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o. Introduction

A hyperbolic n-manifold lvIn is a complete, connected n-dimensional Riemannian mani
fold of constant sectional curvature K = -1. The volume voln(Mn) is its most natural
and dominant geometric-topological invariant; it is related to other quantities in form of
(in- )equalities. Für example, by the well-known theorem of Gauss-Bonnet, the volume is
proportional to the Euler-Poincare characteristic X(M2n ) , and by inequalities, it appears
in combination wi th Betti numbers bi (lv! n) (see [Xl), the diameter di am (Mn ) , and the
first eigenvalue Al (Mn) of the Laplacian on Mn (see [BS]). However, the exact evaluation
of a single invariant is usually very difficult.
The aim of this paper is to derive a new lower volume bound for hyperbolic n-manifolds
M. Denote by r(x, lvI) the injectivity radius of lvI at x E Al , and by

r'(M) := sup {r(x, M) Ix E M}

the in-radius of Al associated to the largest ball embeddable in M. Finally, let fl n .

voln(sn) be the volulne of the standard n-sphere,

THEOREM.

For n ~ 2 J let M be a compact hyperbolic n-maniJold with in-radius r(M) , Then,

1 (M)
fln-l voln(Sreg(2O'))vo > -- . --"'------=:.......:.-'---

n - n + 1 VOl n-1(sreg(2O'))

where Sreg (20') C H n dellotes the regular simplex. with dihedral angle 20' and edge length
2r(M) related by

1 cosh(2r(lvI») 1
- < cos(2O') = < --
n 1 + (n - 1) cosh(2r(A1») n - 1
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and where sreg(2a) is a spherical vertex simplex 0/ Sreg(2a).

The theorem is the generalization to arbitrary diInension of a result used by R. Meyerhoff
in the three diInensional case (see {Me]). Since sreg(2a) C sn-l , we obtain the following
coarser hut simpler estiInate:

COROLLARY.

For n 2:: 2, let M be a compact hyperbolic n-mani/old with in-radius r(lvI). Then,

1
voln (lvI) 2:: n + 1 vol n (Sreg)

where Sreg C Hn is the regular si1nplex 0/ edge length 2r(M) as above.

Notice that these results appropriately modified are also valid for Euclidean and spherical
space forms. Moreover, it will be obvious froIn the proof, which is based on 1(. Böröczky's
upper density bound for hyperholic sphere packings, that the theorem improves the known
volume estimates referring to the volume of the hyperbolic 01' even of the Euclidean ball of
radius r(M). For example, for compact Riemannian manifolds M whose injectivity radius
is bigger than 01' equal to p, say, M. Berger [Be] showed that

For compact Riemannian manifolds lvI of sectional curvature -1 ::; !{ < 0, P. Buser and
R. I<archer [BI(] derived the bounds

1
7'(M) >-- 4n +3

( )
S1n-l 1

anel voln A1 2:: -n- . 4n (n+3)

To obtain valuable estimates for the minimum volurne of compact hyperbolic n-manifolds
Mn necessitates, by the theorem, to find accurate bounds for the in-radius r(lvI71). For
n = 3, Meyerhoff's solid tube radius bound refined by F. Gehring and G. Martin [GM]
to r (M 3 ) ~ 0.05725 gives rise to the best lower volurne estimate known up to now. For
n > 3, however, there are uo satisfactory in-radius bounds available. The Buser-I(archer
estirnate, which is the best result at our disposal (see also [Ma] and [FR)), is rapidly
decreasing with the dimension n and already for n = 3 much more disadvantageous than
Gehring-Martin's value. In fact, the true growth behaviof of

7'n : = inf { r (Mn) IMn hyperbolic 71-manifold }

still lies in the dark, but there are indications coming frorn the study of aritlunetic lattices
that the volumes of hyperbolic n-manifolds are increasing with n (see [Ma, p. 258)).

This article is organized as follows. In the first chapter, we coHect aH necessary informations
abont regular simplices and their characteristic orthoschemes in spaces X of constant
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curvature. In chapter two, we give a short account on sphere paekings of X and present K.
Böröezky's basie theorern about loeal density bounds of sphere packings of X in terms of
regular simplex volunles. With these preparations, we are ready to prove the theorem (see
chapter three). In chapter foul', we provide elementary upper ancllower volume bounds
for non-Euclidean regular siInplices in terms of their dihedral angles, only. This is of
considerable practical use since there are no explicit volurne fornlulae available for non
Euclidean simpliees of dimensions bigger than or equal to seven. Finally, in chapter five, we
discuss and apply these results to study volume speetra of cornpact hyperbolie manifolds
of dinlensions n .2:: 2 and their minilna which, by a result of D. I(azdan and G. Margulis
[I{MJ, are always positive.

