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0. Introduction

A hyperbolic n-manifold M™ is a complete, connected n-dimensional Riemannian mani-
fold of constant sectional curvature K = —1. The volume vol,(M™) is its most natural
and dominant geometric-topological invariant; it is related to other quantities in form of
(in-)equalities. For example, by the well-known theorem of Gauss-Bonnet, the volume is
proportional to the Euler-Poincaré characteristic x(M?2"), and by inequalities, it appears
in combination with Betti numbers b;(M") (see [X]), the diameter diam(M™), and the
first eigenvalue A;(M™) of the Laplacian on M™ (see [BS]). However, the exact evaluation
of a single invariant is usually very difficult.

The aim of this paper is to derive a new lower volume bound for hyperbolic n-manifolds
M. Denote by r{z, M) the injectivity radius of M at ¢ € M, and by

r(M) :=sup{r(z,M)|z e M}

the in-radius of M associated to the largest ball embeddable in M. Finally, let Q, :=
vol,(S™) be the volume of the standard n-sphere.

THEOREM.
For n > 2, let M be a compact hyperbolic n-manifold with in-radius r(M). Then,

Qn-—l VOln(Sreg(za))
> .
voln (M) > n+1 vola_1(sreg(20)) ’

where Sreg(20) C H™ denotes the regular simplez with dihedral angle 2o and edge length
2r(M) related by

cosh(2r(M)) 1
14+ (n~1)cosh(2r(M)) n—-1 ~

1
— < 2 =
” cos(2a)
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and where Sroq(2ar) is a spherical vertez simplez of Syeq(2c).

The theorem is the generalization to arbitrary dimension of a result used by R. Meyerhoff

in the three dimensional case (see [Me]). Since srey(2a) C S™!, we obtain the following
coarser but simpler estimate:

COROLLARY.
For n > 2, let M be a compact hyperbolic n-manifold with in-radius r(M). Then,

vol, (M) >

1
m—— vol,(Sreq)

where Syeq C H™ 18 the reqular simplez of edge length 2r(M) as above.

Notice that these results appropriately modified are also valid for Euclidean and spherical
space forms. Moreover, it will be obvious from the proof, which is based on K. Béroczky’s
upper density bound for hyperbolic sphere packings, that the theorem improves the known
volume estimates referring to the volume of the hyperbolic or even of the Euclidean ball of
radius r(M). For example, for compact Riemannian manifolds M whose injectivity radius
is bigger than or equal to p, say, M. Berger [Be] showed that

voln, (M) > &p"
-n-n

For compact Riemannian manifolds M of sectional curvature —1 < K < 0, P. Buser and
H. Karcher [BK] derived the bounds

1 Qn—l 1
7(M)24n+a and  vol, (M) 2 n  4n(n+d)

To obtain valuable estimates for the minimum volume of compact hyperbolic n-manifolds
M™ necessitates, by the theorem, to find accurate bounds for the in-radius r(M™"). For
n = 3, Meyerhoff’s solid tube radius bound refined by F. Gehring and G. Martin [GM]
to r(M3) ~ 0.05725 gives rise to the best lower volume estimate known up to now. For
n > 3, however, there are no satisfactory in-radius bounds available. The Buser-Karcher
estimate, which is the best result at our disposal (see also [Ma] and [FH]), is rapidly
decreasing with the dimension n and already for n = 3 much more disadvantageous than
Gehring-Martin’s value. In fact, the true growth behavior of

7, 1= inf { 7{M™) | M" hyperbolic n-manifold }

still lies in the dark, but there are indications coming from the study of arithmetic lattices
that the volumes of hyperbolic n-manifolds are increasing with n (see [Ma, p. 258]).

This article is organized as follows. In the first chapter, we collect all necessary informations
about regular simplices and their characteristic orthoschemes in spaces X of constant
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curvature. In chapter two, we give a short account on sphere packings of X and present K.
Béroczky’s basic theorem about local density bounds of sphere packings of X in terms of
regular simplex volumes. With these preparations, we are ready to prove the theorem (see
chapter three). In chapter four, we provide elementary upper and lower volume bounds
for non-Euclidean regular simplices in terms of their dihedral angles, only. This is of
considerable practical use since there are no explicit volume formulae available for non-
Euclidean simplices of dimensions bigger than or equal to seven. Finally, in chapter five, we
discuss and apply these results to study volume spectra of compact hyperbolic manifolds
of dimensions n > 2 and their minima which, by a result of D. K{azdan and G. Margulis
[KM], are always positive.

