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ADJOINT RINGS ARE FINITELY GENERATED
VLADIMIR LAZIC

ABSTRACT. This paper proves finite generation of the log canonical ring without Mori
theory.
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The main goal of this paper is to prove the following theorem while avoiding techniques
of the Minimal Model Program.

Theorem 1.1. Let (X,A) be a projective kit pair. Then the log canonical ring R(X,Kx +
A) is finitely generated.

Let me sketch the strategy for the proof of finite generation in this paper and present
difficulties that arise on the way. The natural idea is to pick a smooth divisor S on X and
to restrict the algebra to it. If we are very lucky, the restricted algebra will be finitely
generated and we might hope that the generators lift to generators on X. There are several
issues with this approach.

Date: 1 September 2009.
This paper was written while | was a PhD student at the University of Cambridge, a research visitor at
the Max-Planck-Institut fiir Mathematik and a postdoc at the Institut Fourier.
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First, to obtain something meaningful on S, we require S to be a log canonical centre
of some pair (X,A’) such that the rings R(X,Kx +A) and R(X,Kx + A’) share a common
truncation.

Second, even if the restricted algebra were finitely generated, the same might not be
obvious for the kernel of the restriction map. So far this seems to have been the greatest
conceptual issue in attempts to prove the finite generation by the plan just outlined.

Third, the natural strategy is to use the Hacon-M°®Kernan extension theorem, and hence
we must be able to ensure that S does not belong to the stable base locus of Ky + 4.

The idea to resolve the kernel issue is to view R(X,Kx +A) as a subalgebra of a much
bigger algebra containing generators of the kernel by construction. The new algebra is
graded by a monoid whose rank corresponds roughly to the number of components of A
and of an effective divisor D ~g Kx +A. A basic example which models the general lines
of the proof in §10 is presented in Lemma A.2.

It is natural to try and restrict to a component of A, the issue of course being that (X, A)
does not have log canonical centres. Therefore I allow restrictions to components of some
effective divisor D ~qg Kx + A, and a tie-breaking-like technique allows me to create log
canonical centres. Algebras encountered this way are, in effect, plt algebras, and their
restriction is handled in §7. This is technically the most involved part of the proof.

Since the algebras we consider are of higher rank, not all divisors will have the same
log canonical centres. | therefore restrict to available centres, and lift generators from
algebras that live on different divisors. Since the restrictions will also be algebras of
higher rank, the induction process must start from them. The contents of this paper can
be summarised in the following result.

Theorem 1.2. Let X be a projective variety, and let D; = kj (Kx +4j +A) € Div(X), where
A is an ample Q-divisor and (X,A;+A) is a kit pair for i =1,...,¢ . Then the adjoint
ring R(X;Dy,...,Dy) is finitely generated.

Theorem 1.1 is a corollary to the previous theorem. Techniques of the MMP were used
to prove Theorem 1.1 in the seminal paper [BCHMOG6], and also in the recent preprint
[BP09]. A proof of finite generation of the canonical ring of general type by analytic
methods is announced in [Siu06].

In the appendix | give a very short history of Mori theory, and also outline a new
approach which aims to turn the conventional thinking about classification on its head.
Finite generation comes at the beginning of the theory and all main results of the Minimal
Model Program should be derived from it. In light of this new viewpoint, it is my hope
that the techniques of this paper could be adapted to handle finite generation in the case
of log canonical singularities and the abundance conjecture.

Acknowledgements. | am indebted to my PhD supervisor Alessio Corti whose initial
insight that higher rank algebras are a natural setting for the finite generation funda-
mentally shaped the way | think about the problem. I would like to express my grati-
tude for his encouragement, support and continuous inspiration. | am very grateful to
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C. Hacon for suggesting that methods from [Hac08] might be useful in the context of
finite generation of the restricted algebra, and to M. Paun for numerous conversations
about the questions surrounding non-vanishing and finite generation. Many thanks to
D. Abramovich, S. Boucksom, P. Cascini, J.-P. Demailly, S. Druel, O. Fujino, A.-S.
Kaloghiros, C. Maclean, J. M®Kernan and M. Popa for useful comments, and to M. Reid
whose suggestions improved the organisation of the paper.

2. NOTATION AND CONVENTIONS

Unless stated otherwise, varieties in this paper are projective and normal over C. How-
ever, all results hold when X is, instead of being projective, assumed to be projective
over an affine variety Z. The group of Weil, respectively Cartier, divisors on a variety X
is denoted by WDiv(X), respectively Div(X). Subscripts denote the rings in which the
coefficients are taken.

We say an ample Q-divisor A on a variety X is general if there is a sufficiently divisible
positive integer k such that kA is very ample and kA is a general section of |kA|. In
particular we can assume that for some k > 0, kA is a smooth divisor on X. In practice,
we fix k in advance, and generality is most often needed to ensure that A does not make
singularities of pairs worse.

For any two divisors P = § piEj and Q = 5 giEj on X set

PAQ =% min{p;,qi}E;.

For the definition and basic properties of multiplier ideals used in this paper see [HMO08].
The sets of non-negative (respectively non-positive) rational and real numbers are de-
noted by Q. and R, (respectively Q_ and R_), and similarly for Z-o and R~.

b-Divisors. | use basic properties of b-divisors, see [Cor07]. The cone of mobile b-
divisors on X is denoted by Mob(X).

Definition 2.1. Let (X,A) be a log pair. For a model f:Y — X we can write uniquely
Ky 4+ By = f*(Kx +A) +Ey,

where By and Ey are effective with no common components and Ey is f-exceptional. The
boundary b-divisor B(X,A) is given by B(X,A)y = By for every model Y — X.

Lemma 2.2. If (X,A) is a log pair, then the b-divisor B(X,A) is well-defined.

Proof. Letg: Y’ — X be a model such that there is a proper birational morphismh: Y’ —
Y. Pushing forward Ky + By = g*(Kx +A) 4+ Eyr via h, yields

Ky +h.By: = *(Kx +A) +h.Eyr,
and thus h,By: = By since h,By, and h,Ey: have no common components. O

If {D} denotes the fractional part of a divisor D, we have:
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Lemma 2.3. Let (X,A) be a log canonical pair. There exists a log resolution Y — X such
that the components of {B(X,A)y} are disjoint.

Proof. See [KM98, 2.36] or [HMO5, 6.7]. O

Convex geometry. If . = Ne; is a submonoid of N", | denote ./ = 5 Q,.¢j and .7 =
y Ryei. Amonoid . ¢ N" is saturated if . = .2 NN".

If . =3 ,Nejand Ky,...,Kn are positive integers, the submonoid .’ = 3 ; Nkie;
is called a truncation of .. If ky = --- = kn = K, | denote .7(¥) := 5" | Nkej, and this
truncation does not depend on a choice of generators of ..

A submonoid . = ¥ Ne; of N" (respectively a cone 4 = S R e in R") is called sim-
plicial if its generators e; are linearly independent in R", and the e; form a basis of .7
(respectively 7).

I often use without explicit mention that if A : .#Z — . is an additive surjective map
between finitely generated saturated monoids, and if & is a rational polyhedral cone in
&, then A~H(SNE) = .4 NATL(E). In particular, if .# and .7 are saturated, the
inverse image of a saturated finitely generated submonoid of .7 is a saturated finitely
generated submonoid of ..

For a polytope &2 C R", | denote g = Z NQ". A polytope is rational if it is the
convex hull of finitely many rational points.

If 2 C R" is a convex set, then R;% will denote the set {rb:r e R.,be #£}. In
particular, if Z is a rational polytope, R .4 is a rational polyhedral cone. The dimension
of the rational polytope &7, denoted dim &7, is the dimension of the smallest rational
affine space containing &.

Let ¥ C N" be a finitely generated monoid, ¢ € {.,.%q, &} and V an R-vector
space. A function f: ¥ —V is: positively homogeneous if f(Ax) =A f(x) forx € €,A >
0; superadditive if f(x) + f(y) < f(x+y) forx,y € €; and superlinear if A f(x)+uf(y) <
f(Ax+ uy) for x,y € S&,A,u € Ry. Similarly for additive, subadditive, sublinear. It
is piecewise additive if there is a finite polyhedral decomposition 4 = |J%; such that
flzn is additive for every i; additionally, if each % is a rational cone, it is rationally
piecewise additive. Similarly for (rationally) piecewise linear. Assume furthermore that f
is linear on ¢ and dim% = n. The linear extension of f to R" is the unique linear function
¢:R"—V such that £, = f.

In this paper the relative interior of a cone ¥ = Y R ej C R", denoted by relint#, is
the topological interior of & in the space S Rej union the origin. If dim¢ = n, we instead
call it the interior of ¥ and denote it by int%. The boundary of a closed set & is denoted
by d2. If anorm |- || on R" is given, then for x € R" and for any r > 0, the closed
ball of radius r with centre at x is denoted by B(x,r). Unless otherwise stated, the norm
considered is always the sup-norm || - ||, and note that then B(x,r) is a hypercube in the
Euclidean norm.
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Asymptotic invariants. The standard references on asymptotic invariants arising from
linear series are [Nak04, ELM™06].

Definition 2.4. Let X be a variety and D € WDiv(X)g. For k € {Z,Q,RR}, define
ID|x = {C € WDiv(X)k:C >0,C ~y D}.

If T isaprime divisor on X such that T ¢ Fix|D|, then |D|t denotes the image of the linear
system |D| under restriction to T. The stable base locus of D is B(D) = Nc¢pj, SUppC if
|D|r # 0, otherwise we set B(D) = X. The diminished base locusisB_(D) =Jg-oB(D+
€A) for an ample divisor A; this definition does not depend on a choice of A. In particular
B_(D) c B(D).

We denote WDiv(X)¥=0 = {D € WDiv(X) : |D|r # 0}, and similarly for Div(X)x=0
and for versions of these sets with subscripts Q and R. Observe that when D € WDiv(X),
the condition |D|g # 0 is equivalent to k (X,D) > 0 by Lemma 2.8 below, where k is the
litaka dimension.

It is elementary that B(D; + D) € B(D1) UB(D3) for D1,D2 € WDiv(X)g. In other
words, the set {D € WDiv(X)g : x ¢ B(D)} is convex for every pointx € X. By [BCHMO6,
3.5.3], B(D) = Nce |, SuppC when D is a Q-divisor, which is the standard definition of
the stable base locus.

Definition 2.5. Let Z be a closed subvariety of a smooth variety X and let D € Div(X)
The asymptotic order of vanishing of D along Z is
ordz ||D|| = inf{multzC : C € |D|r}.

In the case of rational divisors, the infimum above can be taken over rational divisors,
see Lemma 2.8 below. More generally, one can consider any discrete valuation v of k(X)
and define

k>0
R

v||D|| =inf{v(C):C € |D|g}
for an effective Q-divisor D. Then [ELM™06] shows that v||D|| = v||E|| if D and E
are numerically equivalent big divisors, and that v extends to a sublinear function on

Big(X).

Remark 2.6. When X is projective, Nakayama [Nak04] defines a function oz : Big(X) —
R, by

0z(D) = Igiﬂ)mrdz ID+ €A

for any ample R-divisor A, and shows that it agrees with ordz || - || on big classes. Analytic
properties of these invariants were studied in [Bou04].

We can define the restricted version of the invariant introduced.

Definition 2.7. Let S be a smooth divisor on a smooth variety X and let D € Div(X)H“g20

be such that S ¢ B(D). Let P be a closed subvariety of S. The restricted asymptotic order
of vanishing of |D|s along P is

ordp [|D||s= inf{multpC/5: C € |D|g,S ¢ SuppC}.
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Lemma 2.8. Let X be a smooth variety, D € Div(X)&20 and let D’ > 0 be an R-divisor
such that D ~g D’. Then for every £ > 0 there is a Q-divisor D” > 0 such that D ~g D",
SuppD’ = SuppD” and ||D' — D”|| < €. In particular, if S C X is a smooth divisor such

that S ¢ B(D), then for every closed subvariety P C S we have
ordp [|D||s= inf{imultpC5: C € |D|q, S Z SuppC}.

Proof. LetD’ = D-l—zip:l ri(f;) forri e Rand f; e k(X). Let Fq,..., Ry be the components
of D and of all (fj), and assume that multg; D’ = 0 for j =1,...,¢ and mult, D’ > 0
for j=¢+1,...,N. Let (fi) = 3[L; ¢i;F; for all iand D = 3™, &;Fj. Then we have
0j + zip:l gijri=0for j=1,...,¢. Let # C RP be the space of solutions of the system
sP  ¢ijxi=—9j for j=1,...,L. Then ¢ is a rational affine subspace and (ry,...,rp) €
J, thus for 0 < n < 1 there is a rational point (s1,...,Sp) € J# with ||s; —ri|| < n for
all i. Therefore for n sufficiently small, setting D” = D + Zipzl si(fi) we have the desired
properties. O

Remark 2.9. Similarly as in Remark 2.6, [Hac08] introduces a function op|| - ||s: ¢~ —
R, by
op|[Dlls= EwOVdP ID+€Als

for any ample R-divisor A, where ¥ C Big(X) is the set of classes of divisors D such
that S ¢ B_(D). Then one can define a formal sum Ng||D||s = S op||D||s- P over all
prime divisors P on S. If S ¢ B(D), then for every gy > 0 we have limg ¢, 0p||D + €A|[s=
ordp ||D + €A||s for any ample divisor A on X similarly as in [Nak04, 2.1.1].

In this paper | need a few basic properties cf. [Hac08].
Lemma 2.10. Let S be a smooth divisor on a smooth projective variety X and let P be a
closed subvariety of S.

(1) LetD € Div(X)H“Q20 be such that S ¢ B(D). If A is an ample R-divisor on X, then
ordp ||D +Al/s < ordp ||D||s, and in particular op||D||s < ordp |D||s.

(2) Let D be a pseudo-effective R-divisor on X such that S ¢ B_(D). If Apis a
sequence of ample R-divisors on X such that lim ||Ar[| =0, then lim ordp ||D+
Aml|s= op||D]|s.

(3) Let D be a pseudo-effective Q-divisor on X such that gp||D||s= 0. If Ais an ample
Q-divisor on X, then there is a positive integer | such that multp Fix|I(D+A)|s =
0.

Proof. Statement (1) is trivial. The proof of (2) is standard: fix an ample divisor A on X,
and let 0 < € < 1. For m > 0 the divisor eA — A, is ample, and so by (1) we have

ordp ||D + €A||s=ordp ||D+Am+ (EA—Am)||s < ordp ||D + An||s.
Lettingm — oo, and then € | 0 we obtain
op|[Dlls < lim ordp||D + Amlls,
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and similarly for the opposite inequality.
For (3), first we have ordp ||D + 3A||s= 0. Setn = dimX, let H be a very ample divisor

on X and fix a positive integer | such that H' = 'QA — (Kx +S) —(n+1)H is very ample.
LetA~qg D+ %A be a Q-divisor such that S ¢ SuppA and multpAjg < 1/1. We have

H'(X, Ans(KstHig+(N+1)Hs+1A5+mHg)) =0

for m > —n by Nadel vanishing. Since [(D+A) ~g Kx +S+H’+ (n+1)H +1A, the sheaf
Sins(1(D+A)) is globally generated by [HMO8, 5.7] and its sections lift to HO(X,I(D+
A)) by [HMO8, 4.4(3)]. Since multp(14s) < 1, /mls does not vanish along P and so
multp Fix [I(D+A)|s=0. O]

Remark 2.11. Analogously one can prove that if D is a pseudo-effective R-divisor such
that oz||D|| = 0 for a closed subvariety of Z of X, thenZ ¢ B_(D). Further, let f: Y — X
be a log resolution and denote Z’ = f1Z. Then | claim oz| f*D|| = 0. To prove this,
we have first that Z ¢ B(D + €A) for an ample divisor A and for any € > 0. Therefore
Z' ¢ B(f*D+¢&f*A), and thus oz/|| f*D + e f*A|| = ordz || f*D + e f*A|| = 0. But then

o7 ||fD|| =limoz || D +ef*A| =0
&

by [Nak04, 2.1.4(2)].