1. Non-Euclidean regular shnplices

Let n .2:: 2, and denote by X n either the sphere sn, the Euclidean space En or the
hyperbolic space Hn = Hn U aHn extended by the set aHn of points at infinity. For
P, Q E X n , let I(PQ) = IXTI (PQ) be the length of the geodesic segment from P to Q.
A sirnplex in X n is regular if its syrnmetry group operates transitivelyon the k-dimensional
faces (0 ::; k ::; n - 1 ). In particular, a11 edge lengths and dihedral angles are of the same
sizes. Moreover, all faeial and vertex simplices of a regular simplex are regular (a vertex
polytope of a polytope in X n arises as (n - l)-dimensional intersection of a sufficiently
small sphere around a vertex with the polytope).
We denote by Sreg(2a) the regular simplex of dihedral angle 0 ::; 20' ::; tr. Sreg(2O') is
realizable (see [EH, Satz 1, p. 276])

1
in sn for - 1 < cos(2a) < -

n

in E n 1
(1)for cos(2a) = -

n
1 1

in Hn for - < cos(2a) ::; --
n n-1

In the extrelnal case cos(2aö) = ~, a 1lon-Euclidea1l regular 11.-simplex Sreg (2O'ö ) is
degenerated in dimension and hence of zero n-volume. In Hn, the condition cos(20'~) =
n~l characterizes a totally asymptotie or ideal regular n-simplex Sreg (2a~) aH of whose

vertices are at infinity. Notice that O'~ = 0'~-1 < O'ö < ~ .

In Euclidean space, Sreg(20') is detennined by its dihedral angle 20' only up to homotheties
while, in non-Euclidean space, there is the following relation between angle 20' and edge
length 21 (see [EH, §6.4, p. 276-270]):

In sn
1 1 1 cos(20')

(2)=11.-1+ or cos(2 ) =
eos(20') cos(21) 1 - (n - 1) cos(2a)

1 1 cos(2a)
. (3)In H n =n-1+ 01' cosh(2/) = ( 1) (2)cos(2O') cosh(2/) 1 - n - cos 0'
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Regular simplices, like all regular polytopes, are most conveniently described by thcir
charactenstic orthoschemes. An orthoschelue R c X n , n ~ 1, is a simplex bounded by
hyperplanes Ho, ... , Hn such that Hi 1.. Hj for li - jl > 1. Up to isometry, R is uniquely
detennined by its dihedral aJlgles aj = L(Hi-I, Hi) ::; ~,1 ::; i ::; n. Associated to R is
its (linear) scheule or weighted graph ~(R) whose nodes i correspond to Hi. Two nodes
are disjoint if their hyperplanes are orthogonal; otherwise, i - 1, i are connected by an
edge with weight ai (apart from the exceptional case ai = f when thc mark is dropped
according to the standard notation of Coxeter-Dynkin-Schläfii-\Tinberg).
Denote by Pi the vertex of R opposi te to the facet R n Hi. Then, I(Po Pi) ::; l(Po Pj) for
1 ::; i < j ::; n. Discarding in E(R) one node i, say, together with the edge(s) elllanating
from it, the remaining graph describes the vertex orthoscheme Ri of R at Pi. All vertex
orthoschemes are spherical apart frolll thc hyperbolic situation where Po, Pn may belong
to aHn; therefore RD , Rn may be Euclidean orthoschemes.

The barycenter C of a regular simplex Sreg(2a) C X n is the unique fixpoint under the
symlnetry group and center of in-sphere and circum-sphere. By drawing sllccessively per
pendiculars to lower dimensional faces starting frOlll C, Sreg(2a) is decomposed into
congruent orthoschemes R(a) with dihedral angles 0', f, ... ,f. More precisely,

Sreg(20:) = (n + 1)! R(o:) where (4)

~(R(a))
0:

0--0-0-" '-0-0-0

o n

Denote by C =: Po, ... ,Pn the vertices of R(o:). Then, the in-radius IR of Sreg(2o:) C
X n equals POP1 . The circum-radius nR of Sreg (20:) is given by the longest hypotenuse
POPn of R(o:).

LEMMA 1.

