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ABSTRACT. This paper proves finite generation of the log canonical ring without Mori
theory.
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1. INTRODUCTION

The main goal of this paper is to prove the following theorem while avoiding techniques
of the Minimal Model Program.

Theorem 1.1. Let (X ,∆) be a projective klt pair. Then the log canonical ring R(X ,KX +
∆) is finitely generated.

Let me sketch the strategy for the proof of finite generation in this paper and present
difficulties that arise on the way. The natural idea is to pick a smooth divisor S on X and
to restrict the algebra to it. If we are very lucky, the restricted algebra will be finitely
generated and we might hope that the generators lift to generators on X . There are several
issues with this approach.
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First, to obtain something meaningful on S, we require S to be a log canonical centre
of some pair (X ,∆′) such that the rings R(X ,KX +∆) and R(X ,KX +∆′) share a common
truncation.

Second, even if the restricted algebra were finitely generated, the same might not be
obvious for the kernel of the restriction map. So far this seems to have been the greatest
conceptual issue in attempts to prove the finite generation by the plan just outlined.

Third, the natural strategy is to use the Hacon-McKernan extension theorem, and hence
we must be able to ensure that S does not belong to the stable base locus of KX +∆′.

The idea to resolve the kernel issue is to view R(X ,KX +∆) as a subalgebra of a much
bigger algebra containing generators of the kernel by construction. The new algebra is
graded by a monoid whose rank corresponds roughly to the number of components of ∆
and of an effective divisor D ∼Q KX +∆. A basic example which models the general lines
of the proof in §10 is presented in Lemma A.2.

It is natural to try and restrict to a component of ∆, the issue of course being that (X ,∆)
does not have log canonical centres. Therefore I allow restrictions to components of some
effective divisor D ∼Q KX + ∆, and a tie-breaking-like technique allows me to create log
canonical centres. Algebras encountered this way are, in effect, plt algebras, and their
restriction is handled in §7. This is technically the most involved part of the proof.

Since the algebras we consider are of higher rank, not all divisors will have the same
log canonical centres. I therefore restrict to available centres, and lift generators from
algebras that live on different divisors. Since the restrictions will also be algebras of
higher rank, the induction process must start from them. The contents of this paper can
be summarised in the following result.

Theorem 1.2. Let X be a projective variety, and let Di = ki(KX +∆i +A)∈ Div(X), where
A is an ample Q-divisor and (X ,∆i + A) is a klt pair for i = 1, . . . , ` . Then the adjoint
ring R(X ;D1, . . . ,D`) is finitely generated.

Theorem 1.1 is a corollary to the previous theorem. Techniques of the MMP were used
to prove Theorem 1.1 in the seminal paper [BCHM06], and also in the recent preprint
[BP09]. A proof of finite generation of the canonical ring of general type by analytic
methods is announced in [Siu06].

In the appendix I give a very short history of Mori theory, and also outline a new
approach which aims to turn the conventional thinking about classification on its head.
Finite generation comes at the beginning of the theory and all main results of the Minimal
Model Program should be derived from it. In light of this new viewpoint, it is my hope
that the techniques of this paper could be adapted to handle finite generation in the case
of log canonical singularities and the abundance conjecture.

Acknowledgements. I am indebted to my PhD supervisor Alessio Corti whose initial
insight that higher rank algebras are a natural setting for the finite generation funda-
mentally shaped the way I think about the problem. I would like to express my grati-
tude for his encouragement, support and continuous inspiration. I am very grateful to
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C. Hacon for suggesting that methods from [Hac08] might be useful in the context of
finite generation of the restricted algebra, and to M. Păun for numerous conversations
about the questions surrounding non-vanishing and finite generation. Many thanks to
D. Abramovich, S. Boucksom, P. Cascini, J.-P. Demailly, S. Druel, O. Fujino, A.-S.
Kaloghiros, C. Maclean, J. McKernan and M. Popa for useful comments, and to M. Reid
whose suggestions improved the organisation of the paper.

2. NOTATION AND CONVENTIONS

Unless stated otherwise, varieties in this paper are projective and normal over C. How-
ever, all results hold when X is, instead of being projective, assumed to be projective
over an affine variety Z. The group of Weil, respectively Cartier, divisors on a variety X
is denoted by WDiv(X), respectively Div(X). Subscripts denote the rings in which the
coefficients are taken.

We say an ample Q-divisor A on a variety X is general if there is a sufficiently divisible
positive integer k such that kA is very ample and kA is a general section of |kA|. In
particular we can assume that for some k � 0, kA is a smooth divisor on X . In practice,
we fix k in advance, and generality is most often needed to ensure that A does not make
singularities of pairs worse.

For any two divisors P = ∑ piEi and Q = ∑qiEi on X set

P∧Q = ∑min{pi,qi}Ei.

For the definition and basic properties of multiplier ideals used in this paper see [HM08].
The sets of non-negative (respectively non-positive) rational and real numbers are de-

noted by Q+ and R+ (respectively Q− and R−), and similarly for Z>0 and R>0.

b-Divisors. I use basic properties of b-divisors, see [Cor07]. The cone of mobile b-
divisors on X is denoted by Mob(X).

Definition 2.1. Let (X ,∆) be a log pair. For a model f : Y → X we can write uniquely

KY +BY = f ∗(KX +∆)+EY ,

where BY and EY are effective with no common components and EY is f -exceptional. The
boundary b-divisor B(X ,∆) is given by B(X ,∆)Y = BY for every model Y → X .

Lemma 2.2. If (X ,∆) is a log pair, then the b-divisor B(X ,∆) is well-defined.

Proof. Let g : Y ′ → X be a model such that there is a proper birational morphism h : Y ′ →
Y . Pushing forward KY ′ +BY ′ = g∗(KX +∆)+EY ′ via h∗ yields

KY +h∗BY ′ = f ∗(KX +∆)+h∗EY ′,

and thus h∗BY ′ = BY since h∗BY ′ and h∗EY ′ have no common components. �

If {D} denotes the fractional part of a divisor D, we have:
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Lemma 2.3. Let (X ,∆) be a log canonical pair. There exists a log resolution Y → X such
that the components of {B(X ,∆)Y} are disjoint.

Proof. See [KM98, 2.36] or [HM05, 6.7]. �

Convex geometry. If S = ∑Nei is a submonoid of Nn, I denote SQ = ∑Q+ei and SR =
∑R+ei. A monoid S ⊂ Nn is saturated if S = SR ∩Nn.

If S = ∑n
i=1 Nei and κ1, . . . ,κn are positive integers, the submonoid S ′ = ∑n

i=1 Nκiei

is called a truncation of S . If κ1 = · · · = κn = κ , I denote S (κ) := ∑n
i=1 Nκei, and this

truncation does not depend on a choice of generators of S .
A submonoid S = ∑Nei of Nn (respectively a cone C = ∑R+ei in Rn) is called sim-

plicial if its generators ei are linearly independent in Rn, and the ei form a basis of S
(respectively C ).

I often use without explicit mention that if λ : M → S is an additive surjective map
between finitely generated saturated monoids, and if C is a rational polyhedral cone in
SR, then λ−1(S ∩C ) = M ∩ λ−1(C ). In particular, if M and S are saturated, the
inverse image of a saturated finitely generated submonoid of S is a saturated finitely
generated submonoid of M .

For a polytope P ⊂ Rn, I denote PQ = P ∩Qn. A polytope is rational if it is the
convex hull of finitely many rational points.

If B ⊂ Rn is a convex set, then R+B will denote the set {rb : r ∈ R+,b ∈ B}. In
particular, if B is a rational polytope, R+B is a rational polyhedral cone. The dimension
of the rational polytope P , denoted dimP , is the dimension of the smallest rational
affine space containing P .

Let S ⊂ Nn be a finitely generated monoid, C ∈ {S ,SQ,SR} and V an R-vector
space. A function f : C →V is: positively homogeneous if f (λx) = λ f (x) for x ∈ C ,λ ≥
0; superadditive if f (x)+ f (y)≤ f (x+y) for x,y∈C ; and superlinear if λ f (x)+µ f (y)≤
f (λx + µy) for x,y ∈ SR,λ ,µ ∈ R+. Similarly for additive, subadditive, sublinear. It
is piecewise additive if there is a finite polyhedral decomposition C =

⋃
Ci such that

f|Ci∩S is additive for every i; additionally, if each Ci is a rational cone, it is rationally
piecewise additive. Similarly for (rationally) piecewise linear. Assume furthermore that f
is linear on C and dimC = n. The linear extension of f to Rn is the unique linear function
` : Rn →V such that `|C = f .

In this paper the relative interior of a cone C = ∑R+ei ⊂ Rn, denoted by relintC , is
the topological interior of C in the space ∑Rei union the origin. If dimC = n, we instead
call it the interior of C and denote it by intC . The boundary of a closed set D is denoted
by ∂D . If a norm ‖ · ‖ on Rn is given, then for x ∈ Rn and for any r > 0, the closed
ball of radius r with centre at x is denoted by B(x,r). Unless otherwise stated, the norm
considered is always the sup-norm ‖ · ‖∞, and note that then B(x,r) is a hypercube in the
Euclidean norm.
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Asymptotic invariants. The standard references on asymptotic invariants arising from
linear series are [Nak04, ELM+06].

Definition 2.4. Let X be a variety and D ∈ WDiv(X)R. For k ∈ {Z,Q,R}, define

|D|k = {C ∈ WDiv(X)k : C ≥ 0,C ∼k D}.

If T is a prime divisor on X such that T 6⊂ Fix |D|, then |D|T denotes the image of the linear
system |D| under restriction to T . The stable base locus of D is B(D) =

⋂
C∈|D|R SuppC if

|D|R 6= /0, otherwise we set B(D) = X . The diminished base locus is B−(D) =
⋃

ε>0 B(D+
εA) for an ample divisor A; this definition does not depend on a choice of A. In particular
B−(D) ⊂ B(D).

We denote WDiv(X)κ≥0 = {D ∈ WDiv(X) : |D|R 6= /0}, and similarly for Div(X)κ≥0

and for versions of these sets with subscripts Q and R. Observe that when D ∈ WDiv(X),
the condition |D|R 6= /0 is equivalent to κ(X ,D)≥ 0 by Lemma 2.8 below, where κ is the
Iitaka dimension.

It is elementary that B(D1 + D2) ⊂ B(D1)∪B(D2) for D1,D2 ∈ WDiv(X)R. In other
words, the set {D∈WDiv(X)R : x /∈B(D)} is convex for every point x∈X . By [BCHM06,
3.5.3], B(D) =

⋂
C∈|D|Q

SuppC when D is a Q-divisor, which is the standard definition of
the stable base locus.

Definition 2.5. Let Z be a closed subvariety of a smooth variety X and let D∈ Div(X)κ≥0
R

.
The asymptotic order of vanishing of D along Z is

ordZ ‖D‖ = inf{multZ C : C ∈ |D|R}.

In the case of rational divisors, the infimum above can be taken over rational divisors,
see Lemma 2.8 below. More generally, one can consider any discrete valuation ν of k(X)
and define

ν‖D‖ = inf{ν(C) : C ∈ |D|Q}

for an effective Q-divisor D. Then [ELM+06] shows that ν‖D‖ = ν‖E‖ if D and E
are numerically equivalent big divisors, and that ν extends to a sublinear function on
Big(X)R.

Remark 2.6. When X is projective, Nakayama [Nak04] defines a function σZ : Big(X)→
R+ by

σZ(D) = lim
ε↓0

ordZ ‖D+ εA‖

for any ample R-divisor A, and shows that it agrees with ordZ ‖·‖ on big classes. Analytic
properties of these invariants were studied in [Bou04].

We can define the restricted version of the invariant introduced.

Definition 2.7. Let S be a smooth divisor on a smooth variety X and let D ∈ Div(X)κ≥0
R

be such that S 6⊂ B(D). Let P be a closed subvariety of S. The restricted asymptotic order
of vanishing of |D|S along P is

ordP ‖D‖S = inf{multPC|S : C ∈ |D|R,S 6⊂ SuppC}.
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Lemma 2.8. Let X be a smooth variety, D ∈ Div(X)κ≥0
Q

and let D′ ≥ 0 be an R-divisor
such that D ∼R D′. Then for every ε > 0 there is a Q-divisor D′′ ≥ 0 such that D ∼Q D′′,
SuppD′ = SuppD′′ and ‖D′−D′′‖ < ε . In particular, if S ⊂ X is a smooth divisor such
that S 6⊂ B(D), then for every closed subvariety P ⊂ S we have

ordP ‖D‖S = inf{multPC|S : C ∈ |D|Q,S 6⊂ SuppC}.

Proof. Let D′ = D+∑p
i=1 ri( fi) for ri ∈R and fi ∈ k(X). Let F1, . . . ,FN be the components

of D and of all ( fi), and assume that multFj D′ = 0 for j = 1, . . . , ` and multFj D′ > 0
for j = ` + 1, . . . ,N. Let ( fi) = ∑N

j=1 ϕi jFj for all i and D = ∑N
j=1 δ jFj. Then we have

δ j + ∑p
i=1 ϕi jri = 0 for j = 1, . . . , `. Let K ⊂ Rp be the space of solutions of the system

∑p
i=1 ϕi jxi = −δ j for j = 1, . . . , `. Then K is a rational affine subspace and (r1, . . . ,rp) ∈

K , thus for 0 < η � 1 there is a rational point (s1, . . . ,sp) ∈ K with ‖si − ri‖ < η for
all i. Therefore for η sufficiently small, setting D′′ = D+∑p

i=1 si( fi) we have the desired
properties. �

Remark 2.9. Similarly as in Remark 2.6, [Hac08] introduces a function σP‖ · ‖S : C− →
R+ by

σP‖D‖S = lim
ε↓0

ordP ‖D+ εA‖S

for any ample R-divisor A, where C− ⊂ Big(X) is the set of classes of divisors D such
that S 6⊂ B−(D). Then one can define a formal sum Nσ‖D‖S = ∑σP‖D‖S ·P over all
prime divisors P on S. If S 6⊂ B(D), then for every ε0 > 0 we have limε↓ε0 σP‖D+εA‖S =
ordP ‖D+ ε0A‖S for any ample divisor A on X similarly as in [Nak04, 2.1.1].

In this paper I need a few basic properties cf. [Hac08].

Lemma 2.10. Let S be a smooth divisor on a smooth projective variety X and let P be a
closed subvariety of S.

(1) Let D ∈ Div(X)κ≥0
R

be such that S 6⊂ B(D). If A is an ample R-divisor on X, then
ordP‖D+A‖S ≤ ordP‖D‖S, and in particular σP‖D‖S ≤ ordP ‖D‖S.

(2) Let D be a pseudo-effective R-divisor on X such that S 6⊂ B−(D). If Am is a
sequence of ample R-divisors on X such that lim

m→∞
‖Am‖ = 0, then lim

m→∞
ordP ‖D+

Am‖S = σP‖D‖S.
(3) Let D be a pseudo-effective Q-divisor on X such that σP‖D‖S = 0. If A is an ample

Q-divisor on X, then there is a positive integer l such that multP Fix |l(D+A)|S =
0.

Proof. Statement (1) is trivial. The proof of (2) is standard: fix an ample divisor A on X ,
and let 0 < ε � 1. For m � 0 the divisor εA−Am is ample, and so by (1) we have

ordP ‖D+ εA‖S = ordP ‖D+Am +(εA−Am)‖S ≤ ordP ‖D+Am‖S.

Letting m → ∞, and then ε ↓ 0 we obtain

σP‖D‖S ≤ lim
m→∞

ordP ‖D+Am‖S,
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and similarly for the opposite inequality.
For (3), first we have ordP ‖D+ 1

2A‖S = 0. Set n = dimX , let H be a very ample divisor
on X and fix a positive integer l such that H ′ = l

2A− (KX +S)− (n+1)H is very ample.
Let ∆ ∼Q D+ 1

2 A be a Q-divisor such that S 6⊂ Supp∆ and multP ∆|S < 1/l. We have

H i(X ,Jl∆|S
(KS +H ′

|S +(n+1)H|S + l∆|S +mH|S)) = 0

for m≥−n by Nadel vanishing. Since l(D+A)∼Q KX +S+H ′+(n+1)H + l∆, the sheaf
Jl∆|S

(l(D+A)) is globally generated by [HM08, 5.7] and its sections lift to H0(X , l(D+

A)) by [HM08, 4.4(3)]. Since multP(l∆|S) < 1, Jl∆|S
does not vanish along P and so

multP Fix |l(D+A)|S = 0. �

Remark 2.11. Analogously one can prove that if D is a pseudo-effective R-divisor such
that σZ‖D‖= 0 for a closed subvariety of Z of X , then Z 6⊂ B−(D). Further, let f : Y → X
be a log resolution and denote Z ′ = f−1

∗ Z. Then I claim σZ′‖ f ∗D‖ = 0. To prove this,
we have first that Z 6⊂ B(D + εA) for an ample divisor A and for any ε > 0. Therefore
Z′ 6⊂ B( f ∗D+ ε f ∗A), and thus σZ′‖ f ∗D+ ε f ∗A‖ = ordZ′ ‖ f ∗D+ ε f ∗A‖ = 0. But then

σZ′‖ f ∗D‖ = lim
ε↓0

σZ′‖ f ∗D+ ε f ∗A‖ = 0

by [Nak04, 2.1.4(2)].

