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Abstract

We calculate explicitly the equivariant Ray-Singer torsion for all
symmetric spaces (/K of compact type with respect to the action of
(. We show that it equals zero except for the odd-dimensional GraB-
mannians and the space SU(3)/SO(3). As a corollary, we classify up
to dillecomorphism all isometries of these spaces which are homotopic
to the identity; in particular, we classify the diffeomorphy types of
their quotients by finite group actions.



Contents

1 Introduction

2 Equivariant Ray-Singer metrics .

3 Homogeneous and symmetric spaces

4 The zeta function for symmetric spaces

5 The torsion for symmetric spaces

10



1 Introduction

In 1935, Franz and Reidemeister established the following classification of
lens spaces:

Theorem 1 ([5]) Let Ty, ['s be cyclic groups acting isometrically and freely
on the spheres S*~', n > 1. Then the quotients S*™ ' /I'}, S /Ty are
diffeomorphic iff they are isometric, i.e. if ['y and Uy are conjugated in
O(2n).

To prove this theorem they invented a real-valued combinatorial invariant
of CW-complexes which is-fine enough to distinguish the lens spaces, the
Reidemeister torsion. Their result was generalized by de Rham in 1964:

Theorem 2 ([4]) Two isometries of S™ are diffeomorphic iff they are iso-
metric.

Here, two transformations ¢,¢; of a manifold M are called diffeomorphic
(resp. isometric) iff there exists a diffeomorphism (resp. an isometry) ¢ of
M with ¢g; = go¢. The first purpose of this article is to prove the [ollowing
result:

Theorem 3 Two isometries homotopic to the identity of an odd-dimensional
Grafmannian Gam2p—1(R) = SO(2m)/SO(2p — 1) x SO(2m —2p + 1) or of
SU(3)/SO(3) are diffeomorphic iff they are isometric.

As SU(3)/SO(3) and the GraBmannians except the circle are simply con-
nected, this classifies in particular the quotients of these symmetric spaces by
finite group actions. The proof is given by calculating explicitly the equiv-
ariant Ray-Singer torsion for all compact symmetric spaces. The Ray-Singer
torsion is defined as the derivative at zero of a certain zeta function asso-
ciated to the spectrum of the Laplace operator on differential forms on a
compact Riemannian manifold [12]. It has been determined by Ray for the
lens spaces in an extensive calculation by determining first the eigenvalues
and eigenspaces of the Laplacian on spheres. He found that the Reidemeister
and Ray-Singer torsions are equal for these spaces. Using this result, Cheeger
and Miiller proved independently in 1978 the equality of the Reidemeister
torsion and the Ray-Singer torsion. The second aim of our paper is to give
a new, shorter proof of Ray‘s result.



The equivariant Ray-Singer torsion associated to an isometry g acting on
M has been investigated by Lott and Rothenberg. They compared it with
an equivariant Reidemeister torsion for finite group actions. Using Ray’s
calculation, they found that the equivariant torsion for spheres is mainly
given by sums of the digamma function; this enabled them to give a new proof
of theorem 2 for orientation-preserving actions on odd-dimensional spheres.
We shall apply their method to deduce theorem 3 [rom our result for the
torsion.

Also, we shall show that the equivariant torsion equals zero for all sym-
metric spaces (/I with respect to the action of any ¢ € G, except for
products of (g 2p—1(R) or SU(3)/SO(3) with some G'/K”’ so that G’ and
K’ have the same rank. A similar result has been shown by Moscowici and
Stanton for locally symmetric spaces of the compact type [10].

Our method to obtain the value of the torsion is similar to the one used in
a previous paper on holomorphic Ray-Singer torsion on Hermitian symmetric
spaces [8]. For a symmetric space G/K an eigenvalue of the Laplacian is de-
termined by its eigenspace as a G-representation. This reduces the problem
of determining the zeta function to a problem in finite-dimensional represen-
tation theory. Nevertheless, there are big differences between the real and
the holomorphic situation: In the complex case, the equivariant torsion is
always non-trivial and depends in a rather subtle way on the fixed-point set
of the isometry ¢ € (¢, in sharp contrast to our result theorem 10.

