous
and the result is that (1.17) holds except when

(1.27) A=(2,0,-1,-2),

and that in the latter case

(1.28) chV (2,0, -1, -2) = Gen(2,0,~1,-2) — 2¢hV'(0,0,0,-1) .
It remains to consider the case

(1.29) A= ()\1,/\2,/\3,)\4) with Ay + 24 =0, Ag+A3=0.
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Let us first single out the following weights:

(1.30) A =(0,0,0,0),

(1.31) A =(1,0,0, -1),

(1.32) R

(1.33) A =(2,0,0,-2),

(1.34) A=(2,1,~1,-2),

(1.35) A=(k+ 1,k -k, —-k—-1) fork>1

In the cases (1.30)—(1.34) one verifies directly that:

(1.36) chV (0, 0,0, 0) Gen(0,0,0,0)

(1.37) chV(1,0,0, —1) = Gen(1,0,0, —1) + 2¢hV/(1,0,0, —1) ,
(138) ChV(%,%,—% _%) =GCH(%,%,—%,—%) )

(1.39) chV(2,0,0, —2) = Gen(2, 0,0, —2) — 2chV(0,0,0,0) ,
(1.40) chV{2,1,-1,-2) = Gen(2,1,~-1,-2) — 2¢hV/(1,0,0, -1) .

In the case of (1.35) Theorem 3 implies
chV(k+1,k,—k,—k—=1)—chV(k,k~1,1-k,—k) = EchOg/p1 (Vo1 (k= 1, k+1,k, —k)) .
Furthermore
(1.41) EchOg/pr (Vyr(—=k—1,k+1,k, —k)) = Gen(k+1,k, —k, —k—1)-+Gen(k, k, —k, —k)

for

e 4
Gen(k, k, —k, -k} = (1; ). Z sgnw - w(e®r—k=k)+eo H 1+e ™)),

weW a€AT
aFEy—€4,60—€3

and a straightforward calculation gives
(1.42) Gen(k, k, —k, —k) = —8chVy(k, k — 1,1 — k, —k)

where for any g € AF Vo(u) denotes the irreducible gll-module with highest weight .

Using (1.40) and (1.41) one verifies by induction on & that for k£ > 1
chV(k+1,k —k —k—1) = Gon(k+1,k, —k —k—1) —chV(k, k~ 1,1k, —k)

(1.43)
= chVolk+ 1,k ~k —k—1) .
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Finally, if A is as in (1.29) but not as in (1.30)—(1.35), the reader will show by induction
on A; — Az that (1.17) holds.

The conclusion is that for n = 4 (1.17) holds except in the cases (1.20), (1.21), (1.25),
(1.27), {1.31), (1.33), (1.34), (1.35). The corresponding “correction terms” to (1.17) are
given respectively in the formulas (1.22), (1.23), (1.26), (1.28), (1.37), (1.39), (1.40), (1.43).

2. Auxiliary Results

2.1. A lemma on central characters

Lemma 2.1. Let A\, u € A}, pp <y A, and 0> = ##. Then A\ = p + Soi_1 ¢y for some
sequence ¢y, ..., a5, a; € At such that p + Z;=1 a; € A and p+ E;:l @ IS Ctig1-

atypical for anyi=1,...,8~ 1.

PROOF. Let A — p = >, b3, B € At being simple roots. We will prove the statement
by induction on n and on |A—p| := 3, b;. The induction assumption with respect to n and
Lemma 1.1 in [P4] enable us to assume that Ay # py for k = 1,...,n. Furthermore, let the
reduced expressions of A and u be respectively A= a1€i, +- - Fag€i,, L = a165, + - -+aggj,
(heW. A since 6* = 0#, see Proposition 1.1). Consider first the case when j; # 1. Let
¢ be the maximal index such that jiy + g = 0. Sctting g/ := o+ €1 — £ we see that the
pair A, i satisfies the conditions of the Lemma with |A — ¢/| < |A — ul, and therefore the
induction assumption implies our claim. Let 5, = 1. Then g = aq, Ay > p1, and thus
71 > 1. Let 7 be the maximal index such that A, > aq. Clearly r <4y — 1. Let 7/ be the
minimal index for which A, + A.s = 0. Set X' := A+ e,» — £,. The pair X, p satisfies the
conditions of the Lemma and |N — pu| < |A — g, i.e. the induction assumption gives the

result in this case too. 0

2.2. On Verma module homomorphisms
Proposition 2.1. Let A € h% for some @ € AT, Then
Homgu (M (A — a), M(A)) # 0.

ProoF. Consider first the particular case when in addition A € A}, X is generic, and
A & b for B # o. Under these assumptions Corollary 2.2 in [P4] implies the existence of

an exact sequence of gl-modules
(2.1) 0= V(A—a) = Hg/p(A) = V(A) =0,
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where Hg/B()\) = HY(G/B, Og;p(—A))*. Since H[C):/B(’\) is a highest weight ¢™-module
with highest weight A (Hg/B(G/B, Og/p(—2)) being a lowest weight module with lowest,
weight —A), (2.1) implies that [M(A) : V(A — &)] # 0. Therefore also [V : V(A — «@))] # 0,
where N is the kernel of the canonical surjection M(A) — V(A). We claim that A — a is an
extremal weight for NV, i.e. a maximal element in supp/N with respect to <g. Note first that
if % = 6 for some v € AT, then v cannot satisfy both inequalitics A >, v, ¥ >p A — .
The latter is a combinatorial observation which the reader will verify immediately using
Proposition 1.1. Since now A >y v for any v € suppN, v # A, v cannot satisfy v >y A—q,
i.e. A — ais indeed an extremal weight of N. Therefore any v € N(*~) is an n-singular
vector, which implies that Homgn (M (A — «), M(A)) # 0 for any generic A € AL with
A€ hpforall f#a.

To complete the proof it suffices to notice that the set {A € bY | Homyn(M (A — o),
M(X)) # 0} is a Zariski closed set in h%. Indeed, it is an clementary exercise to show
that a Zariski closed subset in b which contains all generic weights in h2 N AT coincides
itself with h}. Therefore Homgn (M (A — a), M(A)) # 0 for any A € b, and the proof is

complete. O

2.3. Tensor product functors

Lemma 2.2. Let A € b, X(A) be a highest weight g™-module with highest weight A, and

V be any finite-dimensional g''-module. Then there is a g-filtration
0=F'cFlc...cFr=X\)oV

such that F*/F'~! ~ X(u*) for 1 <1 < k, where X (u*) is a highest weight g-module with
highest weight ¢* € A+ suppV, and such that it <, p? for i > j. Morcover,
m(X(A) @V, pu) <ua®@ VW2 1y,] where m(X(\) @V, u) = #{i|u=p'}.

The proof is standard (see [BGG]) and we omit it. a

Lemma 2.3. Let A € h*. Any n-singular h-submodule in V(A)® F or V(A\)® E* (i.e. any
h-submodule consisting of n-singular vectors) is isomorphic to a submodule of vy ® ve,, or

respectively vy @ v_e,, for some i, 1 <1< n.
The proof is completely similar to the proof of Lemma 5.3 in [S2). 0O
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We introduce now the functors
Tf 007, Tf(V):=(VeB),
Ty 100, Ty (V)=(VeE),
6 : Z — C being any central character. If & is another central character such that 6’ = @,
then for any object V of O
T, (V) ~ (VRE)® @ (VRE)®?
where VQE is the eigenspace of eigenvalue 1 of the map [ ® [l : VE~V®E?3
Similarly
Ty (V) = (VOB @ (VOE")? |
(If 0" # 6, (VRE)? and (VRE*)? are only g-modules but not necessarily g'-modules).
Therefore for # = §' we have also the functors :
Tog: 0% ~ 0% T o(V):= (VOE),
Ty p: 0%~ 0f, Ty ,(V):i=(VRE").
The following three lemmas arc straightforward and the the reader will easily prove all

of them or find analogous proofs in [BGG].
Lemma 2.4.