Convex sets in WDiv(X)R. Let X be a variety and let V be a finite dimensional affine
subspace of WDiv(X)R. Fix an ample Q-divisor A and a prime divisor G on X , and define

LV = {Φ ∈V : KX +Φ is log canonical},

EV,A = {Φ ∈ LV : KX +Φ+A is pseudo-effective},

BG
V,A = {Φ ∈ LV : G 6⊂ B(KX +Φ+A)},

BG=1
V,A = {Φ ∈ LV : multG Φ = 1,G 6⊂ B(KX +Φ+A)}.

If V is a rational affine subspace, the set LV is a rational polytope by [BCHM06, 3.7.2].
Similarly as in Lemma 5.8 below, one can prove that Theorem 1.2 implies that then also
EV,A, BG

V,A and BG=1
V,A are rational polytopes.

3. OUTLINE OF THE INDUCTION

As part of the induction, I will prove the following three theorems.

Theorem A. Let X be a smooth projective variety, and for i = 1, . . . , ` let Di = ki(KX +
∆i + A) ∈ Div(X), where A is an ample Q-divisor and (X ,∆i + A) is a log smooth log
canonical pair with |Di| 6= /0. Then the adjoint ring R(X ;D1, . . . ,D`) is finitely generated.

Theorem B. Let X be a smooth projective variety, let B be a simple normal crossings
divisor and let A be a general ample Q-divisor on X. Let V ⊂ Div(X)R be the vector
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space spanned by the components of B. Then for any component G of B, the set BG=1
V,A is

a rational polytope, and we have

BG=1
V,A = {Φ ∈ LV : multG Φ = 1,σG‖KX +Φ+A‖ = 0}.

Theorem C. Let X be a smooth projective variety, let B be a simple normal crossings
divisor and let A be a general ample Q-divisor on X. Let V ⊂ Div(X)R be the vector
space spanned by the components of B. Then the set EV,A is a rational polytope, and we
have

EV,A = {Φ ∈ LV : |KX +Φ+A|R 6= /0}.

Let me give an outline of the paper, where e.g. “Theorem An” stands for “Theorem A
in dimension n.”

Sections 4 and 5 develop tools to deal with algebras of higher rank and to test whether
functions are piecewise linear. Section 6 contains results from Diophantine approximation
which will be necessary in Sections 7, 8 and 9.

In §8 I prove that Theorems An−1 and Cn−1 imply Theorem Bn, and this part of the
proof uses techniques from §7.

In §9 I prove that Theorems An−1, Bn and Cn−1 imply Theorem Cn, which is essentially
done in [Hac08]. Another proof of Theorem C uses the non-vanishing result from [Pău08]
whose proof is by analytic tools, and also avoids the MMP.

Finally, Sections 7 and 10 contain the proof that Theorems An−1, Bn and Cn−1 imply
Theorem An. Section 7 is technically the most difficult part of the proof, whereas §10
contains the main new idea on which the whole paper is based.

At the end of this section, let me sketch the proofs of Theorems A, B and C when X is a
curve of genus g. Since by Riemann-Roch the condition that a divisor E on X is pseudo-
effective is equivalent to degE ≥ 0, and this condition is linear on the coefficients, this
proves Theorem C. For Theorem A, when g ≥ 1 we have that every divisor Di is ample,
and when g = 0, since degDi ≥ 0 we have that Di is basepoint free, so the statement
follows from [HK00, 2.8]. Furthermore, this shows that every divisor of the form KX +
Φ+A is semiample, so BG

V,A = EV,A and Theorem B follows.

4. CONVEX GEOMETRY

Results of this section will be used in the rest of the paper to study relations between su-
peradditive and superlinear functions, and to test their piecewise linearity. The following
proposition can be found in [HUL93] and I add the proof for completeness.

Proposition 4.1. Let C be a cone in Rn and let f : C → R be a concave function. Then f
is locally Lipschitz continuous on the topological interior of C with respect to any norm
‖ · ‖ on Rn.

In particular, let C be a rational polyhedral cone and assume a function g : CQ → Q is
superadditive and satisfies g(λx) = λg(x) for all x ∈ CQ and all λ ∈ Q+. Then g extends
to a unique superlinear function on C .
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Proof. Since f is locally Lipschitz if and only if − f is locally Lipschitz, we can assume
f is convex. Fix x = (x1, . . . ,xn) ∈ intC , and let ∆ = {(y1, . . . ,yn) ∈ Rn

+ : ∑yi ≤ 1}. It is
easy to check that translations of the domain do not affect the result, so we may assume
x ∈ int∆ ⊂ intC .

First, let us prove that f is locally bounded above around x. Let {ei} be the standard
basis in Rn and set M = max{ f (0), f (e1), . . . , f (en)}. If y = (y1, . . . ,yn) ∈ ∆ and y0 =
1−∑yi ≥ 0, then

f (y) = f
(
∑yiei + y0 ·0

)
≤ ∑yi f (ei)+ y0 f (0) ≤ M.

Now choose δ such that B(x,2δ )⊂ int∆. Again by translating the domain and composing
f with a linear function we may assume that x = 0 and f (0) = 0. Then for all y ∈ B(0,2δ )
we have

− f (y) = − f (y)+2 f (0) ≤− f (y)+ f (y)+ f (−y) = f (−y) ≤ M,

so | f | ≤ M on B(0,2δ ).
Set L = 2M/δ and fix u,v ∈ B(0,δ ). Set α = 1

δ ‖v−u‖ and w = v+ 1
α (v−u)∈ B(0,2δ )

so that v = α
α+1 w+ 1

α+1u. Then by convexity,

f (v)− f (u) ≤ α
α+1 f (w)+ 1

α+1 f (u)− f (u)

= α
α+1

(
f (w)− f (u)

)
≤ 2Mα = L‖v−u‖,

and similarly f (u)− f (v) ≤ L‖u− v‖, which proves the first claim.
For the second one, observe that the sup-norm ‖·‖∞ takes values in Q on CQ. The proof

above applied to the interior of C and to the relative interiors of the faces of C shows that
g is locally Lipschitz, and therefore extends to a unique superlinear function on the whole
C . �

The following result is classically referred to as Gordan’s lemma, and I often use it
without explicit mention.

Lemma 4.2. Let S ⊂ Nr be a finitely generated monoid and let C ⊂ Rr be a rational
polyhedral cone. Then the monoid S ∩C is finitely generated.

Proof. Assume first that dimC = r. Let `1, . . . , `m be linear functions on Rr with inte-
gral coefficients such that C =

⋂m
i=1{z ∈ Rr : `i(z) ≥ 0} and define S0 = S and Si =

Si−1 ∩ {z ∈ Rr : `i(z) ≥ 0} for i = 1, . . . ,m; observe that S ∩C = Sm. Assuming by
induction that Si−1 is finitely generated, by [Swa92, Theorem 4.4] we have that Si is
finitely generated.

Now assume dimC < r and let H be a rational hyperplane containing C . Let ` be
a linear function with integral coefficients such that H = ker(`). From the first part of
the proof applied to the functions ` and −` we have that the monoid S ∩H is finitely
generated. Now we proceed by descending induction on r. �
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The next lemma will turn out to be indispensable and it shows that it is enough to check
additivity of a superadditive map at one point only.

Lemma 4.3. Let S = ∑n
i=1 Nei be a monoid and let f : S → G be a superadditive map

to a monoid G (respectively let f : SR →V be a superlinear map to a cone V ). Assume
that there is a point s0 = ∑siei ∈ S with all si > 0 such that f (s0) = ∑si f (ei) and that
f (κs0) = κ f (s0) for every positive integer κ (respectively assume that there is a point
s0 = ∑siei ∈ SR with all si > 0 such that f (s0) = ∑si f (ei)). Then the map f is additive
(respectively linear).

Proof. I will prove the lemma when f is superadditive, the other claim is proved analo-
gously. For p = ∑ piei ∈ S , let κ0 be a positive integer such that κ0si ≥ pi for all i. Then
we have

∑κ0si f (ei) = κ0 f (s0) = f (κ0s0) ≥ f (p)+∑ f
(
(κ0si− pi)ei

)

≥ ∑ pi f (ei)+∑(κ0si − pi) f (ei) = ∑κ0si f (ei).

Therefore all inequalities are equalities and f (p) = ∑ pi f (ei). �

Now we are ready to prove the main result of this section.

Lemma 4.4. Let f be a superlinear function on a polyhedral cone C ⊂Rr+1 with dimC =
r + 1 such that for every 2-plane H ⊂ Rr+1 the function f|H∩C is piecewise linear. Then
f is piecewise linear.

Proof. I will prove the lemma by induction on r. In the proof, ‖ · ‖ denotes the standard
Euclidean norm and Sr ⊂ Rr+1 is the unit sphere.

Step 1. Fix a ray R ⊂ C . In this step I prove that for any ray R′ ⊂ C there is an (r + 1)-
dimensional cone C(r+1) ⊂C containing R such that the map f|C(r+1)

is linear and C(r+1)∩

(R+R′) 6= R.
Let Hr ⊃ (R+R′) be any hyperplane. By induction there is an r-dimensional polyhedral

cone C(r) = ∑r
i=1 R+ei ⊂Hr∩C containing R such that f|C(r)

is linear and C(r)∩(R+R′) 6=

R. Set e0 = e1 + · · ·+ er and let P be a 2-plane such that P∩Hr = R+e0. Since f|P∩C

is piecewise linear, there is a point er+1 ∈ P∩C such that f |R+e0+R+er+1 is linear. Set
C(r+1) = R+e1 + · · ·+R+er+1. Then we have

f
(
∑ei

)
= f (e0 + er+1) = f (e0)+ f (er+1) = ∑ f (ei),

so the map f|C(r+1)
is linear by Lemma 4.3. Observe that by choosing er+1 appropriately

we can ensure that the cone C(r+1) is contained in either of the half-spaces into which Hr

divides Rr+1.

Step 2. Fix a ray R ⊂ C and let C(r+1) = R+e1 + · · ·+R+er+1 be any (r+1)-dimensional
cone such that f|C(r+1)

is linear. Let ` be the linear extension of f|Cr+1
to Rr+1. Assume
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that for a point h ∈ SR we have f |R+h = `|R+h. Then there are real numbers λi such that
h = ∑λiei, and setting e := ∑(1+ |λi|)ei +h = ∑(1+ |λi|+λi)ei ∈ C we have

f (e) = `
(
∑(1+ |λi|+λi)ei

)
= ∑(1+ |λi|+λi)`(ei)

= ∑(1+ |λi|)`(ei)+ `(h) = ∑(1+ |λi|) f (ei)+ f (h),

so f is linear on the cone C(r+1) +R+h by Lemma 4.3. Therefore the set Ĉ = {z ∈ C :

f (z) = `(z)} is a cone. Let Q denote its closure and let q be a point in Ĉ . Then for every
point p ∈ Q the function f is piecewise linear, and in particular continuous, on the cone
R+p+R+q. Since f and ` agree on intQ, this implies that f is linear on R+p+R+q, so
Ĉ is a closed cone.

Step 3. I claim Ĉ has finitely many extremal rays, and thus is polyhedral. Otherwise there
exist extremal rays Rn, for n ∈ N∪{∞}, such that limn→∞ Rn = R∞.

Let T ⊃ R∞ be a hyperplane tangent to Ĉ . Fix an (r− 1)-plane Hr−1 ⊂ T containing
R∞ and let H⊥

r−1 be the unique 2-plane orthogonal to Hr−1. For each n ∈ N consider a

hyperplane H(n)
r generated by Hr−1 and Rn (if Rn ⊂ Hr−1 then we can finish by induction

on the dimension). The set of points
⋃

n∈N

(
Sr ∩H⊥

r−1 ∩H(n)
r

)
has an accumulation point

P∞ on the circle Sr ∩H⊥
r−1, and let H(∞)

r be the hyperplane generated by Hr−1 and P∞;

without loss of generality I can assume all Rn are on the same side of H(∞)
r .

Now by the construction in Step 1, there is an (r + 1)-dimensional cone C∞ such that

C∞∩H(∞)
r is a face of C∞, f|C∞ is linear and C∞ intersects hyperplanes H(n)

r for all n � 0.

In particular Rn ⊂ C∞ for all n � 0 and (intC∞)∩ Ĉ 6= /0. Let w ∈ (intC∞)∩ Ĉ and
let B ⊂ intC∞ be a small ball centred at w. Then the set B∩ Ĉ is (r + 1)-dimensional
(otherwise the cone Ĉ would be contained in a hyperplane) and thus C∞∩ Ĉ is an (r+1)-
dimensional cone. Therefore the linear extension of f|C∞ coincides with ` and thus C∞ ⊂

Ĉ . Since Rn 6⊂ int Ĉ we must have Rn ⊂ C∞ ∩H(∞)
r , and we finish by induction on the

dimension.

Step 4. Again fix a ray R ⊂ C . By Steps 1 to 3 there is a collection of (r+1)-dimensional
polyhedral cones {Cα}α∈IR such that R ⊂ Cα ⊂ C for every α ∈ IR, for every ray R′ ⊂ C
there is α ∈ IR such that Cα ∩ (R+R′) 6= R and for every two distinct α,β ∈ IR the linear
extensions of f|Cα and f|Cβ

to Rr+1 are different. I will prove that IR is a finite set.
Arguing by contradiction, assume IR is infinite. For each α ∈ IR pick xα ∈ intCα and

denote Hα = (R + R+xα)∪ (−R + R+xα). Let Rα ⊂ Hα be the unique ray orthogonal
to R. Let R⊥ be the hyperplane orthogonal to R, and let Sr ∩R⊥ ∩Hα = {Qα}. The set
{Qα : α ∈ IR} has an accumulation point Q∞. Let H∞ = (R +R+Q∞)∪ (−R +R+Q∞),
by relabelling pick a sequence Hn in the set {Hα} such that lim

n→∞
Qn = Q∞, and let Cn be

the corresponding cones in {Cα}.
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By assumption there is a point y ∈ H∞\R such that f |R+R+y is linear. Let x ∈ R\{0}
and let H be any hyperplane such that H ∩ (Rx +Ry) = R(x + y). By induction there
are r-dimensional polyhedral cones Q1, . . . ,Qk in H ∩C such that x + y ∈ Qi for all
i, there is a small r-dimensional ball B(r) ⊂ H centred at x + y such that B(r) ∩C =
B(r)∩ (Q1∪·· ·∪Qk) and the map f|Qi

is linear for every i. Fix i and let gi j be generators
of Qi. Then

f
(
∑gi j + x+ y

)
= ∑ f (gi j)+ f (x+ y) = ∑ f (gi j)+ f (x)+ f (y),

so f is linear on the cone Q̃i = Qi +R+x +R+y by Lemma 4.3. Therefore if we denote
Q̃ = Q̃1∪·· ·∪Q̃k, then f

|Q̃
is piecewise linear and there is a ball B(r+1) of radius ε � 1

centred at x+ y such that B(r+1)∩C = B(r+1)∩ Q̃ and x /∈ B(r+1).
Since ‖Qn−Q∞‖ < ε for n � 0, then considering the subspace generated by R,Qn and

Q∞ we obtain that Hn intersects intB(r+1) for n � 0. Since Q̃ =
⋃

Q̃i, there is an index i0
such that Q̃i0 ∩ intB(r+1) intersects infinitely many Hn. In particular, Q̃i0 ∩ intCn 6= /0 for

infinitely many n and therefore Q̃i0 ∩Cn is an (r + 1)-dimensional cone. Thus for every
such n the linear extensions of f

|Q̃i0
and f|Cn

to Rr+1 are the same since they coincide

with the linear extension of f
|Q̃i0∩Cn

, which is a contradiction and IR is finite.

Step 5. Finally, we have that for every ray R ⊂ C the map f |Cα is linear for α ∈ IR, and
there is small ball BR centred at R∩ Sr such that BR ∩C = BR ∩

⋃
α∈IR

Cα . There are
finitely many open sets intBR which cover the compact set Sr ∩C and therefore we can
choose finitely many cones Cα with C =

⋃
Cα . Thus f is piecewise linear. �

5. HIGHER RANK ALGEBRAS

Definition 5.1. Let X be a variety, S a finitely generated submonoid of Nr, let µ : S →
WDiv(X)κ≥0 be an additive map and let Mobµ : S → Mob(X) be the subadditive map
defined by Mobµ(s) = Mob(µ(s)) for every s ∈ S . The algebra

R(X ,µ(S )) =
⊕

s∈S

H0(X ,OX(µ(s)))

is called the divisorial S -graded algebra associated to µ . The b-divisorial S -graded
algebra associated to µ is

R(X ,Mobµ(S )) =
⊕

s∈S

H0(X ,OX(Mobµ(s))),

and we obviously have R(X ,Mobµ(S )) ' R(X ,µ(S )). If e1, . . . ,e` are generators of
S and if µ(ei) = ki(KX + ∆i), where ∆i is an effective Q-divisor for every i, the algebra
R(X ,µ(S )) is called the adjoint ring associated to µ .

Remark 5.2. When S =
⊕`

i=1 Nei is a simplicial cone, the algebra R(X ,µ(S )) is de-
noted also by R(X ; µ(e1), . . . ,µ(e`)). If S ′ is a finitely generated submonoid of S ,
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R(X ,µ(S ′)) is used to denote R(X ,µ|S ′(S ′)). If S is a submonoid of WDiv(X)κ≥0

and ι : S → S is the identity map, R(X ,S ) is used to denote R(X , ι(S )).

Remark 5.3. Algebras considered in this paper are algebras of sections when varieties
are smooth. I will occasionally, and without explicit mention, view them as algebras of
rational functions, in particular to be able to write H0(X ,D) ' H0(X ,Mob(D)) ⊂ k(X).