Convex sets in WDiv(X)g. Let X be a variety and let V be a finite dimensional affine
subspace of WDiv(X)g. Fix an ample Q-divisor A and a prime divisor G on X, and define
Ly ={P eV :Kx+®islog canonical},
v aA=1{P e A : Kx+ D+ Ais pseudo-effective},
Bip={Pe K :G¢BKx+P+A)},
Boa={Pe LK multg®=1,G ¢ B(Kx +P+A)}.

If V is a rational affine subspace, the set %, is a rational polytope by [BCHMO6, 3.7.2].
Similarly as in Lemma 5.8 below, one can prove that Theorem 1.2 implies that then also
&.a BE pand BSR! are rational polytopes.

3. OUTLINE OF THE INDUCTION

As part of the induction, I will prove the following three theorems.

Theorem A. Let X be a smooth projective variety, and for i = 1,...,¢ let D; = kj(Kx +
A +A) € Div(X), where A is an ample Q-divisor and (X,A; +A) is a log smooth log
canonical pair with |D;| # 0. Then the adjoint ring R(X; Dy, ...,Dy) is finitely generated.

Theorem B. Let X be a smooth projective variety, let B be a simple normal crossings
divisor and let A be a general ample Q-divisor on X. Let V C Div(X)g be the vector
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space spanned by the components of B. Then for any component G of B, the set ,@\‘,3;1 IS
a rational polytope, and we have ’

93\(2?1 ={Pc X multc® =1, og||Kx + P+ A| =0}.

Theorem C. Let X be a smooth projective variety, let B be a simple normal crossings
divisor and let A be a general ample Q-divisor on X. LetV C Div(X)g be the vector
space spanned by the components of B. Then the set & 4 is a rational polytope, and we
have

éaV7A: {CD e A |Kx—|—q3—|—A‘R #* (D}

Let me give an outline of the paper, where e.g. “Theorem Ap” stands for “Theorem A
in dimension n.”

Sections 4 and 5 develop tools to deal with algebras of higher rank and to test whether
functions are piecewise linear. Section 6 contains results from Diophantine approximation
which will be necessary in Sections 7, 8 and 9.

In §8 | prove that Theorems A,_; and C,,_; imply Theorem By, and this part of the
proof uses techniques from §7.

In §9 | prove that Theorems A,_1, B and C,,_1 imply Theorem C,, which is essentially
done in [Hac08]. Another proof of Theorem C uses the non-vanishing result from [Pau08]
whose proof is by analytic tools, and also avoids the MMP.

Finally, Sections 7 and 10 contain the proof that Theorems A,_1, B, and C,_1 imply
Theorem Ap. Section 7 is technically the most difficult part of the proof, whereas §10
contains the main new idea on which the whole paper is based.

At the end of this section, let me sketch the proofs of Theorems A, B and C when X is a
curve of genus g. Since by Riemann-Roch the condition that a divisor E on X is pseudo-
effective is equivalent to degE > 0, and this condition is linear on the coefficients, this
proves Theorem C. For Theorem A, when g > 1 we have that every divisor D; is ample,
and when g = 0, since degD; > 0 we have that D; is basepoint free, so the statement
follows from [HKOQO, 2.8]. Furthermore, this shows that every divisor of the form Ky +
® -+ A is semiample, so @&A = &,a and Theorem B follows.

4. CONVEX GEOMETRY

Results of this section will be used in the rest of the paper to study relations between su-
peradditive and superlinear functions, and to test their piecewise linearity. The following
proposition can be found in [HUL93] and | add the proof for completeness.

Proposition 4.1. Let ¢ be a cone in R" and let f: ¥ — R be a concave function. Then f
is locally Lipschitz continuous on the topological interior of ¢ with respect to any norm
I-|lon R

In particular, let ¢ be a rational polyhedral cone and assume a function g: ¢ — Q is
superadditive and satisfies g(Ax) = Ag(x) for all x € g and all A € Q.. Then g extends
to a unique superlinear function on %
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Proof. Since f is locally Lipschitz if and only if —f is locally Lipschitz, we can assume
f is convex. FiX X = (X1,...,Xn) € int%, and let A= {(y1,...,yn) € R} : Sy <1} Itis
easy to check that translations of the domain do not affect the result, so we may assume
X €intA Cinté.

First, let us prove that f is locally bounded above around x. Let {e;} be the standard
basis in R" and set M = max{f(0), f(e1),...,f(en)}. Ify=1(y1,...,yn) €A and yg =
1-35yi >0, then

f(y) = f(zyiei-H/O‘O) <3 vif(e) +yof(0) <M.

Now choose & such that B(x,20) C intA. Again by translating the domain and composing
f with a linear function we may assume that x = 0 and f(0) =0. Then for all y € B(0,20)
we have

—f(y) = —f(y) +2(0) < —f(y) + f(y) + f(-y) = f(-y) <M,
so |f| <M on B(0,29).
SetL=2M/&and fixu,v € B(0,8). Setar = %|lv—u andw=v+1(v—u) € B(0,29)
so that v = z2;w+ z27u. Then by convexity,

f(v) — f(u) < GLHf(W)—I—O,%lf(U)— f(u)
= 29 (f(w) — f(u)) <2Ma = L|jv—ul,

and similarly f(u) — f(v) <L|ju—v]|, which proves the first claim.

For the second one, observe that the sup-norm || - ||, takes values in Q on %g. The proof
above applied to the interior of ¢ and to the relative interiors of the faces of ¢ shows that
g is locally Lipschitz, and therefore extends to a unique superlinear function on the whole
. O

The following result is classically referred to as Gordan’s lemma, and | often use it
without explicit mention.

Lemma 4.2. Let . C N be a finitely generated monoid and let ¥ C R" be a rational
polyhedral cone. Then the monoid . N % is finitely generated.

Proof. Assume first that dim% =r. Let /1,...,¢m be linear functions on R" with inte-
gral coefficients such that € = N",{z € R" : 4i(z) > 0} and define . = . and . =
A_1n{zeR" :4(z) >0} fori=1,...,m; observe that ¥ N¢ = S, Assuming by
induction that . _; is finitely generated, by [Swa92, Theorem 4.4] we have that .¥] is
finitely generated.

Now assume dim% < r and let 27 be a rational hyperplane containing %". Let ¢ be
a linear function with integral coefficients such that .7# = ker(¢). From the first part of
the proof applied to the functions ¢ and —¢ we have that the monoid . N 7 is finitely
generated. Now we proceed by descending inductionon r. O
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The next lemma will turn out to be indispensable and it shows that it is enough to check
additivity of a superadditive map at one point only.

Lemma 4.3. Let . = 3" ; Nej be a monoid and let f: . — G be a superadditive map
to a monoid G (respectively let f: .Yk — V be a superlinear map to a cone V). Assume
that there is a point sp = 5 siej € . with all s; > 0 such that f(sp) = 5 si f(ej) and that
f(ksp) = Kf(sp) for every positive integer k (respectively assume that there is a point
so = Y siei € g with all s; > 0 such that f(sp) = S sif(ej)). Then the map f is additive
(respectively linear).

Proof. I will prove the lemma when f is superadditive, the other claim is proved analo-
gously. For p =3 piej € .7, let ko be a positive integer such that kgsj > p;j for all i. Then
we have

ZKoSi f(ei) = kof(so) = f(koSo) > f(p)+ Z f ((kosi — pi)ei)

> pif(e) + (Kosi—pi)f(e) = Kosif(ei).

Therefore all inequalities are equalities and f(p) = S pi f(ei). O
Now we are ready to prove the main result of this section.

Lemma4.4. Let f be a superlinear function on a polyhedral cone €  R"+! with dim% =
r + 1 such that for every 2-plane H ¢ R"*? the function fiune is piecewise linear. Then
f is piecewise linear.

Proof. | will prove the lemma by induction on r. In the proof, || - || denotes the standard
Euclidean norm and S" c R+ is the unit sphere.

Step 1. Fixaray R C €. In this step | prove that for any ray R’ C ¢ there is an (r +1)-
dimensional cone %, ;1) C ¢ containing R such that the map f‘cg |s linear and €y 1) N

(R+R') #R.

LetH, D (R—|— R’) be any hyperplane. By induction there is an r-dimensional polyhedral
cone% =3Y_;Riei C H N¥€ containing R such that f|<g is linear and CK( N N(R+R) #
R. Set eo =e;+---+¢e and let P be a 2-plane such that PN H, =R ep. Since f‘pﬂcg
is piecewise linear, there is a point ey 1 € PN% such that f|g, e 1R e, IS linear. Set
Cr+1) = Ry€1+---+Riery1. Then we have

(Ze) = f(ep+ers1) = f(eo)+ f(ery1) = Zf &),

so the map f‘g |s linear by Lemma 4.3. Observe that by choosing e,.1 appropriately
we can ensure that the cone ;1) is contained in either of the half-spaces into which Hy
divides R" 1,

Step 2. Fixaray RC ¢ and let ¢, 1) =R e1+---+Rery1 be any (r+1)-dimensional
cone such that f|<g(r+l) is linear. Let ¢ be the linear extension of f|cgr+l to R™1. Assume
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that for a point h € & we have f|gr n = £|r, n. Then there are real numbers A; such that
h=73 Ajej, and setting e := 5 (14 |Ai|)ei +h = 3 (1 +|Ai| + Aj)ej € € we have

f(e) = ¢( T L+ Al+A)e) = 3 (1+ N[ +X)eCe)
= 3 (L IADEE) + by = 5 1+ A F(ei) + F(h),

so f is linear on the cone ;1) + R h by Lemma 4.3. Therefore the set ¢ = {ze¥:
f(z) =¢(z)} is acone. Let 2 denote its closure and let g be a point in €. Then for every
point p € 2 the function f is piecewise linear, and in particular continuous, on the cone
R, p+R.q. Since f and ¢ agree on int2, this implies that f is linear on R, p+ R, q, SO
% is a closed cone.

Step 3. I claim % has finitely many extremal rays, and thus is polyhedral. Otherwise there
exist extremal rays Ry, for n € NU {0}, such that limp_» Ry = Rw.

Let T D R« be a hyperplane tangent to %. Fix an (r—1)-plane H,_1 C T containing
Re and let H:- ; be the unique 2-plane orthogonal to H;_;. For each n € N consider a

hyperplane Hr(”) generated by H,_1 and Ry, (if R, C H;_1 then we can finish by induction

on the dimension). The set of points Ucn (Sr N Hr{I N Hr(n)) has an accumulation point
Pw on the circle S"MH! |, and let Hr(°°) be the hyperplane generated by H,_1 and Pe;
without loss of generality | can assume all Ry, are on the same side of Hr(°°).

Now by the construction in Step 1, there is an (r 4 1)-dimensional cone %< such that
G Hr(°°) is a face of ¢, fi¢, is linear and 6. intersects hyperplanes Hr(”) forall n>> 0.

In particular Ry, C %% for all n > 0 and (int%w) NE #£0. Letwe (iNt%w) N€ and
let B C int% be a small ball centred at w. Then the set BN % is (r 4+ 1)-dimensional

(otherwise the cone % would be contained in a hyperplane) and thus % N€ isan (r+1)-
dimensional cone. Therefore the linear extension of f¢ coincides with ¢ and thus 6. C

%. Since Rn & int% we must have Rn C 6w Hr(°°), and we finish by induction on the
dimension.

Step 4. Again fix aray R C ¥. By Steps 1 to 3 there is a collection of (r 4 1)-dimensional
polyhedral cones { %4 }acig SUch that R C € C € forevery a € I, foreveryray R' C ¢
there is a € Ir such that ¥ N (R+R’) # R and for every two distinct a, 8 € I the linear
extensions of f,, and f% to R™+1 are different. | will prove that Ir is a finite set.
Arguing by contradiction, assume IR is infinite. For each a € Ir pick x4 € Int%, and
denote 75 = (R+Rixqg)U(—R+RiXq). Let Rq C 7 be the unique ray orthogonal
to R. Let R* be the hyperplane orthogonal to R, and let S" R+ N.#; = {Qq}. The set
{Qq : a € Ir} has an accumulation point Q. Let 7% = (R+R1Qw)U(—R+ R4 Qw),
by relabelling pick a sequence 7 in the set {7, } such that r!Lngan = Qo, and let &, be

the corresponding cones in {%4 }.
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By assumption there is a point y € J%,\R such that f|r, g,y is linear. Let x € R\{0}
and let .72 be any hyperplane such that 7# N (Rx 4+ Ry) = R(x+Y). By induction there
are r-dimensional polyhedral cones 21,..., 2 in # N% such that x+y € 2; for all
i, there is a small r-dimensional ball B C .7 centred at x +y such that B,)N¢" =
BN (L21U---UZ) and the map f| o, is linear for every i. Fix i and let gij be generators
of ;. Then

f(Foi+x+y) =¥ flai)+fx+y) = 3 (@) + 00+ (),

so f is linear on the cone 9, = 9, + Ry x4+ R,y by Lemma 4.3. Therefore if we denote

2= él U---UJ ék, then f|§ is piecewise linear and there is a ball B(r+1) ofradius e <« 1

centred at X +y such that B, 1) N ¢ =B 1) N 2 and X ¢ B(r11)-

Since ||Qn — Q|| < & for n > 0, then considering the subspace generated by R, Qn and
Q.. we obtain that .77, intersects intB; 1) for n > 0. Since 9= U 2;, there is an index io
such that Qio NintB ;) intersects infinitely many . In particular, éio Nint%, # 0 for
infinitely many n and therefore 0@]0 N%n is an (r+ 1)-dimensional cone. Thus for every
such n the linear extensions of f\éio and fi,, to R are the same since they coincide

with the linear extension of f‘g . which is a contradiction and Ig is finite.
IO ©

Step 5. Finally, we have that for every ray R C ¢ the map f|, is linear for a € Ig, and
there is small ball Br centred at RNS" such that BRN%E = BRNUgelr @a- There are
finitely many open sets intBr which cover the compact set S' 1% and therefore we can
choose finitely many cones ¢y with 4 = |J%4. Thus f is piecewise linear. O

5. HIGHER RANK ALGEBRAS

Definition 5.1. Let X be a variety, . a finitely generated submonoid of N', let yu: . —
WDiv(X)¥=0 be an additive map and let Moby,: .% — Mob(X) be the subadditive map
defined by Mob,(s) = Mob(u(s)) for every s € .. The algebra

ROX, u(#)) = P HY(X, Ox(u(s)))
se.

is called the divisorial .”-graded algebra associated to u. The b-divisorial .-graded
algebra associated to u is

R(X,Moby () = @ H(X, Ox(Moby(s))),
se.

and we obviously have R(X,Mob,(.#)) ~ R(X, u(#)). If eq,...,e, are generators of
< and if u(ej) = ki(Kx +4j), where 4 is an effective Q-divisor for every i, the algebra
R(X, u(¥)) is called the adjoint ring associated to p.