2 Equivariant Ray-Singer metrics

Let F' be a complex flat hermitian vector bundle over a compact oriented
Riemannian manifold M. Let

d:T(NT*M® F) = D(A™'T"M ® F)

denote the de Rham operator with coefficients in /' and let d” denote its
formal adjoint with respect to the L?>-metric. Consider the Hodge-Laplacian
A, := (d + d°)* acting on ¢-forms with coefficients in '. We denote the
eigenspace of Ay corresponding to an cigenvalue A € Spec A, by Eig,(4,).
Let g be an isometry of M preserving the hermitian bundle . Consider the



zeta function

Zy(s) =Y (1) 3. AT Trgfuig, sy

q)O .\eSpech
A0

for mes > dim M/2. Classically, this zeta function has a meromorphic con-
tinuation to the complex plane which is holomorphic at zero.

Definition 1 The equivariant analytic torsion is defined as
T, (M, ") = e~ 27250,

This object has been defined by Ray [11]. We shall denote the torsion with
coefficients in the trivial line bundle by 7,(M). Ray showed the following
property of 7,: Consider a fixed point free action of a finite group I' on M.
Let p: ' = U(1) be an unitary representation, thus defining a fiat hermitian
line bundle 7 on M/T'. Then the usual non-equivariant Ray-Singer torsion
with coefficients in F'is given by

log7(M/L, I) =—~—~Zp )log 7, (M).
ger

The equivariant torsion has been investigated by Lott and Rothenberg [9]
for flat metrics on F. They showed that it equals zero on even dimensional
mantifolds or for orientation reversing actions on odd dimensional manifolds.
They proved the result

Theorem 4 ([9]) Assume that g is homotopic to the trivial action. Choose
a sequence (f,) € Il,ezR, = fu = 0. Then the lorsion of powers of g
weigthed with (f,)

> furge(M)
is a smooth invariant.

This result has been generalized strongly by Bismut and Zhang [2].

3 Homogeneous and symmetric spaces

Let (i be a connected compact Lie group and let K be a connected compact
subgroup. Let T O Tk denote the maximal tori of G and K. We denote



the Lie algebras of G, K, Tg and Tk by g, b, tg and ty, respectively. We
fix compatible orderings on t& and tj.. The action of K on the homogeneous
space (/K induces a representation Adgr on the tangent space of G/K
at the class of [1] € (7, i.e. on g/t. Let W denote the set of weights of this
representation, the isotropy representation, and let Ag and A be the sets
of roots of G resp. K. Then the weights of the adjoint representation of &
on g are given by Ag and the weight {0} with multiplicity the rank of G.
The weights of the action of A" on g are given by Ag, ¥ and rk K-times the
{0}, thus

(Ag U{0} -tk G)ITK = A UYU{0} kK (1)

(counted with multiplicity). In particular, the dimension #W¥ of G/K is
odd-dimensional iff dim (' — dim K is so. The space of forms I'(AYT"G/K)
is an infinite dimensional G-representation which contains the space of its
irreducible subrepresentations (V,, 7) as a L*-dense subspace. Thus,

dense

DA'T"G/K) D @ Homg (Va, NA'T*G/K)) @ Vi (2)

In this imbedding, the tensor product Homg (V,, [(AYTG/K)) ® V; is the
direct sum of dim Homg (Vx, I'(AYT*G//K)) copies of the representations
(Ve, 7). By a Frobenious law due to Bott [3], there is a canonical isomorphism

Homg (Va, T{(A'T*(//K)) = Homy (V,,,I\QA(IGH\') (3)

(Note that (g/t @ C)" = g/t ® C via the metric). In particular, the represen-
tations (V;, 7) which occur are finite dimensional.