Assume now that X is smooth, D ∈ Div(X) and that Γ is a prime divisor on X . If σΓ is
the global section of OX(Γ) such that divσΓ = Γ, from the exact sequence

0 → H0(X ,OX(D−Γ))
·σΓ−→ H0(X ,OX(D))

ρD,Γ
−→ H0(Γ,OΓ(D))

we define resΓ H0(X ,OX(D)) = Im(ρD,Γ). For σ ∈H0(X ,OX(D)), denote σ|Γ := ρD,Γ(σ).
Observe that

(1) ker(ρD,Γ) = H0(X ,OX(D−Γ)) ·σΓ,

and that resΓ H0(X ,OX(D)) = 0 if Γ ⊂ Bs |D|. If D ∼ D′ is such that the restriction D′
|Γ is

defined, then

resΓ H0(X ,OX(D)) ' resΓ H0(X ,OX(D′)) ⊂ H0(Γ,OΓ(D′
|Γ)).

The restriction of R(X ,µ(S )) to Γ is defined as

resΓ R(X ,µ(S )) =
⊕

s∈S

resΓ H0(X ,OX(µ(s))).

This is an S -graded, not necessarily divisorial algebra.

The following lemma summarises the basic properties of higher rank finite generation.

Lemma 5.4. Let S ⊂ Nn be a finitely generated monoid and let R =
⊕

s∈S Rs be an
S -graded algebra.

(1) Let S ′ be a truncation of S . If the S ′-graded algebra R′ =
⊕

s∈S ′ Rs is finitely
generated over R0, then R is finitely generated over R0.

(2) Assume furthermore that S is saturated and let S ′′ ⊂ S be a finitely gener-
ated saturated submonoid. If R is finitely generated over R0, then the S ′′-graded
algebra R′′ =

⊕
s∈S ′′ Rs is finitely generated over R0.

(3) Let X be a variety and let µ : S → WDiv(X)κ≥0 be an additive map. If there
exists a rational polyhedral subdivision SR =

⋃k
i=1 ∆i such that, for each i, the

map Mobµ|∆i∩S is additive up to truncation, then the algebra R(X ,µ(S )) is
finitely generated.

Proof. For (1) it is enough to observe that R is an integral extension of R′: if S = ∑n
i=1 Nei

and S ′ = ∑n
i=1 Nκiei, then for any f ∈ R we have f κ1···κn ∈ R′.

Claim (2) is [ELM+06, 4.8].
For (3), denote m = Mobµ . Let {ei j : j ∈ Ii} be a finite set of generators of ∆i ∩

S , and let κi j be positive integers such that m|∑ j∈Ii
Nκi jei j is additive for each i. Set

κ = ∏i, j κi j and S (κ) = ∑i, j Nκei j. If ∑i, j λi jκei j ∈ ∆i ∩S (κ) for some λi j ∈ N, then
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∑i, j λi jei j ∈ ∆i∩S and thus there are µ j ∈ N such that ∑i, j λi jei j = ∑ j∈Ii
µ jei j. Therefore

∆i ∩S (κ) = ∑ j∈Ii
Nκei j, and this is a truncation of ∑ j∈Ii

Nκi jei j; in particular m|∆i∩S (κ)

is additive for each i.
I claim the algebra R(X ,m(S (κ))) is finitely generated, and thus R(X ,m(S )) is finitely

generated by (1). To that end, let Y → X be a model such that m(κei j) descend to Y for
all i, j, and let s = ∑ j∈Ii

νi jκei j ∈ ∆i∩S (κ) for some i and some νi j ∈ N. Then

m(s) = ∑ j∈Ii
νi jm(κei j) = ∑ j∈Ii

νi jm(κei j)Y = ∑ j∈Ii
νi jm(κei j)Y = m(s)Y ,

and thus m(s) descends to Y and

R(X ,m(S (κ))) '
⊕

s∈S (κ)

H0(Y,m(s)Y ).

For each i consider the free monoid S
(κ)

i =
⊕

j∈Ii
Nκei j. Since the divisorial algebra

R(Y,m(S
(κ)

i )) is finitely generated by [HK00, 2.8], so is the algebra R(X ,m(∆i∩S (κ)))

by projection. Now the set of generators of all R(X ,m(∆i∩S (κ))) spans R(X ,m(S (κ))).
�

I will need the next result in the proof of Proposition 5.7 and in §7.

Lemma 5.5. Let X be a variety, let S ⊂ Nr be a finitely generated monoid and let
f : S → G be a superadditive map to a monoid G which is a subset of WDiv(X) or
Mob(X), such that for every s ∈ S there is a positive integer ιs such that f|Nιss is an
additive map.

Then there is a unique superlinear function f ] : SR → GR such that for every s ∈ S
there is a positive integer λs with f (λss) = f ](λss). Furthermore, let C be a rational
polyhedral subcone of SR. Then f|C∩S is additive up to truncation if and only if f ]

|C is
linear.

If µ : S → Div(X) is an additive map and m = Mobµ is such that for every s ∈ S
there is a positive integer ιs such that m|Nιss is an additive map, then we have

(2) m](s) = µ(s)−∑
(

ordE ‖µ(s)‖
)
E,

where the sum runs over all geometric valuations E on X.

Proof. The construction will show that f ] is the unique function with the stated properties.
To start with, fix a point s ∈ SQ and let κ be a positive integer such that κs ∈ S . Set

f ](s) :=
f (ικsκs)

ικsκ
.

This is well-defined: take another κ ′ such that κ ′s ∈ S . Then

f (ικsικ ′sκκ ′s) = ικsκ f (ικ ′sκ ′s) = ικ ′sκ ′ f (ικsκs),

so f (ικsκs)/ικsκ = f (ικ ′sκ ′s)/ικ ′sκ ′.
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Now let s∈SQ, ξ ∈Q+ and let λ be a positive integer such that λξ s∈S and λξ ∈N.
Then

f ](ξ s) =
f
(
(ιλξ sλ )ξ s

)

ιλξ sλ
= ξ

f
(
(ιλξ sλξ )s

)

ιλξ sλξ
= ξ f ](s),

so f ] is positively homogeneous (with respect to rational scalars). Further, let s1,s2 ∈
SQ and let κ be a positive integer such that f (κs1) = f ](κs1), f (κs2) = f ](κs2) and
f
(
κ(s1 + s2)

)
= f ]

(
κ(s1 + s2)

)
. By superadditivity of f we have

f (κs1)+ f (κs2) ≤ f
(
κ(s1 + s2)

)
,

so dividing the inequality by κ we obtain superadditivity of f ].
Let E be any divisor on X , respectively any geometric valuation E over X , when

G ⊂ WDiv(X), respectively G ⊂ Mob(X). Consider the function f ]
E given by f ]

E(s) =

multE f ](s). Proposition 4.1 applied to each f ]
E shows that f ] extends to a superlinear

function on SR.
As for the statement on cones, necessity is clear. Now assume f ]|C is linear and let

C ∩S = ∑n
i=1 Nei. For s0 = e1 + · · ·+ en we have

(3) f ](s0) = f ](e1)+ · · ·+ f ](en).

Let µ be a positive integer such that f (µs0) = f ](µs0) and f (µei) = f ](µei) for all i.
¿From (3) we obtain

f (µs0) = f (µe1)+ · · ·+ f (µen),

and Lemma 4.3 implies that f ]|∑Nµei is additive. �

Definition 5.6. In the context of Lemma 5.5, the function f ] is called the straightening of
f .

Proposition 5.7. Let X be a variety, S ⊂ Nr a finitely generated saturated monoid and
µ : S → WDiv(X)κ≥0 an additive map. Let L be a finitely generated submonoid of S
and assume R(X ,µ(S )) is finitely generated. Then R(X ,µ(L )) is finitely generated.
Moreover, the map m = Mobµ|L is piecewise additive up to truncation. In particular,
there is a positive integer p such that Mobµ(ips) = iMobµ(ps) for every i ∈ N and every
s ∈ L .

Proof. Denote M = LR ∩Nr. By Lemma 5.4(2), R(X ,µ(M )) is finitely generated, and
by the proof of [ELM+06, 4.1], there is a finite rational polyhedral subdivision MR =

⋃
∆i

such that for every geometric valuation E on X , the map ordE ‖ ·‖ is linear on ∆i for every
i. Since for every saturated rank 1 submonoid R ⊂ M the algebra R(X ,µ(R)) is finitely
generated by Lemma 5.4(2), the map m|R is additive up to truncation by [Cor07, 2.3.53],
and thus there is the well-defined straightening m] : LR → Mob(X)R since MR = LR.
Then equation (2) implies that the map m]|∆i is linear for every i, hence by Lemma 5.5 the
map m is piecewise additive up to truncation. Therefore R(X ,µ(L )) is finitely generated
by Lemma 5.4(3). �
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The following lemma shows that finite generation implies certain boundedness on the
convex geometry of boundaries.

Lemma 5.8. Let X be a smooth projective variety of dimension n, let B be a simple normal
crossings divisor on X and let A be a general ample Q-divisor. Let V ⊂ Div(X)R be the
vector space spanned by the components of B. Assume Theorems An and Cn. Then for
each prime divisor G on X, the set BG

V,A is a rational polytope. Furthermore, there exists
a positive integer r such that:

(1) for every Φ ∈ (LV )Q with the property that no component of Φ is in B(KX +
Φ + A), and for every positive integer k such that k(KX + Φ + A)/r is Cartier, no
component of B is in Fix |k(KX +Φ+A)|,

(2) for every Φ ∈ (LV )Q with the property that KX + Φ + A is pseudo-effective, and
for every positive integer k such that k(KX +Φ+A)/r is Cartier, we have |k(KX +
Φ+A)| 6= /0.

Proof. Let KX be a divisor such that OX(KX) ' ωX and SuppA 6⊂ SuppKX , and let Λ ⊂
Div(X) be the monoid spanned by components of KX ,B and A. Let G be a components of
B. By Theorem C the set EV,A is a rational polytope, and let D1, . . . ,D` be generators of
the finitely generated monoid C = R+(KX +A+EV,A)∩Λ. Since every Di is proportional
to an adjoint bundle, by Theorem A and Lemma 5.4(1) the ring R(X ;D1, . . . ,D`) is finitely
generated, and thus so is the algebra R(X ,C ) by projection. By Proposition 5.7 the map
Mobι|C∩Λ(r) is additive for some positive integer r, where ι : Λ → Λ is the identity map.
Now (1) and (2) are straightforward. Furthermore, the set O = {ϒ ∈ C : ordG ‖ϒ‖= 0} is
a rational polyhedral cone by the proof of [ELM+06, 4.1], and R+(KX +A+BG

V,A) ⊂ O .
Since for every ϒ ∈ OQ we have G 6⊂ B(ϒ) by Theorem A, this implies O ⊂ R+(KX +
A+BG

V,A) as extremal rays of O are rational. Therefore BG
V,A is a rational polytope. �

6. DIOPHANTINE APPROXIMATION

I need a few results from Diophantine approximation theory.

Lemma 6.1. Let Λ⊂Rn be a lattice spanned by rational vectors, and let V = Λ⊗Z R. Fix
a vector v ∈ V and denote X = Nv + Λ. Then the closure of X is symmetric with respect
to the origin. Moreover, if π : V →V/Λ is the quotient map, then the closure of π(X) is a
finite disjoint union of connected components. If v is not contained in any proper rational
affine subspace of V , then X is dense in V .

Proof. I am closely following the proof of [BCHM06, 3.7.6]. Let G be the closure of
π(X). Since G is infinite and V/Λ is compact, G has an accumulation point. It then
follows that zero is also an accumulation point and that G is a closed subgroup. The con-
nected component G0 of the identity in G is a Lie subgroup of V/Λ and so by [Bum04,
Theorem 15.2], G0 is a torus. Thus G0 = V0/Λ0, where V0 = Λ0 ⊗Z R is a rational sub-
space of V . Since G/G0 is discrete and compact, it is finite, and it is straightforward that
X is symmetric with respect to the origin. Therefore a translate of v by a rational vector
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is contained in V0, and so if v is not contained in any proper rational affine subspace of V ,
then V0 = V . �

Definition 6.2. Let x ∈ Rn, let ε be a positive real number and let k be a positive integer.
We say that, for i = 1, . . . , p, points (wi,k,ki,ri)∈Qn×Z2

>0×R>0 uniformly approximate
x with error ε if

(1) kiwi/k is integral for every i,
(2) ‖x−wi‖ < ε/ki for every i,
(3) x = ∑riwi and ∑ri = 1.

The next result is [BCHM06, 3.7.7].

Lemma 6.3. Let x∈Rn and let W be the smallest rational affine space containing x. Fix a
positive integer k and a positive real number ε . Then there are finitely many (wi,k,ki,ri)∈
(W ∩Qn)×Z2

>0 ×R>0 which uniformly approximate x with error ε .

I will need a refinement of this lemma when the approximation is not necessarily hap-
pening in the smallest rational affine space containing a point.

Lemma 6.4. Let x ∈ Rn, let 0 < ε,η � 1 be rational numbers and let k be a positive
integer. Assume that there are w1 ∈ Qn and k1 ∈ N such that ‖x−w1‖< ε/k1 and k1w1/k
is integral. Then there are r1 ∈ R>0, and points (wi,k,ki,ri) ∈ Qn ×Z2

>0 ×R>0 for i =
2, . . . ,m, such that (wi,k,ki,ri) uniformly approximate x with error ε , for i = 1, . . . ,m.
Furthermore, we can assume that w3, . . . ,wm belong to the smallest rational affine space
containing x, and we can write

x =
k1

k1 + k2
w1 +

k2

k1 + k2
w2 +ξ ,

with ‖ξ‖ < η/(k1 + k2).

Proof. Rescaling by k, we can assume that k = 1. Let W be the minimal rational affine
subspace containing x, let π : Rn → Rn/Zn be the quotient map and let G be the closure
of the set π(Nx + Zn). Then by Lemma 6.1 we have π(−k1x) ∈ G and there is k2 ∈ N

such that π(k2x) is in the connected component of π(−k1x) in G and ‖k2x− y‖ < η for
some y ∈ Rn with π(y) = π(−k1x). Thus there is a point w2 ∈ Qn such that k2w2 ∈ Zn,
‖k2x− k2w2‖ < ε and the open segment (w1,w2) intersects W .

Pick t ∈ (0,1) such that wt = tw1 +(1− t)w2 ∈W , and choose, by Lemma 6.3, rational
points w3, . . . ,wm ∈W and positive integers k3, . . . ,km such that kiwi ∈Zn, ‖x−wi‖< ε/ki
and x = ∑m

i=3 riwi +rtwt with rt > 0 and all ri > 0, and rt +∑m
i=3 ri = 1. Thus x = ∑m

i=1 riwi
with r1 = trt and r2 = (1− t)rt.

Finally, observe that the vector y/k2 − w2 is parallel to the vector x − w1 and ‖y −
k2w2‖ = ‖k1x− k1w1‖. Denote z = x− y/k2. Then

x−w1

(w2 + z)− x
=

x−w1

w2 − y/k2
=

k2

k1
,
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so

x =
k1

k1 + k2
w1 +

k2

k1 + k2
(w2 + z) =

k1

k1 + k2
w1 +

k2

k1 + k2
w2 +ξ ,

where ‖ξ‖ = ‖k2z/(k1 + k2)‖ < η/(k1 + k2). �

Remark 6.5. Assuming notation from the previous proof, the connected components of G
are precisely the connected components of the closure of the set π(

⋃
k>0 kW ). Therefore

y/k2 ∈W .

Remark 6.6. Assume λ : V →W is a linear map between vector spaces such that λ (VQ)⊂
WQ. Let x ∈ V , and let H ⊂ V and H ′ ⊂ W be the smallest rational affine subspaces
containing x and λ (x), respectively. Then, by definition, H ′ ⊂ λ (H) and H ⊂ λ−1(H ′),
thus H ′ = λ (H).

7. RESTRICTING PLT ALGEBRAS

In this section I establish one of the technically most difficult steps in the scheme of the
proof, that Theorems An−1, Bn and Cn−1 imply Theorem An. Crucial techniques will be
those developed in [HM08] and in Sections 4 and 5.

The key result is the following Hacon-McKernan extension theorem [HM08, 6.2],
whose proof relies on deep techniques initiated by [Siu98].

Theorem 7.1. Let (X ,∆ = S + A + B) be a projective plt pair such that S = b∆c is ir-
reducible, ∆ ∈ WDiv(X)Q, (X ,S) is log smooth, A is a general ample Q-divisor and
(S,Ω+A|S) is canonical, where Ω = (∆−S)|S. Assume S 6⊂ B(KX +∆), and let

F = liminf
m→∞

1
m Fix |m(KX +∆)|S.

If ε > 0 is any rational number such that ε(KX +∆)+A is ample and if Φ is any Q-divisor
on S and k > 0 is any integer such that both k∆ and kΦ are Cartier, and Ω∧ (1− ε

k )F ≤
Φ ≤ Ω, then

|k(KS +Ω−Φ)|+ kΦ ⊂ |k(KX +∆)|S.

The immediate consequence is:

Corollary 7.2. Let (X ,∆ = S + A + B) be a projective plt pair such that S = b∆c is ir-
reducible, ∆ ∈ WDiv(X)Q, (X ,S) is log smooth, A is a general ample Q-divisor and
(S,Ω + A|S) is canonical, where Ω = (∆− S)|S. Assume S 6⊂ B(KX + ∆), and let Φm =

Ω∧ 1
m Fix |m(KX +∆)|S for every m such that m∆ is Cartier. Then

|m(KS +Ω−Φm)|+mΦm = |m(KX +∆)|S.