In-radius IR and circum-radius nR 0/ a llon-Euclidean regular simplex Sreg(2o:) 0/ edge
length 21 are given by:

~ ~ (5)In sn cos(lR) = -- cos(a) and sin(nR) = -- sinti) ;
n+1 n+1

~ and sinh(nR) = J2n sinh(l). (6)In H n COSh(IR) = -- cos(o:)
71.+1 n+1

Proo/:

DecoIllpose STe 9 (20:) into orthoschemes congruent to R(Q') with vertices C = Po, ... , Pn .

Observe that the vertex orthoscheme ~ of R(0:) at Po is given by the scheme

0-0-" '-0-0
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"Eo is the characteristic orthoscheme of Sreg(Z31i
) C sn-I of edge length 210 such that (see

(2))

siu ) = Jn + 1 .
2n

(i) The in-radius IR = POp] of Sreg(20') appears as cathetus in the right-angled tri
angle POPIPZ whose angle at Pz is O'j this follows from the definition of 0' as 0' =
L(Ho,H 1) formed by the facets PIPZ '" Pn and popz ··· Pn sitting at the apex or
thoschelne pz ··· Pn , anel from the property POP1PZ 1. Pz ... Pn . To determine the angle
LP1POPZ at Po in POP1PZ , we make use of the fact that "E(RD ) = "Eo . If Qi is the vertex
of R-o on the edge POPi of R ( 1 ::; i ::; n), then

the second equality is a consequence of the reflection symlnetry of the graph L:o . Since
LP1POPZ = I(QIQZ) = 10 , we obtain

in sn resp. in H n cos(0')
. (l ) = cos(l(Po PI )) resp. cosh( I (Po PI ))

SIn 0

Therefore, cos(lR) resp. cosh(tR) equals j nZ';1 cos(a) as required.

(ii) To determine the circum-radius nR = PaPn of Sreg(2a) , we look at the right-angled
triangle POPn - 1Pn with hypotenuse nR anel cathetus Pn- 1Pn of length I opposite to the

angle I(Qn-l Qn) = arcsin(Jnl;/)· This yields

in H n

2. Sphere packings

. sin(l) ~n.
Slll(nR) = . (l(Q Q )) = -- sln(l)

SIn n-I n n + 1

. ~n.sInh(nR) = -- slnh(l)
n+l

Q.E.D.

Let 13 be a packing of X n , n ;::: 2, with non-overlapping balls B(l') of radius 7' (for X n = sn,
assume that r < ~). We are interested in bounds for the "packing density". In general,
for two non-empty sets S, T c X n

, the density d(S, T) of S in T is given by

d(S T)
.= voln(S n T)

, . voln(T) < 1

The density of a ball in an orthoscheme satisfies the following Il1onotonicity property with
respect to its edge lengths (see [B, Lemma 10, p. 256]):
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LEMMA 2.

Ruth I<ellerhals

In X n
J let R = POPI ... Pn and R' = PoP; ... P~ be two orihoschemes with l(PoPd 2:

l(PoPt) for i = 1, ... ,n. Denote by B a ball centered at Po such that B is disjoint to the
facets PI'" Pn and P{··· P~. Then, d(B , R) ~ d( B , R')! and equality holds precisely
for l(PoPd = l(PoPt) for i = 1, ... ,n.

Associate to eaeh ball B = B(1') of the paeking Bits Dirichlet- Voronoi-eell

D = D(B, B) = {p E X n I clist(p, B) ~ dist(p, B'), VB' c B}

Then, the loeal density of B with respeet to ß is defined by

ld(B, ß) := d(B, D) = voln(B)
voln(D)

(7)

Finally, denote by dn(r) the density of 11, + 1 balls B(r) of radius r lllutually touching
one another with respect to the regular simplex Sreg of edge length 2r spanned by their
centers, that is:

dn(1') = (n + 1) voln(B(r) n Sreg) < 1
voln(Sreg)

Then, IC Böröczky sen. proved the following loeal density bound formerly conjectured by
H.S.M. Coxeter and L. Fejes T6th (see [B, Theorem 1, p. 243]):

THEOREM 1 (I{. Böröczky).

Let ß be a packing of .Jyn with balls B = B(r) of radius r (for X n = sn, suppose thai
r < f). Then, ld(B, ß) ~ dn(r) .