Remark 5.2. When . = @/_, Ne; is a simplicial cone, the algebra R(X, u(.#)) is de-
noted also by R(X;pu(e1),...,u(ep)). If " is a finitely generated submonoid of .7,
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R(X,u(s")) is used to denote R(X, y 5 (-#")). If 7 is a submonoid of WDiv(X)k=0
and 1 : .¥ — . is the identity map, R(X,.%) is used to denote R(X,1(.%)).

Remark 5.3. Algebras considered in this paper are algebras of sections when varieties
are smooth. I will occasionally, and without explicit mention, view them as algebras of
rational functions, in particular to be able to write HO(X, D) ~ H%(X,Mob(D)) c k(X).

Assume now that X is smooth, D € Div(X) and that I" is a prime divisor on X. If or is
the global section of &’x (') such that divor =T, from the exact sequence

Po,r

0 — H(X, 0x(D ~T)) = H(X, 6x(D)) = H°(T, (D))
we define resr H(X, 0 (D)) = Im(pp r ). For o € HY(X, &x(D)), denote ojr := pp r (0).
Observe that
) ker(ppr) =HO(X,0x(D—T))-or,

and that resr HO(X, k(D)) = 0 if T  Bs|D|. If D ~ D’ is such that the restriction D?r is
defined, then

resr HO(X, Ox (D)) ~ resr HO(X, 0x(D')) € HY(T", &r (D).
The restriction of R(X, u()) to I is defined as

resr R(X, (7)) = @D resr HO(X, Ox(u(s))).
se.s

This is an .’-graded, not necessarily divisorial algebra.
The following lemma summarises the basic properties of higher rank finite generation.

Lemma 5.4. Let . C N" be a finitely generated monoid and let R = @¢. o~ Rs be an
-graded algebra.

(1) Let.” be atruncation of .. If the .’-graded algebra R" = @ o+ Rs is finitely
generated over Rg, then R is finitely generated over Ry.

(2) Assume furthermore that .# is saturated and let . C . be a finitely gener-
ated saturated submonoid. If R is finitely generated over Ry, then the .”-graded
algebra R” = @4 o~ Rs is finitely generated over Ry.

(3) Let X be a variety and let u: . — WDiv(X)*=? be an additive map. If there
exists a rational polyhedral subdivision . = U!‘ZlAi such that, for each i, the
map Mob, a5 is additive up to truncation, then the algebra R(X, u(-~)) is
finitely generated.

Proof. For (1) it is enough to observe that R is an integral extension of R: if ¥/ = 3 ; Ne;
and ./ = 3!, Nkie;, then for any f € R we have f<1*n ¢ R/,

Claim (2) is [ELM ™06, 4.8].

For (3), denote m = Mob,,. Let {ejj : j € Ii} be a finite set of generators of Aj N
7, and let ki; be positive integers such that m|s,  n;e; is additive for each i. Set

K =Tijkij and ) =5, Nkejj. If 3;;Aijkeij € AN *) for some Ajj € N, then
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S J)\,Je., € AN and thus there are pj € Nsuch that 3  Aijeij = ¥ e, j€ij. Therefore
AN K = 3 jei; NKejj, and this is a truncation of 3 ¢, Nkijjejj; in particular Mz
IS addltlve for each .

I claim the algebra R(X, m(.7(K))) is finitely generated, and thus R(X,m(.#)) is finitely
generated by (1). To that end, let Y — X be a model such that m(ke;j) descend to Y for
all i, j, and lets = ¥ ;o vijkeij € &yn.7 ) for some i and some vjj € N. Then

m(s) = ZJGIi viim Kelj ZJEl vijm Keu Yy = ZJEI vijm (Keij)y:m(s)y,
and thus m(s) descends to Y and
R(X,m(~ ~ P HO(Y,m(s
se.7(K)

For each i consider the free monoid ,Vi( = e, NKejj. Since the divisorial algebra
R(Y,m(.#"))) is finitely generated by [HKO00, 2.8], so is the algebra R(X,m(Ain.#(K)))

by projection. Now the set of generators of all R(X,m(A; N.#(K))) spans R(X, m(.#(¥))).
O]

I will need the next result in the proof of Proposition 5.7 and in §7.

Lemma 5.5. Let X be a variety, let . C N' be a finitely generated monoid and let
f: . — G be a superadditive map to a monoid G which is a subset of WDiv(X) or
Mob(X), such that for every s € . there is a positive integer Is such that fy,s is an
additive map.

Then there is a unique superlinear function f#: .#% — G such that for every s € .
there is a positive integer As with f(Ass) = f¥(Ass). Furthermore, let € be a rational
polyhedral subcone of #&. Then fi«n o is additive up to truncation if and only if fl‘f
linear.

If u: . — Div(X) is an additive map and m = Mob, is such that for every s € ./
there is a positive integer Is such that my,s is an additive map, then we have

@ mé(s) = 1(s) - ¥ (orde u(s)||)E

where the sum runs over all geometric valuations E on X.

Proof. The construction will show that f? is the unique function with the stated properties.
To start with, fix a point s € ./ and let k be a positive integer such that ks € .. Set
f(1xsKS)

IksK
This is well-defined: take another k’ such that k’s € .. Then

fi(s) ==

f(IxslrsKK'S) = 1xsK T (14sK'S) = 15K’ f (1xsKS),

S0 f(IksKS)/IxsK = f(1xsK'S)/1x1sK’.
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Now lets € ., & € Q4 and let A be a positive integer suchthat Aés e . and A¢ € N.

Then
f((1yesA)éS f((1yeAé)S
Fi(8s) = ((1agsA)és) _¢ ((1aesA€)s) _Eth(s),
IresA heshé
so ff is positively homogeneous (with respect to rational scalars). Further, let sq,s, €
o and let k be a positive integer such that f(ks1) = f¥(ks1), f(ksz) = f¥(ksz) and

f(k(s1+52)) = f(K(s1+52)). By superadditivity of f we have
f(ks1)+ f(ks2) < f(k(s1+52)),
so dividing the inequality by k we obtain superadditivity of f%.

Let E be any divisor on X, respectively any geometric valuation E over X, when
G C WDiv(X), respectively G C Mob(X). Consider the function fé given by fé(s) =
multg f#(s). Proposition 4.1 applied to each f,ﬁE shows that f# extends to a superlinear
function on ..

As for the statement on cones, necessity is clear. Now assume f#| is linear and let
©N =3 Nej. Forso=e;+--+enwe have

3) f4(so) = f¥(er) +- -+ f¥(en).

Let u be a positive integer such that f(usg) = f#(uso) and f(ue;) = f#(ue;) for all i.
¢From (3) we obtain

f(uso) = f(pey) +---+ f(pen),
and Lemma 4.3 implies that fﬂ\zNua is additive. O

Definition 5.6. In the context of Lemma 5.5, the function f? is called the straightening of
f.

Proposition 5.7. Let X be a variety, . C N' a finitely generated saturated monoid and
u: .7 — WDiv(X)*=0 an additive map. Let .# be a finitely generated submonoid of .
and assume R(X, u(.#)) is finitely generated. Then R(X,u(.%)) is finitely generated.
Moreover, the map m = Mob, » is piecewise additive up to truncation. In particular,
there is a positive integer p such that Mob,(ips) = iMoby,(ps) for every i € N and every
seZ.

Proof. Denote . = & NN'". By Lemma 5.4(2), R(X, u(.#)) is finitely generated, and
by the proof of [ELM ™06, 4.1], there is a finite rational polyhedral subdivision .#Zr = |J A
such that for every geometric valuation E on X, the map ordg || - || is linear on A; for every
i. Since for every saturated rank 1 submonoid % C .# the algebra R(X, u(%)) is finitely
generated by Lemma 5.4(2), the map m 4 is additive up to truncation by [Cor07, 2.3.53],
and thus there is the well-defined straightening m*: % — Mob(X)g since .#z = Z.
Then equation (2) implies that the map mﬁ|Ai is linear for every i, hence by Lemma 5.5 the
map m is piecewise additive up to truncation. Therefore R(X, u(.%)) is finitely generated
by Lemma 5.4(3). O
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The following lemma shows that finite generation implies certain boundedness on the
convex geometry of boundaries.

Lemma5.8. Let X be a smooth projective variety of dimension n, let B be a simple normal
crossings divisor on X and let A be a general ample Q-divisor. LetV C Div(X)g be the
vector space spanned by the components of B. Assume Theorems A, and C,,. Then for
each prime divisor G on X, the set ,%’\?A is a rational polytope. Furthermore, there exists
a positive integer r such that: ’

(1) for every ® € (.A/)q with the property that no component of @ is in B(Kx +
®+ A), and for every positive integer k such that k(Kx +® -+ A)/r is Cartier, no
component of B is in Fix|k(Kx + ®+A)|,

(2) for every ® € (A/)q with the property that Kx + ® + A is pseudo-effective, and
for every positive integer k such that k(Kx + ®+ A) /r is Cartier, we have |k(Kx +
d+A)| #0.

Proof. Let Kx be a divisor such that Ox(Kx) ~ wx and SuppA ¢ SuppKx, and let A C
Div(X) be the monoid spanned by components of Kx, B and A. Let G be a components of
B. By Theorem C the set & a is a rational polytope, and let Dy, ..., D, be generators of
the finitely generated monoid € = R (Kx +A+&y,a) NA. Since every D; is proportional
to an adjoint bundle, by Theorem A and Lemma 5.4(1) the ring R(X; D1, ..., Dy) is finitely
generated, and thus so is the algebra R(X, %) by projection. By Proposition 5.7 the map
Mob,‘%/\m is additive for some positive integer r, where 1 : A — A is the identity map.

Now (1) and (2) are straightforward. Furthermore, the set & = {Y € € : ordg ||Y]| =0} is
a rational polyhedral cone by the proof of [ELM ™06, 4.1], and R (Kx + A + %’&A) CcO.
Since for every Y € 0gp we have G ¢ B(Y) by Theorem A, this implies &' C R, (Kx +
A+ %’\? ) as extremal rays of ¢ are rational. Therefore %\(,3 A Is arational polytope. [

6. DIOPHANTINE APPROXIMATION
I need a few results from Diophantine approximation theory.

Lemma6.1. Let A C R" be a lattice spanned by rational vectors, and letV = A®z R. Fix
avector v €V and denote X = Nv+ A. Then the closure of X is symmetric with respect
to the origin. Moreover, if ii: V. — V /A is the quotient map, then the closure of 17(X) is a
finite disjoint union of connected components. If v is not contained in any proper rational
affine subspace of V, then X is dense inV.

Proof. 1 am closely following the proof of [BCHMO06, 3.7.6]. Let G be the closure of
r(X). Since G is infinite and V /A is compact, G has an accumulation point. It then
follows that zero is also an accumulation point and that G is a closed subgroup. The con-
nected component Gg of the identity in G is a Lie subgroup of V /A and so by [Bum04,
Theorem 15.2], Go is a torus. Thus Gg = Vo /Ao, where Vg = Ao ®z R is a rational sub-
space of V. Since G/Gy is discrete and compact, it is finite, and it is straightforward that
X is symmetric with respect to the origin. Therefore a translate of v by a rational vector
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is contained in Vj, and so if v is not contained in any proper rational affine subspace of V,
thenVy =V. O

Definition 6.2. Let x € R", let € be a positive real number and let k be a positive integer.
We say that, fori=1,..., p, points (w;j,k,kj,ri) € Q" x Zio x R~ uniformly approximate
X with error ¢ if

(1) kiw;/k is integral for every i,

(2) [|x—wil|| < &/k; for every i,

(3) x=yriwjand yri =1.

The next result is [BCHMO06, 3.7.7].

Lemma 6.3. Letx € R"and letW be the smallest rational affine space containing x. Fix a
positive integer k and a positive real number €. Then there are finitely many (w;, Kk, ki, ri) €
(W NQM) x Z2 , x R~q which uniformly approximate x with error &.

I will need a refinement of this lemma when the approximation is not necessarily hap-
pening in the smallest rational affine space containing a point.

Lemma 6.4. Let x € R", let 0 < £,n < 1 be rational numbers and let k be a positive
integer. Assume that there are wy; € Q" and k; € N such that ||x —wq || < €/k; and kyw; /k
is integral. Then there are r; € R-o, and points (wj,k, ki, ri) € Q" x Zio x Rsp fori=
2,...,m, such that (w;j,k,ki,ri) uniformly approximate x with error g, fori=1,....m.
Furthermore, we can assume that ws, ..., Wy belong to the smallest rational affine space
containing x, and we can write

‘— ¢} Wi+ ko
T kitky Ktk

W2+Ev

with ||€]| < n/(ky +k2).

Proof. Rescaling by k, we can assume that k = 1. Let W be the minimal rational affine
subspace containing x, let ir: R" — R"/Z" be the quotient map and let G be the closure
of the set m(Nx+ Z"). Then by Lemma 6.1 we have 11(—kix) € G and there is ko € N
such that r(kox) is in the connected component of 7(—kyx) in G and ||kox —y|| < n for
some y € R" with ri(y) = m(—kix). Thus there is a point w, € Q" such that kow, € Z",
||kax — kowz || < € and the open segment (wq,w;) intersects W .

Pickt € (0,1) such that wy =tw; + (1 —t)w, € W, and choose, by Lemma 6.3, rational
pointsws, ..., wm € W and positive integers ks, . .., km such that kiw; € Z", ||x —w;|| < £/k;
andx =y ",riw; +rwy withry >0andall rj >0, and ri+ 3" 51 = 1. Thusx =S, riw;
withry =trrand rp = (1 —t)ry.

Finally, observe that the vector y/k, — w, is parallel to the vector x —wy and ||y —
kows || = ||kix —kiwq||. Denote z=x—y/ky. Then

X—w1  Xx—=wp ko
Wy +2)—x  wa—Yy/ky ki’
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>0 k k k k
1 2 1 2
oy — W
ko KTk ket Tk
where || || = |[koz/ (k1 +k2)|| < n/(ki +k2). O

Remark 6.5. Assuming notation from the previous proof, the connected components of G
are precisely the connected components of the closure of the set (|, kW ). Therefore
y/ko €W.

Remark 6.6. Assume A : V — W is a linear map between vector spaces such that A (Vg) C
Wg. Letx €V, and let H CV and H' C W be the smallest rational affine subspaces
containing x and A (x), respectively. Then, by definition, H' ¢ A(H) and H ¢ A~Y(H’),
thusH = A(H).

X wy+ ¢,

w1 + (Wp +2)

7. RESTRICTING PLT ALGEBRAS

In this section | establish one of the technically most difficult steps in the scheme of the
proof, that Theorems An_1, Bn and C,_1 imply Theorem A,. Crucial techniques will be
those developed in [HMO8] and in Sections 4 and 5.