Let (X,..., Xn) be an orthonormal basis of g with respect to the negative
Killing form. The Casimir operator of g is defined as the following element
of the universal enveloping algebra of g

Cas = =Y X;.X;. (4)
Ikeda and Taniguchi proved the [ollowing beautiful result [6]:

Theorem 5 (Ikeda, Taniguchi) Assume that G/K is a symmetric space
equipped with the metric induced by the Killing form. Then the Laplacian A
acts on the V. ’s as —Cas with respect to the imbedding (2).



The Casimir is known to act by multiplication with a constant on irreducible
representations. Thus, the eigenspaces of the Laplacian correspond to the
irreducible representations = with multiplicity dim Homg (Vz, A7Adg k) and
its eigenvalue there depends only on .

Let pg := § Laca+ @ be hall the sum of the positive roots of G and let
We be the Weyl group of . Let {-,-) and || - || denote the metric and the
norm on t}, induced by the Killing form. We denote the sign of an element
w € We¢ by (—1)¥. As usual, we define

(o, pc) = Q(Ti;ﬁ%) (5)

for any weight «. For an irreducible representation m# we denote by b, the
sumn of its highest weight and pg. Then, classically, the action of the Casimir
is given by

m(Cas) = |lpall” — llbxli*.

To abbreviate we set

Altg{b} := Z (_l)weﬁriwb.

weWg

Then the Weyl character formula for the character v, of the representation
evaluated at ¢ € T may be written as

(1) = Mis (1)
Xbr = Alte{pa}(t)

This formula provides the definition of the so-called virtual (or formal) char-
acter yy for any b equal to pg+some weight. This extends to all of G by set-
ting xs to be invariant under the adjoint action. The corresponding virtual
representation shall be denoted by V,. Occasionally we shall use the nota-
tion x§, xN, V., VK to distinguish G- and K-representations. From now
on we shall consider the irreducible symmetric space &/ K as being equipped
with any G-invariant metric (-,-),. All these metrics are proportional to the
metric induced by the Killing form [1, Th. 7.44]. We shall denote the dual
metric and norm on t5; by (-,-)s, || - |le, toO.



4 The zeta function for symmetric spaces

By theorem 5, the equivariant zeta function defining the torsion is given by

i n dim Homye(Va, A%Adg/k)
Ao = LV L T e ey ©
g=1

In the case K" = {1}, we observe that

dim Vy - .,
“e) = (z('” dim A° ") 2 M= el

g=1

dim V, - x
= n(l-1)"" =z
2 o =TrlD

Thus the torsion 7,(() equals zero for all compact Lie groups except the
circle. Our key result is the following

Lemma 6 Lel G/K be a n-dimensional homogeneous space.

o IfrkG >tk K + 1 then the virtual representation

n

Z quAdC/I\

g=1
s trivial.

o Assume that tk G =rk K'+1 and let L denote the line of those weights
of G which are zero on tyc. If (Vo m) is an irreducible G-representation
then the sum

n

Z(—l)qq dim Hompg (Vz, A"Adgyx) - X,

g=1

equals the sum of X,qiwa over those [w] € W /Wi and o € L such
that by lies in the Wg-orbit of pg + we.

By this lemma and theorem 5 we get the following expression for the equiv-
ariant zeta function Z:



Lemma 7 For any odd-dimensional symmetric space G/ K, the zeta function
Z(s) is given by

Z(S) _ Xog+wa _ 1 Z Xog+wa
(wleivay W (wa,wa + 2p6)s #FWg g (wa, wa + 2pg)3
a aEl
(wa,wnEQpG)>0 (wa,wo$2p6)>0

if tkG =tk K + 1 and zero otherwise.
In particular, one ohserves the following consequence:

Corollar 8 Let G/ Ky, G/ Ky be two symmetric spaces with G-conjugate tori
Tk, and Tx,. Then the associated zeta functions Z, and Zy are proportional
by the factor #Wy [#Wi,.