Remark:

Für n = 3, this result was settled by Ie Böröczky sen. already in 1964 (see [BF]); in
addition, A. Florian showed that d3 (r) is monotonely inereasing with respeet to T. The
limiting value

1 1 1 1 1 -1
d:= lim d3 (r) = (1 + - - - - - + - + - - + ... ) ~ 0.85328

r-too 22 42 52 72 82

is aehieved by the loeal density of the in-balls of the regular honeyeomb {5, 3, 3} forming
a horoball paeking of H3.

Of interest is the behavior of the upper bound dn(7') with inereasing dimension.

LEMMA 3.
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Proof:

We follow an idea of K. Böröczky sen. in order to COlupare densities of a ball with respect
to simplices of different dimensions. Let R = Po ... Pk denote a k-orthoscheme. R can be
considered as degeneration of an n-simplex R = Po' .. Pk Pk +I •.. Pn für Pk +i -+ Pk for
i=1, ... ,n-k.
The Lim iting de71sity d(B , Pk, R) of an 11.-ball B \Vi th respect to R is then defined by

d(B, Pk , R):= lim d(B, R)
P"+i-tP"
l:5 i :5 n - k

Now, dissect the regular n-siInplex Sreg of edge length 21 anel with center C =: Po appear
ing in the definition of dn ( 1) into orthoschelnes congruent to R = Po ... Pn' It is deal'
from the definition that

vol (Bn (1) n R)
d ( ) = d(B n ( ) R) = n Pn

n 1 Pn 1 , voln(R) (8)

Denote by

where B Pn (1) is the n-ball of radius r centered at Pu,
Together with Sreg all its facets S:'eg of edge length 2r are subdivided into (n - 1)
orthoschemes congruent to R' = PI ... Pn . Extend each R' = PI ... Pn in R = POPI . 'Pn

to an n-orthoscheme R = POPI ••• Pn with Po on POPI in between Po and PI. Since
l(PoPn ) 2:: l(PoPn ) > l(PIPn ) , LeInlna 2.1 implies that the density of the ball B = B Pn (1')
in R dominates the one with respect to R, that is,

d(B, R) ~ d(B, R)

On the other hand side,

dn - I (r) = d(B,P},R') = _lim d(B,R)
PO-+P1

Therefore,
dn(r) = d(B, R) ::; d(B, R) ~ d(B~::I (r), H') = dn-I (1')

Q.E.D.

Remark:

It is still an unsolvecl problell1 whether also for n > 3 the density dn(r) is strictly mono
tonely increasing with r. Florian's proof for n = 3 made use of the expLicit form of d3 (r)
with respect to 1'. We hope to come back to this question elsewhere.

3. A lower volume bound for hyperbolic lllanifolds

!!.±.l

( n) 27f 2

f2 n = vol n S = r( nt1 )

the volume of the sphere sn with its canonical lnetric of curvature +1. Let M be a
hyperbolic n-manifold, that is, a complete, connected Riemannian n-nlanifold of constant
curvature -1 and hence of the fonn !vI = H n Ir, where r is a discrete, torsion-free Möbius
group. Deuote by
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r(x, NI) = sup {r > 0 Iexpx : TxNI -t ]vI injective on the ball of radius r around zero}

the injectivity radius of M at thc point x, and let

r(1\1) = sup { r(x, AI) I x E A1}

be the in-radius of ]vI, that is, the radius of the largest ball embedded in Aln . With the
preparations of chapters one anel two, we are ready to prove the lower volume bound for
M announced in the Introduction, that is:

THEOREM 2.

For n 2: 2, let M be a compact hyperbolic n-maniJold with in-radius r(l\l). Then,

1 (
i\1) i1n - 1 vol n (Srcg (20'))

VO .nl > -- .---~-~
n - n + 1 VOln -l(Sreg(2a))

(9)

where Sreg(2a) C Hn denotes the regular simplex with dihedral angle 20' and edge length
2r(M) related by

~ < cos(2o:) = cosh(2r(l\1)) < _l_
n 1 + (n - 1) cosh(2r(M)) n - 1

and where sreg(2a) is a spherical vertex simplex 0/ Sreg(2a) .

Reluark:

(10)

For n = 3, the result of Theorem 2 is due to R. Meyerhoff (see [Me, p. 277) anel chapter
5).

By decomposing STeg (20') anel Sn~g (20') into their characteristic orthoschemes R(a) anel
r(a) (see (4)), that is,

Sreg(20:) = (n + l)!R(a) sreg(2O') = n! r(a)

one obtains the following equivalent of Theorcrn 2:

COROLLARY 1.