(a) The functors Ty and Tg',t p are exact.

(b) (T}, T;) and (ngf!e, Tgfe,) are pairs of adjoint functors.

0

Lemma 2.5. Let § = 8> for some X\ € b}. Then Tji o(M (X)) has a finite g"-filtration
0=F°C FlC...Cc F*" = T (M(N) such that F*/F=1 o~ M(u') for 1 < i < p¥,
where it = A £ g, for some j; and j; # ji for i # k (and of course 0’*%5: = 0). If § # 6,
the same is true for T3 (M(N)).

O
Lemma 2.6. For any central character 8 and any object V of O,
T (V)Y = TE(VY) .
If6 =0 and V is an object of 0O?, then also
Teﬂf,e(lf)v ~ Tg?’e(VV) .
O

3In section 3 we will also consider VRE and VRE* for a p”- module V.
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Lemma 2.7. Let \,A — o € AY for some a € AT. Then if
e MEPo MY M) -0
is & BGG-resolution of V(A), M{A — «) is necessarily present among the quotients of any

gl-filtration of M all quotients of which are Verma modules.

PRrOOF. Since Homgn (M (A — a), M()X)) # 0 (Proposition 2.1) but Homgn(M (A —
@), V(X)) = 0, we have Homgn (M (A — ), M) # 0. Furthermore, for any g"-filtration of
M?! whose quotients are Verma modules, Homgu (M (A — a), M () # 0 for some quoticnt
M (v). We claim that necessarily » = A — a. Indeed, assume the contrary. If o = g; — ¢,
i< j,set M= A—g; and v/ = v —¢;. Then, since 6* = #*~< imnplies k = i, Lemma 2.5
gives

M) = T, (M —a)) = M(X) & M(X) .

Furthermore, a straightforward combinatorial argument based on the inequalities A >,

v > A — « shows that §7 €~ = ¥ implies k = 7, and therefore (again by Lemma 2.5)
M)y > TH(M(V)) > M@)o M) .
Now, by Lemma 2.4 (b),

Homgn (M (A — ), T A (M (1))} ~ Homgn (T (M(A —a)),M(¥)))

and, since Homgn(M (A — a), M(v)) # 0, we obtain Homgn(M(X),M(v')) # 0. But
Homgn(M(A"), M(v')) = 0 simply because A’ £, v'. This contradiction proves that v =
A — . 4

If A € AT, we set for any central character 6
QF () :={A e | Ate €A, P2F =9} .
(In section 3 below we will also need
Q5 (\) = {Afe | A ke € Af, ) =06,)

for A € Af and a central character 6, of b + p,,).
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Proposition 2.2. Let f = 0> for some A € AT. Then the following statements hold.

(a) #95(N) <2

(b) IFQF(N) =0, then T ,(V(N) =0.

(c) IfQE(N) = {u}, then T;;’S(V(,\)) ~ V() or T 4(V(A) = 0.

(d) If Q;t()\) = {u, '} for some p' <y p, then p— p' € A*. Furthermore, if
Tgﬁﬁ(V(,\)) # 0, then ngi’B(V()\)) Is isomorphic to V{(u) or to V (i), or there
is a unique highest weight module X*(u) with highest weight p for which there

exists an exact sequence of gl'-modules
(2.2) 0— XE(u) = T ,(V() » YEW) =0,

Y*(p) being a b-highest weight module with highest weight p'. In this latter case
Tg'f\ o(V (X)) is an indecomposable g"-module such which has a unique irreducible

submodule and a unique irreducible quotient both isomorphic to V(i'}).

PROOF. (a) For any two indices 1, j, 2% = §*%¢ implies via Lemma 1.1 in [P4] A; = A;
or Ai + A; 1 =0. Since A € AT we obtain that A\; = Aj = 0 or A; + A; 1 = 0. Let now
grEes = gAtei = grter for ¢ < j < k. Then, as one checks immediately, A; = A; = 0 or
A; = Ak = 0. But therefore 2% # §*, and this contradiction proves that #QF () < 2.

(b) follows immediately from Lemma 2.2.

(¢) By Lemma 2.2, Tgi)\lg(V(/\)) # 0 gives that Tg'i,g
with highest weight g (the multiplicity inequality in Lemma 2.2 implies the irreducibility
of the gll-module Tﬁ'G(V(/\))(")). Furthermore, V(A\)¥ ~ V(A) and thus Tg{i‘e(V(/\))V ~
T;,:\‘B(V(/\)) by Lemma 2.6. However a contragradient highest weight module is necessarily

(V (X)) is a highest weight module

irreducible as a gM-module, i.e. T3 ,(V(A) =~ V(u).

(d) Lemmma 2.2 implies the existence of an exact sequence of g"-modules
(2.3) 0= X*(u) » T ,(V(X) = YE(u')) = 0,

where each g'-module X*(u) and Y*(y') is either zero or is a highest weight module
with respective highest weight g and p/. If X*(u) = 0 or Y*(u/) = 0, the same argu-
ment as in the proof of (c) gives that the other module is irreducible as a g"-module. 1f
XE(u), YE(i') # 0, then pu, 4’ € Q;t(/\) implies g — 1/ = @ € AT, Furthermore, Lemnma
2.3 also gives the uniqueness of X*(;) because X*(p) is generated by the irreducible

h™-module of T;i o(V{A)) consisting of n-singular vectors of weight p.
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We claim that X*(p) is a reducible g''-module. Assume the contrary. Then X*(p) ~
V(u). Since V(A)V ~ V(A), Lemma 2.6 implies that sequence (2.3) splits. Therefore
YE(W')Y ~ Y*(y'), which gives Y*(u') ~ V(i'). In this way TB:E’B(V(A)) ~V(pye V().
Consider now a BGG-resolution of V()

o MY M) >0,

~

By Lemma 2.4(a), T;,ﬁ o 1s an exact functor, therefore

(2.4) S

S (M) — T*

= (M(A) = 0

is a resolution of V(u) & V{(u'). Noting that our argument in the proof of (a) implies
(A £ |62 = 07} = {u, '}, we see that Lemma 2.5 gives the existence of an exact
sequence

0 M(u) - TF,

(M(A) = M)y — 0.
Applying now Lemma 2.7 to the obvious subcomplex of (2.4) which is a BGG-resolution
of V(i) we obtain that M (u') is a subquotient of Tgi’g(Ml). This forces the existence
of a weight v for which M(v) is a subquotient of M! and i/ = v % ¢, for some k. But
then ¥ <y A and 6 = @*, which (as one checks immediately) contradicts the equality
v =y’ T &x. This contradiction proves that X*(;) is indeed a reducible gM-module.
Lemma 2.3 implies now that the minimal gM-submodule of X*(;) is isomorphic to
V(y') and that any singular vector in f‘gj o(V (X)) belongs to X*(p). This gives the inde-
composability of Tg§ s(V{(A)) and the fact)that V(1) is the only irreducible g-submodule

of Tgﬁ - Finally the contragrediency of Ta’ﬁ,e(V(A)) implies that V{(u') is also the only
irreducible g™-quotient of Tg‘f\ a(V(A)). O
Corollary 2.1. Let A € A*. If #6 > #6* and § = 0, then Tgﬁ o (V(A)) is an irreducible
g'l-module.