This shows already the desired classification of SO(2m)-actions on odd-
dimensional Gramannians G, 2,-1 (R).

Theorem 9 Two homotopically trivial isometries of the Grafimannian Goy 2p-1
are conjugate by a diffeomorphism iff they are conjugate by an isometry in
O(2m). In particular, two quotients of Gamap—1 by finite groups I'y, [, C
SO(2m) are diffeomorphic iff Uy and Ty are conjugate in O(2m).

Proof The maximal tori of SO(2p — 1} x SO(2m — 2p + 1) are conjugate
in SO(2m) for all p. By corollary 8, the equivariant torsion of Gy 2p—1 at
g € SO(2m) equals the torsion of $?*™~! at g up to a non-zero constant. In
[9], Lott and Rothenberg proved that an element of SO(2m) is determined up
to conjugacy in O(2m) by certain linear combinations of this torsion (see the
next section). Thus, the result for the spheres extends to all GraBmannians.
a

Proof of lemma 6 Let v' denote the virtual character in the representation
ring of K given by

n

= S (=1)gx (A Adeyx)

q=1

where y (l\qf\d(;ﬂ\') denotes the character of the K-representation AAdg/y .
By classical representation theory, one knows

n

Y (—-1)%qdim Homg (Vy, A?Adgyk) :/ X - xadvoly. (7)
i

=1



Using the Weyl! integral formula this transforms to

1 - —
#W [T f\lth’{ph’}f\lt]{{pﬁ'}xh . ,\’TrdVOITK
K K

(where Tk is identified with the quotient of tx by the integral lattice). Clas-
sically the restriction of Altg{pc} and Altx{px} to tx is given by

Alte{pc}i, = H 2isinmay,,

+
GGAG

and
Alt{pr} = H 21sin e

Equation (1) shows that the restriction of ¥ is given by

. 3]
& = 2 e —eadoon, ®
= aCAg—Ay
_ - [aeag-ag (1= ) if t‘kG: =k I\ 1 (10)
0 kG >k K +1

This shows the first part of lemma 6. Assume now that rk& = rk K + 1.

Then -
K _  Haeag2isinmap,  Alig{pa}Alte{pc}

X T acay 2isinta Alty (o JAlbx {pr}

hence equation (7) yields

n 1 S

Z(—l)qq dim Homg (Va, A?Adg/x) = ——= / Altg{pc } Alte{bs }dvolp,,
f}=1 #""’]\' TK

which finishes the proof of lemma 6. O

5 The torsion for symmetric spaces

Classically, a compact symmetric space decomposes as a Riemannian mani-
fold into a product of irreducible symmetric spaces G,/ K, where the metric

10



on GG,/ K, is induced by a negative real number times the Killing form of G,,.
By lemma 7 the equivariant torsion is non-zero only if tk G = rk K'+1. Also it
1s zero for all Lie groups except the circle. By the classification of irreducible
symmetric spaces, among them only the odd-dimensional Grafmannians

Gamap-1(R) = SO(2m)/SO(2p—1)xSO(2m—2p+1) (m,p € N,m > p).

and the 5-dimensional space SU(3)/SO(3) may have non-zero torsion. Thus,
the torsion is zero except for the spaces

Glamap—1 X G'/K' and SU(3)/SO(3) x G'/K’, (T)

where G’/ K’ is an arbitrary symmetric space with 1k ¢’ = rk K’. We imbed
SO(2p—1)xSO(2m—2p+1) in SO(2m) as K’ = {(:g) |A € SO(2p—1),B ¢
SO(2m — 2p + 1)}. To diagonalize the standard maximal torus, we imbed

i 0
SO(3) in SU(3) after conjugation by the matrix ( : ({] \%) /V2. As maximal

tori of G we choose

0=\
A1 0
t50(zm) = {27T . |/\1, Ce :/\m € R}
s
and
A
tsu(s) = {2ri l " |A. + g+ ds =0},
X3

Let e, € 5omy L S v <mresp. f, € 3y 1 Sv <3 denote the weight
mapping one of the above matrices to A,, ordered according to their index.
We set ti as the kernel of e, resp. fs; thus, these weights genervate L = Z.
They shall be denoted by ag. The orbit of «g under W /Wi is then given
by {xe,}7, and {f,}._,, respectively.