For n 2: 2, let !vI be a compact hYl)erbolic n-7nani/old with in-radius r( ]vI). Then,

voln ( R( 0: ))
voln (M) 2:: i1n - 1 I (.())

VO n-l 7 0'

0:
where 2:(R(o:)) : 0-0-0-'·' - 0-0-0 (11)

o n

denotes the characteristic orthoscheme 0/ STeg (20') witk l( Po Pd = r( NI) and vertex figure
r(a).
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Since n! r(0') == Sreg (20') C sn-I, we finally obtain

COROLLARY 2.

For n 2:: 2 J let M be a compact hyperbolic n-mani/old with in-radius 1'(M). Then,

where Sreg(20') and R(0') are as above.

(12)

Pro%/ Theorem 2:

Byassumption, M = RnIr contains a ball isolnetric to a ball of radius r ;== r(M) in H n.
The lifts of this ball to the universal covering space Hn yield a packing ß with balls of
radius r. Each Dirichlet-Voronoi-cell D = D(B, ß) is a fundamental domain for the action
of r on Hn. Therefore, voln(D) = voln(l\.I). Consider the local density (see (7))

voln(B)
ld(B 1 B) == d(B 1 D) = vol

n
(D)

of a ball B with respect to B. By Böröczky's theorem (see Theorem 1, 2.),

where
cosh(21')

cos(2O') == ------
1 + (n - 1) cosh(2r)

This implies that

voln(B) ( ) voln-l(sreg(20')) 1 (B) 1---< n+1 . vo .-----
voln(D) - Sln-l n voln (Sreg(20'))

where sreg(2a) denotes a spherical vertex figure of Sreg(2a) , anel where

equals the volume of the ball seetor of B eut out by Sreg(2a). Finally, we deduce

1 (M)
Sln-l voln (Sreg(2a))

vo > -- . ------=----
n - 11 + 1 voln -l(sreg(2O'))

as required.
Q.E.D.
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Remark:

Ruth 1(ellerhals

The proof of Theoreln 2 follows from the inequality

1 (At]) > voln(B(r(M))
vo n - dn(r(M)) (13)

based on Böröezky's result that the loeal sphere paeking density Id(B (r ), B) of a ball B (r )
with respeet to B is bounded frolll above by dn ( r) < 1. Hence, (13) is an improvement of
the often used coarse estimate

r( /111)

voln (1v1) 2: voln(B(r(Al))) = fl n - 1 J sinhn- 1 (x)dx > fl n
-

1 (r(.i\!I))n
n

o

4. Bounds for the regular sinlplex volunle

By Theorem 2, we can estilnate the volume of a cOlnpaet hyperbolie n-manifold M with in
radius r(M) in tenns of the volume of a hyperbolic regular sirnplex Sreg(20:') in H n of edge
length 27'(M) and dihedral angle 20'. However, explicit volume formulae for non-Euclidean
n-simplices are known only up to dimension 11, = 6 (see [1(1] for the even dimensional
volulne problem and {I(2], (I(3] for the cases n = 3,5); for 3 ~ n ~ 6, these formulae are
complicated expressions il1volving polylogarithrl1s of orders less 01' equal to [nil].
The aim is therefore to approximale voln ( S reg (20')) in terms of n and 0:'. For this, we Inake
use of Sehläfli's fundamental formula for the volume differential (see [Kl, 2.2, p. 199]):

THEOREM 3 (L. Schläfli).

Let n 2: 2 J and denote by S c sn a lamily 01 simplices with dihedral angles Ci jk 
L(Sj, Bk) formed by the facets Sj, Sk at Sjk = Sj n Sk (1 ~ j < k ~ n). Then J

1
dvoln(S) = -

n-l
L VOl n -2(Sjk) dajk

l:::;j<k:::;n

volo := 1 (14)

Formula (14) is, up to the sign, also valid for hyperbolic n-simplices. An elegant proof for
both curvature cases was given by H. I(neser (see [1(1, 2.2, p. 199]).

Consider Sreg(2Ci) C X n , X n i= En, of edge length 2l according to (2) anel (3), together
wi th its (n + I)! characteristic orthoschemes R( 0:') giyen by

Ci2:;(R(a)) : 0-0-0-" '-0-0-0

o 72

By Schläfli's formula (14), we deduce for voln(R(a) = (n~l)! voln(S,'eg(20')) , n ?= 2, that
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(Al) in sn
(A2) in Hn

fn(O:) := voln(R(a)) is strictly lllonotonely increasing with 0:;

Fn(a) := voln(R(a)) is strictly lllonotoncly decreasing with a.