1. Non-Euclidean regular simplices

Let n > 2, and denote by X™ either the sphere S™, the Euclidean space E™ or the
hyperbolic space H® = H™ U @H" extended by the set 9H" of points at infinity. For
P, € X", let [(PQR) = Ix»(PQ) be the length of the geodesic segment from P to Q.

A simplex in X" is regular if its symmetry group operates transitively on the k-dimensional
faces (0 € k < n —1). In particular, all edge lengths and dihedral angles are of the same
sizes. Moreover, all facial and vertex simplices of a regular simplex are regular {a vertex
polytope of a polytope in X" arises as (n — 1)-dimensional intersection of a sufficiently
small sphere around a vertex with the polytope).

We denote by Sreq(2cx) the regular simplex of dihedral angle 0 < 20 < 7. Srey(20) is
realizable (see [BH, Satz 1, p. 276])

1
inS" for —1<cos(2a)< il
1
in E" for cos(2a) = — (1)
1
- 1 1
in H* for - < cos(2a) £ —
n n—1
In the extremal case cos(20f) = %, a non-Euclidean regular n-simplex S,.q(20a3) is

degenerated in dimension and hence of zero n-volume. In H", the condition cos(2a%) =

—L- characterizes a totally asymptotic or ideal regular n-simplex Sreq(2ag,) all of whose

vertices are at infinity. Notice that o =af ' <ol < T.

In Euclidean space, Srey(2¢) is determined by its dihedral angle 2« only up to homotheties
while, in non-Euclidean space, there is the following relation between angle 2a and edge
length 2! (see [BH, §6.4, p. 276-270}):

1 1 cos(2a)
T =n- — 20) = ; 2
In S cos(2a) nob cos(2!) or cos(2]) 1—(n—1)cos(2c) )
In H* 1 n—1+ L or cosh(2l) = cos(2a) . (3)

cos(2a) cosh(2!) " 1=(n - 1)cos(2a)
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Regular simplices, like all regular polytopes, are most conveniently described by their
characteristic orthoschemes. An orthoscheme R C X" n > 1, is a simplex bounded by
hyperplanes Hg, ..., Hy, such that H; L H; for |[i—j| > 1. Up to isometry, R is uniquely
determined by its dihedral angles o; = Z(H;—1,H;) < 7,1 <2< n. Associated to R is
its (linear) scheme or weighted graph L(R) whose nodes i correspond to H;. Two nodes
are disjoint if their hyperplanes are orthogonal; otherwise, ¢ — 1,7 are connected by an
edge with weight o; (apart from the exceptional case o; = 7 when the mark is dropped
according to the standard notation of Coxeter-Dynkin-Schlafli-Vinberg).

Denote by P; the vertex of R opposite to the facet RN H;. Then, {(PoP;) < I(PyP;) for
1 <1< j<n. Discarding in £(R) one node 17, say, together with the edge(s) emanating
from it, the remaining graph describes the vertex orthoscheme R; of R at P;. All vertex
orthoschemes are spherical apart from the hyperbolic situation where Py, P, may belong
to QH™; therefore Rp, R, may be Euclidean orthoschemes.

The barycenter C of a regular simplex Sreq(2) C X" is the unique fixpoint under the
symmetry group and center of in-sphere and circum-sphere. By drawing successively per-
pendiculars to lower dimensional faces starting from C, Sre4(2¢r) is decomposed into

congruent orthoschemes R(«) with dihedral angles «, T,..., 3. More precisely,
Sreg(2a) = (n+ 1) R(a) , where (4)
S(R{e)) 0-F0—0—-—0—0—0
0 n

Denote by C =: Py,..., P, the vertices of R(a). Then, the in-radius ;R of Syey(2¢) C
X" equals PyP;. The circum-radius ,R of Sre,(2cx) is given by the longest hypotenuse
PoP, of R(a).

LEMMA 1.