Proor. If Tgi,\ o(V(A)) is reducible, then #QF(A) = 2 by Proposition 2.2. But this
implies #68* > #86 which contradicts to the condition #6 > #6*. O

2.4. The functors H, p(-) and the multiplicities mp (A, p)
In the proofs of the main results it will be convenient to consider the following twisted

version of the cohomology of induced Og;p-modules:

Hg p : pM-mody ~ g"-mod;

Hiyp(V) := HY(G/P,Og/p(V*))* .
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Since H°(G/P,Og,p(V*)) is a lowest weight module, see 1.2, Hp p(Vy(A)) is a high-
est weight module whenever HG/P(Vp( )) # 0. Furthermore, the canonical isomorpisms
V()" = Vi (=l (V) and V(4)* = V(—w (1)) imply

; mp (A, for £ 0o0r p# A
(S (Vo(N) V()] = { 1 POup) for i#00r

fori=0and p=A.

Lemma 2.8. If mi (A, 1) # 0, then there exist w € W and f1,...,0: € A%, B, # 8, so
that yo = w(A) = 3° By and i is equal to the minimal length £(w o WP) of clements in the

coset wo WP where p = LieP.

PRrOOF. Og,p(V,(A)*) has a go-sheaf filtration with factors O py.., (Vio(¥)*) where
v runs over a subset of the set A +suppS (nT). By the Borel-Weil-Bott theorem (applied
t0 Ot/ Pypa (Voo (¥)*) ) HE;/P(V (A)) has a gg-module filtration with factors Vy(w, (v +
po) — po)), where w, is such that w, (v + po) € A} and i = #(w, o WP). Therefore, if
mib (A, 1) # 0, then = w, (v + po) — po = w,,(/\) +w, (>, ai + po) — po where a; € A,

o # as. But obviously w, (3", oi + po) =3, Bp for some Bu,..., Bk € A, B, # [,
Setting w := w, we complete the proof. O

Corollary 2.2. If mi(A, p) # 0, then p <y A. The equality . = X is possible only when
w(A) = A for somew € W, w ¢ WP, O

Corollary 2.3. Ifmh(), 1) # 0, the pair A, u satisfics the conditions of Lemma 2.1. 0

3. Proofs of the Main Results

3.1. Proof of Theorem 1

The relations (1.7)~(1.16)* imply that for each &k = 1,...,n — 1 a; preserves H, and
furthermore that its restriction ap to #H, is strictly lower triangular for any linear order of
the basis e” for v <y A which is compatible with the partial order <g. Therefore id +a£ is

mvertible for all &£. Furthermore, if 11 # 0, we have the tower of natural projections

G/P(w) " G/ PP I Pty vy SpecC

4The proofs of Theorems 2-4 are completely independent of Theorem 1 so we can use Theorems 2-4
to prove Theorem 1.
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AwhereLiefJ'=plﬂ---ﬂpkﬂpt‘1ﬂ---ﬂp’" for{—1<r<n-1, Licf”"zplﬂ---ﬁpk
for k<r<f€—1,and LieP" =p'n...Nnp" for 1 <7 < k. Set p, :=plo---op? L The
fact that

B (00)+(Oc/pw) (Vo) (Wh" 0 win (1)) =
R (0,) (R (B2)< (.- (R (02714 (O6/p() (Vo) (Wi 0 win (1))))) - )
implies
a(e’) = ((id+a;)o---o(id+a,_1))(e")

for vy # 0. But if vy = 0, or v, = 0, Theorem 2 applied to OG/p(,,)(Vp(,,)(wﬁf”) o Wy (1))
gives
a(e”) = e".

Therefore

a’\ == Oy, Hy — Ha

is a well-defined isomorphism for any A € A*, and
a* = ((id+ap)o---o(id+al_))) .

In order to prove (1.6), note that any v € A*, v <y A,

Z ay chV(p) = E(:llOG/p(u)(Vp(y)(wﬂf") o wm (1)) =alv) .

p<pv
This is a system of lincar equations whose matrix is the matrix of a* and whose right
hand-side is the vector-column {o(v)) for v <, A. By solving this system we obtain in
particular (1.6). If A; = 0 or A, = 0, then respectively v; = 0 or v, = 0 for any v <y A,

v € AT, and thus a|y, = id, which means that

chV(A) = o()).

3.2. Proof of Theorem 2 and Corollary 1

Let p = Lie P = ¢t &u where u is the reductive part of p. Consider an element z € hy
such that «(z) = 0 for each simple root < of b which is a root of u and a(z) =1 for each
simple root of b which is not a root of u. Clearly z is unique up to addition of elements

from the center of go.
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Theorem 2 is obviously equivalent to Corollary 1, so all we need to prove is that
mi (A p) = 0 for all o € A%, 4 > 0. Assuming to the contrary that mi, (A, ) # 0 for
some j and some ¢ > 0. Then, by Corollary 2.3, the pair A, u satisfies the condition of
Lemma 2.1 and thus A = u + Zj c; as in Lemma 2.1. The fact that A is p-typical im-

plies that all a; are roots of u. On the other hand, 1 = w(A) — >_, By as in Lemma 2.8.

)‘“w()‘):Z:a’j_Zﬁp’

Let i = £(w - WP) # 0. Then (A — w(A))(2) > 0 since A is p typical. But 3, a;(z) =0
and 3, B,(z) 2 0, and thus (3°;a; — 3> By} (2) < 0. This shows that necessarily i =

£(w - WP) = 0. In this case all o;’s are roots of u and

Therefore

(3.1) A(z) = ul2) -

We claim that (3.1) is contradictory. Indeed, as it is casy to sec, the canonical surjection

of p'l-modules (1.2) induces by duality a canonical surjection of g'-modules
U(8) Qupy Vo (A) T2 H(C);/P(VP(’\))
such that the natural diagram
Hg,p(Va(N) — V(A
(3.2) R Jpr
U(g) ®up) Vo(A)

is commutative. But this means that x(z) < A(z) for any & € supp(ker pr) and in particular

that ji(2) < A(z). This contradiction finally gives mi, (A, ) = 0 for all i > 0. O

3.3. Proof of Corollary 2
Note first that Theorem 2 is obviously equivalent to the statement that for any A € AT

which is p-typical in g,

Hgp(Va(\) =V (A),

(3.3) .
He p(Vo(A)) =0 fori>0.

Moreover we ¢laim that the functor
A
(3.4) Hg./P : (p™ — mod)g,e") ~ (g”-mod)}m’p)
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is the desired equivalence of categories. First of all, using Proposition 1.1 one verifies
immediately that if a simple finite-dimensional p-module V,(A’), considered as a U(ho +
pss )-module, affords the central character 9;‘ of V,(A), then A’ € A™, X is p-typical in g and
V(X\') affords the central character §*. This, together with the observation that (because
of (3.3)) the g"-composition factors of Hg, p(V,) for any object V, of (pn—mod);g'?) have
the sare highest weights as the composition factors of V}, itself, implies in particular that
Hg /P is indeed a well-defined functor between the above categories.

There is also a natural “localization functor”
A g
Ly: (gn-mod)g,g P (pn-rnod)gr o)

Indeed, if V is an object of (g“-mod)&gl"’), let V(p) denote the intersection of all p'l-
submodules of V which generate V as a g™-module. Clearly V(p) is a canonical p"-
submodule of V' and we set L,(V) := V(p).

The fact that L, and HZ /p are mutually inverse functors is established by a straight-

forward checking which we leave to the reader. O

3.4. Proof of Theorem 3

We start with the following two lemmas.