Theorem 3 allows to write the regular simplex volume as single integral. Denote by 0 :s;
aö < ~ the angle with cosZ(aö) = nz=t"/, which is such that voln(Sreg(2o:ö)) = 0 (see
(1)) .

Then, for 12 = 2, the integration of (14) starting froill a6 gives immediately the well-known
excess- and defect-fonllulae for the area of Sreg (2a) and R(a) in S2 and H 2

.

From now on, let n 2: 3. The face of R(a) C X n associated to a = L(Ho, H1 ) is the
orthoscheme R(ß(a)) = R(o:) n Ho n H I C X n

-
2 with graph

ß(a)
~(R(ß(a))) : 0 0-0-'" - 0-0-0

2 n

Here, the apex angle ß(o:) of R(a) can be seen in R(a) = POP1PZP3 C X 3 as length
l(PZP3), and for R(a) C ~){n, 12 2: 4, as angle LPZP4 P3. Therefore, it is analytically
expressible by (see [EH, Hilfssatz 1, p. 276])

o :s; ß(0:) < 00 with

o :s; ß(0:) :s; % with

cosh(ß(0:)) = sin(a)
J4sinZ(a) - 1

sin(a)
cos(ß(a)) = -----;:::=:::::::::::::::==

J4sinZ(a) - 1

(15)

In ...yn -I H 3
, 12 2: 3. (16)

From this, it follows that ß(O:ö) = a~-2 , and that therefore the orthoscheme R(ß(O:ö)) C

X n - 2 also degenerates in dimension. IvIoreover, by putting for the angle a of R(a) C X n

and its apex angle ß(a)

we find for the k-th iterative ß(ßk-l(a)) E [O,~) that

k-1-(2k-3)b(a)
2k - 1 - 4(k - l)b(a)

n
for k = 2, ... , [2"] - 1 , (17)

and for k = [ll), 2 '

arccos

arcosh

[~J-1-(2[~}-3)b(a) 01r
2[I)-1-4([~]-1)b(a)E ['"2]

[!!.] -1- (2[!!.] - 3)b(a)
2 2 E [0 00)

2[~]-1-4([~]-1)b(a) ,

for R(o:) C sn

for R(a) C H n
,

(18)
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whereby

Ruth Kellerhals

Finally, by (14), we are allowed to write

(BI) for R(O') c sn

(B2) for R(0:) C Hn

0'

In(O:) = n~I J In-2(ß(X)) dx
O'no

0' a~

Fn(O') = l~n J Fn- 2 (ß(x))dx = n~l J Fn- 2 (ß(x))dx
O'ö 0'

where cos(20'ö) = ~ and ß(x) is defined according to (15) and (16). Für the sake of
completeness, we add:

(C) The volume of a non-Euclidean regular simplex Sreg(20') is a strictly convex function
in 0'; Inore precisely,

F~ (0:) > 0 for n > 3 I~ (0:) > 0 for 12 ~ 3

This follows from (B 1) and (B2) using the fact that the apex angle ß(0:) satisfying (16)
has ß'(a) > O.

By Lelnma 1, we can estimate regular simplex volume in terms of the volulnes of in-sphere
and circum-sphere; for example, for a regular simplex of edge length 21, we obtain

in sn
n R

vol"(Sreg(2o:)):::: rln- 1 Jsin"-l(x)dx

o

where "F = arcsin(J 2n sin(I))
12+1

lR

voln(Sreg(2o:)) 2: rln- 1 Jsinhn-J(x)dx

o

(19)

(20)

where Rf;n
IR = arcosh( -- cos(o:))

12+1

The next two lemmata contain elementary upper and lower bounds for the volumes of a
regular simplex and its characteristic orthoscheme which are very useful for computations
in higher dimensions. We present only the inequalities needcd to simplify the volume
bound for hyperbolic manifolds given by Theorem 2, while the remaining cases follow after
obvious sign modifications.
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LEMMA 4.

Let n 2:: 3 a71d a§ = arccos Jkli/ E [0, tl for 2 ~ k ~ n. Denote by ßk(x), k =
0, ... , [~l, the angle defined according to (17) a71d (18). ThenJ the tJolume fn(a) of the

orthoscheme R(o:) c sn with gra!Jh ~(R(a)) 0 ~o -0 - ... - 0 -0 -0 is bounded

° n

[%rrl -
1

ßk(a) - 0:~-2k {ß[~l(o:)
fn(O:) ~ n _ (2k + 1) ·tpn(O:) , where tpn(O:) = 1, '

b;:Q

Proof:

By (BI), we can write
a

In(a) = _1_ J!n-2(ß(X)) dx
71,-1

ano

for n odd ;
for n even .