In-radius 1R and circum-radius , R of a non-Euclidean regular simplez Sr.4(20c) of edge
length 21 are given by:

2n 2n

In S® :  cos(y — cos(e) and sin(,R) e sin({) ; (5)
In H* | h(LR) = |/ —2 d sinh(nR) =/ 2% Gnh(l) . (6)
n :  cosh(1R) = — cos(e) and sinh =\ i1 .
Proof:
Decompose Syes(2a) into orthoschemes congruent to R(a) with vertices C'= Fy, ..., Pn.

Observe that the vertex orthoscheme Rg of R{«) at Py is given by the scheme

Yo=4, : o—o—---—0—0 ;
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o is the characteristic orthoscheme of Syeo(25) C S™~! of edge length 2/y such that (see
(2))
n+1

2n

(i) The in-radius 1R = PoP, of Sye,(2a) appears as cathetus in the right-angled tri-
angle PoP P, whose angle at P; is «; this follows from the definition of @ as a =
L(Ho, H,) formed by the facets PyPy---P, and PyP;--- P, sitting at the apex or-
thoscheme P, .- P, , and from the property PoP1 P, L P,---P,. To determine the angle
LP\PyP, at Py in Py P Py, we make use of the fact that Z(Rp) = Eg. If Q; is the vertex
of Ry on the edge PoP; of R (1 <7< n), then

lo = a.rcsin(w/ 112-}?;1) =UQn-1Qn) =1(Q:1Q2) ;

the second equality is a consequence of the reflection symmetry of the graph Zo. Since
LPIP()PQ = I(QIQZ) = lo ; WE obtain

sin(lo) =

cos(a)
sin(lp)

in S® resp. in H" = cos({(PyPy)) resp. cosh(l(FPoPr))

Therefore, cos(;R) resp. cosh(;R) equals n2_|'_‘1 cos(cx) as required.

(ii) To determine the circum-radius ,R = PyPn of Sy.4(2¢r), we look at the right-angled
triangle Py P,—1 P, with hypotenuse ,R and cathetus P,_y P, of length | opposite to the
angle {(@n-1Qn) = arcsin(y/ %) . This yields

Con L _ sin({) _ 2n
inS : sin(p,R) = Sn{(On_102)) =V nrl

2
in H" . sinh(aR) = 4/ - _7:1 sinh(!)

sin(l)

Q.E.D.

2. Sphere packings

Let B be a packing of X™, n > 2, with non-overlapping balls B{r) of radius » (for X" = S7,
assume that r < £). We are interested in bounds for the "packing density”. In general,
for two non-empty sets S,T C X", the density d(S,T) of § in T is given by

vol,(SNT)
vol,(T)

The density of a ball in an orthoscheme satisfies the following monotonicity property with
respect to its edge lengths (see [B, Lemma 10, p. 256)):

d(5,T) = <1
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LEMMA 2.

In X", let R= PyP,---P, and R' = PyP;---P), be two orthoschemes with l(PoP;) >
[(PoP]) for 1 =1,...,n. Denote by B a ball centered at Py such that B is disjoint to the
facets Py---P, and P{---P.. Then, d(B,R) < d(B,R'), and equality holds precisely
for (PoP;) =U(PoP]) for i=1,...,n.

Associate to each ball B = B(r) of the packing B its Dirichlet- Voronoi-cell
D = D(B,B) = {pe X"| dist(p, B) < dist(p, B"), VB' C B}
Then, the local density of B with respect to B is defined by

_ vol,(B)

1d(B,B) := d(B, D) (D) (7)

Finally, denote by d,(r) the density of n + 1 balls B(r) of radius r mutually touching
one another with respect to the regular simplex S,., of edge length 2r spanned by their
centers, that is:

voln,(B(7) N Sreq)

dn(';-) = (n -+ 1) Voln(S,-eg)

<1

Then, K. Boréczky sen. proved the following local density bound formerly conjectured by
H.S.M. Coxeter and L. Fejes Téth (see [B, Theorem 1, p. 243)):

THEOREM 1 (K. Béréczky).

Let B be a packing of X™ with balls B = B(r) of radius r (for X™ = S™, suppose that
r < T ). Then, ld(B,B) < d.(r) .