The following result will be used several times to test inclusions of linear series. It
is extracted and copied almost verbatim from the proof of the non-vanishing theorem in
[Hac08], and Step 2 of the proof below first appeared in [Tak06]. Similar techniques in
the analytic setting appeared in [Pău08].
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Proposition 7.3. Let (X ,∆ = S + A + B) be a projective plt pair such that S = b∆c is
irreducible, ∆ ∈ WDiv(X)Q, (X ,S) is log smooth, A is a general ample Q-divisor and
(S,Ω+A|S) is canonical, where Ω = (∆−S)|S. Let 0 ≤ Θ ≤ Ω be a Q-divisor on S, let k
be a positive integer such that k∆ and kΘ are integral, and denote A′ = A/k. Assume that
S 6⊂ B(KX +∆+A′) and that for any l > 0 sufficiently divisible we have

(4) Ω∧ 1
l Fix |l(KX +∆+A′)|S ≤ Ω−Θ.

Then
|k(KS +Θ)|+ k(Ω−Θ)⊂ |k(KX +∆)|S.

Proof. Step 1. We first prove that there exists an effective divisor H on X not containing
S such that for all sufficiently divisible positive integers m we have

(5) |m(KS +Θ)|+m(Ω−Θ)+(mA′+H)|S ⊂ |m(KX +∆)+mA′+H|S.

Taking l as in (4) sufficiently divisible, we can assume S 6⊂ Bs |l(KX + ∆ + A′)|. Let
f : Y →X be a log resolution of (X ,∆+A′) and of |l(KX +∆+A′)|. Let Γ = B(X ,∆+A′)Y
and E = KY +Γ− f ∗(KX +∆+A′), and define

Ξ = Γ−Γ∧ 1
l Fix |l(KY +Γ)|.

We have that l(KY + Ξ) is Cartier, Fix |l(KY + Ξ)| ∧Ξ = 0 and Mob(l(KY + Ξ)) is free.
Since Fix |l(KY +Ξ)|+Ξ has simple normal crossings support, it follows that B(KY +Ξ)
contains no log canonical centres of (Y,dΞe). Let T = f −1

∗ S,ΓT = (Γ−T )|T and ΞT =
(Ξ−T )|T , let m be any positive integer divisible by l and consider a section

σ ∈ H0(T,OT(m(KT +ΞT ))) = H0(T,J‖m(KT +ΞT )‖(m(KT +ΞT ))).

By [HM08, 5.3], there is an ample divisor H ′ on Y such that if τ ∈ H0(T,OT(H ′)), then
σ · τ is in the image of the homomorphism

H0(Y,OY (m(KY +Ξ)+H ′)) → H0(T,OT(m(KY +Ξ)+H ′)).

Therefore

(6) |m(KT +ΞT )|+m(ΓT −ΞT )+H ′
|T ⊂ |m(KY +Γ)+H ′|T .

We claim that

(7) Ω+A′
|S ≥ ( f|T )∗ΞT ≥ Θ+A′

|S

and so, as (S,Ω+A′
|S) is canonical, we have

|m(KS +Θ)|+m(( f|T)∗ΞT −Θ) ⊂ |m(KS +( f|T )∗ΞT )| = ( f|T )∗|m(KT +ΞT )|.

Pushing forward the inclusion (6), we obtain (5) for H = f∗H ′.
We will now prove the inequality (7) claimed above. We have ΞT ≤ ΓT and ( f|T )∗ΓT =

Ω+A′
|S and so the first inequality follows.
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In order to prove the second inequality, let P be any prime divisor on S and let P′ =
( f|T )−1

∗ P. Assume that P ⊂ SuppΩ, and thus P′ ⊂ SuppΓT . Then there is a component Q
of the support of Γ such that

multP′ Fix |l(KY +Γ)|T = multQ Fix |l(KY +Γ)|

and multP′ ΓT = multQ Γ. Therefore

multP′ ΞT = multP′ ΓT −min{multP′ ΓT ,multP′
1
l Fix |l(KY +Γ)|T}.

Notice that multP′ ΓT = multP(Ω+A′
|S) and since E|T is exceptional, we have that

multP′ Fix |l(KY +Γ)|T = multP Fix |l(KX +∆+A′)|S.

Therefore ( f|T )∗ΞT = Ω+A′
|S −Ω∧ 1

l Fix |l(KX +∆+A′)|S. The inequality now follows
from (4).

Step 2. Therefore, for any Σ ∈ |k(KS + Θ)| and any m > 0 sufficiently divisible, we may
choose a divisor G ∈ |m(KX + ∆)+ mA′ + H| such that G|S = m

k Σ + m(Ω−Θ)+ (mA′ +

H)|S. If we define Λ = k−1
m G+∆−S−A, then

k(KX +∆) ∼Q KX +S +Λ+A′− k−1
m H,

where A′− k−1
m H is ample as m � 0. By [HM08, 4.4(3)], we have a surjective homomor-

phism
H0(X ,JS,Λ(k(KX +∆))) → H0(S,JΛ|S

(k(KX +∆))).

Since (S,Ω) is canonical, (S,Ω+ k−1
m H|S) is klt as m � 0, and therefore JΩ+ k−1

m H|S
= OS.

Since

Λ|S − (Σ+ k(Ω−Θ)) = k−1
m G|S +Ω−A|S − (Σ+ k(Ω−Θ))≤ Ω+ k−1

m H|S,

then by [HM08, 4.3(3)] we have IΣ+k(Ω−Θ) ⊂ JΛ|S
, and so

Σ+ k(Ω−Θ) ∈ |k(KX +∆)|S,

which finishes the proof. �

The main result of this section is the following.

Theorem 7.4. Let X be a smooth variety of dimension n, S a smooth prime divisor and
A a general ample Q-divisor on X. For i = 1, . . . , ` let Di = ki(KX + ∆i), where (X ,∆i =
S +Bi +A) is a log smooth plt pair with b∆ic = S and |Di| 6= /0. Assume Theorems An−1,
Bn and Cn−1. Then the algebra resS R(X ;D1, . . . ,D`) is finitely generated.

Proof. Step 1. I first show that we can assume S /∈ Fix |Di| for all i.
To prove this, let KX be a divisor with OX(KX) ' ωX and SuppA 6⊂ SuppKX , and

let Λ be the monoid in Div(X) generated by the components of KX and ∑∆i. Denote
CS = {P ∈ ΛR : S /∈ B(P)}. By Theorem B, the set A = ∑i R+Di ∩ CS is a rational
polyhedral cone.
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The monoid ∑`
i=1 R+Di ∩ Λ is finitely generated and let P1, . . . ,Pq be its generators

with Pi = Di for i = 1, . . . , `. Let µ :
⊕q

i=1 Nei → Div(X) be an additive map from a
simplicial monoid such that µ(ei) = Pi. Therefore S = µ−1(A ∩ Λ)∩

⊕`
i=1 Nei is a

finitely generated monoid. Let h1, . . . ,hm be generators of S , and observe that µ(hi) is a
multiple of an adjoint bundle for every i.

Since resS H0(X ,µ(s)) = 0 for every s ∈
(⊕`

i=1 Nei
)
\S , we have that the restricted

algebra resS R(X ,µ(
⊕`

i=1 Nei)) = resS R(X ;D1, . . . ,D`) is finitely generated if and only if
resS R(X ,µ(S )) is. Since we have the diagram

resS R(X ; µ(h1), . . . ,µ(hm)) resS R(X ,µ(S ))//

R(X ; µ(h1), . . . ,µ(hm))

resS R(X ; µ(h1), . . . ,µ(hm))
��

R(X ; µ(h1), . . . ,µ(hm)) R(X ,µ(S ))// R(X ,µ(S ))

resS R(X ,µ(S ))
��

where the horizontal maps are natural projections and the vertical maps are restrictions to
S, it is enough to prove that the restricted algebra resS R(X ; µ(h1), . . . ,µ(hm)) is finitely
generated. By passing to a truncation, I can assume further that S /∈ Fix |µ(hi)| for i =
1, . . . ,m.

Step 2. Therefore I can assume S =
⊕`

i=1 Nei and µ(ei) = Di for every i. For s =

∑`
i=1 tiei ∈ SQ and ts = ∑`

i=1 tiki, denote ∆s = ∑`
i=1 tiki∆i/ts and Ωs = (∆s−S)|S. Observe

that
R(X ;D1, . . . ,D`) =

⊕

s∈S

H0(X , ts(KX +∆s)).

In this step I show that we can assume that the pair (S,Ωs + A|S) is terminal for every
s ∈ SQ.

Let ∑Fk =
⋃

i SuppBi, and denote Bi = B(X ,∆i) and B = B(X ,S+ν ∑k Fk +A), where
ν = maxi,k{multFk Bi}. By Lemma 2.3 there is a log resolution f : Y → X such that the
components of {BY} do not intersect, and denote D′

i = ki(KY +BiY ). Observe that

(8) R(X ;D1, . . . ,D`) ' R(Y ;D′
1, . . . ,D

′
`).

Since Bi ≤ ν ∑k Fk, by comparing discrepancies we see that the components of {BiY} do
not intersect for every i, and notice that f ∗A = f−1

∗ A ≤ BiY since A is general. Denote
∆′

s = ∑`
i=1 tikiBiY /ts. Let H be a small effective f -exceptional Q-divisor such that A′ ∼Q

f ∗A−H is a general ample Q-divisor, and let T = f −1
∗ S. Then, setting Ψs = ∆′

s − f ∗A−
T +H ≥ 0 and Ω′

s = Ψs|T +A′
|T , the pair (T,Ω′

s+A′
|T ) is terminal and KY +T +Ψs +A′∼Q

KY +∆′
s. Now replace X by Y , S by T , ∆s by T +Ψs +A′ and Ωs by Ω′

s.

Step 3. For every s ∈ S , denote Fs = 1
ts

Fix |ts(KX +∆s)|S and F ]
s = liminf

m→∞
Fms. Define the

maps Θ : S → Div(S)Q and Θ] : S → Div(S)Q by

Θ(s) = Ωs −Ωs ∧Fs, Θ](s) = Ωs −Ωs ∧F]
s .
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Then, denoting Θs = Θ(s) and Θ]
s = Θ](s), we have

(9) resS R(X ;D1, . . . ,D`) '
⊕

s∈S

H0(S, ts(KS +Θs))

by Corollary 7.2. Furthermore, for s ∈ S let ε > 0 be a rational number such that ε(KX +
∆s)+A is ample. Then by Theorem 7.1 we have

|ks(KS +Ωs−Φs)|+ ksΦs ⊂ |ks(KX +∆s)|S

for any Φs and ks such that ks∆s,ksΦs ∈ Div(X) and Ωs ∧ (1− ε
ks

)Fs ≤ Φs ≤ Ωs. Then

similarly as in the proof of [HM08, 7.1], by Lemma 5.8 we have that Ωs ∧F ]
s is rational

and

(10) resS R(X ,k]
s(KX +∆s)) ' R(S,k]

s(KS +Θ]
s)),

where k]
sΘ]

s and k]
s∆s are both Cartier. Note also, by the same proof, that G 6⊂ B(KS +Θ]

s)

for every component G of Θ]
s. In particular, Θ

k]
s ps

= Θ
k]

ss
= Θ]

s for every p ∈ N.

Define maps λ : S → Div(S)Q and λ ] : S → Div(S)Q by

λ (s) = ts(KS +Θs), λ ](s) = ts(KS +Θ]
s).

Then by Lemma 5.5, λ ] extends to SR. By Theorem 7.6 below, there is a finite ratio-
nal polyhedral subdivision SR =

⋃
Ci such that λ ] is linear on each Ci. In particular,

there is a sufficiently divisible positive integer κ such that κλ ](s) is Cartier for every
s ∈ S , and thus κλ ](s) = λ (κs) for every s ∈ S . Therefore the restriction of λ to

S
(κ)

i is additive, where Si = S ∩Ci. If si
1, . . . ,s

i
z are generators of S

(κ)
i , then the ring

R(S;λ (si
1), . . . ,λ (si

z)) is finitely generated by Theorem A and Lemma 5.4(1), and so is

the algebra R(S,λ (S
(κ)
i )) by projection. Hence the algebra

⊕
s∈S

H0(S,λ (s)) is finitely

generated, and this together with (9) finishes the proof. �

It remains to prove that the map λ ] is rationally piecewise linear, and this is done in
Theorem 7.6 below. The first step towards this goal is the following result.

Theorem 7.5. For any s, t ∈ SR we have

lim
ε↓0

Θ]
s+ε(t−s) = Θ]

s.

Proof. Step 1. First I prove that Θσ
s = Θ]

s, where

Θσ
s = Ωs −Ωs∧Nσ‖KX +∆s‖S,

cf. Remark 2.9. I am closely following the argument from the proof of the non-vanishing
theorem in [Hac08]. Let r be a positive integer as in Lemma 5.8, let φ < 1 be the smallest
positive coefficient of Ωs−Θσ

s if it exists, and set φ = 1 otherwise. Let V ⊂ Div(X)R and
W ⊂ Div(S)R be the smallest rational affine spaces containing ∆s and Θσ

s respectively.
Let 0 < η � 1 be a rational number such that η(KX + ∆s)+ 1

2A is ample, and such that
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if ∆′ ∈V with ‖∆′−∆s‖ < η , then ∆′−∆s + 1
2A is ample. Then by Lemma 6.3 there are

rational points (Ψi,Θi) ∈ V ×W , integers pi � 0 and ri ∈ R>0 such that (Ψi,Θi,r, pi,ri)
uniformly approximate (∆s,Θσ

s ) ∈V ×W with error φη/2. Observe that then Θi ≤ Ωi =
(Ψi−S)|S.

Step 2. Set Ai = A/pi. In this step I prove

(11) |pi(KS +Θi)|+ pi(Ωi−Θi) ⊂ |pi(KX +Ψi)|S.

First observe that since S 6⊂ B(KX +∆s) and Ψi −∆s +Ai is ample, we have S 6⊂ B(KX +
Ψi + Ai), and thus by Proposition 7.3 it is enough to show that for any component P ⊂
SuppΩs, and for any l > 0 sufficiently divisible, we have

(12) multP(Ωi∧
1
l Fix |l(KX +Ψi +Ai)|S) ≤ multP(Ωi−Θi).

If φ = 1, (12) follows immediately from Lemma 2.10. Now assume 0 < φ < 1. Since
‖Ωs−Ωi‖ < φη/2pi and ‖Θσ

s −Θi‖ < φη/2pi, it suffices to show that

multP(Ωi∧
1
l Fix |l(KX +Ψi +Ai)|S) ≤ (1− η

pi
)multP(Ωs−Θσ

s ).

Let δ > η/pi be a rational number such that δ (KX +Ψi)+ 1
2 Ai is ample. Since

KX +Ψi +Ai = (1−δ )(KX +Ψi +
1
2Ai)+

(
δ (KX +Ψi)+ 1+δ

2 Ai
)
,

we have
ordP ‖KX +Ψi +Ai‖S ≤ (1−δ )ordP ‖KX +Ψi +

1
2Ai‖S,

and thus
multP 1

l Fix |l(KX +Ψi +Ai)|S ≤ (1− η
pi

)σP‖KX +Ψi‖S

for l sufficiently divisible, cf. Lemma 2.10.

Step 3. Let Am be ample divisors with SuppAm ⊂ Supp(∆s − S) such that ∆s + Am are
Q-divisors and lim

m→∞
‖Am‖ = 0. Denote ∆m = ∆s +Am, Ωm = (∆m−S)|S and

Θσ
m = Ωm−Ωm ∧Nσ‖KX +∆m‖S

for m � 0. Observe that Θσ
s = lim

m→∞
Θσ

m by Lemma 2.10(2), and note that

Nσ‖KX +∆m‖S = ∑ordP ‖KX +∆m‖S ·P

for all prime divisors P on S for all m, cf. Remark 2.9. But then as in Step 3 of the proof of
Theorem 7.4, no component of Θσ

m is in B(KS + Θσ
m), and thus, by Lemma 5.8 and since

Θσ
m ≥ Θσ

s for every m, no component of Θσ
s is in B(KS +Θσ

s ). Since piΘi/r is Cartier and
Θi ∈W , by (11) we have

Ωi−Θi ≥ Ωi∧
1
pi

Fix |pi(KX +Ψi)|S ≥ Ωi −Θ]
i ,

and so Θ]
i ≥ Θi, where

Θ]
i = Ωi −Ωi∧ liminf

m→∞
1
m Fix |m(KX +Ψi)|S.
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Let P be a prime divisor on S. If multP Θσ
s = 0, then multP Θ]

s = 0 since Θσ
s ≥ Θ]

s by
Lemma 2.10. Otherwise multP Θi > 0 for all i and thus multP Θ]

i > 0. Therefore by
concavity we have

multP Θ]
s ≥ ∑ri multP Θ]

i ≥ ∑ ri multP Θi = multP Θσ
s ,

proving the claim from Step 1.

Step 4. Now let C be an ample Q-divisor such that ∆t −∆s +C is ample. Then by the
claim from Step 1 and by Lemma 2.10,

Ωs −Θ]
s = Ωs∧ lim

ε↓0

(
∑ordP ‖KX +∆s + ε(∆t −∆s +C)‖S ·P

)

≤ Ωs∧ lim
ε↓0

(
∑ordP ‖KX +∆s + ε(∆t −∆s)‖S ·P

)
≤ Ωs −Θ]

s,

where the last inequality follows from convexity. Therefore all inequalities are equalities,
and this completes the proof. �

Recall that S =
⊕`

i=1 Nei. Let Z be a prime divisor on S and let LZ be the closure in
SR of the set {s ∈ SR : multZ Θ]

s > 0}. Then LZ is a closed cone. Let λ ]
Z : SR → R be

the function given by λ ]
Z(s) = multZ λ ](s), and similarly for Θ]

Z.