(21)

Since ß(y) and fn(Y) are monotonely increasing by (16) and (Al), it follows that

fn(a) ~ _1_ (0: - (3)· max In-2(ß(X)) = _1_ (er - a~) In-2(ß(a))
n - 1 xE[oö,a] n - 1

By iteration, we obtain (21).
Q.E.D.

The quality of the volume estiluate (21) can be read off by comparison, for example, with
Schläfli's exact volurne fürmulae für the spherical n-ürthüschemes R( I) and R( f) with
graphs A n +1 and B n +1 ; he shüwed that (see [1(1, (10) and (11), p. 199])

and

Let m(x, y) := xtY , and define inductively the functiüns

Q 1 n aö + a
f1 (a):= a , Il (0:):= m(ao,a) = 2 and

pk (a) := m(ßk-l (a~), ß(pk-l (er))) für k 2:: 2

This means,

(22)
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LEMMA 5.

Let 11, 2: 3 and o:~ = arccos Jk:j;/ E [0, f] tor 2 ::; k ::; n. Denote by ßk (x), k =
0, ... l [~], the angle defined according to (17) and (18). Then, the volume Fn(o:) 0/ the

orthoscheme R(0:) C Hn with graph ~(R(0:)) : 0 ~o - 0 - ... - 0 - 0 - 0 is bounded
o 1I

/rom below by

[~]-1 n-2k k+l()
Fn(o:) > rr 0:0 - (l 0:. 1/Jn(O:)

11, - (2k + 1)
k=O

1/;n (0:) = { ß[ %1(p[ ~] (0:)) l for 11, odd ;
1 , for 11, even .

Proo/:

By (B2), \ve have
n

0'0

Fn(o:) = _1_ JFn- 2 (ß(x)) dx
n-1

where the integrand is positive on [0:, o:ö) l that is,

where (23)

For 11, = 3 anel by (15), ß(y) = F] (ß (y )) is strictly luonotonely elecreasing l while for
11, > 3 anel by (16) and (A2), ß(y) (resp. Fn(y)) is strictly lnonotonely increasing (resp.
elecreasing). This implies that

Again, by iteration, the assertion follows.
Q.E.D.

For exa~ple, the voltune of the hyperbolic 4-orthoschelue R.( %) is estimatecl by

1r
F4 ("5) > 0.00021 ,

while its exact value is (see [K1, p. 206])

1r 7f2
F4 ( -) = ~ 0.00091

5 10,800
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5. Volume estimates for hyperbolic manifolds

The aim is to find a 'll,niversallower volume bound for compact hyperbolic manifolds Mn
of dimension 11, :2: 2 and therefore an estimate for the miniInum value in the n-th volume
spectrum

Voln := {voln(Mn) I Mn COlnpaet hyper.bolie n-Inanifold} C R+

For even dimensions n, the well-known theorem of Gauss-Bonnet sa.ys that

voln(M") = (-l)~ ~n X(M")

In fact, for eompaet Rielnann surfaces lVIi of genus 9 > 1 the vohnue speetrum equals

For n = 4, we obtain

Voh=27rN (24)

(25)

Moreover, J. Ratcliffe and S. Tschantz proved the existence of a non-compact hyperbolic
4-manifold with Euler eharaeteristie one anel with positive first Betti number (see [RT, p.
2]). Therefore,

{ V04 (At/4) I 1\t/4 hyperbolie 4-manifold} (26)

Let n = 3. R. Meyerhoff founel the bound (see [NIe, p. 277])

(27)

He obtained (27) by construeting embedcled tubular neighborhoods around 8hort geodesies
of lengths I les8 than La ~ 0.10695, whose volulnes increase with deereasing 1. Sinee }v[3

must have either an embedded ball of radius r 01' a geodesie of length less than 2r, Olle
obtains for the in-radius of M 3 that

Finally, Theorem 2 for the in-radius ~ gives the volume bound 0.00082 which is bigger

than both, the volume of the hyperholie ball of radius ~ and the volume of the solid tube
around a geodesie of length La. Meyerhoff's tube constructioll is based on J0rgensen's trace
inequality for a non-elelnentary discrete two generator group G of Möbius-transformations
of PI (C). By a very detailed analysis of J0rgensen's trace inequality in terms of three
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different norms on C, F. Gehring anel G. Martin inlproved Meyerhoff's lnethod and results,
and they obtained (see [GNI, Corollaries 7.20 and 7.21, p. 73-74])