Remark:

For n = 3, this result was settled by K. Boroczky sen. already in 1964 (see [BF]); in
addition, A. Florian showed that d3(r) is monotonely increasing with respect to r. The
limiting value

. 1 1 1 1 1 -1
d:rli’ngoda(r):(1+2—2—4—2—5—2—|—7—2+8—2—-+) ~ (0.85328

is achieved by the local density of the in-balls of the regular honeycomb {6,3,3} forming
a horoball packing of H3.

Of interest is the behavior of the upper bound d,(r) with increasing dimension.

LEMMA 3.
Forr >0, da(r) <du_1(r).
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Proof:

We follow an idea of K. Boroczky sen. in order to compare densities of a ball with respect

to simplices of different dimensions. Let R =__Po -+« P denote a k-orthoscheme. R can be

considered as degeneration of an n-simplex R = Fy--- Py Py, - P, for Piyy — Py for

1=1,...,n—k.

The limiting density d(B, Py, R) of an n-ball B with respect to R is then defined by
d(B, P, R):= lim d(B,R)

e+i= Pl
1<i<n—k

Now, dissect the regular n-simplex S,.4 of edge length 2r and with center C' =: Py appear-
ing in the definition of d,(r) into orthoschemes congruent to R = Py---P,. It is clear
from the definition that
vol, (B} (r) N R)
dp(r) =d(Bp (r),R) = 2 ,

(T) ( P, (T) R) VOln(R) (8)
where Bp (r) is the n-ball of radius r centered at P,.
Together with S,., all its facets S, of edge length 2r are subdivided into (n — 1)-
orthoschemes congruent to }i' = Py --- P, . Extend each R=P - -P,in R=PFPP - P,
to an n-orthgscheme R = PoP,---P, with Py on PyP; in between Py and P;. Since
(FPoPn) 2 [(PoPy) > I(P1Pn), Lemma 2.1 implies that the density of the ball B = B} (r)

in R dominates the one with respect to R, that is,

d(B,R) < d(B,R)

On the other hand side,

dp-1(r) =d(B,P,,R')= lim d(B,R)
Po— P
Therefore, _
dn(r) = d(B,R) < d(B,R) < d(BE'(r),R') = dn-1(r)

Q.E.D.

Remark:

It is still an unsolved problem whether also for n > 3 the density d,(r) is strictly mono-
tonely increasing with r. Florian’s proof for n = 3 made use of the ezplicit form of d3(r)
with respect to r. We hope to come back to this question elsewhere.

3. A lower volume bound for hyperbolic manifolds

Denote by nat
n41

22
Qp =vol,(§™) = —~
(=)
the volume of the sphere S with its canonical metric of curvature +1. Let M be a
hyperbolic n-manifold, that is, a complete, connected Riemannian n-manifold of constant
curvature —1 and hence of the form M = H"/T', where I is a discrete, torsion-free Mébius

group. Denote by
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r(z, M) =sup{r > 0|exp, : TeM — M injective on the ball of radius r around zero }
the injectivity radius of M at the point z, and let
r(M) =sup{r(z,M) |z € M}

be the in-radius of M, that is, the radius of the largest ball embedded in Af". With the
preparations of chapters one and two, we are ready to prove the lower volume bound for
M announced in the Introduction, that is:

THEOREM 2.

For n 22, let M be a compact hyperbolic n-manifold with in-radius r(M). Then,

251 ) VOln(Srcy(Qa))
n+1 VOln—l(Sreg(za)) ’

vol, (M) > (9)

where Sreq(2a) C H™ denotes the regular simplez with dihedral angle 2a and edge length
2r(M) related by

cosh(2r(M)) < 1
1+ (n—=1)cosh(2r(M)) n-1

1
—< cos(2a) = , (10)

and where syeq(2cr) is a spherical vertez simplez of Sreq(2a).

Remark:

For n = 3, the result of Theorem 2 is due to R. Meyerhoff (see [Me, p. 277] and chapter
5).

By decomposing S;e4(2¢) and $,¢4(2¢) into their characteristic orthoschemes R(«) and
r(a) (see (4)), that is,

Sreg(2a) = (n+ 1) R(e) , 8peg(2a) =nlr(a)
one obtains the following equivalent of Theorem 2:

COROLLARY 1.
For n > 2, let M be a compact hyperbolic n-manifold with in-radius r(M). Then,

vol, (R(a)) where Z(R(a)) : 0o 6—0—---—0—0—0 (11)

1n M Z Qn— b]
vola(M) 2 ot ST T (@) : o

denotes the characteristic orthoscheme of Syeg(2¢r) with [(PoPy) = r(M) and vertez figure

r(a).
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Since nlr(a) = syeg(2a) C S| we finally obtain

COROLLARY 2.
For n > 2, let M be a compact hyperbolic n-manifold with in-radius r(M). Then,

vol, (M) > 11voln(5reg(2a)):n!voln(R(a)) , (12)

n+

where Sreq(2a) and R(a) are as above.