Lemma 3.1. If o and A are as in Theorem 3 and k < n, then

(3.5) Tn'i(/\: H) = mz.],n—k(’\’ ,U,)
for any pn € AT,

PrOOF. Let K < G be the parabolic subsupergroup with £ := LieK = p*n...np»~1L

Consider the double bundle
G/L

VY’
G/ P! G/K ,

where L is the parabolic subsupergroup of G with [ = Lie L = p! N €. Notice that A is
[-typical in p! and thercfore by (an obvious relative version of) Theorem 2,
Rip.Og(Vi(A)*) = 0 for ¢ > 0 and Rp.Ogq,1(VI(A)") = Og/p1 (V1 (A)*). Therefore
HE, (Vi(A) = HE pr (Vi (X)) for all j > 0.
Let us describe now the composition factors of the g-linearized Og /Kk-modules
R'q.Og 1, (Vi(A)*) for all . Clearly for each p the multiplicity of Og/x (Ve(n)*) in
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R*q.Oc /L (Vi{A)*) equals m}'),n_k(/\, ¢). Furthermore, Corollary 2.2 (applied to G = K,
P = L) implies that any p with mgm_k()\, i) # 0 1s t-typical in g. Therefore,
HI(G/K, R'q.Og;,(Vi(A)*)) # 0 for all j > 0 and (by Leray’s spectral sequence),

Hg,,(Vi(A*) = HYG/K, R'q.Og;L(Vi()™)" .

This means that the multiplicity of H*(G/K, Og/kx(Ve(1)*))* in HY(G/K,

Riq.Og;,(Vi(A)*)" is ma,n_k()\, ). But since HY(G/K, Og x(Ve(1)*))* is nothing but
V(u) and since the multiplicity of V(1) in HE';/L(V;(/\)*) is m*(A, i), we have established
(3.5). o

Lemma 3.1 implies that it suffices to prove Theorem 3 under the assumption that
o = €, — €,. This assumption will be valid throughout the rest of the proof.

The following lemma is a more specific version of Corollary 2.1.

Lemma 3.2. Let A € At, #0 > #0*, 0 = 0%, and QF (\) = {X + &} (respectively
Q5 (N) = {A ~¢;}) for some i. If A is p*~t-typical (respectively X is p*-typical) in g, then
T o(VN) = V(A £ey).

Proor.  Corollary 2.1 implies that Tfﬁ,g(V(z\)) = 0 or TgE’G(V(/\)) ~ V(A * ).
Therefore all we need to prove is that T;E o(V(A) # 0. We will do it for T #(V(A)) and
we will leave the casc of T, ,(V(A)) (which is completely similar) to the reader,

Put P:= P!, Since A is’p—typical, Theorem 2 implies Hg/P(Vp()\)) = V{A). Thercfore
H p(Vo(M®E)® = T ,(V(X)). Furthermore there are the following exact sequences of

p-modules:

(3.6) 0= Vo(N@Vs(er) = V(NBE = V(N (er) = 0,

(3.7) 02 Vo(A+e:) = Vo(N@Vi(e:) = (Vo(N®Vy(e:))/Vo(A +e:) = 0.

Since QF (A) = {A +¢&;}, we have 6# # 6 for all composition factors V, (i) of V,(A\)&V,(e1)
or of (V,(A)®V,(ei))/ V(A + €;). Therefore for any j,

Hé/P(Vp()\)@Vp(ﬁ))g =0

and

HE p(V(N®V5(e:)/ V(A +€:))° = 0.
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In this way (3.6) yields
HL p(G(NBE)® =~ HL p(Vy(\@V(e:))’
for any 7, and (3.7) yields
HL p(Vo(N&Vi())® ~ HEL p (Vo (A + €:))°
for any j. In particular
Tgt,g(Hg/P(Vp(/\))) = Hg/P(Vp(/\)éE)g = Hg:/P(Vp('\ +&:)) -

But Hg/P(Vp(/\ + €;)) # 0 because we have a canonical surjection Hg/P(Vp(/\ +€i)) —

V(A +¢€;) (induced by the canonical g™-injection
V(A+ &) = HYG/P, Og/p(Vp(A+&:)*)) ,

and this proves the Lemma. (We proved also that under the conditions of the Lemma,
Hg p(Vo(A +€:)) = V(A +ei).) . a

Now we can turn to the actual proof of Theorem 3. The plan is as follows. We will first
establish Proposition 3.1 which is a weak version of Theorem 3(a). Then we will prove
Theorem 3(b) and (c), and only after that we will complete the proof of Theorem 3(a).

We start with

Proposition 3.1. If A is as in Theorem 3(a) (and @ = €1 —ey,) then (1.8) and (1.9) hold,

and furthermore

(3.8) m*A—a,p) <m®(Ap) S m A —a, ) +mP(A—a, p) forany pe AT, p#r—a.

PRrROOF.

Claim 1. If A is as in Theorem 3(a) then there is an ezact sequence of gl'-sheaves
00— OG/pl (I/px (/\)) — OG/pl (Vpl(A — 51)®E)9A — OG/P[(Vpl(/\ — CY)) —r O,

where more generally O/ p(v)? is the generalized eigenspace of eigenvalue 0 in the gl-sheaf
Og/p(v).
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Indeed, the exact sequence of (p!)-modules
0— Vpl(é‘l) — FE — Vp1(52) — 0
gives rise to the exact sequence
0— OG/IDI(VPI(/\)) -— OG/])](VPI(/\—El)®E)9,\ — Og/pl(Vpl()\—E]_)®Vpl(E2))eA - 0.

(Note that B’ := Vi (e2) is tautological representation of h+pl,, dim B/ =n—14(n—1)e
and Vi (A —€1)®V,1(e2) is defined as in 2.3 with E replaced by E’). But A —g; and 9;\1'“
satisfy the conditions of Lemma 3.2 applied to § + pl, (h+ pl, is isomorphic to a trivial
central extension of g(E’), so Lemma 3.2 is obviously valid) because A —¢; is p* Np™-typical
in pl, #67 = #6'31'0‘, and Q% _, (A —e1) = {A = a}. Therefore by Lemma 3.2,

pl 9A1—o
p
R A—o
Ocypr (Vi (A — £1)@Vii (£2))" ) = Og/p1 (Vi (A = @)) .

Noting that §2~1+5r £ A for 1 < r < n, we obtain

A

" A—n -
OG/Fn((Vpl(/\—El)®Vp1(82))epl )= OG'/pl(Vpl(/\—sl)®Vpl(52))g N

and we have established Claim 1.

Claim 1 implies immediately the existence of the following exact sequence

5.9 o= By (Vi (V) = By p (Vin (A = €2))OE)”
—= Hgypr (Vo (A = @) = Hg pr (Vi (V) = -+

Since A — g, is p'-typical in g, (3.9) yields the g''-isomorphisms

(3.10) H o (Ver(A = @) B Hgypr (Ve () for i >0

and the exact sequence

(311) 0= He/pi (Vpi(A = ) = HE 1 (Ve (A) 2
— (HE 1 (Vpt (A = £1))®E)® — HY/p1 (Vp1 (A — @) = 0.

This is sufficient to conclude that (1.8) and (1.9) hold. Indeed, (3.10) gives (1.9) di-
rectly; Corollary 2.2 and (3.10) imply m*(A\,A — &) = 0 for ¢ > 0, and, by noting that,
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(Hg pr (Vpr (A = £1))®E)? = =TH .., P
2.2(d) that m2(M\ A — @) = 1.

In order to establish (3.8) notice that

(V(XA —€1)) , we obtain from 3.11 and Proposition

im Py HG/F"( (A ))/HC‘/PI(V 1(A — @)

and that therefore it suffices to prove
Claim 2. For any p € A™, p# A,

[im 9x V()] < [Hgypr (Vor (A = ) : V()] -

As we already noted
He (Vo (A= e0)B®E)” =T, (VA =€),
and moreover the exact sequence
(3.12) 0= im s = Tfoe, (n (VA= £0)) B HY 1 (Ve (A = ) = 0
induced by (3.11) is nothing but (2.2), where
XtA=(A—¢1)+e1):=1im

and
YH(A—e)+en=Ar—-0) = Hg/p (Vi (A — ) .