The key result is the following Hacon-MCKernan extension theorem [HMO8, 6.2],
whose proof relies on deep techniques initiated by [Siu98].

Theorem 7.1. Let (X,A =S+ A+ B) be a projective plt pair such that S = |A] is ir-
reducible, A € WDiv(X)g, (X,S) is log smooth, A is a general ample Q-divisor and
(S,Q+Ag) is canonical, where Q = (A —S)|s. Assume S ¢ B(Kx +A4), and let

F :Ihnmjogf%]Fix|m(Kx+A)|g.

If € > 0 is any rational number such that € (Kx +A) +A is ample and if @ is any Q-divisor
on S and k > 0 is any integer such that both kA and k® are Cartier, and QA (1 — £)F <
P < Q, then

k(Ks+Q—®)|+kd C |k(Kx +4)|s.

The immediate consequence is:

Corollary 7.2. Let (X,A =S+ A+ B) be a projective plt pair such that S = |A] is ir-
reducible, A € WDiv(X)g, (X,S) is log smooth, A is a general ample Q-divisor and
(S,Q+Ag) is canonical, where Q = (A —S)|s. Assume S ¢ B(Kx +4), and let &y =
QA rln Fix |m(Kx +A)|s for every m such that mA is Cartier. Then

IM(Ks+Q — ®n)| +mMPpn = [m(Kx +A)s.

The following result will be used several times to test inclusions of linear series. It
Is extracted and copied almost verbatim from the proof of the non-vanishing theorem in
[Hac08], and Step 2 of the proof below first appeared in [Tak06]. Similar techniques in
the analytic setting appeared in [Pau08].
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Proposition 7.3. Let (X,A =S+ A+ B) be a projective plt pair such that S = |A] is
irreducible, A € WDiv(X)q, (X,S) is log smooth, A is a general ample Q-divisor and
(S,Q+Ag) is canonical, where Q = (A—S)s. Let 0 < © < Q be a Q-divisor on S, letk
be a positive integer such that kA and k© are integral, and denote A’ = A/k. Assume that
S ¢ B(Kx +A+A') and that for any | > 0 sufficiently divisible we have

(4) QA FFix|I(Kx +A+A)|s<Q—O.
Then
k(Ks+0)|+k(Q—-0) C |k(Kx +4)|s.

Proof. Step 1. We first prove that there exists an effective divisor H on X not containing
S such that for all sufficiently divisible positive integers m we have

®) IM(Ks+©)|+m(Q—0) + (MmA"+H)s C [m(Kx +A) +mA’ +Hls.

Taking | as in (4) sufficiently divisible, we can assume S ¢ Bs|l(Kx + A+ A")|. Let
f:Y — X bealog resolution of (X,A+A") and of [I(Kx +A+A)|. Let =B(X,A+A")y
and E =Ky +T — f*(Kx +A+A"), and define

= =T —T ALFix|I(Ky +T)].

We have that I(Ky + =) is Cartier, Fix|l(Ky +=)| A= = 0 and Mob(l(Ky + =)) is free.
Since Fix || (Ky + =)| 4+ = has simple normal crossings support, it follows that B(Ky + =)
contains no log canonical centres of (Y,[=]). Let T = 1S, It = (I —T)rand =1 =
(=—=T)t, let m be any positive integer divisible by I and consider a section

g € HY(T,or(m(Kr +Z71))) = HAT, _Zjmky+2r)) (M(KT +Z1))).

By [HMO8, 5.3], there is an ample divisor H’ on Y such that if T € HO(T, &t (H')), then
o - T is in the image of the homomorphism

HO(Y, Gy (m(Ky +2)+H')) — HO(T, o1 (m(Ky + Z) +H')).

Therefore

(6) Im(Kr +=1)[+m(T1 —=1) +Hfr < [m(Ky + ) +H'lr.
We claim that

M Q+Ajg> (fir):Z1 > O+Alg

and so, as (S,Q +Afs) is canonical, we have
IM(Ks+O)| +m((fir).=1 = ©) C [M(Ks+ (fir)=7)| = (fj7)/m(Kr +=7)].

Pushing forward the inclusion (6), we obtain (5) for H = f,H’.
We will now prove the inequality (7) claimed above. We have =t <T't and (fi).lT =
Q+ Afs and so the first inequality follows.
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In order to prove the second inequality, let P be any prime divisor on S and let P’ =
(f‘T)*—lP. Assume that P C Supp Q, and thus P’ C Suppl't. Then there is a component Q
of the support of " such that

multp FiX||(KY + r)|'|' = muItQ FiX||(KY + F)|

and multp 't = multg ™. Therefore

multe =1 = multp Tt — min{multp M, multe § Fix [I(Ky +T)|7}.

Notice that multe 't = multp(Q +A"S) and since E 7 is exceptional, we have that

multp Fix [I(Ky + )|t = multp Fix || (Kx + A+ A')|s.
Therefore (fi1).=7 =Q +ATS— QA §Fix|l(Kx +A+A)|s. The inequality now follows
from (4).

Step 2. Therefore, for any X € |k(Ks+ ©)| and any m > 0 sufficiently divisible, we may
choose a divisor G € |m(Kx +A) +mA’ 4-H| such that Gig = = +m(Q — ©) + (MA’ +
H)s. If we define A = LG+ A—S— A, then
K(Kx +4) ~g Kx +S+A+A — K1y
where A’ — k;mlH is ample as m > 0. By [HMO08, 4.4(3)], we have a surjective homomor-
phism
HO(X, Zsa(k(Kx +4))) — H(S, Zag(k(Kx +4))).
Since (S, Q) is canonical, (S,Q+ ";mlH‘S) is kltas m > 0, and therefore /Q+";mlH|s = Us.
Since
Ns— (Z+k(Q—0)) = ElGs+Q - As— (Z+k(Q-0)) < Q+ElHg,
then by [HMO08, 4.3(3)] we have 5 xa-e) C ZA s and SO
2+k(Q—-0) € k(Kx +4)]s,
which finishes the proof. O
The main result of this section is the following.

Theorem 7.4. Let X be a smooth variety of dimension n, S a smooth prime divisor and
A a general ample Q-divisor on X. Fori=1,...,¢ let Dj = ki(Kx + 4j), where (X,A; =
S+ B +A) is a log smooth plt pair with |A;| =S and |Dj| # 0. Assume Theorems Ap_1,
Bn and C,,_1. Then the algebra ressR(X;Dy,...,Dy) is finitely generated.

Proof. Step 1. I first show that we can assume S ¢ Fix|D;| for all i.

To prove this, let Kx be a divisor with Ox(Kx) ~ wx and SuppA ¢ SuppKy, and
let A be the monoid in Div(X) generated by the components of Kx and ¥ A;. Denote
¢s={PeNr:S¢B(P)}. By Theorem B, the set &/ = $;R,.Dj N %s is a rational
polyhedral cone.
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The monoid zle]R{JrDi NA is finitely generated and let Py, ..., Py be its generators
with P = D; for i = 1,...,¢. Let pu: @7 ,Nej — Div(X) be an additive map from a
simplicial monoid such that p(ej) = P. Therefore ¥ = u= (& NA)N@_; Nej is a
finitely generated monoid. Let hy, ..., hy be generators of ., and observe that p(h;) is a
multiple of an adjoint bundle for every i.

Since ressHO(X, u(s)) = 0 for every s € (@le Nej)\., we have that the restricted
algebra ressR(X, u(6D!_; Nej)) = ressR(X; Dy, ..., D) is finitely generated if and only if
ressR(X, u()) is. Since we have the diagram

R(X;u(hy),...,u(hm))

R(X, u())

reSSR(X;“(hl)a ER) I-l(hm)) - reSSR(Xau(y))

where the horizontal maps are natural projections and the vertical maps are restrictions to
S, it is enough to prove that the restricted algebra ressR(X; p(hy),. .., t(hm)) is finitely
generated. By passing to a truncation, | can assume further that S ¢ Fix|u(h;)| for i =
1 m.

Step 2. Therefore | can assume . = @/_; Ne; and p(e;) = D; for every i. For s =
yi_itiei € S and ts= F{_; tikj, denote As = F{_; tikiAj /ts and Qs = (As—S) s. Observe
that

gee ey

R(X;Dx1,...,Dr) = @ HO(X, to(Kx +As)).
s
In this step | show that we can assume that the pair (S,Qs+Ag) is terminal for every
S¢& YQ.
Let S R = U;j SuppBi, and denote B; = B(X,4;) and B = B(X,S+V S F+A), where
v = max; k({multg, Bi}. By Lemma 2.3 there is a log resolution f:Y — X such that the
components of {By } do not intersect, and denote D; = ki (Ky + Bjy). Observe that

(8) R(X;Dy,...,D;) ~R(Y;D},...,D)).

Since Bj < v 5 R, by comparing discrepancies we see that the components of {Biy } do
not intersect for every i, and notice that f*A = f;lA < By since A is general. Denote
AL = Zleti kiBiy/ts. Let H be a small effective f-exceptional Q-divisor such that A" ~q
f*A —H is a general ample Q-divisor, and let T = f_1S. Then, setting Ws = AL, — f*A—
T+H>0and Qg=Wyr +A"T, the pair (T, Q’S+A"T) is terminal and Ky +T +Ws+A" ~q
Ky + AL Now replace X by Y, Shy T, Asby T +Ws+ A" and Qs by QL.

Step 3. For every s € ., denote Fs = é Fix|ts(Kx +As)|sand FsLi = Iinr]n inf Fns. Define the
maps ©: . — Div(S)g and ©*: .# — Div(S)g by

O(s) = Qs— QsAFs,  ©F(s) = Qs— Qs AFL
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Then, denoting ©s = ©(s) and @5 = ©f(s), we have
(9) ressR(X; Dy, ..., D¢) =~ @ H(S,ts(Ks+ Os))

s
by Corollary 7.2. Furthermore, for s € . let € > 0 be a rational number such that £(Kx +
As) + A is ample. Then by Theorem 7.1 we have
for any @ and ks such that kA, ks®s € Div(X) and Qs A (1 — kis)Fs < Pg < Qg Then
similarly as in the proof of [HMO08, 7.1], by Lemma 5.8 we have that Qg A F¢ is rational
and
(10) ressR(X, ki(Kx +As)) ~ R(S, Ki(Ks+ ©%)),

where ké@i and kgAS are both Cartier. Note also, by the same proof, that G ¢ B(Ks-+ @i)
for every component G of ei. In particular, @képs = @kgs = @i for every p € N.

Define maps A : . — Div(S)g and A%: . — Div(S)q by
A(s) =ts(Ks+Os),  Af(s) =ts(Ks+©%).

Then by Lemma 5.5, A% extends to .#&. By Theorem 7.6 below, there is a finite ratio-
nal polyhedral subdivision .7 = |J%; such that A% is linear on each . In particular,
there is a sufficiently divisible positive integer k such that kA(s) is Cartier for every
s €., and thus kA%(s) = A(ks) for every s € .#. Therefore the restriction of A to

5”-('() is additive, V\_/here S =SNG. If sil, ... ,siz are generators of x(K), then the ring

R(S;A(s}),...,A(sh)) is finitely generated by Theorem A and Lemma 5.4(1), and so is

the algebra R(S,A(ﬁﬂi('{))) by projection. Hence the algebra @ H%(S,A(s)) is finitely
ses
generated, and this together with (9) finishes the proof. O

It remains to prove that the map A is rationally piecewise linear, and this is done in
Theorem 7.6 below. The first step towards this goal is the following result.

Theorem 7.5. For any s,t € %k we have

lim©F

— o
€10 s+s(tfs)_es'

Proof. Step 1. First | prove that ©F = @i, where
0 = Qs— QsANg|[Kx +As]|s,

cf. Remark 2.9. I am closely following the argument from the proof of the non-vanishing
theorem in [Hac08]. Let r be a positive integer as in Lemma 5.8, let ¢ < 1 be the smallest
positive coefficient of Qs — ©YF if it exists, and set ¢ = 1 otherwise. LetV C Div(X)g and
W C Div(S)r be the smallest rational affine spaces containing As and ©F respectively.
Let 0 < n < 1 be a rational number such that n(Kx + As) + %A is ample, and such that
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if & € V with [|A" — Ag|| < 1, then &' — A+ ZA is ample. Then by Lemma 6.3 there are
rational points (W;,©;) € V x W, integers p; > 0 and r; € R~ such that (W;,©;,r, pi,ri)
uniformly approximate (As,©3J) € V x W with error ¢n /2. Observe that then ©; < Q; =
(Wi—9)s

Step 2. Set Aj = A/pi. In this step | prove

(11) [P (Ks+Gi)| + pi(Qi — ;) C [pi(Kx +Wi)[s.

First observe that since S ¢ B(Kx +As) and W; — As+ A; is ample, we have S ¢ B(Kx +
Wi + Aj), and thus by Proposition 7.3 it is enough to show that for any component P C
Supp Qs, and for any | > 0 sufficiently divisible, we have

(12) multe(Qi A 1 Fix [I(Kx + Wi+ Ai)|s) < multp(Qi — ©)).

If @ =1, (12) follows immediately from Lemma 2.10. Now assume 0 < ¢ < 1. Since
|1Qs— Qil| < @n/2p;i and ||©F — G| < @n/2pi, it suffices to show that

multp(Qi A Fix I (Kx + Wi +Ai)[s) < (1 - 1) multe(Qs— ©9).

Let & > n/pi be a rational number such that 6(Kx + ;) + A is ample. Since
Kx + Wi +Ai = (1— ) (Kx + Wi + 3Ai) + (3(Kx + W) + 352A)),
we have
ordp [|Kx + Wi + Aills < (1— &) ordp [[Kx + Wi + 3Aills,
and thus
multp 1 Fix [I(Kx + Wi +Ai)[s < (1 - 1) op|[Kx +Wills

for | sufficiently divisible, cf. Lemma 2.10.

Step 3. Let Ay be ample divisors with SuppAm C Supp(As — S) such that As + An, are
Q-divisors and M |Am|| = 0. Denote A = As+Am, Qm = (Am—S);sand

for m > 0. Observe that ©F = M ©F, by Lemma 2.10(2), and note that

Ng||Kx +Am||ls= ZordP |IKx +Am||s- P

for all prime divisors P on S for all m, cf. Remark 2.9. But then as in Step 3 of the proof of
Theorem 7.4, no component of O, is in B(Ks+ ©f,), and thus, by Lemma 5.8 and since
03, > ¢ for every m, no component of ©F is in B(Ks+ ©7). Since p;©®; /r is Cartier and
©; € W, by (11) we have

Qi — 6 > Qj A LFix|pi(Kx + Wi)|s > Qi — €],
and so G)iLi > ©;, where

O =0 —Q Almgf%Fix\m(Kx+Wi)|s-
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Let P be a prime divisor on S. If multp©®J = 0, then multpei = 0 since ©¢ > @i by

Lemma 2.10. Otherwise multp®; > 0 for all i and thus multp®§j > 0. Therefore by
concavity we have

multpeg > Z ri multp@iLi > Z rimultp ©; = multp @Y,
proving the claim from Step 1.