Proof of Theorem 2:

By assumption, M = H" /T’ contains a ball isometric to a ball of radius r := r(M) in H".
The lifts of this ball to the universal covering space H" yield a packing B with balls of
radius r. Each Dirichlet-Voronoi-cell D = D(B, B) is a fundamental domain for the action
of I" on H". Therefore, vol,(D) = vol,(M). Consider the local density (see (7))

vol,(B)

1d(B,B) = d(B,D) = =Nig

of a ball B with respect to B. By Boroczky’s theorem (see Theorem 1, 2.),

volp (B N Sreg(2c))
< =
ld(B,B) < dn(r) =(n+1) Vol (Sreg (22)) ,
where h(2r)
cosh(2r
cos(2a) = 1+ (n — 1) cosh(2r)
This implies that
vol,(B) vol, —1($reg(200)) 1
A S . .
vol,(D) ~ (n+1) Qn- vola(B) vol,(Sreg(2a))

where s,¢q(2a) denotes a spherical vertex figure of Syqz(2¢r), and where

voln—1 (Sreg(za))

Qn—-l

vol,(B)

equals the volume of the ball sector of B cut out by Syrey(2c). Finally, we deduce

Qn—l VOln(Sreg(Qa))
> 0
volp, (M) 2 n+1 voly_1(sreqg(2a))

)

as required.

Q.E.D.
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Remark:

The proof of Theorem 2 follows from the inequality

ol,(B(r(M))
dn(r(M))

vol, (M) > Y (13)

based on Boroczky’s result that the local sphere packing density {d(B(r),B) of a ball B(r)
with respect to B is bounded from above by d,(r) < 1. Hence, (13) is an improvement of
the often used coarse estimate

(M)
vol, (M) 2 vol,(B(r(M))) = Q.1 f sinh® ™! (z)dz >

0

Qn-'*l

1

(r(M))"

4. Bounds for the regular simplex volume

By Theorem 2, we can estimate the volume of a compact hyperbolic n-manifold M with n-
radius 7(M) in terms of the volume of a hyperbolic regular simplex S;.4(2a) in H" of edge
length 2r(M) and dihedral angle 2. However, explicit volume formulae for non-Euclidean
n-simplices are known only up to dimension n = 6 (see [K1] for the even dimensional
volume problem and {K2], [K3] for the cases n = 3,5); for 3 < n < 6, these formulae are

complicated expressions involving polylogarithms of orders less or equal to [”—'Ztl] :

The aim is therefore to approzimate vol,(Sreq(2c)) in terms of n and «. For this, we make
use of Schlafli’s fundamental formula for the volume differential (see [K1, 2.2, p. 199]):

THEOREM 3 (L. Schlafii).

Let n > 2, and denote by S C S" a family of simplices with dihedral angles oj; =
L(S;,Sk) formed by the facets S;, Sk at Sjp=S5;05 (1 <5<k <n). Then,

dvol,(S) = ni Z volp—o(Sjk) dajx , volg:=1 . (14)
1<j<k<n

Formula (14) is, up to the sign, also valid for hyperbolic n-simplices. An elegant proof for
both curvature cases was given by H. Kneser (see [1, 2.2, p. 199]).

Consider Sres(2a) C X™, X™ # E™, of edge length 2! according to (2) and (3), together
with its (n + 1)! characteristic orthoschemes R(«) given by

Z(R(«a)) : oL 6—0—--—0—0—0
0

n

By Schlafli’s formula (14), we deduce for vol,(R(a) = ﬁ vOln{Sreg(2x)), n > 2, that
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(A1} inS™ : fu(@):=vol,(R(c)) is strictly monotonely increasing with o

(A2) in H® : F,(a):=vol,(R(«)) is strictly monotonely decreasing with a.
Theorem 3 allows to write the regular simplex volume as single integral. Denote by 0 <
af < I the angle with cos?(ad) = ZEL, which is such that vol,(Srey(208)) = 0 (see
(1).