By Proposition 2.2(d), im %, is the unique highest weight submodule in 724 r—e1 g (V(A -

€1)) of highest weight A. Since T 9* o g (V(A — €1)) is contragradient, there is a unique
projection
T;\‘H QA(V(A - 51)) —r S,\ ,

where Sy 2= (im ¥,)Y.
We claim now that

kerry C kersy

where 7 : imyy — V(A) is the canonical projection. Indeed, sy(kerry) < Sy but
[sx(kerry) : V(A)] = 0. Since Sy has a unique gl-irreducible submodule isomorphic to

V(A) (which corresponds to the unique irreducible quotient of im 1 isomorphic to V()
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(see Proposition 2.2(d)) we have necessarily sy(ker 5} = 0 or equivalently kerry C kersy.

This means that the map

8 T ey (VA =€1)) /i = Sa/V()
is a well-defined projection. Therefore (3.12) gives
(3.13) SA VN V()] < [H 1 (Vo (A= ) : V()
for any 2 € AT, But since Sy/V(A) =~ (kerry)Y we have
(3.14) [Sx/V(A) : V(u)] = [kerry : V()] -

(3.13) and (3.14) give now Claim 2 immediately. This completes the proof of Proposition
3.1. O
PROOF OF THEOREM 3(B).

We start with the claim that if 0 # A € AT is @ = &; — g,,-atypical, then

Hg?/Pl (VPI (’\)) = HJG/pn—l (Vp"‘l (/\))
for all 5. Indeed, consider the double bundle

G/S

VA
G/Pl G/Pn—l ,

S being the parabolic subsupergroup of G with Lie S = s := p! np®~!. Since A =
(A1, .., An = —A1) with Ay > Ay, Ap_1 > Ay, A is s-typical in p! and p”~!. Therefore (by

an obvious relative version of Theorem 2)

R%pl0gs(Vs(AN)*) = Ogypr (Vi (A)*)
ROpI10g/5(Va(A)*) = Ogypn-1(Von-1(A)*)

and (by the Leray spectral sequence)
HL o (Ve (V) = HE g (VaQN)) = HE pucs (Van=i (A)7)

In the rest of the proof of Theorem 3(b) we will assume that A\; > Ay +1 and ), =
An—1 — 1 since our claim implies that it is sufficient to prove Theorem 3(b) under thesc

conditions.
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Obviously Q;\(A —€1) = {A} and @*7r¥e £ 92 for 1 < i < n, and thus Proposition
P
2.2(c) implies
~ A
OG/pl (Vor(A = 81)®E)9 ~ Qg/p! (Vpl (A) .

Therefore

(3.15) Thoes g (HE o (Vi (A= €1))) = HE pa (Vi (V) -

Furthermore, by Lemma 3.1,
(316) ’nlj(’\ — €1, u") = mg),l(’\ — €1, ﬂ'f) s

which means that X, = !, when m/ (A — e, 1) # 0. In this way, if m/(A — e, ') # 0,
Lemma 3.2 applies to g/ with i = n and to # := #* = g#'*+enand thus T;;—n 6 (V') ~
V(i +€,). This, together with (3.15) and (3.16), gives m? (A — e, ¢/) = mI (M, 1/ +¢,,) =

77?,‘6’1(/\ — &1, ). But clearly mf)'l(/\ —enL,p) = mé’l(/\ — a, i1’ + €,), and therefore
mI (A 1 +e,) = m‘g,l()\ —a, p +ep)

whenever m? (A~e1, /) # 0. Since it is obvious that m7 (A—gy, i) # 0iff mI (A, p'+ey,) # 0,
setting p := p' +e, we obtain (1.13) for k = n which is all we need to prove Theorem 3(b).
PRrROOF OF THEOREM 3(c). It is based on several preliminary assertions.

Lemma 3.3. Let v € A:l and vy = vy > 0. Then for any p,

m? (v, p) = mi 3w, p) if 721,
(3.17) ho
m(v, ) =0 .

PROOF. Let 7 : G/R — G/P! be the canonical submersion, where R is the parabolic

subsupergroup with Lie R = ¢t := p* N p2 Consider the exact triangle
(3.18) 0= Og/pr (Vo (1)) = R 1.0¢/p(Ve(v)*) = B 1.0g r(Ve(v)*) = 0

in the (bounded) derived category of sheaves of Og,pi1-modules, where R r.0¢ /R(Ve(v)*)
is defined simply as the quotient R.T*OG/R(K(V)*)/OG”DI (Vpr(v)*). Fixing an appropri-

ate representative for R 7,0g,r(Ve(r)*) in the derived category, we can consider (3.18) as
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an exact sequence of complexes of Og,pr-modules (Og,p1 (V1 {v)*) being a trivial complex

concentrated in degree 0). (3.18) gives rise to the long exact sequence of hypercohomology

0= HY(G/PY,0g,pr (Vi (v)*)) = B*(G/P', R 7.0g/r(Vi(v)")) =

(3.19) N
HO(G/P17R T~OG/R(VI:(V)*)) — H (G/PI,OG/IM (Vpl(u)*)) - ...

We will now analyze this sequence and show that it implies (3.17).

Note first that H'(G/P!, R 7.0¢g/r(Ve(r)*)) = 0 for all i. This is an immediate con-
sequence of the fact that the sheaf of Og/p-modules Og/r(Vi(v)*) is acyclic, i.e. all its
cohomology groups vanish. The latter can be established by the technique of Demazure

reflections developed in [P3] (see also [P4]) which gives that
HY(G/R, Og/r(V:(v)*)) = HTYG/R, Og/r(Ve(wi2(v)*))
(w12 permuting 1 and v;) for each 4, and thus that
H?(G/R, Og/p(Va(¥))")) =0 .

Consider next the spectral scquence with second term
Ey =HYG/PY HP(R 1,06 ,r(Vi(v)*))) which abuts to Y9 (G/P*, R 1.0g/r(V:(¥)*))
(and where H?(-) denotes the pt? cohomology sheaf of a complex of sheaves). We have
H (R 7. 06/r(V()")) = BPr.06r(Vew)*) = Ocym (Hh, p(VelW)*) for p >0,
R°1.06 r(Vi(v))/Ogypr (Va1 (v)*) = Ogypr (Hpr s (Ve(9)*) [ Vir (v)*) -
It is crucial to observe that the g-composition factors of HE, / r(Ve(v))* for k > 0 and
H?,I/R(V,(u))"‘/Vpl(u)*) have pl-typical highest weights. The reader will easily verify this

using Corollary 2.2. Therefore, by Theorem 2, H9(G/P!, HP(R.T..OG/R(VI.(V)*))) =0 for

all ¢ > 0 and all p, and furthermore
HP(G/P', R m.0g/r(Ve(v)*))) = HY(G/P", HP (1 7.0 n(Ve(v)™))) -

Since H (G/P!, Og;p1 (Vo (v)*)) = H (G/P',Og,p1 (V1 (¥)*)), the coboundary maps in

(3.19) provide us with isomorphisms

HY(G/P W™ (R 7,06/r(V:(1)"))) = H(G/P", Ogp1 (Vi (v)"))
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for j > 1, and moreover H*(G/P', R°7,Og/g(V:(¥)*)) = 0. Therefore if p # v,

ml o (v, 1) = [Hp g (Va(9)" = Vi ()]
= [HG/P\, W (R .06 r(Vi(#)"))) : V(1)"]
= [H(G/P", Og/p1 (V(v)")) : V(1)*]

= m’ (v, p1)

for j > 1, and
m (v, pu) = 0.

a
Lemma 3.4. Letv=(v1,...,0,) EAT, vy > e+ 1,041 > v+ 1, v; + 1, =0 for some
k. Then Tatlg,,ﬂk (V(v))=0.