Theorem 7.6. For every prime divisor Z on S, the map λ ]
Z is rationally piecewise linear.

Therefore, λ ] is rationally piecewise linear.

Proof. Step 1. Let G1, . . . ,Gw be prime divisors on X different from S and SuppA such
that Supp(∆s − S − A) ⊂ ∑Gi for every s ∈ S . Let ν = max{multGi ∆s : s ∈ S , i =
1, . . . ,w} < 1, and let 0 < η � 1−ν be a rational number such that A−η ∑Gi is ample.
Let A′ ∼Q A−η ∑Gi be a general ample Q-divisor. Define ∆′

s = ∆s−A+η ∑Gi +A′ ≥ 0,
and observe that ∆′

s ∼Q ∆s, b∆′
sc = S and (S,(∆′

s−S)|S) is terminal.
Define the map χ : S → Div(X) by χ(s) = κts(KX + ∆′

s), for κ sufficiently divisible.
Then as before, we can construct maps Θ̃] : SR → Div(S)R, λ̃ ] : SR → Div(S)R and
λ̃ ]

Z : SR → R associated to χ . By construction, ordZ ‖λ̃ ]
s /κts‖S = ordZ ‖λ ]

s /ts‖S, and

thus multZ Θ̃]
s = multZ Θ]

s + η for every s ∈ LZ. Let L̃Z be the closure in SR of the set
{s ∈ SR : multZ Θ̃]

s > 0}, and observe that LZ is the closure in SR of the set {s ∈ SR :
multZ Θ̃]

s > η}. Note that multZ Θ̃]
s ≥ η for every s ∈ LZ by Theorem 7.5 applied to 2-

planes that intersect LZ.

Step 2. In this step I prove that there is a rational polyhedral cone MZ such that LZ ⊂

MZ ⊂ L̃Z , and so the map λ̃ ]
Z|MZ is superlinear.

To that end, I will show that for every point x ∈ LZ there is a neighbourhood U of x
such that U ∩SR ⊂ L̃Z, in the sup-norm. Namely, let x1, . . . ,xm ∈SR be points different
from x such that x ∈ ∑R+xi and B(x,ε)∩SR = B(x,ε)∩∑R+xi for some ε > 0. Then by
Theorem 7.5, for each i there exists a point yi in the segment (x,xi) such that multZ Θ̃]

yi > 0.
Therefore it is sufficient to take any neighbourhood U of x such that U ∩SR ⊂ ∑R+yi.
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By compactness, there is a rational number 0 < ξ � 1 and finitely many rational points
z1, . . . ,zp ∈ LZ such that LZ ⊂

⋃
B(zi,ξ )∩SR ⊂ L̃Z . The convex hull B of

⋃
B(zi,ξ )

is a rational polytope, and define MZ = B∩SR.

Step 3. By Theorem 7.9 below, for any 2-plane H ⊂ R` the map λ̃ ]
Z|MZ∩H is piecewise

linear, and thus λ̃ ]
Z|MZ is piecewise linear by Lemma 4.4.

To prove that λ̃ ]
Z|MZ is rationally piecewise linear, we can assume that MZ ⊂ Rk and

dimMZ = k. Let MZ =
⋃

Cm be a finite polyhedral decomposition such that the maps
λ̃ ]

Z|Cm are linear and their linear extensions to Rk are pairwise different. Let H be the
(k−1)-plane which contains a common (k−1)-dimensional face of cones Ci and C j and
assume H is not rational. One can easily prove by induction on the dimension that a
real vector space cannot be a union of countably many codimension 1 affine subspaces,
and in particular there is a point s ∈ Ci ∩C j such that the minimal affine rational space
containing s has dimension k. Then as in Step 1 of the proof of Theorem 7.9 below
there is a k-dimensional cone C̃ such that s ∈ int C̃ and the map λ̃ ]

Z|C̃ is linear. But then

the cones C̃ ∩Ci and C̃ ∩C j are k-dimensional and linear extensions of λ̃ ]
Z|Ci and λ̃ ]

Z|C j

coincide since they are equal to the linear extension of λ̃ ]
Z|C̃ , a contradiction. Therefore

all (k− 1)-dimensional faces of the cones Cm belong to rational (k− 1)-planes and thus
Cm are rational cones.

Therefore the map λ̃ ]
Z|MZ is rationally piecewise linear, and since LZ is the closure of

the set {s ∈ SR : multZ Θ̃]
s > η}, we have that LZ is a rational polyhedral cone, the map

λ̃ ]
Z|LZ is rationally piecewise linear, and therefore so is λ ]

Z. Now it is trivial that λ ] is a
rationally piecewise linear map. �

Thus it remains to prove that λ ]
Z|MZ∩H is piecewise linear for every 2-plane H ⊂ R`.

Replacing S by a free monoid spanned by generators of MZ∩S , it is enough to assume,
and I will until the end of the section, that λ ]

Z is a superlinear function on SR.
I will need the following result in the proof of Theorem 7.9.

Lemma 7.7. If Θ]
Z is not identically zero, then for every s ∈SR we have Z 6⊂ B(KS +Θ]

s).

Proof. Fix s ∈ SR, let t be any element of SR such that Θ]
Z(t) 6= 0 and denote sε =

εt +(1− ε)s for ε ∈ [0,1]. By concavity we have

Θ]
Z(sε) ≥ εΘ]

Z(t)+(1− ε)Θ]
Z(s) ≥ εΘ]

Z(t),

and thus Z 6⊂ B(KS + Θ]
sε ) for ε > 0 by Step 3 of the proof of Theorem 7.5. But then

Z 6⊂ B(KS +Θ]
s) by Lemma 5.8 since lim

ε→0
sε = s. �

Let Cs be a local Lipschitz constant of Θ] around s ∈ SR in the smallest rational affine
space containing s. For every s ∈ S , let φs be the smallest positive coefficient of Ωs−Θ]

s,
or set φs = 0 if Ωs = Θ]

s. Observe that φs is a continuous function around every point in a
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neighbourhood contained in the smallest rational affine space containing that point. Also,
φs is continuous on segments by Theorem 7.5.

Theorem 7.8. Fix s ∈ SR and let U ⊂ R` be the smallest rational affine subspace con-
taining s. If φs > 0, let 0 < δ � 1 be a rational number such that φu > 0 for u ∈ U with
‖u−s‖≤ δ , set φ = min{φu : u ∈U,‖u−s‖≤ δ} and let 0 < ε � δ be a rational number
such that (Cs/φ +1)ε(KX +∆s)+A is ample. If φs = 0 and Supp∆s = ∑Fi, let 0 < ε � 1
be a rational number such that ∑ fiFi + A is ample for any fi ∈ (−ε,ε), and set φ = 1.
Let t ∈U ∩SQ and pt � 0 be an integer such that ‖t− s‖ < ε/pt , pt∆t/r is Cartier for r
as in Lemma 5.8 and S 6⊂ B(KX +∆t). Then for any divisor Θ on S such that 0 ≤ Θ ≤ Ωt ,
‖Θ−Θ]

s‖ < φε/pt and ptΘ/r is Cartier we have

|pt(KS +Θ)|+ pt(Ωt −Θ) ⊂ |pt(KX +∆t)|S.

Proof. Set At = A/pt . By Proposition 7.3 it is enough to prove that for any component
P ⊂ SuppΩs, and for any l > 0 sufficiently divisible, we have

(13) multP(Ωt ∧
1
l Fix |l(KX +∆t +At)|S) ≤ multP(Ωt −Θ).

Assume first that φs = 0. Then in particular ordP ‖KX +∆s‖S = 0 and ∆t −∆s +At is ample
since ‖∆t −∆s‖ < ε/pt , so

ordP ‖KX +∆t +At‖S = ordP ‖KX +∆s +(∆t −∆s +At)‖S ≤ ordP ‖KX +∆s‖S = 0.

Since for l sufficiently divisible we have

(14) multP 1
l Fix |l(KX +∆t +At)|S = ordP ‖KX +∆t +At‖S

as in Step 3 of the proof of Theorem 7.4, we obtain (13).
Now assume that φs 6= 0 and set C = Cs/φ . By Lipschitz continuity we have ‖Θ]

t −

Θ]
s‖ < Cφε/pt , so ‖Θ]

t −Θ‖ < (C +1)φε/pt . Therefore it suffices to show that

multP(Ωt ∧
1
l Fix |l(KX +∆t +At)|S) ≤ (1− C+1

pt
ε)multP(Ωt −Θ]

t ).

Since pt � 0, we can choose a rational number η > (C+1)ε/pt such that η(KX +∆t)+At
is ample. From

KX +∆t +At = (1−η)(KX +∆t)+(η(KX +∆t)+At)

we have
ordP ‖KX +∆t +At‖S ≤ (1−η)ordP ‖KX +∆t‖S,

and thus by (14),

multP 1
l Fix |l(KX +∆t +At)|S ≤ (1− C+1

pt
ε)ordP ‖KX +∆t‖S

for l sufficiently divisible. �

Finally, we have
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Theorem 7.9. Fix s ∈ SR and let R be a ray in SR not containing s. Then there exists
a ray R′ ⊂ R+s+R not containing s such that the map λ ]

Z|R+s+R′ is linear. In particular,

for every 2-plane H ⊂ R`, the map λ ]
Z|SR∩H is piecewise linear.

Proof. Step 1. Let U ⊂ R` be the smallest rational affine space containing s. In this step I
prove that the map Θ] is linear in a neighbourhood of s contained in U .

Let ε and φ be as in Theorem 7.8. Let W ⊂R` and V ⊂ Div(S)R be the smallest rational
affine spaces containing s and Θ]

s respectively, and let r be as in Lemma 5.8. By Lemma
6.3, there exist rational points (ti,Θ′

ti) ∈ W ×V , integers pti � 0 and rti ∈ R>0 such that

(ti,Θ′
ti,r, pti,rti) uniformly approximate (∆s,Θ]

s) ∈ W ×V with error φε . Note that then
Θ′

ti ≤ Ωti.
Observe that S 6⊂ B(KX + ∆ti) since ti ∈ W for every i, ε � 1 and SR is a rational

polyhedral cone. By local Lipschitz continuity and by Theorem 7.8 we have that

|pti(KS +Θ′
ti)|+ pti(Ωti −Θ′

ti) ⊂ |pti(KX +∆ti)|S.

Since Θ′
ti ∈ V and ptiΘ′

ti/r is Cartier, Z 6⊂ Fix |pti(KS + Θ′
ti)| for every i by Lemmas 5.8

and 7.7. In particular,

multZ(Ωti −Θ′
ti) ≥ multZ

(
Ωti ∧

1
pti

Fix |pti(KX +∆ti)|S
)
≥ multZ(Ωti −Θ]

ti),

and so Θ]
Z(ti) ≥ multZ Θ′

ti . But then by uniform approximation and since the map Θ]
Z is

concave, we have

Θ]
Z(s) ≥ ∑rtiΘ

]
Z(ti) ≥ ∑rti multZ Θ′

ti = Θ]
Z(s),

which proves the statement by Lemma 4.3.

Step 2. Now assume s ∈ SQ, φs = 0 and fix u ∈ R such that s and u belong to a rational
affine subspace P of R`. Let ∆ : RP → Div(X)R be a linear map given by ∆(qi) = ∆qi

for linearly independent points q1, . . . ,q` ∈ P ∩SQ, and then extended linearly. Observe
that ∆(q) = ∆q for every q ∈ P ∩SR.

Let W be the smallest rational affine subspace containing s and u. If there is a sequence
sm ∈ (s,u] such that lim

m→∞
sm = s and φsm = 0, then λ ] is linear on the cone R+s+R+s1 by

Lemma 4.3.
Therefore we can assume that there are rational numbers 0 < ε,η � 1 such that for

all v ∈ [s,u] with 0 < ‖v− s‖ < 2ε we have φv > 0, that for every prime divisor P on S,
we have either multP Ωv > multP Θ]

v or multP Ωv = multP Θ]
v and either multP Θ]

v = 0 or
multP Θ]

v > 0 for all such v, and that ∆v −∆s + Ξ + A is ample for all such v and for any
divisor Ξ such that SuppΞ ⊂ Supp∆s ∪Supp∆u and ‖Ξ‖ < η .

Let ps be a positive integer such that ps∆s/r and psΘ]
s/r are integral, where r is as in

Lemma 5.8. Pick t ∈ (s,u] such that ‖s− t‖ < ε/ps, ‖Θ]
s −Θ]

t ‖ < ε/ps which is possible
by Theorem 7.5, and the smallest rational affine subspace containing t is precisely W .
Let 0 < δ � 1 be a rational number such that φv > 0 for v ∈ W with ‖v− t‖ ≤ δ , set
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φ = min{φv : v ∈ W,‖v− t‖ ≤ δ} and let 0 < ξ � min{δ ,ε} be a rational number such
that (Ct/φ + 1)ξ (KX + ∆t) + A is ample. Denote by V ⊂ Div(S)R the smallest rational
affine space containing Θ]

s = Ωs and Θ]
t . Then by Lemma 6.4 there exist rational points

(ti,Θ′
ti) ∈W ×V , integers pti � 0 and rti ∈ R>0 for i = 1, . . . ,w such that:

(1) (ti,Θ′
ti,r, pti,rti) uniformly approximate (∆t ,Θ]

t ) ∈W ×V with error ε , where t1 =

s, Θ′
t1 = Θ]

t1 = Ωt1 , pt1 = ps,

(2) ‖t − ti‖ < ξ/pti , ‖Θ]
t −Θ′

ti‖ < φξ/pti and (ti,Θ′
ti) belong to the smallest rational

affine space containing (t,Θ]
t ) for i = 2, . . . ,w−1,

(3) ∆t =
pt1

pt1+ptw
∆t1 +

ptw
pt1+ptw

∆tw +Ψ, where ‖Ψ‖ < η/(pt1 + ptw),

(4) Θ]
t =

pt1
pt1+ptw

Θ′
t1 +

ptw
pt1+ptw

Θ′
tw +Φ, where ‖Φ‖ < η/(pt1 + ptw).

Note that then Θ′
ti ≤ Ωti for all i, and that SuppΨ ⊂ Supp∆t and SuppΦ ⊂ SuppΘ]

t by
Remarks 6.5 and 6.6 applied to the linear map ∆ defined at the beginning of Step 2. Then
by Theorem 7.8,

|pti(KS +Θ′
ti)|+ pti(Ωti −Θ′

ti) ⊂ |pti(KX +∆ti)|S

for i = 2, . . . ,w− 1. Let P be a component in SuppΩt and denote Atw = A/ptw . I claim
that for l > 0 sufficiently divisible we have

(15) multP(Ωtw ∧
1
l Fix |l(KX +∆tw +Atw)|S) ≤ multP(Ωtw −Θ′

tw).

To that end, assume first that multP Θ]
t = 0. Then multP Θ]

s = 0 by the choice of ε , and
thus multP Θ′

tw = 0 since Θ′
tw ∈V . Therefore

multP(Ωtw ∧
1
l Fix |l(KX +∆tw +Atw)|S) ≤ multP Ωtw = multP(Ωtw −Θ′

tw).

Now assume that multP Θ]
t > 0. For l sufficiently divisible we have

multP 1
l Fix |l(KX +∆tw +Atw)|S = ordP ‖KX +∆tw +Atw‖S

as in Step 3 of the proof of Theorem 7.4, and since ∆t −∆t1 −
pt1+ptw

pt1
Ψ+ 1

pt1
A is ample by

the choice of η ,

multP(Ωtw ∧
1
l Fix |l(KX +∆tw +Atw)|S) ≤ ordP ‖KX +∆tw +Atw‖S

= ordP
∥∥KX +∆t +

pt1
ptw

(
∆t −∆t1 −

pt1+ptw
pt1

Ψ+ 1
pt1

A
)∥∥

S

≤ ordP ‖KX +∆t‖S = multP(Ωt −Θ]
t ).

Combining assumptions (3) and (4) above we have

Ωt −Θ]
t ≤ Ωt −Θ]

t +
pt1
ptw

(
Ωt −Θ]

t −
pt1+ptw

pt1
(Ψ|S −Φ)

)
= Ωtw −Θ′

tw,
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and (15) is proved. Furthermore, we can choose ε � 1 and ptw � 0 such that S 6⊂ B(KX +
∆tw) since SR is a rational polyhedral cone. Therefore by Proposition 7.3 we have

|ptw(KS +Θ′
tw)|+ ptw(Ωtw −Θ′

tw) ⊂ |ptw(KX +∆tw)|S.

Let VS ⊂ Div(S)R be the vector space spanned by the components of
⋃

s∈SR
Supp(Ωs −

A|S). Then by Lemma 5.8, BZ
VS,A|S

is a rational polytope and Θ]
p ∈ BZ

VS,A|S
for every

p ∈ SR by Lemma 7.7. Therefore when ε � 1, as in Step 1 we have that λ ]
Z is linear on

the cone ∑w
i=1 R+ti, and in particular on the cone R+s+R+t.