Then, for n = 2, the integration of (14) starting from o3 gives immediately the well-known
excess- and defect-formulae for the area of Syey(2a) and R(«) in S? and HZ.

From now omn, let n > 3. The face of R(a) C X" associated to « = Z(Ho, Hy) is the
orthoscheme R(B(a)) = R(a)N Ho N Hy C X™~? with graph

S(R(B(a))) 0 2 5o iim0—0—0

n

Here, the apez angle B(a) of R(a) can be seen in R(a) = PoPyP;Py C X? as length
[(PyP3), and for R(a) C X", n > 4, as angle ZP,P4P;. Therefore, it is analytically
expressible by (see [BH, Hilfssatz 1, p. 276])

0<B(a) <oo with cosh(8(a)) = sin(e) in H®, (15)
4sin*(a) — 1

0<Ba) < with cos(f(a)) = ——) in X"#£H' n>3. (16)
2 4sin®(a) — 1

From this, it follows that 8(al) = o) ~*, and that therefore the orthoscheme R(B(cf)) C
X "2 also degenerates in dimension. Moreover, by putting for the angle o of R(a) C X"
and its apex angle 3(«)

we find for the k-th iterative B(8*(a)) € [0, Z] that

k—1-(2k —3)b(«x) o n,
ﬁk(a):arccos\/Qk—1—4(k—l)b(a) , fork= ,...,[2] 1, (17)
and, for k= [}],
IR o e pe e g
IR E \/2[%1 T R N
arcosh\/ [3]-1 - (5] = 3)ta) € [0, c0) for R(a) C H"
2031 =1 -4([3] - Db(e) ~ " ’
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whereby

_ sin*(a)
bla) = 4sin®(a) — 1

Finally, by (14), we are allowed to write

(B1) for R(e)C S" : fala)= }: fr—2(B(z))de

n

(B2) for R(e) C H® : Fafa)= 1 f Faca(B(e))ds = === | Fa_o(B(s))dz

where cos(2af) = + and f(z) is defined according to (15) and (16). For the sake of
completeness, we add:

(C) The volume of a non-Euclidean regular simplex S,.4(2¢) is a strictly convex function
in e; more precisely,

Fl{a) >0 forn>3 ; fi(a)>0 forn>3

This follows from (B1) and (B2) using the fact that the apex angle 8(«) satisfying (16)
has B'(a) > 0.

By Lemma 1, we can estimate regular simplex volume in terms of the volumes of in-sphere
and circum-sphere; for example, for a regular simplex of edge length 2[, we obtain

R

in 8" 1 volp(Sreg(2a)) £ Qny / sin” " (z)dz (19)
0

) 2n .
where R = a,rcsm(\/ ——) sm(l)) :

1R

in H* @ voly(Sreg(20)) 2 Qs / sinh®!(z)dz (20)
0

where 1R = arcosh( nz—r ] cos(e))

The next two lemmata contain elementary upper and lower bounds for the volumes of a
regular simplex and its characteristic orthoscheme which are very useful for computations
in higher dimensions. We present only the inequalities needed to simplify the volume
bound for hyperbolic manifolds given by Theorem 2, while the remaining cases follow after
obvious sign modifications.
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LEMMA 4.

Let n > 3 and af = arccos L—,ﬁ—l € [0,%] for 2 < k < n. Denote by p*(z), k =
0,...,[%], the angle defined according to (17) and (18). Then, the volume f,(a) of the

orthoscheme R(a) C S™ with graph T(R(a)) : o—o0—o0—---—0—~0—o0 is bounded
0

n
from above by

[%]"1 ﬁk(a) an—?k ﬂ[ﬂ]( ) f dd
(a) < —20 o, here pn(a) = { ¥ 2 (@), lornodd;
fale) g n— (2k + 1) ¢n(a) , where pn(a) {1, for n even . (21)

Proof:
By (B1), we can write
1
fule) = == [ foa(fle)) o
Since B(y) and f,(y) are monotonely increasing by (16) and (A1), it follows that
n Y 1 n
o) S i lamaf)_max | fas(O08) = = (o= o) foca3(e)

By iteration, we obtain (21).
Q.E.D.