Step 4. Now let C be an ample Q-divisor such that A; — As+ C is ample. Then by the
claim from Step 1 and by Lemma 2.10,

Qs— 0L = QsAlsi[Bl(

(& —Ds+C)||s-P)
< QsAlgi[Q (S ordp [|[Kx +As+ &(A — As)||s- P) < Qs— 6,

where the last inequality follows from convexity. Therefore all inequalities are equalities,
and this completes the proof. O

Recall that .¥7 = @ _1 Nej. Let Z be a prime divisor on S and let .77 be the closure in
S of the set {s € & : multz @i > 0}. Then 4% is a closed cone. Let )\ﬁ. Y= — R be
the function given by Ag(s) = multz A%(s), and similarly for @ﬁz.

Theorem 7.6. For every prime divisor Z on S, the map )\§ is rationally piecewise linear.
Therefore, A? is rationally piecewise linear.

Proof. Step 1. Let Gy,...,Gy be prime divisors on X different from S and SuppA such
that Supp(As—S —A) C T Gj for every s € .. Let v =max{multg As:s € .7,i =

.,W} <1,and let 0 < n < 1—v be arational number such that A—n § G; is ample.
Let A" ~g A—n S G; be a general ample Q-divisor. Define A;=As—A+n 3 Gi+A' >0,
and observe that Ag ~q As, [Ag] = S and (S, (As—S))s) is terminal.

Define the map x : .7 — Div(X) by x(s) = kts(Kx +Ag), for k sufficiently divisible.
Then as before, we can construct maps ©°: . — DIV(S)R, At R — Div(S)r and
Al %% — R associated to x. By construction, ordz [|AZ/kts||s = ordz [|Aé/ts]|s, and
thus multy (:)i = mult; Oi-i- n for every s € 4. Let 0252 be the closure in . of the set
{s € S :multz (:)i > 0}, and observe that .#~ is the closure in .7 of the set {s € & :
multz % > n}. Note that mult; &% > n for every s € %> by Theorem 7.5 applied to 2-
planes that intersect .#%.

Step 2. In this step | prove | that there is a rational polyhedral cone .#7 such that %2 C
Mz C L7, and so the map AZ\ .« 1S superlinear.

To that end, I will show that for every point x € .#7 there is a neighbourhood % of x
such that Z Nk C £%, in the sup-norm. Namely, let X1, ...,Xm € & be points different
from x such that x € 5 R x; and B(x, &) N = B(x, &) Ny R, x; for some & > 0. Then by
Theorem 7.5, for each i there exists a pointy; in the segment (x, ;) such that multz é{j,i > 0.
Therefore it is sufficient to take any neighbourhood % of x such that 7 N.7r C S R, ;.
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By compactness, there is a rational number 0 < ¢ < 1 and finitely many rational points
Z1,...,2p € Z7 such that 7 C |JB(z;,&) N.Sr C Z%. The convex hull % of B(z;,¢)
is a rational polytope, and define .77z = Z N .%k&.

Step 3. By Theorem 7.9 below, for any 2-plane H c R the map )\ﬁMZmH is piecewise
linear, and thus )\§|//,Z is piecewise linear by Lemma 4.4.

To prove that )\%V,Z is rationally piecewise linear, we can assume that .#> c R¥ and
dim.#z = k. Let .#7 = |J%m be a finite polyhedral decomposition such that the maps
)\§|<gm are linear and their linear extensions to RK are pairwise different. Let .77 be the
(k —1)-plane which contains a common (k — 1)-dimensional face of cones %; and ¢ and
assume 7 is not rational. One can easily prove by induction on the dimension that a
real vector space cannot be a union of countably many codimension 1 affine subspaces,
and in particular there is a point s € %j N %] such that the minimal affine rational space
containing s has dimension k. Then as in Step 1 of the proof of Theorem 7.9 below

there is a k-dimensional cone % such that s € int% and the map 5\§|Cg~ is linear. But then
the cones €' N%; and € N ¢ are k-dimensional and linear extensions of 5\§|% and 5\§|<gj

coincide since they are equal to the linear extension of 5\§|Cg, a contradiction. Therefore
all (k—1)-dimensional faces of the cones % belong to rational (k — 1)-planes and thus
©m are rational cones._

Therefore the map )\%WZ is rationally piecewise linear, and since .#7 is the closure of
the set {s € .7& : multz éi > n}, we have that %7 is a rational polyhedral cone, the map

5\§|ng is rationally piecewise linear, and therefore so is /\ﬁ. Now it is trivial that A% is a
rationally piecewise linear map. O

Thus it remains to prove that /\ﬁMZmH is piecewise linear for every 2-plane H c R,
Replacing . by a free monoid spanned by generators of .#Z7z N.%, it is enough to assume,
and | will until the end of the section, that A is a superlinear function on ..

I will need the following result in the proof of Theorem 7.9.

Lemma7.7. If @ﬁz is not identically zero, then for every s € . we have Z ¢ B(Ks+ @ﬁ).

Proof. Fix s € .#%, let t be any element of .#& such that @ﬁz(t) # 0 and denote s¢ =
et+(1—¢)sfor € € [0,1]. By concavity we have
O3 (5¢) > £05(t) + (1—£)O5(s) = £@5(1).

and thus Z ¢ B(Ks+ @is) for € > 0 by Step 3 of the proof of Theorem 7.5. But then
Z ¢ B(Ks+ @i) by Lemma 5.8 since Iirr(leg =Ss. O
E—

Let Cs be a local Lipschitz constant of ©F around s € .# in the smallest rational affine
space containing s. For every s € ., let ¢ be the smallest positive coefficient of Qs — @i,
orset gs=0if Qs = ©%. Observe that ¢ is a continuous function around every point in a



26 VLADIMIR LAZIC

neighbourhood contained in the smallest rational affine space containing that point. Also,
@ is continuous on segments by Theorem 7.5.

Theorem 7.8. Fix s € .#& and let U C R’ be the smallest rational affine subspace con-
taining s. If @ > 0, let 0 < & < 1 be a rational number such that ¢, > 0 for u € U with
lu—s|| <d,setp=min{@,:uecU,|u—s|| < d}andlet0 < & <  be arational number
suchthat (Cs/@+1)e(Kx +As) +Aisample. If gs=0and SuppAs=5S F,let0<e <1
be a rational number such that S fiF + A is ample for any fi € (—¢,€), and set ¢ = 1.
Lett € UN.g and p; >> 0 be an integer such that ||t —s|| < &/pt, pt&t/r is Cartier for r
asinLemmab5.8 and S ¢ B(Kx +4t). Then for any divisor © on S such that 0 < © < Qy,

||O—®g|| < @e/pt and pO/r is Cartier we have
Pt(Ks+©)[+ pt(Qt — ©) C |pr(Kx +At)ls.

Proof. Set A; = A/pt. By Proposition 7.3 it is enough to prove that for any component
P C SuppQs, and for any | > 0 sufficiently divisible, we have

(13) multp(Q; A 1 Fix|1(Kx + A +At)|s) < multp(Q; — ©).

Assume first that ¢ = 0. Then in particular ordp || Kx +As||s= 0 and Ay — As+ Ay is ample
since [|A; — As|| < &/pt, SO

ordp ||Kx + At + At||ls = ordp ||Kx + As+ (At — As+Atr) ||s < ordp ||Kx + As||s = 0.
Since for | sufficiently divisible we have
(14) multe § Fix 1 (Kx + A +A¢)|s = ordp ||[Kx + A + At|s

as in Step 3 of the proof of Theorem 7.4, we obtain (13).
Now assume that ¢ # 0 and set C = Cs/@. By Lipschitz continuity we have ||(9{i —
©%|| < Coe/pr, 50 H@{j —O|| < (C+1)@e/pt. Therefore it suffices to show that

Multp(Qu A §Fix |I(Kx + B+ A s) < (1— StLe) multp(Qr — ).

Since p; > 0, we can choose a rational number n > (C+1)&/p; such that n (Kx +24¢) + At
is ample. From

Kx + 0t +Ar = (1—n)(Kx +4¢) + (0 (Kx +A¢) +Ar)

we have
ordp [|Kx +4¢ +Atfls < (1 —n)ordp [|[Kx + Als,
and thus by (14),
multe 1 Fix 1 (Kx +A¢ +Ar)|s < (1 - SE2e) ordp |[Kx + Al
for | sufficiently divisible. O

Finally, we have
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Theorem 7.9. Fix s € . and let R be a ray in .#& not containing s. Then there exists
aray R’ C R, s+ R not containing s such that the map )\§|R+&m is linear. In particular,

for every 2-plane H c R, the map )\§|yRmH is piecewise linear.

Proof. Step 1. LetU C R’ be the smallest rational affine space containing s. In this step |
prove that the map ©F is linear in a neighbourhood of s contained in U.

Let £ and @ be as in Theorem 7.8. LetW C R’ andV C Div(S)g be the smallest rational
affine spaces containing s and @i respectively, and let r be as in Lemma 5.8. By Lemma
6.3, there exist rational points (ti,@{i) €W xV, integers py > 0 and r;, € R~ such that
(ti, O, 1, py, Iy;) uniformly approximate (As, 62) € W xV with error @e. Note that then
O < Q.

Observe that S ¢ B(Kx +4y,) since tj € W for every i, € < 1 and .#% is a rational
polyhedral cone. By local Lipschitz continuity and by Theorem 7.8 we have that

|pti<KS+@{i)| + pti(Qti - @{i) C |pti(KX +Ati)|3-

Since ©f €V and p; @ /r is Cartier, Z ¢ Fix|py (Ks+ ©; )| for every i by Lemmas 5.8
and 7.7. In particular,

multz(Qy, — ©f) > multz (Qy A 2 Fix| py, (Kx + Ay )[s) > multz(Q; — ©F),

and so @ﬁz(ti) > multz ©;. But then by uniform approximation and since the map @ﬁz IS
concave, we have

O5(s) > 3 1y @5(t) > 3 rymultz & = ©5(s),
which proves the statement by Lemma 4.3.

Step 2. Now assume s € ., ¢ = 0 and fix u € R such that s and u belong to a rational
affine subspace & of R’. Let A: R — Div(X)g be a linear map given by A(gj) = Aq
for linearly independent points g1, ...,q, € & N.%4, and then extended linearly. Observe
that A(q) = Aq for every g € Z N .

Let W be the smallest rational affine subspace containing s and u. If there is a sequence
Sm € (s, u] such that nI1i_r>noosrn =sand ¢, =0, then A% is linear on the cone R.s+R,s; by
Lemma 4.3.

Therefore we can assume that there are rational numbers 0 < €,n < 1 such that for
all v e [s,u] with 0 < |lv—s|| < 2 we have @, > 0, that for every prime divisor P on S,
we have either multp Q, > multp @’3, or multp Q, = multp @’3, and either multp O?, =0or
multp ©{ > 0 for all such v, and that Ay — As+ =+ A is ample for all such v and for any
divisor = such that Supp = C SuppAsU SuppAy and ||Z]| < n.

Let ps be a positive integer such that psAs/r and ps@i/r are integral, where r is as in
Lemma 5.8. Pick t € (s,u] such that ||s —t|| < &/ps, ||@i—@§|| < &/ps Which is possible
by Theorem 7.5, and the smallest rational affine subspace containing t is precisely W.
Let 0 < & < 1 be a rational number such that @, > 0 for v e W with ||v —t|| < J, set
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@=min{@ :veW,|v—t|| <d}andlet 0 < & < min{d, e} be a rational number such
that (Ci/@+1)&(Kx +24¢) +A is ample Denote by V C Div(S)g the smallest rational

affine space containing ©% = Qs and @t Then by Lemma 6.4 there exist rational points
(t.,@ti) e W xV, integers p;, > 0and ry, € Rog fori=1,...,wsuch that:
(1) (t,©f,r, py,ry) uniformly approximate (At,ejtj) €W xV with error €, where t; =
5,0, = ©f, = Qy, Py = Ps
(2) [[t—ti| < &/pt, H@t — 64|l < @&/py and (tj,O) belong to the smallest rational
affine space containing (t, Of) fori=2,...,w—1,

Q) &= Pty +pt At1+ Py +pt Ay, + W, where HLIJH < r’/(pt1+ ptw)
(4) ©f = o +n o, + QﬁWﬁ ©, + @, where [|®|| < n/(py + Pt,)-

Note that then © < Q for all i, and that Supp ¥ C SuppA; and Supp® C Supp G){j by
Remarks 6.5 and 6.6 applied to the linear map A defined at the beginning of Step 2. Then
by Theorem 7.8,

‘pti(KS—i_@{i” + pti(Qti _eéi) - |pti(KX +Ati)|3

fori=2,...,w—1. Let P be a component in SuppQ: and denote A, = A/py,. | claim
that for | > 0 sufficiently divisible we have

(15) multp(Qy, A T Fix |I(Kx + A, + Ay, )|s) < multp(Qy,, — ©F ).

To that end, assume first that multp OE = 0. Then multp Oi = 0 by the choice of ¢, and
thus multp ©; = 0 since ©;, € V. Therefore

multp(Q,, A % Fix [I(Kx + 4, + Ay, ) |s) < multp Qr, = multp(Qy, — @{W).
Now assume that multp @f > 0. For | sufficiently divisible we have

multe § Fix [1(Kx + Ay, + Ay, )|s = 0rdp ||Kx + A, + Ay, s

as in Step 3 of the proof of Theorem 7.4, and since Ay — Ay, — Py Py

the choice of n,

W+ A s ample by
1

multp(Qg, A T Fix |1 (Kx + Ay, + Ay, ) |s) < ordp [|Kx + A, + Avlls
_ Pt Pty + Py 1
= ordp ||Kx +At+pt—vlv(At —Atl—{Terp[—lA)HS
< ordp ||[Kx +At||s = multp(Q; — ©F).
Combining assumptions (3) and (4) above we have

Q- Of < O~ 6f + 5t (- Of - PP (Wis— @) = O, - &,
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and (15) is proved. Furthermore, we can choose € < 1 and py, > 0 such that S ¢ B(Kx +
L,,) since 7 is a rational polyhedral cone. Therefore by Proposition 7.3 we have

[Pt (Ks+ O, )| + Pty (Quy — ©4,) C [Pr(Kx +44,)[s.
Let Vs C Div(S)g be the vector space spanned by the components of s 5, SUpp(Qs—
Ajs). Then by Lemma 5.8, ‘@\%sﬂs is a rational polytope and @tﬁ) € %657A\s for every

p € & by Lemma 7.7. Therefore when € < 1, as in Step 1 we have that )\§ is linear on
the cone 3V, R, t;, and in particular on the cone Ry s+R_t.

Step 3. Assume now that s € .”, @ > 0 and fix u € R. Let again W be the smallest
rational affine space containing s and u. Since ©f is continuous on [s,u] by Theorem 7.5,
let 0 < & <1 be arational number such that ¢, > 0 for v € s, u] with ||v—s|| < 2&, that for
every prime divisor P on S we have either multp Q, > multp @?, or multp Qy = multp @?,
for all such v, and let @ = min{@, : v € [s,u], |[v—s|| <2&}.