Step 3. Assume now that s ∈ SQ, φs > 0 and fix u ∈ R. Let again W be the smallest
rational affine space containing s and u. Since Θ] is continuous on [s,u] by Theorem 7.5,
let 0 < ξ � 1 be a rational number such that φv > 0 for v∈ [s,u] with ‖v−s‖≤ 2ξ , that for
every prime divisor P on S we have either multP Ωv > multP Θ]

v or multP Ωv = multP Θ]
v

for all such v, and let φ = min{φv : v ∈ [s,u],‖v− s‖ ≤ 2ξ}.
Let ps be a positive integer such that ps∆s/r and psΘ]

s/r are integral, where r is as in
Lemma 5.8. Let me first show that there exist a real number 0 < ε � ξ and t ∈ (s,u] such
that ‖t − s‖ = ε/ps and (Ct/φ +1)ε(KX +∆v)+A is ample for all v ∈ SR with‖v− s‖ <
2ξ . If Θ] is locally Lipschitz around s this is straightforward. Otherwise, assume Θ] is
not locally Lipschitz around s and assume we cannot find such ε . But that means that
(Ct/φ + 1)‖s− t‖ is bounded from below as t → s, thus there is a sequence sm ∈ (s,u]
such that lim

m→∞
sm = s and Csm‖sm − s‖ ≥ M, where M is a constant and Csm → ∞. Since

a local Lipschitz constant can be taken as the maximum of local slopes of the concave
function Θ]|[s,u], we have that

Θ]
sm −Θ]

s

‖sm − s‖
> Csm.

Therefore
Θ]

sm
−Θ]

s > Csm‖sm − s‖ ≥ M

for all m ∈ N, which contradicts Theorem 7.5.
Increase ε a bit, and pick t ∈ (s,u] such that ‖s− t‖ < ε/ps, the smallest rational sub-

space containing t is precisely W and (Ct/φ + 1)ε(KX + ∆v)+ A is ample for all v ∈ SR

such that ‖v − s‖ < 2ε . In particular, Θ] is locally Lipschitz in a neighbourhood of t
contained in W . Furthermore, by changing φ slightly I can assume that φ ≤ min{φv :
v ∈ W,‖v− t‖ � 1}. Denote by V the smallest rational affine space containing Θ]

s and
Θ]

t . Then by Lemma 6.4 there exist rational points (ti,Θ′
ti) ∈W ×V , integers pti � 0 and

rti ∈ R>0 such that (ti,Θ′
ti,r, pti,rti) uniformly approximate (∆t ,Θ]

t ) ∈W ×V with error ε ,

where t1 = s, Θ′
t1 = Θ]

t1 , pt1 = ps. Note that then Θ′
ti ≤ Ωti , and similarly as in Step 2 we

have S 6⊂ B(KX +∆ti) for all i. Therefore by Theorem 7.8,

|pti(KS +Θ′
ti)|+ pti(Ωti −Θ′

ti) ⊂ |pti(KX +∆ti)|S

for all i. Then we finish as in Steps 1 and 2.
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Step 4. Assume in this step that s ∈ SR is a non-rational point and fix u ∈ R. By Step 1
there is a rational cone C = ∑k

i=1 R+gi with gi ∈ SQ and k > 1 such that λ ]
Z is linear on

C and s = ∑αigi with all αi > 0. Consider the rational point g = ∑k
i=1 gi. Then by Steps

2 and 3 there is a point s′ = αg + βu with α,β > 0 such that the map λ ]
Z is linear on the

cone R+g+R+s′. Now we have

λ ]
Z

(
∑gi + s′

)
= λ ]

Z(g+ s′) = λ ]
Z(g)+λ ]

Z(s′) = ∑λ ]
Z(gi)+λ ]

Z(s′),

so the map λ ]
Z|C+R+s′ is linear by Lemma 4.3. Taking µ = max

i
{ α

αiβ } and taking a point

û = µs+u in the relative interior of R+s+R, it is easy to check that

û = ∑(µαi −
α
β )ti + 1

β s′ ∈ C +R+s′,

so the map λ ]
Z|R+s+R+ ûis linear.

Step 5. Finally, let H be any 2-plane in R`. Then by the previous steps, for every ray
R ⊂ SR ∩H there is a polyhedral cone CR with R ⊂ CR ⊂ SR ∩H such that there is a
polyhedral decomposition CR = CR,1 ∪CR,2 with λ ]

Z|CR,1 and λ ]
Z|CR,2 being linear maps,

and if R ⊂ relint(SR∩H), then R ⊂ relintCR.
Let S`−1 be the unit sphere. Restricting to the compact set S`−1 ∩SR ∩H we see that

λ ]
Z|SR∩H is piecewise linear. �

8. STABLE BASE LOCI

Theorem 8.1. Theorems An−1 and Cn−1 imply Theorem Bn.

Proof. Step 1. Let KX be a divisor such that OX(KX)' ωX and A 6⊂ SuppKX . It is enough
to prove that the cone C = R+(KX +A+BG=1

V,A ) is rational polyhedral.
In Steps 1 and 2, I first show that

BG=1
V,A = {Φ ∈ LV : multG Φ = 1, σG‖KX +Φ+A‖ = 0}.

To that end, let ∆ ∈ LV + A be such that KX + ∆ is pseudo-effective, multG ∆ = 1 and
σG‖KX + ∆‖ = 0, and denote Ω = (∆−G)|G. Replacing A by a general ample Q-divisor
Q-linearly equivalent to A−Ξ for some Ξ ∈ V with ‖Ξ‖ � 1, I can assume that (X ,∆)
is plt and b∆c = G. Furthermore, let f : Y → X be a log resolution such that the com-
ponents of {B(X ,∆)Y} are disjoint as in Lemma 2.3. Then since f −1

∗ G 6⊂ B(D) implies
G 6⊂ B( f∗D) for D ∈ Div(Y )R, since KY + B(X ,∆)Y is pseudo-effective and σ f−1

∗ G‖KY +

B(X ,∆)Y‖ = 0 by Remark 2.11, I can replace X by Y , G by f −1
∗ G, ∆ by B(X ,∆)Y , A by

f ∗A−H for some small effective f -exceptional divisor H on Y , and V by the vector space
spanned by proper transforms of elements of V and by exceptional divisors.
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Since σG‖KX + ∆‖ = 0, G is not contained in B−(KX + ∆) by Remark 2.11, and so
Nσ‖KX +∆‖G is defined. Let

Φ = ∑
P⊂SuppΩ

σP‖KX +∆‖G ·P ≤ Nσ‖KX +∆‖G

and Θ = Ω− Ω∧Φ. Observe that KG + Θ = lim
δ↓0

(KG + Ωδ −Ωδ ∧ Φδ ), where Ωδ =

(∆+δA−G)|G and

Φδ = ∑
P⊂SuppΩδ

ordP ‖KX +∆+δA‖G ·P.

Thus KG + Θ is a limit of effective divisors, and so is pseudo-effective. Let φ < 1 be the
smallest positive coefficient of Φ, or set φ = 0 if Φ = 0.

Let W ⊂ Div(X)R be the smallest rational affine subspace containing ∆ and let U,Z ⊂
Div(G)R be the smallest rational affine subspaces containing Φ,Θ respectively. There
exists a number ε > 0 such that ε(KX +∆)+ 1

2A is ample and if ∆′ ∈W with ‖∆−∆′‖< ε ,
then ∆−∆′ + 1

2 A is ample. Let r be a positive integer as in Lemma 5.8. Then by Lemma
6.3 there exist rational pairs (∆i,Φi) ∈ W ×U , integers ki � 0 and ri ∈ R>0 such that
(∆i,Φi,r,ki,ri) uniformly approximate (∆,Φ) ∈ W ×U with error φε . Note that then
(X ,∆i) is plt and (G,Ωi +A|G) is terminal, where Ωi = (∆i−G)|G.

Step 2. Since σG‖KX +∆‖ = 0 we have G 6⊂ B(KX +∆+ 1
2Ai) by Remark 2.11, and since

∆−∆i +
1
2Ai is ample, it follows that G 6⊂ B(KX +∆i +Ai), so similarly as in Step 2 of the

proof of Theorem 7.5 we have

(16) |ki(KG +Θi)|+ ki(Ωi−Θi) ⊂ |ki(KX +∆i)|G,

where Θi = Ωi −Ωi ∧Φi. One easily shows that Θi ∈ Z. In particular, by Theorem C
and Lemma 5.8, for ε � 1 we have that |ki(KG +Θi)| 6= /0, and therefore (16) implies that
there is an effective divisor Di with G 6⊂ SuppDi such that ki(KX + ∆i) ∼ Di. But then
KX +∆ ∼R ∑ ri

ki
Di and G 6⊂ B(KX +∆), as desired.

Step 3. To prove the cone C is closed, let Dm ∈ C be a sequence such that lim
m→∞

Dn = D,

and assume D /∈ C . Therefore by Step 1 we have σG‖D‖> 0. Then for any ample divisor
B on X there exists a positive number δ � 1 such that ordG ‖D + δB‖ > 0. Pick m � 0
such that δB+D−Dm is ample. Then

0 < ordG ‖D+δB‖ = ordG ‖Dm +(δB+D−Dm)‖ ≤ ordG ‖Dm‖ = 0,

a contradiction.

Step 4. Steps 1 and 2 also show that the condition σG‖KX +Φ+A‖= 0 implies ordG ‖KX +
Φ + A‖ = 0, and that the cone C is rational, i.e. its extremal rays are rational. It remains
to prove that C is polyhedral. To that end, I will prove it has only finitely many extremal
rays.
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Assume there are divisors ∆m in BG=1
V,A + A for all m ∈ N∪ {∞} such that the rays

R+(KX +∆m) are extremal in C and lim
m→∞

∆m = ∆∞. By the previous steps, ∆m are rational

divisors. I will achieve contradiction by showing that for some m � 0 there is a ray
R ⊂ C such that KX +∆m ⊂ int(R+(KX +∆∞)+R), so that the ray R+(KX +∆m) cannot
be extremal.

Since the problem is local around ∆∞, by taking a log resolution as in Step 1, I can
assume that (X ,∆m) is plt, b∆mc = G, and each pair (G,Ωm + A|G) is canonical, where
Ωm = (∆m −G)|G.

Let

Φm = ∑
P⊂SuppΩm

ordP ‖KX +∆m‖G ·P

and set Θ]
m = Ωm−Ωm∧Φm. By Step 3 of the proof of Theorem 7.4 each Θ]

m is a rational
divisor, and as in the proof of [Nak04, 2.1.4] we have Θ]

∞ ≥ limsup
m→∞

Θ]
m. By passing to a

subsequence, we can assume that there is a divisor Θ0
∞ such that Θ0

∞ = lim
m→∞

Θ]
m. Let φ be

the smallest positive coefficient of Ω∞ −Θ0
∞, or set φ = 0 if Ω∞ = Θ0

∞.

Step 5. Assume first that φ > 0. Let 0 < ε � 1 be a rational number such that ε(KX +
∆m)+ 1

2A is ample for every m � 0, and ∆̃+ 1
2 A is ample for every ∆̃ ∈V with ‖∆̃‖ < ε .

By Diophantine approximation there is a Q-divisor Ψ in the minimal rational affine space
containing Θ0

∞ and a positive integer k such that Ψ ≤ Θ]
∞, ‖Ψ−Θ0

∞‖ < φε/2k, and kΨ/r
and k∆∞/r are integral. Pick m such that ‖∆∞ −∆m‖ < ε/2k, ‖Ψ−Θ]

m‖ < φε/2k, and
such that for every prime divisor P ⊂V , multP Ωm = multP Θ]

m if and only if multP Ω∞ =
multP Θ]

∞. Then by Lemma 6.4 there is a point (∆′,Ψ′) ∈ Div(X)Q × Div(G)Q and a
positive integer k′ � 0 such that:

(1) ∆m = k
k+k′ ∆∞ + k′

k+k′ ∆
′ and Θ]

m = k
k+k′ Ψ+ k′

k+k′ Ψ
′,

(2) k′∆′/r is integral and ‖∆m−∆′‖ < ε/2k′,
(3) Ψ′ ≤ Ω′, where Ω′ = (∆′−G)|G, k′Ψ′/r is integral and ‖Θ]

m −Ψ′‖ < φε/2k′.

Since G 6⊂ B(KX +∆m) and ∆′−∆m +A/k′ is ample, we have G 6⊂ B(KX +∆′ +A/k′), so
as in Step 2 of the proof of Theorem 7.5 we have that

(17) |k′(KG +Ψ′)|+ k′(Ω′−Ψ′) ⊂ |k′(KX +∆′)|G.

Let me prove that KG + Ψ′ is pseudo-effective. Let VS ⊂ Div(S)R be the vector space
spanned by the components of divisors E|S with E ∈V and S 6⊂ SuppE. Then by Theorem
C the cone CS = R+(KX + A|S + EVS,A|S

) is rational polyhedral. Since k′ can be taken

arbitrarily large, Ψ′ /∈ CS implies Θ]
m ∈ ∂CS. If this stands for every m � 0, we have that

Θ0
∞ ∈ ∂CS. Therefore, possibly passing to a subsequence, there is a face F of CS such

that Θ]
m, Θ0

∞ and Ψ belong to F for m � 0, and we finish by descending induction on
dimF .
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Therefore |k′(KG +Ψ′)| 6= /0 by Lemma 5.8, and thus G 6⊂ B(KX +∆′) by (17). But then
by the condition (1) above, the ray R+(KX +∆m) is not extremal, a contradiction.

Step 6. Now assume that φ = 0, and in particular Ψ = Θ]
∞ = Ω∞. Let 0 < ε � 1 be a

rational number such that ε(KX +∆m)+ 1
2A is ample for every m� 0, and ∆̃+ 1

2A is ample
for every ∆̃ ∈V with ‖∆̃‖ < ε . Let k be a positive integer such that kΘ]

∞/r and k∆∞/r are
integral. Pick m such that ‖∆∞ − ∆m‖ < ε/2k, ‖Θ]

∞ − Θ]
m‖ < ε/2k, and such that for

every prime divisor P ⊂ V , multP Ωm = multP Θ]
m if and only if multP Ω∞ = multP Θ]

∞,
and multP Θ]

m = 0 if and only if multP Θ]
∞ = 0. Then by Lemma 6.4 there is a point

(∆′,Ψ′) ∈ Div(X)Q×Div(G)Q and a positive integer k′ � 0 such that conditions (1)–(3)
from Step 5 are satisfied for Ψ = Θ]

∞, and denote A′ = A/k′.
Let me prove that

(18) multP(Ω′∧ 1
l Fix |l(KX +∆′ +A′)|S) ≤ multP(Ω′−Ψ′)

for every prime divisor P on G and for all l � 0 sufficiently divisible. To that end, assume
first that multP Θ]

m = 0. Then multP Θ]
∞ = 0 by the choice of ε and m, and thus multP Ψ′ =

0 by the condition (1) above. Therefore

multP(Ω′∧ 1
l Fix |l(KX +∆′ +A′)|S) ≤ multP Ω′ = multP(Ω′−Ψ′).

Now assume that multP Θ]
m > 0. For l sufficiently divisible we have

multP 1
l Fix |l(KX +∆′ +A′)|S = ordP ‖KX +∆′ +A′‖S

as in Step 3 of the proof of Theorem 7.4, and since ∆m −∆∞ + 1
k A is ample by the choice

of ε ,

multP(Ω′∧ 1
l Fix |l(KX +∆′+A′)|S) ≤ ordP ‖KX +∆′ +A′‖S

= ordP
∥∥KX +∆m + k

k′
(
∆m −∆∞ + 1

k A
)∥∥

S

≤ ordP ‖KX +∆m‖S = multP(Ωm−Θ]
m).

¿From the condition (1) above we have

Ωm−Θ]
m ≤ Ωm −Θ]

m + k
k′
(
Ωm−Θ]

m
)

= Ω′−Ψ′,

and (18) is proved. Since G 6⊂ B(KX + ∆′ + A′) as in Step 5, by Proposition 7.3 we have
that

|k′(KG +Ψ′)|+ k′(Ω′−Ψ′) ⊂ |k′(KX +∆′)|G.

The contradiction now follows as in Step 5. �

9. PSEUDO-EFFECTIVITY AND NON-VANISHING

The starting point for this section is the following result.
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Theorem 9.1. Let (X ,∆) be a projective klt pair such that ∆ is big and KX +∆ is pseudo-
effective. Then there exists an effective divisor D ∈ Div(X)R such that KX +∆ ≡ D. More-
over, if ∆ ∈ WDiv(X)Q, then |KX +∆|Q 6= /0.

This theorem was proved in [Pău08, §1] by using analytic techniques. However, it can
be proved purely algebraically as a part of the induction given in this paper, which is
sketched in Theorem 9.3 below. Note that the last claim in Theorem C is a refinement of
this result.

We are now ready to prove the following.

Theorem 9.2. Assume Theorem 9.1 in dimension n. Then Theorem Bn implies Theorem
Cn.

Proof. Step 1. Fix a divisor KX such that OX(KX) ' ωX and A 6⊂ SuppKX , and denote
C := R+(KX + A + EV,A) ⊂ Div(X)R. Fix ∆ = ∑N

i=1 δiFi ∈ EV,A. Then KX + ∆ + A ≡

∑N
i=1 fiFi ≥ 0 by Theorem 9.1, where Fi 6= A for all i and δi = 0 for some i. Let W ⊂

Div(X)R be the vector space spanned by all Fi and by the components of KX and A. Let
φ : W → N1(X) be the linear map sending a divisor to its numerical class. Let 0 < ε � 1
be a rational number such that A+Φ is ample for any divisor Φ ∈W with ‖Φ‖ ≤ ε .