Let ¢ : R/Z — R denote the map

(] = 2C + Y([=]) + H([—=])

where C denotes Euler’s constant and ¢ is the digamma function evaluated
on the fundamental domain ]0,1], i.e. ¥([z]) := ¥(z + [1 — z]). We show
now the following formula for the equivariant Ray-Singer torsion:

11



Theorem 10 Let G/K # S be a space of type (T) and let ap be a generator
of L. Then the logarithm of the equivariant torsion fort € T is given by

—%Z{(O) = —log H M + % Z 1[;(100'0(75))

[w]eWa /Wi 4 [wleWs/Wi
and for general g € (v it is obtained by conjugating g into T¢;.

Using the formula for the values of ¥ at rational numbers this reproves
Ray’s result for the spheres [11]. Before proving the theorem we show two
auxiliary lemmas. Let S denote the reflection of 7, in the hyperplane or-
thogonal to [ € t5;. We need the following symmetry:

Lemma 11 Let G/K be a space of the type (T). Then, for all [w] € We /Wi
there exists w € Wg with (=1)¥ = 1 such that

Swao pPc — ’IIJpG .

In particular, (wag, pg) = —(W™'wa,, py) is an integer and the map [w] =
[0~1w] € W /Wi is bijective,

Proof The proof reduces to that for the cases Gam2,—1 and SU(3)/SO(3).
Classically, pso(am) = L= (m — v)e, and psysy = fi = fs. Hence, Syaype
is a weight and thus given by wpe for some unique @ € W¢. One observes
immediately that (—1)® = 1. By the invariance of {-,-) under reflections, one
shows

(w0, p6) = (SwaeW@0, Swagpc) = —{(wap, Wpg) = — (W™ wag, pa);

as Swyaope = pc — (wag, pg)wap, one notices that (wap, pg) is an integer.
AS Si-twagPc = W' Sua(Wpg) = W 'pg, the map [w] = [w™'w] is an
involution. O

Also, we need a lemma about values of zeta functions at zero. For p,n € Z
and h,¢ € R, let (, ,r(s,d) denote the zeta function

. kre**(h + log1k|) ket (1 + log | k)
Cn. , S,(IS =
P h( ) E (k(k + ?’))’ kezz\:{ol ]Mfza

k(k+p) >0 k(k+p) <0

for Res > 2L This zeta function has a meromorphic extension to the
complex plane.

12
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Lemma 12 The value al zero of { is independent of p for n € Ng. For
n = 0 it takes the value

Cnpn(0, @) = log 2m + J;(%) - h.

Proof The proof may be given easily by applying the more general result of
(8, Lemma 7]; instead, for the case ¢ # 0 mod 27 we shall give an alternative
proof which is better adapted to this particular situation. Choose ¢ €]0, 27 .
[irst, observe that in this case

. o \™t

Cﬂ,Pyh(‘sl ¢) = i-n‘.l (0_¢) C_l9pvh(s’ ¢)’
The series defining g:_l‘p,h(s, @) converges at s = 0. Using Kummer’s Fourier
series for the logarithm of the Gamma function (7, sect. 5] one finds

N 2isinkg - (h+logk
Capn(0,8) = ¥ it logb)
k>0

= {(C+log2m —h)(¢p—7)+irlog F(%) —imlog (1 — oiﬁ—)

Z

To prove the lemma for the case ¢ = 0 one may use the Taylor expansion for
k+p|=* = |k|7°|1 + p/k|~" as in [7, sect. 6]. O