Let ps be a positive integer such that psAs/r and psei/r are integral, where r is as in
Lemma 5.8. Let me first show that there exist a real number 0 < € < £ andt € (s, u] such
that ||t —s|| = €/psand (Ct/@+ 1)e(Kx + Ay) + A is ample for all v € /& with|v—s|| <
2&. If ©F is locally Lipschitz around s this is straightforward. Otherwise, assume ©F is
not locally Lipschitz around s and assume we cannot find such €. But that means that
(Ct/@+1)||s—t|| is bounded from below as t — s, thus there is a sequence sy € (S, U]
such that Mmsm =sand Cs,|[Sm—S|| > M, where M is a constant and Cs,, — . Since

a local Lipschitz constant can be taken as the maximum of local slopes of the concave
function ©7|5;, we have that

oL, -6k
———=>Csq,.
Ism—s|| ~
Therefore
O, —OL>Cq,llSm—s| >M
for all m € N, which contradicts Theorem 7.5.

Increase ¢ a bit, and pick t € (s,u] such that ||s —t|| < &/ps, the smallest rational sub-
space containing t is precisely W and (Ci/@+1)e(Kx +Ay) + A is ample for all v e
such that ||v —s|| < 2&. In particular, ©F is locally Lipschitz in a neighbourhood of t
contained in W. Furthermore, by changing ¢ slightly | can assume that ¢ < min{¢j :
veW,|v—t|| < 1}. Denote by V the smallest rational affine space containing ©% and
OE. Then by Lemma 6.4 there exist rational points (tj, @;) € W x V, integers p; > 0 and
r, € R-o such that (t;,©f,r, py, Iy, ) uniformly approximate (4, OE) €W xV with error ¢,
where t; =s, ©f = Gﬁl, pt, = ps. Note that then ©f < Qy;, and similarly as in Step 2 we
have S ¢ B(Kx +4y,) for all i. Therefore by Theorem 7.8,

‘pti (KS+@{i)| + pti(Qti - eéi) - |pti(KX +Ati)|3
for all i. Then we finish as in Steps 1 and 2.
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Step 4. Assume in this step that s € .#% is a non-rational point and fix u € R. By Step 1
there is a rational cone ¢ = z}‘le+gi with gi € . and k > 1 such that A§ is linear on
¢ and s = Y a;g; with all a; > 0. Consider the rational point g = Z!‘:l gi. Then by Steps

2 and 3 there is a point s’ = ag+ Bu with a, 3 > 0 such that the map )\§ is linear on the
cone R, g+R,s". Now we have

M (T ai+s) = A5(g+) = A5(0) +ALS) = 3 A5(G) +A5(S),

so the map AZ|<5+R+5/ is linear by Lemma 4.3. Taking u = max{ } and taking a point
U = us+u in the relative interior of R, s+ R, it is easy to check that

0:Z(ua. )t.+Bs €€ +R,9,

so the map )\gh&sﬁ& <is linear.

Step 5. Finally, let H be any 2-plane in R¢. Then by the previous steps, for every ray
R C Y& NH there is a polyhedral cone 4R with R C ¥r C ¥ NH such that there is a
polyhedral decomposition ¢r = 6r1 U ¢r2 With A%Mm and Ag\cgm being linear maps,
and if R C relint(.#z NH), then R C relintr. |

Let S“1 be the unit sphere. Restricting to the compact set S*"1 N.& NH we see that
)\§|y]RmH is piecewise linear. O

8. STABLE BASE LOCI

Theorem 8.1. Theorems A,,_1 and C,_1 imply Theorem By,.

Proof. Step 1. Let Kx be a divisor such that &'x (Kx) ~ wx and A ¢ SuppKx. Itis enough
to prove that the cone ¥ =R, (Kx + A+ %’&;1) is rational polyhedral.
In Steps 1 and 2, I first show that

,@VA ={Pec X multic® =1, og|Kx +P+A| =0}.

To that end, let A € A, + A be such that Kx + A is pseudo-effective, multigA = 1 and
0G||Kx +Al| =0, and denote Q = (A —G) . Replacing A by a general ample Q-divisor
Q-linearly equivalent to A — = for some = € V with ||Z|| < 1, | can assume that (X,A)
is plt and |A| = G. Furthermore, let f: Y — X be a log resolution such that the com-
ponents of {B(X,A)y} are disjoint as in Lemma 2.3. Then since f, G ¢ B(D) implies
G ¢ B(f.D) for D € Div(Y g, since Ky +B(X,A)y is pseudo-effective and of;16|]Ky +
B(X,A)y| = 0 by Remark 2.11, | can replace X by Y, G by f71G, A by B(X,A)y, A by
f*A—H for some small effective f-exceptional divisor H onY, andV by the vector space
spanned by proper transforms of elements of V and by exceptional divisors.
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Since og||Kx + Al| = 0, G is not contained in B_(Kx +A) by Remark 2.11, and so
Ng||Kx +A||c is defined. Let

® = ; Op||[Kx +Allg - P < Ng|[Kx +A4l[c
PCSuppQ

and © = Q — QA ®. Observe that Kg+ 0 = I(Si[rg(KG + Q5 — Q5N Dg), Where Q5 =
(A+0A-G)gand

®s= 5 ordp||Kx+A+AlG-P.
PCSupp Qs

Thus Kg + © is a limit of effective divisors, and so is pseudo-effective. Let ¢ < 1 be the
smallest positive coefficient of ®, or set ¢ =0 if @ =0.

LetW C Div(X)g be the smallest rational affine subspace containing A and letU,Z C
Div(G)gr be the smallest rational affine subspaces containing ®, © respectively. There
exists a number & > 0 such that &(Kx +4) + 1A is ample and if A’ € W with |A—A'|| < g,
then A— A + %A is ample. Let r be a positive integer as in Lemma 5.8. Then by Lemma
6.3 there exist rational pairs (Aj, ®j) € W x U, integers kj > 0 and r; € R such that
(B, D, 1, ki, ri) uniformly approximate (A, ®) € W x U with error @e. Note that then
(X,4i) ispltand (G, Qi +Ag) is terminal, where Q; = (4 — G) .

Step 2. Since 0g||Kx +A| = 0 we have G ¢ B(Kx +A+ 3A;) by Remark 2.11, and since

A—N+ %Ai is ample, it follows that G ¢ B(Kx + A; + Aj), so similarly as in Step 2 of the
proof of Theorem 7.5 we have

(16) ki(Kg + 6i)| +ki(Qi — ©;) C |ki(Kx +A)|e,

where ©; = Q; — Q; A ®@;. One easily shows that @; € Z. In particular, by Theorem C
and Lemma 5.8, for € < 1 we have that |kj(Kg + ©;)| # 0, and therefore (16) implies that
there is an effective divisor D; with G ¢ SuppD; such that kj(Kx + 4A;) ~ Dj. But then
Kx +A~g Y %Di and G ¢ B(Kx +A), as desired.

Step 3. To prove the cone % is closed, let Dy, € % be a sequence such that r!]im Dn=D,

and assume D ¢ &. Therefore by Step 1 we have og||D|| > 0. Then for any ample divisor
B on X there exists a positive number é < 1 such that ordg ||D + éBJ| > 0. Pick m >0
such that B + D — Dy, is ample. Then

0 <ordg||D+ 6B|| = ordg ||[Dm+ (6B+D — D) || < ordg ||Dm|| =0,
a contradiction.

Step 4. Steps 1 and 2 also show that the condition og||Kx +®+A|| = 0 implies ordg ||Kx +
@+ A|| =0, and that the cone % is rational, i.e. its extremal rays are rational. It remains
to prove that ¢ is polyhedral. To that end, | will prove it has only finitely many extremal
rays.
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Assume there are divisors Ay in BSx! + A for all m € NU {e0} such that the rays
R (Kx +An) are extremal in ¢” and r!}i_r}no(’)Am = M. By the previous steps, A, are rational
divisors. | will achieve contradiction by showing that for some m > 0 there is a ray
R C ¥ such that Kx + Ay C int(R4 (Kx + A ) +R), so that the ray R (Kx 4+ Am) cannot
be extremal.

Since the problem is local around A, by taking a log resolution as in Step 1, | can
assume that (X,Am) is plt, |[Am| = G, and each pair (G,Qm+ A|g) is canonical, where
Qm= (Am—G)G-

Let

Dy = Z OrdeKx +Am”G'P
PCSupp Qm

and set O, = Qm—QmA ®Pn. By Step 3 of the proof of Theorem 7.4 each ng is a rational
divisor, and as in the proof of [Nak04, 2.1.4] we have ®% > lim sup@?n. By passing to a
m—oo

subsequence, we can assume that there is a divisor @2 such that @2 = M O, Let @ be
the smallest positive coefficient of Qe — O, or set ¢ = 0 if Q,, = OF..

Step 5. Assume first that ¢ > 0. Let 0 < € < 1 be a rational number such that &(Kx +
Am) + 1A is ample for every m > 0, and A+ A is ample for every A € V with || A < ¢.
By Diophantine approximation there is a Q-divisor W in the minimal rational affine space
containing ©2 and a positive integer k such that W < ©%,, ||W — 0% || < @e/2k, and kW /r
and kA /r are integral. Pick m such that ||Aw — Am|| < €/2K, HLIJ—G)ﬂmH < e/ 2k, and
such that for every prime divisor P C V, multp Qn, = multp G.ﬁ»n if and only if multp Qo =
multp©f,. Then by Lemma 6.4 there is a point (A", ¥') € Div(X)g x Div(G)g and a
positive integer k’ > 0 such that:

(1) B = Do+ i and Oy = g Wt W,

(2) K'A'/ris integral and ||Am— 4| < €/2K,

() W < Q' where Q' = (A~ G) g, K'W'/r is integral and |0k — W|| < pe/2K.
Since G ¢ B(Kx +Am) and A — A+ A/K’ is ample, we have G ¢ B(Kx +A" +A/k’), so
as in Step 2 of the proof of Theorem 7.5 we have that

(17) K'(Kg+W)|+K(Q —W¥) C |K(Kx+4)|c.

Let me prove that Kg + W' is pseudo-effective. Let Vs C Div(S)g be the vector space
spanned by the components of divisors E|swith E €V and S ¢ SuppE. Then by Theorem
C the cone ¢s =R (Kx +Ajs+ ngA\s) is rational polyhedral. Since k’ can be taken
arbitrarily large, W' ¢ %simplies O € 0% If this stands for every m > 0, we have that
O € 9%s. Therefore, possibly passing to a subsequence, there is a face .# of €s such

that Ok, 0% and W belong to .# for m > 0, and we finish by descending induction on
dim.Z.
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Therefore |K'(Kg+W)| # 0 by Lemma 5.8, and thus G ¢ B(Kx +4") by (17). But then
by the condition (1) above, the ray R (Kx + Am) is not extremal, a contradiction.

Step 6. Now assume that ¢ = 0, and in particular ¥ = ©f = Q. Let0O< e < 1bea
rational number such that £(Kx +Am) + %A isample for every m > 0, and A+ %A isample
for every A € V with ||A|| < €. Let k be a positive integer such that k@% /r and kA, /r are
integral. Pick m such that ||Aw — Am|| < £/2K, ||©F, — @?nH < €/2k, and such that for
every prime divisor P C V, multpQmy = multpeﬁm if and only if multp Q. = multp O,
and multp®?n =0 if and only if multp®%, = 0. Then by Lemma 6.4 there is a point
(&', W) € Div(X)q x Div(G)q and a positive integer k' > 0 such that conditions (1)—(3)
from Step 5 are satisfied for ¥ = ©%, and denote A’ = A /K.
Let me prove that

(18) multe(Q' A Fix [I(Kx + 4"+ A')|s) < multp(Q' — W)

for every prime divisor P on G and for all | > 0 sufficiently divisible. To that end, assume

first that multp ©% =0. Then multp ©F = 0 by the choice of £ and m, and thus multp W’ =
0 by the condition (1) above. Therefore

multp(Q' A 1 Fix [I(Kx +4"+A)[g) < multe Q' = multp(Q' — W').
Now assume that multp OFn > 0. For | sufficiently divisible we have
multp § Fix [I(Kx + 4"+ A')|s = ordp ||Kx + A"+ A’[|s

as in Step 3 of the proof of Theorem 7.4, and since Ay — A + %A is ample by the choice
of &,

multp(Q' A £ Fix [I(Kx +4"+A')[s) < ordp |Kx + A" +A'||s
= ordp | Kx + 8-+ [ (A — B+ 1) o
< ordp ||Kx + Am||s = multp(Qm— ©%)).
¢From the condition (1) above we have
Qm— O < Qm— O+ £ (Qm—0h) =Q' — W,

and (18) is proved. Since G ¢ B(Kx +A’+A') as in Step 5, by Proposition 7.3 we have
that

‘k/(KG + qJ/)| + k/(Q/ — LP/) C |k/(Kx —l—A/)‘G.
The contradiction now follows as in Step 5. O

9. PSEUDO-EFFECTIVITY AND NON-VANISHING

The starting point for this section is the following result.
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Theorem 9.1. Let (X,A) be a projective kit pair such that A is big and Kx + A is pseudo-
effective. Then there exists an effective divisor D € Div(X)g such that Kx +A = D. More-
over, if A € WDiv(X)q, then |Kx +Alg # 0.

This theorem was proved in [Pau08, §1] by using analytic techniques. However, it can
be proved purely algebraically as a part of the induction given in this paper, which is
sketched in Theorem 9.3 below. Note that the last claim in Theorem C is a refinement of
this result.

We are now ready to prove the following.

Theorem 9.2. Assume Theorem 9.1 in dimension n. Then Theorem B, implies Theorem
Ch.

Proof. Step 1. Fix a divisor Kx such that Ox(Kx) ~ wx and A ¢ SuppKx, and denote
¢ =R, (Kx + A+ &) CDiv(X)r. Fix A=3SN,8F € &a Then Kx +A+A=
sN ., fiF > 0 by Theorem 9.1, where F; # A for all i and & = 0 for some i. LetW C
Div(X)g be the vector space spanned by all F and by the components of Kx and A. Let
@: W — NY(X) be the linear map sending a divisor to its numerical class. Let 0 < £ < 1
be a rational number such that A+ & is ample for any divisor ® € W with ||®|| < .

Let 0 < f/ < fj be rational numbers such that fi — f/ < €. Then

Ky +0 +A= > f'F,

where A" = A— 5 (fi — f/)F. Since 22 = ¢~1( 3 f/[R]) is a rational affine subspace, there
are rational divisors A; € W such that [|A" —Aj|| < 1, Kx +Aj+A € & and Kx + A" +
A =3 pj(Kx +Aj+A) for some positive numbers pj with 3 pj = 1. Observe that then
Aj+A =A%+ A, where A? = 5 max{0, multr; Aj }Fj, and A’ = A+ A —AY is ample since
1A —A(j’ || < €. Therefore each Kx +Aj +A ~g Kx +A? + A’ is a rational pseudo-effective
divisor, and thus it is Q-linearly equivalent to an effective divisor by Theorem 9.1. For
each j, denote #j = ¥ [multr Aj, 1]F, and let % be the convex hull of | J %j; observe that
2 is a rational polytope. Then Kx +A+A € (Kx + A+ B)N(Kx +A+.A), and so
Kx +A+ A is R-linearly equivalent to an effective divisor, and & is a closed cone which
is locally rational around every Kx + A+ A, and thus rational globally.