Let 0 ≤ f ′i ≤ fi be rational numbers such that fi − f ′i < ε . Then

KX +∆′ +A ≡ ∑ f ′i Fi,

where ∆′ = ∆−∑( fi− f ′i )Fi. Since P = φ−1
(

∑ f ′i [Fi]
)

is a rational affine subspace, there
are rational divisors ∆ j ∈ W such that ‖∆′−∆ j‖ � 1, KX + ∆ j + A ∈ P and KX + ∆′ +
A = ∑ρ j(KX + ∆ j + A) for some positive numbers ρ j with ∑ρ j = 1. Observe that then
∆ j +A = ∆0

j +A′, where ∆0
j = ∑max{0,multFj ∆ j}Fj, and A′ = A+∆ j−∆0

j is ample since

‖∆ j−∆0
j‖≤ ε . Therefore each KX +∆ j +A∼Q KX +∆0

j +A′ is a rational pseudo-effective
divisor, and thus it is Q-linearly equivalent to an effective divisor by Theorem 9.1. For
each j, denote B j = ∑[multFi ∆ j,1]Fi, and let B be the convex hull of

⋃
B j; observe that

B is a rational polytope. Then KX + ∆ + A ∈ (KX + A + B)∩ (KX + A + LV ), and so
KX +∆+A is R-linearly equivalent to an effective divisor, and C is a closed cone which
is locally rational around every KX +∆+A, and thus rational globally.

Step 2. Let G1, . . . ,GN be prime divisors on X such that SuppKX ∪ SuppB ⊂ ∑Gi. It
remains to prove that the cone C is polyhedral.

Assume that C has infinitely many extremal rays. Thus there are distinct divisors
∆m = ∑δ m

j G j in EV,A for all m ∈ N∪{∞} such that, denoting ϒm = KX +∆m +A, the rays
R+ϒm are extremal in C and lim

m→∞
∆m = ∆∞. I will achieve contradiction by showing that

for some m � 0 there is a ray R ⊂ C such that ϒm ⊂ int(R+ϒ∞ +R), so that the ray R+ϒm
cannot be extremal. To that end, I am allowed and will without explicit mention, increase
V , translate points by fixed divisors and re-scale by positive integers, since this does not
affect the outcome of the aforementioned procedure. By Step 1, ∆m are rational divisors.
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Write ϒ∞ ∼Q D∞ ≥ 0; by possibly adding components I can assume that SuppD∞ ⊂

∑N
j=1 G j and that V = ∑N

j=1 RG j. Since the problem is local around ∆∞, replacing A by
a general ample Q-divisor Q-linearly equivalent to A−Ξ for some Ξ ∈V with ‖Ξ‖ � 1,
I can assume that (X ,∆m) is klt and Supp∆m = ∑N

j=1 G j for all m � 0. Furthermore,

let f : Y → X be a log resolution of (X ,∑N
j=1 G j). Then since D being pseudo-effective

implies that f∗D is pseudo-effective for D ∈ Div(Y )R, I can replace X by Y , A by f ∗A−H,
∆m by B(X ,∆m + A)Y − f ∗A + H for some small effective f -exceptional divisor H on
Y , and V by the vector space spanned by proper transforms of elements of V and by
exceptional divisors.

If D∞ = 0, for m � 0 choose any Ψ ∈ V such that for some 0 < t < 1 we have ∆m =
(1− t)∆∞ + tΨ. Then KX +Ψ+A ∼Q ϒm/t, and thus KX +Ψ+A is pseudo-effective and
the ray R+ϒm is not extremal.

Now assume D∞ 6= 0 and write D∞ = ∑d jG j. Then KX ∼Q −A + ∑ f jG j with f j =
d j −δ ∞

j > −1. Setting

r∞ =
N

max
j=1

{ f j +δ ∞
j

f j +1

}
and b∞

j = − f j +
f j +δ ∞

j

r∞
,

we have

∑ j( f j +δ ∞
j )G j = r∞ ∑ j( f j +b∞

j )G j.

Observe that r∞ ∈ (0,1], b∞
j ∈ [δ ∞

j ,1] and there exists j0 such that b∞
j0

= 1. Now for m� 0,
setting

rm =
f j0 +δ m

j0

f j0 +1
and bm

j = − f j +
f j +δ m

j

rm
,

we have

∑ j( f j +δ m
j )G j = rm ∑ j( f j +bm

j )G j,

bm
j0

= 1 for all m, and lim
m→∞

bm
j = b∞

j for all j. Let 0 < η � 1 be a rational number such that

−η < bm
j < 1+η for all m and j, and such that A−Ξ is ample for all Ξ∈V with ‖Ξ‖≤ η .

By passing to a sub-sequence and by re-indexing, I can assume that bm
j ≤ 1− 2η for all

m � 0 and all j < j0, and that bm
j ≥ 1−2η for all m � 0 and all j ≥ j0.

By replacing A by A′ ∼Q A−η ∑ j< j0 G j +η ∑ j> j0 G j, δ m
j by bm

j +η for j < j0, δ m
j by

bm
j −η for j > j0, and δ m

j0
by 1, finally I can assume that all ∆m are effective divisors such

that (X ,∆m +A) is plt and G j0 = b∆mc for every m.

Step 3. In this step I prove that Nσ‖ϒ∞‖ = 0, and therefore Theorem B implies G j0 6⊂
B(ϒ∞).

By way of contradiction, assume that σΣ‖ϒ∞‖ > 0 for a prime divisor Σ, and let E ⊂
N1(X) denote the pseudo-effective cone. By the proof of [Bou04, 3.19], E is generated
by [Σ] and by the closed cone EΣ = {Ξ ∈ E : σΣ‖Ξ‖= 0}. We have [ϒ∞]∈ ∂E \EΣ, and let
ϕ : V → N1(X) be the linear map sending a divisor to its numerical class. We can assume
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that [ϒn] 6= [ϒ∞] for all n � 0, since otherwise we obtain a contradiction as ϕ−1([ϒ∞]) is
an affine subspace of V .

If [ϒ∞] ∈ R+[Σ], then for any n � 0 the set

{ϒ∞ + t(ϒn−ϒ∞) : t ∈ R+}∩ϕ−1(E )

is strictly larger than the segment [ϒ∞,ϒn], so R+ϒn is not an extremal ray for n � 0.
Therefore I can assume [ϒ∞] /∈ R+[Σ] and, similarly as above, that [ϒn]∈ ∂E for n � 0.

In particular, if we consider the cone spanned by R+[Σ] and R+[ϒn] for n � 0, the dimen-
sion of this cone must be strictly smaller than dimE , since otherwise it would contain a
point of intE . Let H be the smallest affine subspace of N1(X) containing that cone, and
let E ′

Σ = EΣ ∩H . Then it is easy to see that E ∩H is spanned by E ′
Σ and R+[Σ], so by

replacing E by E ∩H , we can finish by descending induction on dimE .

Step 4. Denote G := G j0 . Let 0 < η � 1 be a rational number such that A−Ξ is ample for
all Ξ ∈ V with ‖Ξ‖ ≤ η , let LV,η be the η-neighbourhood of LV in V in the sup-norm,
and set

BG=1
V,A,η = {Φ ∈ LV,η : multG Φ = 1, G 6⊂ B(KX +Φ+A)}

and D = R+(∑ f jG j +BG=1
V,A,η) ⊂V . Note that, for some 0 < ξ � 1, we have

R+{ϒ∞ +Ξ : 0 ≤ Ξ ∈V,‖Ξ‖ < ξ ,multG Ξ = 0} ⊂ D ,

so dimD = dimV and ϒ∞ ∈ intD . Fix Φ ∈ BG=1
V,A,η . Then as in Step 2 there is a Q-

divisor Θ ∈ V such that ‖Θ‖ = η and A′ ∼Q A − Θ is ample, for every Φ′ ∈ BG=1
V,A,η

with ‖Φ−Φ′‖ < η the divisor Φ′ + Θ is effective and dΦ′ + Θe is reduced. Therefore,
since BG=1

V,A′ is a rational polytope by Theorem B, this means that BG=1
V,A,η is locally a

rational polytope around Φ, and therefore D is a rational polyhedral cone. Since C is not
polyhedral, I can assume that ϒm /∈ D for all m � 0.

Step 5. For each m ∈ N let km be a positive integer such that kmϒm is Cartier and denote

Γm = ϒm −
multG Fix |kmϒm|

km
G.

Then G 6⊂ B(Γm). Let F1 and F2 be codimension 1 faces of the cone D such that ϒ∞ ∈
F1 ∩F2, and let H1 and H2 be their supporting hyperplanes; if ϒ∞ belongs only to one
codimension 1 face, assume that F1 = F2. Let Q be exactly one of the convex cones
into which H1 and H2 subdivide V which contains D . For every Ψ ∈ R+Γm +R+ϒ∞ we
have G 6⊂ B(Ψ), and therefore (R+Γm +R+ϒ∞)∩ (∑ f jG j +LV ) ⊂ D . This implies that
Γm ∈ Q, and since ϒm /∈ Q for m � 0, the segment [Γm,ϒm] intersects Q.

Let Pm be the point of intersection of the half-ray ϒm +R−G with ∂Q closest to ϒm, and
observe that lim

m→∞
Pm = ϒ∞. This means that Pm belongs to F1 or F2 for m � 0, and by

passing to a subsequence I can assume that all Pm belong to the same codimension 1 face
of D . Since D is polyhedral, for m � 0 there are points Qm ∈ D such that Pm ∈ (Qm,ϒ∞)
and ‖Pm −Qm‖ � 1. Let Zm be the intersection point of the half-ray Pm +R+G with the
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hyperplane (G = multG ϒ∞). Then it is easy to see that ϒm ∈ (Zm,ϒ∞), Zm is pseudo-
effective and belongs to ∑ f jG j +LV since ϒm and ϒ∞ do. Thus R+ϒm is not an extremal
ray of the cone C , a contradiction which finishes the proof. �

The following result, together with Theorem 9.2, yields that Theorems An−1, Bn and
Cn−1 imply Theorem Cn.

Theorem 9.3. Theorems An−1 and Cn−1 imply Theorem 9.1 in dimension n.

Proof. This was done essentially in [Hac08], and I will sketch the proof here for com-
pleteness.

By passing to a log resolution, we can assume that the pair (X ,∆) is log smooth. If ∆∼Q

A+B, where A is an ample Q-divisor and B ≥ 0, then replacing ∆ by (1−ε)∆+ε(A+B)
for a rational number 0 < ε � 1, we can assume that ∆ = A + B. If ν(X ,D) = 0, cf.
Definition A.4, then the result follows from [BCHM06, 3.3.2].

If ν(X ,D) > 0, then by [BCHM06, 6.2] we can assume that (X ,∆) is plt, A is a general
ample Q-divisor, b∆c = S, (S,Ω + A|S) is canonical, where Ω = (∆− S)|S, and σS‖KX +
∆‖ = 0. But now the result follows as in Steps 1 and 2 of the proof of Theorem 8.1.

The second statement in Theorem 9.1 follows by using Shokurov’s trick from his proof
of the classical Non-vanishing theorem, and I will present an algebraic proof following
the analytic version from [Pău08].

Assume that ∆ = A + B ∈ Div(X)Q and let ϒ := KX + ∆ ≡ D for some effective R-
divisor D. We can again assume (X ,∆) is log smooth, and that D is a Q-divisor similarly
as in Step 1 of the proof of Theorem 9.2. Let m be a positive integer such that m∆ and mD
are integral. By Nadel vanishing

H i(X ,J(m−1)D+B(mϒ)
)
= 0 and H i(X ,J(m−1)D+B(mD)

)
= 0

for i > 0, and since the Euler characteristic is a numerical invariant,

(19) h0(X ,J(m−1)D+B(mϒ)
)

= h0(X ,J(m−1)D+B(mD)
)
.

Let σ ∈ H0(X ,mD) be the section with divσ = mD. Since

((m−1)D+B)−mD ≤ B,

by [HM08, 4.3(3)] we have ImD ⊂ J(m−1)D+B, and thus

σ ∈ H0(X ,J(m−1)D+B(mD)
)
.

Therefore (19) implies h0(X ,mϒ) > 0. �

10. FINITE GENERATION

Theorem 10.1. Theorems An−1, Bn and Cn−1 imply Theorem An.

Proof. Step 1. I first show that it is enough to prove the theorem in the case when A is a
general ample Q-divisor and (X ,∆i +A) is a log smooth klt pair for every i.
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Let p and k be sufficiently divisible positive integers such that all divisors k(∆i + pA)
and (p + 1)kA are very ample. Let (p + 1)kAi be a general section of |k(∆i + pA)| and
let (p + 1)kA′ be a general section of |(p + 1)kA|. Set ∆′

i = p
p+1 ∆i + Ai. Then the pairs

(X ,∆′
i +A′) are klt and

(p+1)k(KX +∆i +A) ∼ (p+1)k(KX +∆′
i +A′) =: D′

i.

Thus the ring R(X ;D1, . . . ,D`) has a truncation which is isomorphic to R(X ;D′
1, . . . ,D

′
`),

so it is enough to prove the latter algebra is finitely generated.

Step 2. Therefore I can assume that ∆i = ∑N
j=1 δi jFj with δi j ∈ [0,1). Write KX +∆i +A∼Q

∑N
j=1 f ′i jFj ≥ 0, where Fj 6= A since A is general. By blowing up, and by possibly replacing

the pair (X ,∆i + A) by (Y,∆′
i + A′) for some model Y → X as in Step 2 of the proof of

Theorem 7.4, I can assume that the divisor ∑N
j=1 Fj has simple normal crossings. Thus for

every i,

KX ∼Q −A+∑N
j=1 fi jFj,

where fi j = f ′i j −δi j > −1.

Denote Λ :=
⊕N

j=1 NFj ⊂ Div(X) and T := {(t1, . . . , t`) : ti ≥ 0,∑ti = 1} ⊂ R`. For
each τ = (t1, . . . , t`) ∈ T , denote δτ j = ∑i tiδi j and fτ j = ∑i ti fi j, and observe that KX ∼R

−A+∑ j fτ jFj. Denote Bτ = ∑N
j=1[δτ j + fτ j,1+ fτ j]Fj ⊂ ΛR and let B =

⋃
τ∈T Bτ . It is

easy to see that B is a rational polytope: every point in B is a barycentric combination of
the vertices of Bτ1 , . . . ,Bτ` , where τi are the standard basis vectors of R`. Thus C = R+B
is a rational polyhedral cone.

For each j = 1, . . . ,N fix a section σ j ∈H0(X ,Fj) such that divσ j = Fj. Consider the Λ-
graded algebra R =

⊕
s∈Λ Rs ⊂ R(X ;F1, . . . ,FN) generated by the elements of R(X ,C ∩

Λ) and by all σ j; observe that Rs = H0(X ,s) for every s ∈ C ∩Λ. I claim that it is enough
to show that R is finitely generated.

To see this, assume R is finitely generated and denote

ωi = rki ∑ j(δi j + fi j)Fj ∈ Λ

for r sufficiently divisible and i = 1, . . . , `. Set G = ∑i R+ωi∩Λ and observe that ωi ∼ rDi
and GR ⊂ C . Then by Lemma 5.4(2) the algebra R(X ,C ∩Λ) is finitely generated, and
therefore by Proposition 5.7 there is a finite rational polyhedral subdivision GR =

⋃
k Gk

such that the map Mobι|Gk∩Λ is additive up to truncation for every k, where ι : Λ → Λ is
the identity map.

Let ω ′
1, . . . ,ω

′
q be generators of G such that ω ′

i = ωi for i = 1, . . . , `, and denote by
π :

⊕q
i=1 Nω ′

i → G the natural projection. Then the map Mobπ|π−1(Gk∩Λ) is additive up
to truncation for every k, and thus R(X ,π(

⊕q
i=1 Nω ′

i )) is finitely generated by Lemma
5.4(3). Therefore R(X ,π(

⊕`
i=1 Nωi)) ' R(X ;rD1, . . . ,rD`) is finitely generated by Lem-

ma 5.4(2), and R(X ;D1, . . . ,D`) is finitely generated by Lemma 5.4(1).

Step 3. Thus it suffices to prove that R is finitely generated. Take a point ∑ j( fτ j +bτ j)Fj ∈
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Bτ\{0}; in particular bτ j ∈ [δτ j,1]. Setting

rτ =
N

max
j=1

{ fτ j +bτ j

fτ j +1

}
and b′τ j = − fτ j +

fτ j +bτ j

rτ
,

we have

(20) ∑ j( fτ j +bτ j)Fj = rτ ∑ j( fτ j +b′τ j)Fj.

Observe that rτ ∈ (0,1], b′τ j ∈ [bτ j,1] and there exists j0 such that b′τ j0 = 1. For every
j = 1, . . . ,N, let

Fτ j = (1+ fτ j)Fj +∑k 6= j[δτk + fτk,1+ fτk]Fk,

and set F j =
⋃

τ∈T Fτ j, which is a rational polytope. Then C j = R+F j is a rational
polyhedral cone, and (20) shows that C =

⋃
j C j. Furthermore, since ∑ j( fτ j +b′τ j)Fj ∼R

KX + ∑ j b′τ jFj + A for τ ∈ T , for every j and for every s ∈ C j ∩Λ there is rs ∈ Q+ such
that s ∼Q rs(KX +Fj +∆s +A), where Supp∆s ⊂ ∑k 6= j Fk and the pair (X ,Fj +∆s +A) is
log canonical.