The quality of the volume estimate (21) can be read off by comparison, for example, with
Schlafli’s ezact volume formulae for the spherical n-orthoschemes R(%) and R(%)} with
graphs A4+ and B,4;; he showed that (see [K1, (10) and (11), p. 199])

1a

fn( = 27+ (4 1)

y= —n and £a(3)

37 (n+2)

Let m(z,y) := %3 , and define inductively the functions

wla):=a , p'(a):=m(af,a)= a02—i—a and

pi(a) == m(B* N (0g), BT (a))) for k=2 . (22)

This means,

Blag)+p(2812)
2 (a) = ey = )
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LEMMA 5.

Let n > 3 and of = a:rccosw/"'zik1 € [0,Z] for 2 < k < n. Denote by B*(z), k =
0,...,[%], the angle defined according to (17) and (18) Then, the volume F,(a) of the

orthoscheme R(a) C H"™ with graph Z(R(a)) : 0L 6—0—-.-—0—0—0 i3 bounded
0

from below by "

["'21]-] an—zk k41 (a)

—
R > [T =gy el o vhee *
k=0
_ 8GN (@)), for n odd ;
Yn(a) = { 1, for n even .

Proof:
By (B2), we have

/ n2 ’
a3

where the integrand is positive on [, «f), that is,

n—1

Fua) > — J[ Fa_a(B(z)) de

For n = 3 and by (15), B(y) = Fi(B(y)) is strictly monotonely decreasing, while for
n >3 a.nd by (16) and (A2), B(y) (resp. Fn(y)) is strictly monotonely increasing (resp.
decreasing). This implies that

n

ITllIl Fn_g(ﬁ(’l:)) = Eg_—#l'(a—) Fn—?(ﬂ(M))

n—1 2 e, nn+a] n—1 2

Fo(a) >

Again, by iteration, the assertion follows.

Q.E.D.

For example, the volume of the hyperbolic 4-orthoscheme R(%) is estimated by
T
F4(3) > 0.00021

while its ezact value is (see [K1, p. 206])

7r2

F
a( 10,800

) = ~ 0.00091

5
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5. Volume estimates for hyperbolic manifolds
The aim is to find a universal lower volume bound for compact hyperbolic manifolds M™

of dimension n > 2 and therefore an estimate for the minimum value in the n-th volume
spectrum

Vol, := {vol,(M") | M™ compact hyperbolic n-manifold} C R

For even dimensions n, the well-known theorem of Gauss-Bonnet says that
n 5 ‘Qﬂ n
volo(M™) = (~1)F =7 x(M")
In fact, for compact Riemann surfaces M'g? of genus g > 1 the volume spectrum equals

Vol, =2rN . (24)

For n =4, we obtain

vl (M%) 2 4T (25)

Moreover, J. Ratcliffe and S. Tschantz proved the existence of a non-compact hyperbolic

4-manifold with Euler characteristic one and with positive first Betti number (see [RT, p.

2]). Therefore,

472

{voly(M*) | M* hyperbolic 4-manifold} = S N . (26)
Let n = 3. R. Meyerhoff found the bound (see [Me, p. 277])
vola(M?*) > 0.00082 . (27)

He obtained (27) by constructing embedded tubular neighborhoods around short geodesics
of lengths [ less than lo ~ 0.10695, whose volumes increase with decreasing [. Since M*
must have either an embedded ball of radius r or a geodesic of length less than 2r, one
obtains for the in-radius of M® that

r(M3) > o

— ~ (. 4
23 0.05347

Finally, Theorem 2 for the in-radius %1 gives the volume bound 0.00082 which is bigger

than both, the volume of the hyperbolic ball of radius 121 and the volume of the solid tube
around a geodesic of length ly. Meyerhoff’s tube construction is based on Jgrgensen’s trace
inequality for a non-elementary discrete two generator group G of Mobius-transformations

of Pi(C). By a very detailed analysis of Jgrgensen’s trace inequality in terms of three
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different norms on G, F. Gehring and G. Martin improved Meyerhoff’s method and results,
and they obtained (see [GM, Corollaries 7.20 and 7.21, p. 73-74])

r(M®) > ro(M?) := 0.05725 and  vol;(M®) > 0.00115 . (28)