Step 2. Let Gq,...,Gn be prime divisors on X such that SuppKx USuppB C 5 G;. It
remains to prove that the cone %’ is polyhedral.

Assume that & has infinitely many extremal rays. Thus there are distinct divisors
DAn=3 6ij,- in & forallm € NU{eo} such that, denoting Yim = Kx +Am+A, the rays
R, Ymare extremal in ¢ and lim Ay, = Aw. | will achieve contradiction by showing that

m—oo

for some m > O there isaray R C % such that Y, C int(R Ye +R), so that the ray R Y,
cannot be extremal. To that end, | am allowed and will without explicit mention, increase
V, translate points by fixed divisors and re-scale by positive integers, since this does not
affect the outcome of the aforementioned procedure. By Step 1, A, are rational divisors.
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Write Yo, ~g Do > 0; by possibly adding components | can assume that Supp Do, C
>iL;Gjand that V = 3™ | RG;. Since the problem is local around A, replacing A by
a general ample Q-divisor Q-linearly equivalent to A — = for some = € V with || =]| < 1,
| can assume that (X,Am) is KIt and SuppAm = z’j\':lGj for all m > 0. Furthermore,
let f: Y — X be a log resolution of (X, z?‘zlGj). Then since D being pseudo-effective
implies that f.D is pseudo-effective for D € Div(Y )g, | can replace X by Y, Aby f*A—H,
Am by B(X,Am+A)y — f*A+H for some small effective f-exceptional divisor H on
Y, and V by the vector space spanned by proper transforms of elements of V and by
exceptional divisors.

If Do, = 0, for m > 0 choose any W €V such that for some 0 <t < 1 we have Ay, =
(1—1t)Aw+tW. Then Kx + W+ A ~qg Ym/t, and thus Kx + W + A is pseudo-effective and
the ray R, Yy is not extremal.

Now assume Do # 0 and write Do, = 5 djGj. Then Kx ~g —A+ Y f;G; with f; =
dj — 6" > —1. Setting
fj + 5j°°

} and bf =—fj+ :
Foo

N fj+5j°°
Feo = max{i
=1 U fj+1

we have
Zj(f,- +6]°)Gj = rwzj(fj +b7)Gj.

Observe that r € (0,1], by € [, 1] and there exists jo such that b$} = 1. Now for m >0,

setting

_ fiot 9

'm=

I L R
fio+1 4 =l m

we have
Y (fi+3MGj=rmYy (fj+b])G;,

b'j“g =1forall m, and M b’jn =b{ forall j. Let0 <n < 1be arational number such that

—n< b’jn < 1+n forallmand j, and such that A— = isample for all = € V with ||=|| < n.
By passing to a sub-sequence and by re-indexing, | can assume that b'j“n < 1-—2n for all
m>>0andall j < jo, and that b" > 1—2n forallm>>0and all j > jo.

By replacing Aby A"~ A—n 5 j,Gj+ N3 j>j,Gj " by b'+n for j < jo, 5" by
brjn —n for j > jo, and 6{2 by 1, finally I can assume that all Ay, are effective divisors such
that (X,Am+A) is plt and Gj, = |Am] for every m.

Step 3. In this step | prove that Ng||Ye || = 0, and therefore Theorem B implies Gj, ¢
B(Yo).

By way of contradiction, assume that 0s || Y| > 0 for a prime divisor X, and let & C
N!(X) denote the pseudo-effective cone. By the proof of [Bou04, 3.19], & is generated
by [Z] and by the closed cone &5 = {= € & : 05||=|| = 0}. We have [Y«] € d&\ &5, and let
¢ : V — N1(X) be the linear map sending a divisor to its numerical class. We can assume
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that [Yn] # [Ys] for all n>> 0, since otherwise we obtain a contradiction as ¢ ~([Ys]) is
an affine subspace of V.
If [Yo| € R[], then for any n > 0O the set

{Yo+t(Yn—VYo):teR, }N$ L&)

is strictly larger than the segment [Ye, Y], S0 R Yy is not an extremal ray for n > 0.

Therefore | can assume [Yo| ¢ R [Z] and, similarly as above, that [Yy] € & forn>> 0.
In particular, if we consider the cone spanned by R [Z] and R [Yy] for n > 0, the dimen-
sion of this cone must be strictly smaller than dim &, since otherwise it would contain a
point of int&. Let 7 be the smallest affine subspace of N'(X) containing that cone, and
let &5 = &N .. Then it is easy to see that & N.# is spanned by & and R [Z], so by
replacing & by & N ., we can finish by descending induction on dim&'.

Step 4. Denote G :=Gj,. Let0 < n <« 1 be arational number such that A — = is ample for
all = eV with ||| < n, let &/, be the n-neighbourhood of %, inV in the sup-norm,
and set
Binn ={P e Ky :multc®=1,G ¢ B(Kx + P+A)}
and 2 =R (3 fjG;j ""%)\(/3;%7) C V. Note that, for some 0 < § < 1, we have
Ri{Yo+=:0<=Z€eV,|Z| < &,multc==0} C 2,

so dimZ =dimV and Y., € intZ. Fix ® € %g,%,. Then as in Step 2 there is a Q-
divisor © € V such that ||©]| = n and A’ ~g A—© is ample, for every @' ¢ %’&X}n
with ||® — @'|| < n the divisor @' + © is effective and [®’ + O] is reduced. Therefore,
since %&j,l is a rational polytope by Theorem B, this means that %’&;}n is locally a

rational polytope around ®, and therefore Z is a rational polyhedral cone. Since % is not
polyhedral, | can assume that Yy, ¢ 2 for all m > 0.

Step 5. For each m € N let ki, be a positive integer such that ky, Yy, is Cartier and denote
G.
Km

Then G ¢ B(I'yy). Let #; and %, be codimension 1 faces of the cone 2 such that Y., €
F1N Py, and let 7 and .7 be their supporting hyperplanes; if Yo, belongs only to one
codimension 1 face, assume that .77 = .%,. Let 2 be exactly one of the convex cones
into which 77 and 743 subdivide V which contains 2. Forevery W € R N+ R Yo, We
have G ¢ B(W), and therefore (R1.I'm+ R Ye) N (3 fjGj+-LK/) C 2. This implies that
Mm€ 2, and since Yy, ¢ 2 for m > 0, the segment [I"m, Y| intersects 2.

Let Py, be the point of intersection of the half-ray Y+ R _G with 0.2 closest to Yy, and
observe that nI1i_r>n00 Pm = Y. This means that P, belongs to .%; or .%, for m > 0, and by

passing to a subsequence | can assume that all P, belong to the same codimension 1 face
of 2. Since Z is polyhedral, for m > 0 there are points Qm € Z such that Py, € (Qm, Ye)
and ||Pm— Qm|| < 1. Let Zy;, be the intersection point of the half-ray P+ R G with the

rm:Ym—
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hyperplane (G = multg Ys). Then it is easy to see that Y € (Zm, Ye), Zm is pseudo-
effective and belongs to 5 ;G +.4, since Yy and Yo, do. Thus R, Y, is not an extremal
ray of the cone ¢, a contradiction which finishes the proof. O

The following result, together with Theorem 9.2, yields that Theorems A,_1, B, and
Cn_1 imply Theorem C,.

Theorem 9.3. Theorems An_1 and C,,_1 imply Theorem 9.1 in dimension n.

Proof. This was done essentially in [Hac08], and I will sketch the proof here for com-
pleteness.

By passing to a log resolution, we can assume that the pair (X,A) is log smooth. IfA~q
A+ B, where A is an ample Q-divisor and B > 0, then replacing A by (1—¢&)A+&(A+B)
for a rational number 0 < € < 1, we can assume that A=A+B. If v(X,D) =0, cf.
Definition A.4, then the result follows from [BCHMO6, 3.3.2].

If v(X,D) > 0, then by [BCHMO06, 6.2] we can assume that (X,A) is plt, A is a general
ample Q-divisor, |[A| =S, (S,Q+Ag) is canonical, where Q = (A —S);s, and 0g|[Kx +
Al| = 0. But now the result follows as in Steps 1 and 2 of the proof of Theorem 8.1.

The second statement in Theorem 9.1 follows by using Shokurov’s trick from his proof
of the classical Non-vanishing theorem, and I will present an algebraic proof following
the analytic version from [Pau08].

Assume that A = A+ B € Div(X)q and let Y := Kx +A = D for some effective R-
divisor D. We can again assume (X,A) is log smooth, and that D is a Q-divisor similarly
as in Step 1 of the proof of Theorem 9.2. Let m be a positive integer such that mA and mD
are integral. By Nadel vanishing

H'(X, Zm-1p+s(MY)) =0 and H'(X, #(m_1)p+8(MD)) =0

for i > 0, and since the Euler characteristic is a numerical invariant,
(19) h°(X, Zm-1p8(MY)) =h*(X, Z(m 1)p48(MD)).
Let 0 € H(X,mD) be the section with diva = mD. Since

((m—1)D+B)—mD <B,
by [HMO8, 4.3(3)] we have #mp C _#(m-1)p+8, and thus

0 € HY(X, Zm_1)p+s(MD)).

Therefore (19) implies h®(X, mY) > 0. O

10. FINITE GENERATION
Theorem 10.1. Theorems A,_1, Bn and C,_1 imply Theorem Ap.

Proof. Step 1. I first show that it is enough to prove the theorem in the case when A is a
general ample Q-divisor and (X,A; + A) is a log smooth Klt pair for every i.
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Let p and k be sufficiently divisible positive integers such that all divisors k(A; + pA)
and (p+ 1)kA are very ample. Let (p+ 1)kA; be a general section of |k(A; + pA)| and
let (p+ 1)kA’ be a general section of |(p+ 1)kA|. Set Al = prlAi +Aj. Then the pairs
(X, + A) are kIt and

(P+1)k(Kx +Ai +A) ~ (p+1)k(Kx +A] +A") =: D].

Thus the ring R(X; Dy, ...,Dy) has a truncation which is isomorphic to R(X; D3, ...,Dy),
so it is enough to prove the latter algebra is finitely generated.

Step 2. Therefore | can assume that A; = z’j\':l & jFjwith §j € [0,1). Write Kx +Ai +A ~q
z’j\':l fi’j Fj > 0, where Fj # A since A is general. By blowing up, and by possibly replacing
the pair (X,4; +A) by (Y,Af + A’) for some model Y — X as in Step 2 of the proof of
Theorem 7.4, | can assume that the divisor z’j\':l Fj has simple normal crossings. Thus for
every i,
Kx ~q —A+ Z:-\l:l fijFj,

where fi; = fi’j - gj> -1

Denote A := @} ; NFj C Div(X) and 7 := {(t,...,t;) 1t > 0,5t = 1} C R’. For
each T = (ty,...,t,) € .7, denote &;; = 3;tidj and fr; = 3;tifij, and observe that Kx ~pr
—A+73 fjFj. Denote B = 3N [+ frj, 1+ frj]Fj C Ap and let B = Urc 7 %1 Itis
easy to see that 4 is a rational polytope: every point in 4 is a barycentric combination of
the vertices of %y, , ..., %, where 1; are the standard basis vectors of R!. Thus ¢ =R, A
Is a rational polyhedral cone.

Foreach j=1,...,N fixasection g; € H%(X,Fj) such that div g = F;. Consider the A-
graded algebra R = @ pRs C R(X; Fy, ..., ) generated by the elements of R(X, %' N
A) and by all gj; observe that Rs = H(X,s) for every s € €N A. | claim that it is enough

to show that fR is finitely generated.
To see this, assume A is finitely generated and denote

w :I’kizj(dj—i—fij)Fj e

for r sufficiently divisibleand i=1,...,¢. Set¥ = SR, w N/ and observe that w ~ rD;
and ¥ C €. Then by Lemma 5.4(2) the algebra R(X,% NA) is finitely generated, and
therefore by Proposition 5.7 there is a finite rational polyhedral subdivision ¥ = [J %
such that the map Mob, |~ is additive up to truncation for every k, where 1: A — A 'is
the identity map.

Let ay, ...,y be generators of & such that «f =« for i =1,...,¢, and denote by
. @, Naf — ¢ the natural projection. Then the map MOD -1y 1S additive up
to truncation for every k, and thus R(X, n(EBiq:lNoq’)) is finitely generated by Lemma
5.4(3). Therefore R(X, 1(@f_; Na)) ~ R(X;rDy,...,rDy) is finitely generated by Lem-
ma 5.4(2), and R(X; Dy, ...,Dy) is finitely generated by Lemma 5.4(1).

Step 3. Thus it suffices to prove that 9 is finitely generated. Take a point 3 ; (frj+brj)Fj €
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%:\{0}; in particular b;j € [8;j,1]. Setting

- ij+ij I ] frj+brj
re=mix{ G and bl =ty T,
we have
(20) Zj(frj+brj)Fj:rrzj(frj"’b/rj)lzi'

Observe that rr € (0,1], bz; € [brj,1] and there exists jo such that b7; = 1. For every
j=1,...,N, let

gﬂ = (1+ 1:TJ)FJ + Zk;éj[érk+ ka71+ ka]Fk7

and set .7 = Ure 7 #7j, Which is a rational polytope. Then €} = R, .%j is a rational
polyhedral cone, and (20) shows that " = |J; €j. Furthermore, since 3 ;( frj + b’Tj)Fj ~R
Kx + 3 b’Tij +Afort € .7, for every j and for every s € ¢j N Athere is rs € Q. such
that s ~q rs(Kx + Fj +As+A), where SuppAs C Y .j F and the pair (X, Fj +As+A) is
log canonical.

Step 4. Assume that the restricted algebra resg; R(X, 4} NA) is finitely generated for every
J. I will show that then $R is finitely generated.

LetV = z’j\':lRFj ~ RN, and let || - || be the Euclidean norm on V. By compactness
there is a constant C such that every .%j C V is contained in the closed ball centred at the
origin with radius C. Let deg denote the total degree function on A, i.e. deg(z’j\':1 ajFj) =
z’j\':l aj; itinduces the degree function on elements of 1. Let M be a positive integer such
that, for each j, resg; R(X, %] NA) is generated by {0}, : 0 € R(X, %] NA),dego < M},
and such that M > CN/2 rr?ajlx{l%aj}. By Holder’s inequality we have ||s|| > N~1/2degs

forall s € ¥NA, and thus
1
21 s||/C > max{—}
(21) Isl/€ > max{ ;o
for all s € € N with degs > M. Let 7 be a finite set of generators of the finite dimen-
sional vector space
@D HXs)

se¢'NA,degs<M
such that for every j, the set {ojr, : 0 € 72’} generates resg; R(X, 4] NA). | claim that R
is generated by {o1,...,0n} U2, with gj as in Step 2.