(28)

For n ~ 3 arbitrary, G. Martin generalized the inequality of J0rgensen to all dimensions
n and derived the lower bouncls for in-radius and volulne of a hyperbolic n-manifold Mn
(see [M, Corollaries 3.6 and 3.7, p. 263])

(29)

Unfortunately, S. Friedland anel S. Hersonsky discovered an error in [Ma, Corollary 3.3, p.
261] and correctecl Martin's in-radius estilnatc as follows (see [FR, Theorenl 4.6, p. 608]):

(30)

vVhile Martin's estimate (29) ilnproved the enrlier result of P. Buser and R. I<:archer (see
[BI<:, Proposition 2.5.3]) saying that

(31 )

for compact Riemannian nlanifolds Mn with sectional curvature -1 :::; !( < 0, the cor
recteel bound (30) of Friedland-Hersonsky is worse than (31) for all n.

By Theorem 2 and its Corollaries 1 and 2, the volulnc of a compact hyperbolic n-manifold
M with in-radius r := r(A1) is bounded from below by expressions involving the volume
of the hyperbolic regular n-simplex of edge length 2r. For example,

1 ( ~1) n voln(R(a))
vo n.H > Hn-l -----

- Volu -l(r(a))
0'

where ~(R(a)) : o~o-o-··· - 0-0-0 (32)
o n

is the characteristic orthoschemc of thc hyperbolic regular n-silnplex Sreg(2a) of clihedral
angle 2a and edge length 2r related by

1 cosh(2r) 1
- < cos(2a) = < --
n 1+(n-1)cosh(2r) n-l

Here, r(a) denotes the vertex orthoschell1e of R(o:) at Pu, Recall that (32) is equivalent
to (see (13))
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where dn(1') < 1 is the density of n +1 balls of radius l' centered at the vertices of Sreg (20:)
of edge length 21'. The estimate (32) becomes 11leaningful away froln infinitesimally small
1'; that is, it gains importance when compared to the Euclidean ball volume bonnd

the bigger the in-radius l' = 1'(A1n ) becomes. On the other hand siele, with increasing
dimension n, the lower bouncIs (30) and (31) for 1'(Mn) ofFrieelland-Hersonsky and Buser
I<archer tend rapidly to zero. However, it is not clear at all whether this is the true growth
behavior of

r n := inf {1'(1\1 n
) Ilvln hyperbolic n-manifold}

in particular, because there are indications that the nlinimunl volume of all hyperbolic
n-manifolds inc1'eases with the dimension 17. (see [Ma, p. 258]). One inclication in this
direction is also provided by dn(1') < dn-1(1') for n 2: 3 and l' > 0 (see LeII1lna 3),

We finish with an illustrative exaruple for n = 5. By Buser-Karcher's estiInate (31), the
in-radius for a compact hyperbolic 5-lnanifold lvIs satisfies

The hyperbolic regular 5-silnplex with edge length 21'0 has the dihedral angle 20: =
1.36944... in radians (see (3)) which is very elose to the degeneration angle 2a8 (see
4., (B2)). Therefore, for Buser-I<archer's in-radius estimate, the regular simplex vol
urne bound for hyperbolic 5-lnanifolds is well approximated by the Euclidean ball volume
4.35410.10- 24 . To get bettel' VOhUllC estilnates, it is therefore necessary to improve exisit
ing bounds for the in-radius r(lvIn). For example, if indeed the in-radius r(Mn) would
increase with respect to n, that is, if

3 Lo
1'(Jvfn) 2: 1'o(M ) = 2" ~ 0.05725

the regular simplex estimate would give

and the Euclidean ball volull1e is around 3.23728· 10-6 . The only known volume of a
hyperbolic 5-manifold is due to Rateliffe and Tschantz (see [RT, p. 5]); they constructed an
open, non-orientable, arithmetic hyperbolic 5-luanifold lvI with positive first Betti number
and with

vols (M) = 28((3) ~ 33.65759 (33)

Actually, the fundamental polytope P C H5 of M can be subdivided into 184,320 copies
of the (simply) asymptotic 5-orthoscheme R with graph

Ir

~(R) o-o----I.- o - o - o - o
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whose volume 476~b~)o was computed in [1<2, (39), p. 662J.
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