ProOOF. Clearly Q;’U“k (v) = {v + £} and thus, assuming that T;; goiex (V (V) # 0 we
have ff’gt,e,,ﬂk (V(v)) =~ V(v + er) by Proposition 2.2(c). That implies

OG/PI (Vpl(v)@)E)g”Hk ~ OG/PI (Vpl (I/ + Ek))

and
H%/Pl (VPI(V + Ek)) = Tg-t‘guw%k (I{g/lj1 (VD‘ (V))) .
Since v + e is p'-typical in g, HZ pi (Vi (v + €x)) = V(v + k), which gives

T;’,G""“k (Hglpl(Vpl(u))) ~ V(v + €). But Proposition 3.1 implies that

[Hg/p. (Vo) : V(v —e1+ex)]=1.

Furthermore, T;;)Guhk (V(v —e1 +er)) =V(v+e) by Lemma 3.2 . Since Tt,guﬂk is an
exact functor, if Tg"':,,auﬂk (V(v)) ~ V(v +¢x) then
[T;’B,M (HE pr (Vi () : V(v + &6)] > 2,
which contradicts
Tg-t’gu+£k (Hg/Pl (VP] (U)) = V(V + Ek)'
This contradiction proves that Téf, grien (V (V) = 0. 0

Corollary 3.1. Ifv is as in Lemma 3.4, then (Og,p1 (Vy1 (V)®E))E™™ = 0.
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Lemma 3.5. Let A € A" satisfy the condition of Theorem 3(c). Then m*(A,p) # 0
implies j01 = Ay — 1, pip = A, + 1.

PRrROOF. It goes by induction on n. Assume that the claim of the Lemma is true for
all n < ng but is wrong for n = ng. Fix corresponding weights A% and #° such that
m (A% ) #£0, AP =X+, A 41 =)0, =X —k pd =A0 44 6> 1,
where k < £ and k is minimal possible. (The case £ < k, k > 1 is completely similar and
requires no separate consideration.) Assume also that u® # 0, and therefore i > 0. Our

assumption implies

(3.20) (T50 puoner (g o (Ve O0))) £ V(0 4 £0)] 0.
Furthermore,
- i i 2 pOter *
T 0 guose, (Hayp (Vor () = HY(G/ P, (Og 1 (Vo () E)™ 77 )*)* .
However,
- uP+ey
(3.21) OG‘/PI (1/;,1()\0)®E)0 " =~ OG/PI (Vp1(1’/))

for a certain ¥ € A". Indeed, since #(9"0“*‘51 > #9“0 (because uf + ugg > 0) and
grter = G#° | Corollary 2.1 implies that Og/p: (Vpl(/\O)é)E)e'“o+El is an irreducible g-
linearized Og,pi1-module, which is equivalent to (3.21). Moreover Proposition 2.2(b) gives
v =AY+ ¢;, and (3.20) and (3.21) yicld mt (v, u® +&;) # 0.

We will consider the following possibilities for v:

(i} v=2A+¢4,

(i) v = A"+ ¢y,

(i) v=A0+g;, 3<j<n%~2,

(iv) v=A"+¢,0_,.

Case (i) is impossible because A? + £, satisfies the condition of Theorem 3(b) and thus

necessarily ,u,?lg =vpo—1=X

a0 — 1, i.e. £=1 which is a contradiction.

If v is as in (i), then v satisfies the condition of Lemma 3.3. Therefore (since m* (v, u° +

£1) # 0) 7 > 0 and m* (v, i®+&1) = mi (v, u® +€1). By Theorem 3(b) (applied to h+pl,),
i (v, 1 4 e)) =mi v+ eno — e, 10 + €1

and since 771"1':11(1/ + €50 — €9, 4% + 1) # 0, we obtain v +1 = ioo. This together with

the equality A0 = v,,0 gives £ = 1 which is a contradiction.
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Let us now consider case (iv). Corollary 3.1 and (3.21) imply A = A9 -~ 1 = A9 — 2.
Furthermore v satisfies the condition of Theorem 3(b) and thus (v, u®+e1) = mi (v +
Eno — €1, 0+ €1). Since m} o(v+eno — €1, u% +£1) # 0, we have v; —1 = pf 4+ 1. However,
v+ €,0 — €, satisfies the condition of Theorem 3(c) over the reductive part of p!, and thus
by the induction assumption v +1 = 5 —1. But v,0 = Ago and v; = A} give i = AJ -2,
,u,?lﬂ = Ayo + 2, and using this the reader will check immediately that #6(“0"'51) > #9"0
and #6¥ = #6>° which contradicts #6*° = #6*° and #6” = #6#°+€1. This means that
(iv) is also impossible.

It remains to consider case (iii). In this case we notice that the weight » satisfies the
condition for A in Theorem 3(c) and m?(v, u® +€1) # 0. Furthermore vy — pf ~1 =k — 1,
Vpo — ,ugo = ¢, which is an obvious contradiction to the minimality of k. This proves
Lemma 3.5 for the case 4 # 0. The case ° = 0 can be done in the same way by using

, + Cate Pt
the functor '1’9#0_“_1 instead of Tm'gpom . a

We can now complete the proof of Theorem 3(c). The observation that Q;,\_,l (A) =
pl

{A — €1} and 6275 # 62~ for i # 1 implies via Proposition 2.2(c) the existence of an

isomorphism of g-linearized Og,pr-modules
Oc/pt (Vo (NBE ™™ = Og/pi (Ve (A —€1)) .
Therefore
Té,gqu (Hg p1i (V' (W))) = Hé/Pl (Ver(A —€1))
for any ¢ > 0. Lemma 3.5 implies Q. (4) = {5 — €5} for any p with m? (A, ;1) # 0 for

some 7. Moreover, by Leinma 3.2,

Trr oree, (V1) = V(i —€n) .

Thus m*(A, u) = m*(A — ey, 0 — €,) for any < > 0. However, by Lemma 3.3, m*(\ -
El, jt—En) = m‘i,_(,l (A—e1,u—gy,) for i > 0 and, by Theorem 3(b), m'fol(/\ —E],L—Ep) =
77‘:,"1,_11()\ — €1,/4 — €n). But obviously m‘.ly_ll(A — €1,/ — Ep) = 7‘151’_11()\ — @, ). Finally,
mO(A — ey, 1t —€,) = 0 by Lemma 3.3 and thus m®(), ) = 0. The proof of Theorem 3(c)

is complete.

PROOF OF THEOREM 3(A).

Using Proposition 3.1, Theorem 3(b), (¢} and Theorem 4° one verifies straightforwardly

5The proof of Theorem 4 is presented in 3.5 and is completely independent of Theoretn 3.
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Lemma 3.6. Let A € A7 satisfy the condition of Theorem 3(a) (with k = n).
(a) 2 iso m*(A, 1) < 1 for any p with #p = #A.
(b) Ifzizo m*(\, 1) > 1, then Zizo mt(A p) = 2and = N, where N := w(A-A1a) €
AT for an appropriate w € W.
(W

In order to prove (1.10) and (1.11) (which is all we nced to complete the proof of
Theorem 3(a)) it suffices to establish

Proposition 3.2. Let ¢y : HY p (Vi1 (M) = T

gr—e) ,9,\

(V(A—¢,)) be the map introduced

in the proof of Proposition 3.1.

(a) There is the following complex of g'-modules:
(3.22) 0—=V(QA—-—a)—2imyP, o> V(QA)-=0

(b) If[Hg p1 (Vor(A— @) : V(X)] =0 (mod 2), (3.22) is an exact sequence.
(c) If[Hg/Pl(Vpl(/\ —a)): V(M) =1

is isomorphic to V(X').