Proof of theorem 10 The derivative of Z{s) is given by

oy o Xopg+hwao (10g |k] + log |k + (wao, pc)| + log | aol|3)
Z'(s) = >, 2)?
[wlewg Wi (k(k + (waw, pa))||vol|2)
Kk+ (wagopg)) >0
_ Z Xog+kwag lOg Ikl

[wlEWg/ W (k(’“ + (waﬂa PG))”CYO”%,)’

ked
k(k+(wag,pg))>0

Xoo+(k-(wao,pg))wao 108 k| 7 2 1
- 5 ~ Z(s8)log ||awlls. (11
e (k= (s po)aolfy: ~ 2108 ol (1)

ke
k(k—(wag,pG)) >0

By lemma 11 one obtains

pe + (k — (wag, pg))wan = Swae(pa — kwag) = w(pg + k™ wag)

13



with (=1)¥ = 1. Hence the second sum in line (11) equals

_ Z Xpgt+kw=1wag log |k|
wiermwye  (K(k 4+ (@07 'wao, pe))llaoll2)’
ke

k(k+ (0~ wag,pq)) >0

By the bijectivity of [w] = [w™'w]| one finds

Sy Xewro(~2loglkl g o)
[wleWe/ Wi (k(k + (waOa PG))”G'O”%)S

ke
k(k+(wag,pG))>0

Fix g € G and consider the character X,,+kwao(g) as a function in k € Z.
One shows easily that X ,.+kwae(g) s a linear combination of functions of the
type k — kme'®* (n € Z, ¢ € R) [8, eq. 81]. The characters X pg4hwao are zero
for 0 > k(k+(wao, pc)) = (o + kaollZ— o)/ lacll2. For & = —(wao, pc)
we have by lemma 6 the result

Xpg—(wao.pg)was = XSwagpbc — (_l)w =1

Thus, we may write Z'(s) as

v kwen (2 log k| — 2
Z’(s) — Z ( Z ,\pa+kwao( logl"” 108“00“0)

[w]eWe /Wy veZ (k(k 4 (weao, pe))llaol|?)’

Kik+(wag,pG)) >0
Ly Xegtiu (—2log |k| — log ||exol[3) n '08(100‘01PG)2||0'0||3)_

keZ (o} |[haol|3 |(wao, pa)[**||ol|2?
k(k+(wag,pG)) <O

Lemma § states that the value at zero of Z'(s) equals the value at zero of
the zeta function

Z(s) — Z ( Z Xpg+kwep (_2 log |k| — log ||0’0”3)+108(1000,PG)2||00”3)_

[WeWa/Wi \ keZ\{0} [[kvol[3? |(wavo, pa) 2| cvo| 22

The sum of the characters over Wg /W) equals

Z Npgt+hwao = L Cwewg(—1)" 2w pG+kw' wag)
[wleWe /Wi #Wi Lew. Alte{pc}

14



TR —— e

1 zwewq_e'hrikwao ZW’EWG(_l )w'ci)vriw'p(;
#Wy Alt(;{pg}

— Z e?ﬂikwao .

[w]eWea/W

Hence we may apply the lormula in lemma 8 to Z(s) This proves the
theorem. O

To proof theorem 3 for the case SU(3)/SO(3) we apply the method used
by Lott and Rothenberg for the spheres. In [9, Prop. 32] they proved

Lemma 13 Letz, € R/Z, 1 < v < N be elements of the circle. Then the
x, are determined up to order and sign by the sequence

nez

This lemma has been proven by I'ranz for rational z,. For the action of a torus
element ¢ := 2midiag(A;, A2, A3) this means that Ay, A, and A3 are determined
up to order and sign by the torsion 7 of powers of t. As Ay + Ay + Ay = 0,
all A, have to change sign if one of them does so. Now a change of the
order is an element of Wsy ), thus given by conjugation with an element of
SU(3). A change of the sign of all A, is obtained by the symmetry around
[1] € SU(3)/SO(3) composed with interchanging A; and Ay (recall our non-
standard imbedding of SO(3)). Thus, all isometries which have the same
torsion are actually isometric.
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