For n > 3 arbitrary, G. Martin generalized the inequality of Jgrgensen to all dimensions
n and derived the lower bounds for in-radius and volume of a hyperbolic n-manifold M™
(see [M, Corollaries 3.6 and 3.7, p. 263])

r(M™) > and vol,(M") > Q, (—-—1—-————) . (29)

9. g2+[%] 5. 9l+[5]

Unfortunately, S. Friedland and S. Hersonsky discovered an error in [Ma, Corollary 3.3, p.
261} and corrected Martin’s in-radius estimate as follows (see [FH, Theorem 4.6, p. 608]):

o 0.0025
r(M )ZW : (30)

While Martin's estimate (29) improved the earlier result of P. Buser and H. Karcher (see
[BK, Proposition 2.5.3]) saying that

n 1
T(A/ ) 2 4An+3

(31)

for compact Riemannian manifolds M" with sectional curvature —1 < I < 0, the cor-
rected bound (30) of Friedland-Hersonsky is worse than (31) for all n.

By Theorem 2 and its Corollaries 1 and 2, the volume of a compact hyperbolic n-manifold
M with in-radius r := r(M) is bounded from below by expressions involving the volume
of the hyperbolic regular n-simplex of edge length 2r. For example,

voln (R(a)) , where I(R(«)) : 0 0—0—-—0—0—0 (32)

> L —
vol (M) > Q, W) 0 o

is the characteristic orthoscheme of the hyperbolic regular n-simplex Sreq(2a) of dihedral
angle 2« and edge length 2r related by

1 (20) = cosh(2r) < 1
p SeoSE = + (n—1)cosh(2r) n-—1

Here, r(c) denotes the vertex orthoscheme of R(a) at P,. Recall that (32) is equivalent
to (see (13))

vol, (B(r))
vol, (M) > —-—-———dn(r) )
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where d,(r) <1 is the density of n+1 balls of radius r centered at the vertices of Syq(2a)
of edge length 2r. The estimate (32) becomes meaningful away from infinitesimally small
r; that is, it gains importance when compared to the Euclidean ball volume bound

vola(M™) > LT
n

the bigger the in-radius » = r(M™) becomes. On the other hand side, with increasing
dimension n, the lower bounds (30) and (31) for 7(M") of Friedland-Hersonsky and Buser-
Karcher tend rapidly to zero. However, it is not clear at all whether this is the true growth
behavior of

rn = inf {r(M")| M" hyperbolic n-manifold } ,

in particular, because there are indications that the minimum volume of all hyperbolic
n-manifolds increases with the dimension n (see [Ma, p. 258]). One indication in this
direction is also provided by dn(r) < dn_1(r) for n >3 and r > 0 (see Lemma 3).

We finish with an illustrative example for n = 5. By Buser-Karcher’s estimate (31), the
in-radius for a compact hyperbolic 5-manifold M? satisfies

r(M®) > 7o 1= — o~ 1.52588 - 1075

1
48
The hyperbolic regular &-simplex with edge length 2ry has the dihedral angle 2a =
1.36944... in radians (see (3)) which is very close to the degeneration angle 2af (see
4., (B2)). Therefore, for Buser-Karcher’s in-radius estimate, the regular simplex vol-
ume bound for hyperbolic 5-manifolds is well approximated by the Euclidean ball volume
4.35410-10724 . To get better volume estimates, it is therefore necessary to improve exisit-
ing bounds for the in-radius 7(M"). For example, if indeed the in-radius (™) would
increase with respect to n, that is, if

]

0

r(M™) > ro(M?) = 5 0.05725

the regular simplex estimate would give
vols(M®) > 6.16490 - 107% |

and the Euclidean ball volume is around 3.23728 - 107¢. The only known volume of a
hyperbolic 5-manifold is due to Ratcliffe and Tschantz (see [RT, p. 5]); they constructed an
open, non-orientable, arithmetic hyperbolic 5-manifold M with positive first Betti number
and with

vols (M) = 28((3) ~ 33.65759 . (33)

Actually, the fundamental polytope P C H® of M can be subdivided into 184,320 copies
of the (simply) asymptotic 5-orthoscheme R with graph
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whose volume %38—)0 was computed in [K2, (39), p. 662].
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