(mod 2), the cohomology of the complex (3.22)

PROOF. (a) immediately follows from Proposition 2.2(d). We will prove (b) and (c)
together.

Step 1. We consider first the case when A is “p! N p"~1"-generic, i.e. when A; — Ay > 0,
An_1 — Ap > 0. In this case Borel-Weil-Bott’s theorem applied to the quotients of the

canonical go-sheaf filtration on Og,/p1(Vyi1(A — a)*) ensures that
[HD, s (Vs (A = @) s VX)) = 0.

Thus, we have to prove that according to (b) the complex (3.22) is exact. Since A is
“pl N p*~l.generic”, Hé;/Pl(sz(A — «)) = 0 for © > 0, and therefore according to (3.11)
imyx = Hg pi (Vpr(1)). So we have to show that m®(A, ) = 0 for 12 # A, A — . Assume
that mP(A, z) # 0 for some 4 # A, A — . Then 6* = §#, and Corollary 2.3 implies that
=A- Zﬂiaﬁ Bi. Since Ay — A2 >0, A1 — A, >0, we have 4 = A —ta — Zj aj, with

aj =0o0r oy = €5, — €5, 1 < j1 < j2 <n. Furthermore
[HE pr (Vo (VBB V(n—en)] £ 0,

and therefore OG/pl(Vp1()\)®E*)9”_e" # 0. This proves that t < 1, because for t > 1

Lemma 2.2 implies #2~% = 8¢~ for at least for one 7, ¢ # n, which contradicts Lemma
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2.1. On the other hand, it is obvious that ¢ > 1 since Hg/Pl(Vpl()\)) is a quotient of
the generalized Verma module U(g) ®u 1) Vp1(A). Thus ¢ = 1. Furthermore, clearly the
(p1)™-module multiplicity of Vi1 (1) in U(g) ®y(p1y Vp1(A) is not equal to zero and therefore
Vo1 (11) is a subquotient of the (p*)T-module [U(g) ®y(pry Vpr(A)]=1, where the subscript

—1 refers to the canonical Z-grading of the generalized Verma module. But note that

[U(8) ®v ) Vit (W)]-1 = (8/p") ®c Vi (A)

as a (p')-module. Using now Corollary 2.1 for p' the reader will verify that j necessarily
equals A — a.
Since we have showed already [Hg, p(Ver(X)) @ V(N)] = 1 and [HE,, (Vei(N) :

V(A — a)] = 1, we have the exact sequence
0= V(A-a) = Hgp (Vi (A)) = V(A) = 0
for a “p! Np™~l-generic” .
Step 2. Now we will consider the complexes

(3.23) 0= V(A) = im ¢atq = V(A +a) =0,

(3.24) 0> V(A-a)=imy),—->V(A)—=0

and will show that if the cohomology of (3.23) is zero or is isomorphic to V(A'), then the

cohomology of (3.24) is zero or is isomorphic to V{A’). Consider first the exact sequence
(3.25) 0= im Yaya = Thoe, 2 (VA=) = HE pi (Vi (X)) = 0

The canonical surjection py : Hg/P‘ (Vp1(A)) = V() and the injection V(A) < imthy 44

induce from (3.25) the complex of gM-modules:
0= V(N = Th_., (VA =€) = V(A) = 0.
Its cohomology Qx4 is a contragradient g™-module and there is an exact sequence
0 — im Yaya/V(A) = Qarra — kerpy — 0.

If the cohomology of (3.23) is zero, then (imyniq)/V(A) =~ V(A 4 @). Since [Qrya :
V(A+a)] = 1, Qaya/V(A+a) > kerp,, is contragradient. But imiy has only two n-singular
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h-submodules: vy and vy_o. Therefore ¢y(kerp,) is indecomposable and has a unique
irreducible submodule isomorphic to V(A—c). Then by the contragradiency of kerp,, kerp,
has a submodule P isomorphic to ¥y (kerpa}Y, such that ¥, (P) = V(A — «). Therefore, if
[a(kerpa)/V (A—a) : V(1)] # 0, then [kerpy : V(u)] > 2. This implies that x could be only
equal to A, and we have either w)s(kerp,\)/V(/\ —a) =0 or ¢Yr(kerpy)/V(A~a) = V(XN).

If the cohomology of (3.23} is isomorphic to V/()'), then the contragradiency of @44 and
indecomsability of imyxya/V (A) imply that kerpy has a contragradient submodule Uy such
that kerpy /U, is isomorphic to V(A’'). The multiplicity of each irreducible component in
Uy equals 1 by Lemma 3.6. Therefore Uy is semi-simple and 3, (U)) is semi-simple. Hence
PYa(Us) = V(A — ). But then 1y (kerpy) is isomorphic to V(A — ) or ¢y (kerpy)/V (A — )
is isomorphic to V(). In the first case the cohomology of (3.24) is zero, in the second

case it is isomorphic to V(A').

Step 3. Steps 1 and 2 imply that the cohomology of the complex
0o V(A—-a) = impy - V(A) =0

is either zero or isomorphic to V(X'). Indeed, assume this is false for some A. Then by
Step 1 there is a maximal k € Z* such that for A + ka it is not true. But then Step 2
implies that it is false also for A + (k + 1)c. Contradiction.

Step 4. The following lemma is all we need to complete the proof of Theorem 3(a).
Lemma 3.7. Zm':(/\, XN)Y=0or2 for any A € A*.
i>0
Proor. It follows from Lemma 3.6 that

> omt(AN) <2

Assume that Lemma 3.7 is true for all n’ < n = dim E but is false for n. (Easy computa-
tions verify that the Lemma is true for n = 2,3 son > 4.) Let A = (A, A2,. .., An1, An)

be a weight for which Zm‘(A,x\’ } = 1. Since n is minimal, A satisfies the condition of
i>0
Theorem 3(a) with @« = €1 — e, 1e. A1+ A, =0, Ay > Ao+ 1, A1 > A, + 1. Without

loss of generality one can assume that Ay + A,_; > 0.
Let first Ay #£ 0. Consider v = A 4+ 9. Then by Lemina 3.2,
Oc/p (VINSE)" ~ Og/pi (V(v)) ,
T, (V) = V().

9)\"91/
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Therefore m'(A, X') = m*(v,v/) for any i > 0. Thus Y 5, m* (v, ') =1, v1—v2 < A1—Ag,
Up—1—Vy = Apn—1— An. But we can repeat this proce:lure scveral times by considering
V' =v+ey, V' =1 +eg, etc. We obtain finally v{7) which does not satisfy the conditions
of Theorem 3(a), and this is a contradiction.

Let now Az = 0. Then Az + A,—1 > 0 implies A,y = 0 and thus A = (a,0,...,0,—a),

A =1{0,0,...,0). For a = 2 one verifies immediately that
chV (X)) = ch(S?%(g) ® [1S%*(g)) — 2¢hV (0,...,0).

Since chV(X) is divisible by 2(1 + €), we have 3" ,5,m'(),0) = 2. Moreover, for A =
(2,0,...,0,—2) the module ¢y (kerp,) is indecompgsable and can be described by the
exact sequence

0= V(A—a) = ¢rlkerpy) = V(A) = 0.

But then a simple argument shows that the same is true for A + «, i.c. there is a short
exact sequence
0— V(A) 2 Yaralkerpria) = V() = 0.

Indeed, if this is not true, then ¥y 4o (kerpayq) = V(A), and the exact sequence
0 impapa = TH(VA—€n)) = HE/pr (Vi (X)) = 0

implies the contragradiency of ker py (as in the proof of step 2), which in turn implies the
semi-simplicity of ker px because any irreducible component of ker py has multiplicity 1.
This contradicts to the indecomposability of 1y (kerp, ).