To that end, take any section o € fR. By definition, possibly by considering monomial
parts of o and dividing o by a suitable product of sections gj, | can assume that o
R(X,NA). If dego < M, then it is generated by elements of .7 and we are done. If
dego > M, by Step 3 there exists w € {1,...,N} such that o € R(X,%wNA), and thus
there is T € 7 NQ* such that o € HO(X,rgzj(ij +b¢j)Fj) with by = 1. Observe that

ro > rr;ajlx{l%dj} by (21) since || 3 ;(frj +brj)Fj|| <C, and in particular 'e=t > &y,

lo
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Therefore by assumption there are elements 6y,...,6, € J# and a polynomial ¢ €
C[Xy,..., X7 suchthat g, = ¢ (64, - - -, 64r,). Therefore 0 —¢(64,...,0,) = ow- G by
(1) in Remark 5.3, where

& €HO(X,ro y (frj+Dbrj)Fj —Fu).
Since

lo

o Z(frj +bej)Fj —Fw = ra((frw+ fod)R, + ; (fr +ij>Fi>v
] jFw

we have that rg ¥ (frj + brj)Fj — Fy belongs to R, %, and in particular it belongs to
% N . Replacing o by &, we finish by descending induction on deg o.

Step 5. Therefore it remains to show that for each j, the restricted algebra resg, R(X, 4} N
A) is finitely generated.

To thatend, denote .4/ = {1,...,N}, choose a rational 0 < € < 1 suchthat € | Fc+A
is ample for every | C .47, and let A| ~q & 5| Fc+ A be a general ample Q-divisor. Fix
j,and for I C A7\{j} let

ﬁ}'j = (14 frj)F+ Z[l—e+ fri, 1+ fre] R+ Z [Oek+ frio 1 — €+ frud R
KE kglu{j}
Set .F| = Ures 74, these are rational polytopes such that .7 = U, s (j; %], and
therefore 4] = R.#| are rational polyhedral cones such that % = U, s\ (j; ¢} Fur-
thermore, for every s € %j' NA we have s ~q rs(Kx +Fj +As+A) ~q rs(Kx + Fj + A5+
A)), where Ay = As— €5y R > 0and [Fj+Ac+A | =F;.
Therefore it is enough to prove that resg; R(X,%j' NA) is finitely generated for every
I. Fix I and let hy,..., hy be generators of %j' N /. Similarly as in Step 1 of the proof
of Theorem 7.4, it is enough to prove that the restricted algebra res; R(X;hy,...,hy) is
finitely generated. For p sufficiently divisible, by the argument above we have phy ~
pv(Kx +Fj+By+A) =: Hy, where [By] C Yk+j o [Bv] =0, py € Nand A is a general
ample Q-divisor. Therefore it is enough to show that resg, R(X;Hy,...,Hm) is finitely
generated by Lemma 5.4(1), and this follows from Theorem 7.4. O

Finally, we have:

Proof of Theorem 1.2. Similarly as in Step 1 of the proof of Theorem 10.1, | can assume
that A is a general ample Q-divisor. Let f:Y — X be a log resolution of (X, Y 4;), letH
be a small effective f-exceptional divisor such that A" ~g f*A—H is ample, and denote
M =B(X,Ai+A)y — f*A+H. Since Ky +B(X,Ai+A)y ~g Ky + T +A" =: Dj, and
since R(Y;Dj,...,D}) and R(X; Dy, ...,Dy) have isomorphic truncations, replacing X by
Y, Ay by i and A by A’ we may assume that (X, A; +A) is log smooth for every i.

Let Kx be a divisor with &x(Kx) ~ wx and SuppA ¢ SuppKx, letV C Div(X)g be
the vector space spanned by the components of 3 A and let A C Div(X) be the monoid
spanned by the components of Kx,  Aj and A. The set ¢ = Y R, D;j C A is a rational
polyhedral cone. Similarly as in Step 2 of the proof of Theorem 10.1 it is enough to



ADJOINT RINGS ARE FINITELY GENERATED 41

prove that the algebra R(X, % NA) is finitely generated. By Theorem C the set &/ is a
rational polytope, and denote 2 =R, (Kx +A+&/a) C Ar. Then the algebra R(X,% N
) is finitely generated if and only if the algebra R(X, Z NA) is finitely generated. Let
Hi,...,Hmn be generators of the monoid 2 NA. Then it is enough to prove that the ring
R(X;Hz1,...,Hm) is finitely generated, and this follows from Theorem A. d

Proof of Theorem 1.1. By [FMO00, 5.2] and by induction on dim X, we may assume Kx +A
is big. Write Kx +A ~g B +C with B effective and C ample. Let £ be a small positive
rational number and set A’ = (A+&B) +€C. Then Kx +A" ~g (¢ +1)(Kx +4), and
R(X,Kx +A4) and R(X,Kx 4+ A') have isomorphic truncations, so the result follows from
Theorem 1.2. OJ

APPENDIX A. HISTORY AND THE ALTERNATIVE

In this appendix | briefly survey the development of the Minimal Model Program, and
then present an alternative approach to the classification of varieties. There are many
works describing Mori theory, and | do not spend much time on that. My principal goal
is to outline a different strategy, whose philosophy is greatly influenced and advocated
by A. Corti. I do not intend to be exhaustive, but rather to put together results and ideas
that | particularly find important, some of which are scattered throughout the literature or
cannot be found in written form.

For many years the guiding philosophy of the Minimal Model Program was to prove
finite generation of the canonical ring as a standard consequence of the theory, namely as
a corollary to the existence of minimal models and of the Abundance conjecture. Efforts
in this direction culminated in [BCHMO6], which derived the finite generation in the
case of Klt singularities from the existence of minimal models for varieties of log general
type. However, passing to the case of log canonical singularities, as well as trying to
prove the Abundance conjecture, although seemingly slight generalisations, seem to be
substantially harder problems where different techniques and methods are welcome, if
not needed. The aim of the new approach is to invert the conventional logic of the theory,
where finite generation is not at the end, but at the beginning of the process, and the
standard theorems and conjectures of Mori theory are derived as consequences. | hope
the results of this paper give substantial ground to such claims.

There are many contributors to the initial development of Mori theory, Mori, Reid,
Kawamata, Shokurov, Kollar, Corti to name a few. In the MMP one starts with a Q-
factorial log canonical pair (X,A), and then constructs a birational map ¢ : X --»Y such
that the pair (Y, ¢.A) has exceptionally nice properties. Namely we expect that in the case
of log canonical singularities, there is the following dichotomy:

(1) if k(X,Kx +A4) >0, then Ky + ¢.A is nef (Y is a minimal model),
(2) if K(X,Kx +A) = —oo, then there is a contraction Y — Z such that dimZ < dimY
and —(Ky + ¢..A) is ample over Z (Y is a Mori fibre space).
IfY is a Mori fibre space, then it is known that k (X, Kx +A) = —oo and X is uniruled. The
reverse implication is much harder to prove. The greatest contributions in that direction
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are [BDPPO04], which proves that if X is smooth and Kx is not pseudo-effective, then X
is uniruled, and [BCHMO6], which proves that if Kx + A is kit and not pseudo-effective,
then there isamap to Y as in (2) above.

The classical strategy is as follows: if Kx 4+ A is not nef, then by the Cone theorem
(known for log canonical pairs by the work of Ambro and Fujino, see [Amb03]) there is
a (Kx +A)-negative extremal ray R in NE(X), and by the contraction theorem there is a
morphism 71: X — W which contracts curves whose classes belong to R, and only them.
Then if dimW < dimX we are done. Otherwise rtis birational, and there are two cases.
If codimy Excm= 1, then mtis a divisorial contraction, W is Q-factorial, p(X/W) =1
and we continue the process starting from the pair (W, rz.A). If codimy Exc m> 2, then 11
is a flipping contraction, p(X /W) = 1, but Ky + 1A is no longer Q-Cartier. In order to
proceed, one needs to construct a flip of 71, namely a birational map " : X* — W such
that X * is Q-factorial, p(X* /W) = 1 and Kx+ + @A isample over W, where ¢: X --+ X
is the birational map which completes the diagram. Continuing the procedure, one hopes
that it ends in finitely many steps.

Therefore there are two conjectures that immediately arise in the theory: existence and
termination of flips. The existence of the flip of a flipping contraction rr: X — W is known
to be equivalent to the finite generation of the relative canonical algebra

R(X/W,Kx +4) = @ mox([m(Kx +4)]),
meN
and then the flip is given by X* = Proj,, R(X /W,Kx +A). The termination of flips is
related to conjectures about the behaviour of the coefficients in the divisor A, but | do not
discuss it here.
Since the paper [Zar62], one of the central questions in higher dimensional birational
geometry is the following:

Conjecture A.1. Let (X,A) be a projective log canonical pair. Then the canonical ring
R(X,Kx +4) is finitely generated.

Finite generation implies existence of flips [Fuj09, 3.9]; moreover, one only needs to
assume finite generation for pairs (X,A) with Kx + A big.

The proof of the finite generation in the case of kit singularities along the lines of the
classical philosophy in [BCHMO6] is as follows: by [FMOO, 5.2] one can assume that
Kx + A is big. Then by applying carefully chosen flipping contractions, prove that the
corresponding flips exist and terminate (termination with scaling), and since the process
preserves the canonical ring, deduce finite generation from the basepoint free theorem.

Now assume we have a flipping contraction rr: (X,A) — W with additional properties
that (X,A) isaplt pair such that S = |A| is an irreducible divisor which is negative over Z.
This contraction is called pl flipping, and the corresponding flip is the pl flip. Following
the work of Shokurov, one of the steps in the proof in [BCHMO6] is showing that pl flips
exist, and the starting point is Lemma A.2 below. Note that in the context of pl flips, the
issues which occur in the problem of global finite generation outlined in the introduction
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to this paper do not exist. | give a slightly modified proof than the one present elsewhere
in the literature in order to stress the following point: I do not calculate the kernel of the
restriction map, but rather chase the generators. This reflects the basic principle: if our
algebra is large enough so that it contains the equation of the divisor we are restricting to,
then it is automatically finitely generated assuming the restriction to the divisor is. This
is one of the main ideas guiding the proof in §10.

Lemma A.2. Let (X,A) be a plt pair of dimension n, where S = |A] is a prime divisor,
and let f: X — Z be a pl flipping contraction with Z affine. Then R(X/Z,Kx + A) is
finitely generated if and only if ressR(X /Z,Kx + A) is finitely generated.

Proof. We will concentrate on sufficiency, since necessity is obvious.

Numerical and linear equivalence over Z coincide by the basepoint free theorem. Since
p(X/Z)=1,and both S and Kx + A are f-negative, there exists a positive rational number
r such that S ~q ¢ r(Kx +4A). By considering open subvarieties of Z we can assume that
S—r(Kx +4) is Q-linearly equivalent to a pullback of a principal divisor.

Therefore S ~q r(Kx +4), and since then R(X,S) and R(X,Kx +A) have isomorphic
truncations, it is enough to prove that R(X,S) is finitely generated. Since a truncation of
ressR(X,S) is isomorphic to a truncation of ressR(X,Kx + A), we have that ressR(X,S)
is finitely generated. If os € HO(X,S) is a section such that divos =S and 7 is a finite
set of generators of the finite dimensional vector space @{_; ressH%(X,iS), for some d,
such that the set {s|s: s € 7’} generates ressR(X,S), it is easy to see that 77’ U {os}
is a set of generators of R(X,S), since ker(pkss) = H%(X, (k—1)S) - os for all k, in the
notation of Remark 5.3. O

One of the crucial unsolved problems in higher dimensional geometry is the following
Abundance conjecture.

Conjecture A.3. Let (X,A) be a projective log canonical pair such that Kx + A is nef.
Then Ky + A is semiample.

Until the end of the appendix I discuss this conjecture more thoroughly. There are, to
my knowledge, two different ways to approach this problem.

The first approach is close to the classical strategy, and goes back to [Kaw85b]. First
let us recall the following definition from [Nak04]; the corresponding analytic version can
be found in [Pau08].

Definition A.4. Let X be a projective variety. If D is a pseudo-effective divisor, denote
_ iminfh0 k
o(D,A) =sup{k e N: liminfh™(X, [mD] +A)/m > 0}.
Then the numerical dimension of D is
v(X,D) =sup{o(D,A): Aisample}.

We know that v(X,D) = 0 if and only if D = N ||DJ|, and that v(X,D) is the standard
numerical dimension when D is nef by [Nak04, 6.2.8]. It is well known that abundance
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holds when v(X,Kx +A) is equal to 0 or dimX by [Kaw85a, 8.2], and when v(X,Kx +
A) = k(X,Kx +A) by [Kaw85b, 6.1]. Further, we have the following statement.

Theorem A.5. Let (X,A) be a projective kit pair of dimension n such that Kx + A is
nef. Assume that v(Y,Ky +Ay) > 0 implies k (Y, Ky +Ay) > 0 for any kit pair (Y,Ay) of
dimension at most n. Then Kx 4+ A is semiample.

Proof. Let (S,Ag) be a Q-factorial (n — 1)-dimensional kit pair with k(S,Ks+ Ag) = 0.
Then v(S,Ks+ Ag) = 0 by the assumption in dimension n — 1, and thus Ks+ Ag =
Ng||Ks+Ag||. By [Dru09, 3.4] there exists a minimal model of (S,As). Now the result
follows along the lines of [Kaw85b, 7.3]. O

The assumption in the theorem can be seen as a stronger version of non-vanishing.

Now I present a different approach, where one derives abundance from the finite gen-
eration. It is a result of J. M®Kernan and C. Hacon, and | am grateful to them for allowing
me to include it here.

Theorem A.6. Assume that for every (n+ 1)-dimensional projective log canonical pair
(X,A) with Kx + A nef and big, the canonical ring R(X,Kx + A) is finitely generated.
Then abundance holds for kit pairs in dimension n.

Proof. Let (Y,®) be an n-dimensional projective kit pair such that Ky + & is nef, and
letY c PN be some projectively normal embedding. Let Xq be the cone over it, let X =
P(Gy @ Oy (1)) be the blowup of X at the origin, and let H' PN be a sufficiently ample
divisor which does not contain the origin. Let A be the proper transform of ® in X, let
E C X be the exceptional divisor, and let H be the proper transform of H’ in X.

Then by inversion of adjunction the pair (X,Y=E +A+H) is log canonical, and of
log general type since H’ is ample enough. We have Y ~ E, and this isomorphism maps
Ky +® to Kg +Ag. The divisor Kx + Yis also nef: since (Kx +E +A)|E is identified with
Ky + @, this deals with curves lying in E by nefness, and for those curves which are not in
E, the ampleness of H away from E ensures that the intersection product with Kx + Y'is
positive. Then since the algebra R(X, Kx + ) is finitely generated by assumption, we have
that Kx + Y'is semiample by [Laz04, 2.3.15], and then so is Kg +Ag = (Kx +Y)e. O

Finally a note about the general alternative philosophy. Since [HKO0Q] it has become
clear that adjoint rings encode many important geometric information about the variety.
In particular, Theorem 1.2 in the case of a Fano variety X implies that X is a Mori dream
space [HKOO, 2.9], and therefore all the main theorems and conjectures of Mori theory
hold on X, such as the Cone and Contraction theorems, existence and termination of flips,
abundance [HKOO, 1.11]. In particular, the following conjecture applied to Mori dream
regions [HKO00, 2.12, 2.13] seems to encode the whole Mori theory.

Conjecture A.7. Let X be a projective variety, and let Dj = k; (Kx +4j) € Div(X), where
(X,4) is a log canonical pair for i =1,...,¢. Then the adjoint ring R(X;Dy,...,Dy) is
finitely generated.
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