This argument can be repeated for any A + ko, unless m®(A + (k — 1), ') # 2. Thus
the Lemma is true for A = (,0,...,0,~a) where a < n — 1. But for a > n the reader will
verify immnediately that the argument in Step 1 gives m*(A,0) = 0 for all i > 0. The proof

of Theorem 3(a), and thus also of Theorem 3, is complete. O

3.5. Proof of Theorem 4

Tt suffices to consider the case when P = P! since both statements of the theorem are
symmetric with respect to the interchange of P! and P*~1.

(a) It is a classical fact that
(3.26)

| * 0 for k3
HY(P(E0), O, _ ) = IS Nig pry..ayayp)) = {

C for 3, 5=0,1,... ,n—-1.
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Consider the spectral sequence with term E{'? = H?* (P(Ep), SP(N(g/piyreasa/p1) ) I
abuts to H (P(Ep), Og,pr). But (3.26) implies now that this sequence collapses at the

term £, Indeed all linear maps
P . pPra _y prtla

necessarily equal zero since they are even (parity preserving) linear maps. This gives (1.15)
immediately.

(b) The injection of pl-modules
Vo1 (1,0,...,0) & Vpr (=1,0,...,0) = V(1,0,...,0) ®¢ Vy1(=1,0,...,0)
gives rise to the following exact sequence of G-linearized Og,p1-modules

(3.27) 00— &= gnd(OG/pl(Vpl(—l,O, .. .,0))) —
- V(l,O,...,O) K¢ OG/pl(Vpl(—].,O,...,O)) - Oc/plvpl(wl,l,o,...,O)) — 0.

We claim that

V(0,...,0,-1) fori=20

HYG/PY, O, pr (Vo (=1,0,...,0))) =
(G/ c/p (Vo ( ) {0 for i 0.

The vanishing of all higher cohomology groups of Ogp1(V,1(~1,0,...,0)) follows directly
from the observation that (Og,p1(Vp1(=1,0,...,0)))red = Op(g,)(1) @ [IOp(g,)(1), where
(Ogpr(Vpr(=1,0,...,0)))rea is the restriction of Og;p1(Vpi(—1,0,...,0)) to P(Ey) =
(G/P")rea and Op(g,)(1) is the line bundle dual to the tautological bundle on P(Ejp).
Indeed, this implies that Og/p1 (Vj1(=1,0,...,0)) has a Geq-equivariant sheaf filtration

with adjoint factors

(3.28) TR (£y) ©0r (s Op(E0)(1)

for+=0,1,...,n -1, and it is well known that the higher cohomnology of all the sheaves

(3.28) vanishes. The isomorphism
V(0,...,0,—-1) = H*(G/P',0q,p1 (Vo1 (-1,0,...,0)))
is nothing but the canonical injection

V(0,...,0,-1) = HYG/P',Og/p1 (V1 (~1,0,...,0))) ,
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sce 1.2. The latter is necessarily an isomorphism because a straightforward calculation

verifies that
(3.29) Ech OG/PI(VPI (-1,0,...,0)) =chV(0,...,0,-1),

and the left-hand side of (3.29) is nothing but ch H°(G/P?, Og,p1 (V,1(—1,0,...,0))) since
all higher cohomology groups of Og,p1(V;1(-1,0,...,0)) equal zero.

Therefore the long exact sequence of cohomologies of (3.27) gives

(3.30) 0— H%G/PLEY - V(1,0,...,0)®c V(0,...,0,-1) = g® IIg —
= HY(G/P', Og p1 (Vi (—1,1,0,...,0))) = HY(G/P' ) = 0

and
(3.31) HI(G/P, Og/p1 (Vp(—1,1,0,...,0))) ~ HI*YG /P, €)

for 3 > 1.

Consider now the exact sequence of G-linearized Og,p1-modules
(3.32) O%OG/plEBHOG/pl -g)E—}OG/pl EBHOG/pl — 0,

. being the inclusion of the sheal of diagonal endomorphisms into the sheaf of endo-
morphisms. It is obvious from the claim of (a) that the following two statements are

equivalent:

(1) all coboundary morphisms in the long exact sequence of cohomologies of (3.32) are

isomorphisms;
(i) HY(G/PY &) =~ H* Y (G/PY, €)= V(0,...,0) (= C't* = C o TIC),
HY{(G/PY E)=0fori=1,...,n—2.

Via (3.30) and (3.31), (i1) implies that

. 0 for 1=1,...,n—-2
(3.33)  HY(G/P',0q/p1 (Vyi(-1,1,0,...,0))) = {

V(0,...,0) for i=n—-1
and that there is an exact sequence

(3.34) 0— (g@Ilg)/C't* = H°(Og/pr (Vi (-1,1,0,...,0))) = C'* = 0.
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But (3.33) and (3.34) are precisely equivalent to the claim of Theorem 4(b). Therefore
(since (i) and (iii) are equivalent) it suffices to establish (i), and this is what we will do in
the rest of the proof.

In order to prove (i) it is crucial to note that the exact sequence (3.34) when restricted
to G'/(P1)’, G’ being the Lie subsupergroup Q(E’) for any Il-invariant linear subspace E’
of E (and (P!) being the stabilizer of a f-invariant subspace in E’ of dimension 1 + ¢),
goes into the same cxact sequence but defined for G'/(P'Y. In other words, we have the

commutative diagram

(3.35)
0 —— OG/pl @HOG/pl E— £ —_— OG/PI EBHOG/pl — 0

rol rgl rol
0 —— OG’(Pl)' @HOG:/(pl)J Em— EG!/(P])I E— OGI/{PI)J' EBHOGn/(pl)r — 0,

where SG:/(pl)r = g?ld(OG:(pl)r(V(pl)r(l, 0, vy O))), (]31)’ = LiC(Pl),.
Our next observation is that ro induces isomorphisms on all cohomology groups except
the top ones. Indeecd, by considering the canonical filtrations on Og,pr and Og/(p1y one

reduces this statement to the claim that the composition

J J ]
5y = Wemypcey = ey
induces an isomorphism
C= Hj(]P(EO)a Q;’(Eo)) = HY (P(E(’)))a Q%(Eé)) =C

for any 7 < n— 1. But this latter claim i1s well known and easily verifiable.
Clearly, we can now finish the proof of (b) by induction on n. The third and final

observation needed is that (i) is indeed true for n = 3. Note first that for any n (n > 2)
(3.36) HY(G/PYLE)=V(0,...,0).

This is because V (0, ..., 0) is obviously a g'l-submodule of H°(G/ P!, &) and the sequence
(3.30), together with the well known fact that V(0, ..., 0) is the maximal trivial submodule
of g @ Ilg, implies (3.36) immediately. For n = 3 we obtain now by Serre duality (sec [P1]
or [M3]) that H2(G/P*, £) = V(0,0,0) because the dualizing sheaf on G/P! is isomorphic
to Og,pr and £ is self-dual. But

Ech€& = 2chV(0,0,0) ,
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and, since by the above, ch H(G /P!, &) + chH?(G /P!, £) = 2chV (0,0, 0), we have neces-
sarily
HYG/P',&)=0.

This establishes (ii) for n = 3 and therefore also (i) for n = 3. In order to finish the proof
of (i) for n > 3 it remains to consider the diagram whose rows are the long exact sequences
corresponding to the rows of (3.35) and to do some straightforward diagram chasing. This
can be left to the reader. In this way we have completed the proof of Theorem 4(b) for
n > 3. (For n = 2, Theorem 4(b) is obvious.)

(c) The proof is a trivial calculation based on Borel-Weil-Bott’s theorem for the projec-

tive line. O
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