Step 4. Assume that the restricted algebra resFj R(X ,C j∩Λ) is finitely generated for every
j. I will show that then R is finitely generated.

Let V = ∑N
j=1 RFj ' RN , and let ‖ · ‖ be the Euclidean norm on V . By compactness

there is a constant C such that every F j ⊂V is contained in the closed ball centred at the
origin with radius C. Let deg denote the total degree function on Λ, i.e. deg(∑N

j=1 α jFj) =

∑N
j=1 α j; it induces the degree function on elements of R. Let M be a positive integer such

that, for each j, resFj R(X ,C j ∩Λ) is generated by {σ|Fj
: σ ∈ R(X ,C j ∩Λ),degσ ≤ M},

and such that M ≥CN1/2 max
i, j

{ 1
1−δi j

}. By Hölder’s inequality we have ‖s‖ ≥ N−1/2 degs

for all s ∈ C ∩Λ, and thus

(21) ‖s‖/C ≥ max
i, j

{ 1
1−δi j

}

for all s ∈ C ∩Λ with degs ≥ M. Let H be a finite set of generators of the finite dimen-
sional vector space ⊕

s∈C∩Λ,deg s≤M

H0(X ,s)

such that for every j, the set {σ|Fj
: σ ∈ H } generates resFj R(X ,C j ∩Λ). I claim that R

is generated by {σ1, . . . ,σN}∪H , with σ j as in Step 2.
To that end, take any section σ ∈ R. By definition, possibly by considering monomial

parts of σ and dividing σ by a suitable product of sections σ j, I can assume that σ ∈
R(X ,C ∩Λ). If degσ ≤ M, then it is generated by elements of H and we are done. If
degσ > M, by Step 3 there exists w ∈ {1, . . . ,N} such that σ ∈ R(X ,Cw ∩Λ), and thus
there is τ ∈ T ∩Q` such that σ ∈ H0(X ,rσ ∑ j( fτ j +bτ j)Fj) with bτw = 1. Observe that

rσ ≥ max
i, j

{ 1
1−δi j

} by (21) since ‖∑ j( fτ j +bτ j)Fj‖ ≤C, and in particular rσ−1
rσ

≥ δτw.
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Therefore by assumption there are elements θ1, . . . ,θz ∈ H and a polynomial ϕ ∈
C[X1, . . . ,Xz] such that σ|Fw

= ϕ(θ1|Fw
, . . . ,θz|Fw

). Therefore σ −ϕ(θ1, . . . ,θz) = σw · σ̂ by
(1) in Remark 5.3, where

σ̂ ∈ H0(X ,rσ ∑ j( fτ j +bτ j)Fj −Fw
)
.

Since
rσ ∑

j
( fτ j +bτ j)Fj −Fw = rσ

(
( fτw + rσ−1

rσ
)Fw + ∑

j 6=w

( fτ j +bτ j)Fj

)
,

we have that rσ ∑ j( fτ j + bτ j)Fj −Fw belongs to R+Bτ , and in particular it belongs to
C ∩Λ. Replacing σ by σ̂ , we finish by descending induction on degσ .

Step 5. Therefore it remains to show that for each j, the restricted algebra resFj R(X ,C j ∩
Λ) is finitely generated.

To that end, denote N = {1, . . . ,N}, choose a rational 0 < ε � 1 such that ε ∑k∈I Fk +A
is ample for every I ⊂ N , and let AI ∼Q ε ∑k∈I Fk +A be a general ample Q-divisor. Fix
j, and for I ⊂ N \{ j} let

F I
τ j = (1+ fτ j)Fj + ∑

k∈I

[1− ε + fτk,1+ fτk]Fk + ∑
k/∈I∪{ j}

[δτk + fτk,1− ε + fτk]Fk.

Set F I
j =

⋃
τ∈T F I

τ j; these are rational polytopes such that F j =
⋃

I⊂N \{ j}F I
j , and

therefore C I
j = R+F I

j are rational polyhedral cones such that C j =
⋃

I⊂N \{ j}C I
j . Fur-

thermore, for every s ∈ C I
j ∩Λ we have s ∼Q rs(KX +Fj +∆s +A) ∼Q rs(KX +Fj +∆′

s +

AI), where ∆′
s = ∆s − ε ∑k∈I Fk ≥ 0 and bFj +∆′

s +AIc = Fj.
Therefore it is enough to prove that resFj R(X ,C I

j ∩Λ) is finitely generated for every
I. Fix I and let h1, . . . ,hm be generators of C I

j ∩Λ. Similarly as in Step 1 of the proof
of Theorem 7.4, it is enough to prove that the restricted algebra resFj R(X ;h1, . . . ,hm) is
finitely generated. For p sufficiently divisible, by the argument above we have phv ∼
ρv(KX +Fj +Bv +AI) =: Hv, where dBve ⊂ ∑k 6= j Fk, bBvc = 0, ρv ∈ N and AI is a general
ample Q-divisor. Therefore it is enough to show that resFj R(X ;H1, . . . ,Hm) is finitely
generated by Lemma 5.4(1), and this follows from Theorem 7.4. �

Finally, we have:

Proof of Theorem 1.2. Similarly as in Step 1 of the proof of Theorem 10.1, I can assume
that A is a general ample Q-divisor. Let f : Y → X be a log resolution of (X ,∑∆i), let H
be a small effective f -exceptional divisor such that A′ ∼Q f ∗A−H is ample, and denote
Γi = B(X ,∆i + A)Y − f ∗A + H. Since KY + B(X ,∆i + A)Y ∼Q KY + Γi + A′ =: D′

i, and
since R(Y ;D′

1, . . . ,D
′
`) and R(X ;D1, . . . ,D`) have isomorphic truncations, replacing X by

Y , ∆i by Γi and A by A′ we may assume that (X ,∆i +A) is log smooth for every i.
Let KX be a divisor with OX(KX) ' ωX and SuppA 6⊂ SuppKX , let V ⊂ Div(X)R be

the vector space spanned by the components of ∑∆i and let Λ ⊂ Div(X) be the monoid
spanned by the components of KX , ∑∆i and A. The set C = ∑R+Di ⊂ ΛR is a rational
polyhedral cone. Similarly as in Step 2 of the proof of Theorem 10.1 it is enough to
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prove that the algebra R(X ,C ∩Λ) is finitely generated. By Theorem C the set EV,A is a
rational polytope, and denote D = R+(KX +A+EV,A) ⊂ ΛR. Then the algebra R(X ,C ∩
Λ) is finitely generated if and only if the algebra R(X ,D ∩Λ) is finitely generated. Let
H1, . . . ,Hm be generators of the monoid D ∩Λ. Then it is enough to prove that the ring
R(X ;H1, . . . ,Hm) is finitely generated, and this follows from Theorem A. �

Proof of Theorem 1.1. By [FM00, 5.2] and by induction on dimX , we may assume KX +∆
is big. Write KX + ∆ ∼Q B +C with B effective and C ample. Let ε be a small positive
rational number and set ∆′ = (∆ + εB) + εC. Then KX + ∆′ ∼Q (ε + 1)(KX + ∆), and
R(X ,KX + ∆) and R(X ,KX + ∆′) have isomorphic truncations, so the result follows from
Theorem 1.2. �

APPENDIX A. HISTORY AND THE ALTERNATIVE

In this appendix I briefly survey the development of the Minimal Model Program, and
then present an alternative approach to the classification of varieties. There are many
works describing Mori theory, and I do not spend much time on that. My principal goal
is to outline a different strategy, whose philosophy is greatly influenced and advocated
by A. Corti. I do not intend to be exhaustive, but rather to put together results and ideas
that I particularly find important, some of which are scattered throughout the literature or
cannot be found in written form.

For many years the guiding philosophy of the Minimal Model Program was to prove
finite generation of the canonical ring as a standard consequence of the theory, namely as
a corollary to the existence of minimal models and of the Abundance conjecture. Efforts
in this direction culminated in [BCHM06], which derived the finite generation in the
case of klt singularities from the existence of minimal models for varieties of log general
type. However, passing to the case of log canonical singularities, as well as trying to
prove the Abundance conjecture, although seemingly slight generalisations, seem to be
substantially harder problems where different techniques and methods are welcome, if
not needed. The aim of the new approach is to invert the conventional logic of the theory,
where finite generation is not at the end, but at the beginning of the process, and the
standard theorems and conjectures of Mori theory are derived as consequences. I hope
the results of this paper give substantial ground to such claims.

There are many contributors to the initial development of Mori theory, Mori, Reid,
Kawamata, Shokurov, Koll ár, Corti to name a few. In the MMP one starts with a Q-
factorial log canonical pair (X ,∆), and then constructs a birational map ϕ : X 99K Y such
that the pair (Y,ϕ∗∆) has exceptionally nice properties. Namely we expect that in the case
of log canonical singularities, there is the following dichotomy:

(1) if κ(X ,KX +∆) ≥ 0, then KY +ϕ∗∆ is nef (Y is a minimal model),
(2) if κ(X ,KX +∆) = −∞, then there is a contraction Y → Z such that dimZ < dimY

and −(KY +ϕ∗∆) is ample over Z (Y is a Mori fibre space).
If Y is a Mori fibre space, then it is known that κ(X ,KX +∆) =−∞ and X is uniruled. The
reverse implication is much harder to prove. The greatest contributions in that direction
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are [BDPP04], which proves that if X is smooth and KX is not pseudo-effective, then X
is uniruled, and [BCHM06], which proves that if KX + ∆ is klt and not pseudo-effective,
then there is a map to Y as in (2) above.

The classical strategy is as follows: if KX + ∆ is not nef, then by the Cone theorem
(known for log canonical pairs by the work of Ambro and Fujino, see [Amb03]) there is
a (KX + ∆)-negative extremal ray R in NE(X), and by the contraction theorem there is a
morphism π : X →W which contracts curves whose classes belong to R, and only them.
Then if dimW < dimX we are done. Otherwise π is birational, and there are two cases.
If codimX Excπ = 1, then π is a divisorial contraction, W is Q-factorial, ρ(X/W) = 1
and we continue the process starting from the pair (W,π∗∆). If codimX Excπ ≥ 2, then π
is a flipping contraction, ρ(X/W) = 1, but KW + π∗∆ is no longer Q-Cartier. In order to
proceed, one needs to construct a flip of π , namely a birational map π+ : X+ → W such
that X+ is Q-factorial, ρ(X+/W )= 1 and KX+ +φ∗∆ is ample over W , where φ : X 99K X+

is the birational map which completes the diagram. Continuing the procedure, one hopes
that it ends in finitely many steps.

Therefore there are two conjectures that immediately arise in the theory: existence and
termination of flips. The existence of the flip of a flipping contraction π : X →W is known
to be equivalent to the finite generation of the relative canonical algebra

R(X/W,KX +∆) =
⊕

m∈N

π∗OX(bm(KX +∆)c),

and then the flip is given by X+ = ProjW R(X/W,KX + ∆). The termination of flips is
related to conjectures about the behaviour of the coefficients in the divisor ∆, but I do not
discuss it here.

Since the paper [Zar62], one of the central questions in higher dimensional birational
geometry is the following:

Conjecture A.1. Let (X ,∆) be a projective log canonical pair. Then the canonical ring
R(X ,KX +∆) is finitely generated.

Finite generation implies existence of flips [Fuj09, 3.9]; moreover, one only needs to
assume finite generation for pairs (X ,∆) with KX +∆ big.

The proof of the finite generation in the case of klt singularities along the lines of the
classical philosophy in [BCHM06] is as follows: by [FM00, 5.2] one can assume that
KX + ∆ is big. Then by applying carefully chosen flipping contractions, prove that the
corresponding flips exist and terminate (termination with scaling), and since the process
preserves the canonical ring, deduce finite generation from the basepoint free theorem.

Now assume we have a flipping contraction π : (X ,∆) →W with additional properties
that (X ,∆) is a plt pair such that S = b∆c is an irreducible divisor which is negative over Z.
This contraction is called pl flipping, and the corresponding flip is the pl flip. Following
the work of Shokurov, one of the steps in the proof in [BCHM06] is showing that pl flips
exist, and the starting point is Lemma A.2 below. Note that in the context of pl flips, the
issues which occur in the problem of global finite generation outlined in the introduction
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to this paper do not exist. I give a slightly modified proof than the one present elsewhere
in the literature in order to stress the following point: I do not calculate the kernel of the
restriction map, but rather chase the generators. This reflects the basic principle: if our
algebra is large enough so that it contains the equation of the divisor we are restricting to,
then it is automatically finitely generated assuming the restriction to the divisor is. This
is one of the main ideas guiding the proof in §10.

Lemma A.2. Let (X ,∆) be a plt pair of dimension n, where S = b∆c is a prime divisor,
and let f : X → Z be a pl flipping contraction with Z affine. Then R(X/Z,KX + ∆) is
finitely generated if and only if resS R(X/Z,KX +∆) is finitely generated.

Proof. We will concentrate on sufficiency, since necessity is obvious.
Numerical and linear equivalence over Z coincide by the basepoint free theorem. Since

ρ(X/Z) = 1, and both S and KX +∆ are f -negative, there exists a positive rational number
r such that S ∼Q, f r(KX +∆). By considering open subvarieties of Z we can assume that
S− r(KX +∆) is Q-linearly equivalent to a pullback of a principal divisor.

Therefore S ∼Q r(KX + ∆), and since then R(X ,S) and R(X ,KX + ∆) have isomorphic
truncations, it is enough to prove that R(X ,S) is finitely generated. Since a truncation of
resS R(X ,S) is isomorphic to a truncation of resS R(X ,KX + ∆), we have that resS R(X ,S)
is finitely generated. If σS ∈ H0(X ,S) is a section such that divσS = S and H is a finite
set of generators of the finite dimensional vector space

⊕d
i=1 resS H0(X , iS), for some d,

such that the set {s|S : s ∈ H } generates resS R(X ,S), it is easy to see that H ∪ {σS}

is a set of generators of R(X ,S), since ker(ρkS,S) = H0(X ,(k− 1)S) ·σS for all k, in the
notation of Remark 5.3. �

One of the crucial unsolved problems in higher dimensional geometry is the following
Abundance conjecture.

Conjecture A.3. Let (X ,∆) be a projective log canonical pair such that KX + ∆ is nef.
Then KX +∆ is semiample.

Until the end of the appendix I discuss this conjecture more thoroughly. There are, to
my knowledge, two different ways to approach this problem.

The first approach is close to the classical strategy, and goes back to [Kaw85b]. First
let us recall the following definition from [Nak04]; the corresponding analytic version can
be found in [Pău08].

Definition A.4. Let X be a projective variety. If D is a pseudo-effective divisor, denote

σ(D,A) = sup
{

k ∈ N : liminf
m→∞

h0(X ,bmDc+A)/mk > 0
}
.

Then the numerical dimension of D is

ν(X ,D) = sup{σ(D,A) : A is ample}.

We know that ν(X ,D) = 0 if and only if D ≡ Nσ‖D‖, and that ν(X ,D) is the standard
numerical dimension when D is nef by [Nak04, 6.2.8]. It is well known that abundance



44 VLADIMIR LAZIĆ

holds when ν(X ,KX + ∆) is equal to 0 or dimX by [Kaw85a, 8.2], and when ν(X ,KX +
∆) = κ(X ,KX +∆) by [Kaw85b, 6.1]. Further, we have the following statement.

Theorem A.5. Let (X ,∆) be a projective klt pair of dimension n such that KX + ∆ is
nef. Assume that ν(Y,KY +∆Y ) > 0 implies κ(Y,KY +∆Y ) > 0 for any klt pair (Y,∆Y ) of
dimension at most n. Then KX +∆ is semiample.

Proof. Let (S,∆S) be a Q-factorial (n− 1)-dimensional klt pair with κ(S,KS + ∆S) = 0.
Then ν(S,KS + ∆S) = 0 by the assumption in dimension n − 1, and thus KS + ∆S ≡
Nσ‖KS + ∆S‖. By [Dru09, 3.4] there exists a minimal model of (S,∆S). Now the result
follows along the lines of [Kaw85b, 7.3]. �

The assumption in the theorem can be seen as a stronger version of non-vanishing.
Now I present a different approach, where one derives abundance from the finite gen-

eration. It is a result of J. McKernan and C. Hacon, and I am grateful to them for allowing
me to include it here.

Theorem A.6. Assume that for every (n + 1)-dimensional projective log canonical pair
(X ,∆) with KX + ∆ nef and big, the canonical ring R(X ,KX + ∆) is finitely generated.
Then abundance holds for klt pairs in dimension n.

Proof. Let (Y,Φ) be an n-dimensional projective klt pair such that KY + Φ is nef, and
let Y ⊂ PN be some projectively normal embedding. Let X0 be the cone over it, let X =
P(OY ⊕OY (1)) be the blowup of X0 at the origin, and let H ′ ⊂ PN be a sufficiently ample
divisor which does not contain the origin. Let ∆ be the proper transform of Φ in X , let
E ⊂ X be the exceptional divisor, and let H be the proper transform of H ′ in X .

Then by inversion of adjunction the pair (X ,ϒ = E + ∆ + H) is log canonical, and of
log general type since H ′ is ample enough. We have Y ' E, and this isomorphism maps
KY +Φ to KE +∆|E . The divisor KX +ϒ is also nef: since (KX +E +∆)|E is identified with
KY +Φ, this deals with curves lying in E by nefness, and for those curves which are not in
E, the ampleness of H away from E ensures that the intersection product with KX + ϒ is
positive. Then since the algebra R(X ,KX +ϒ) is finitely generated by assumption, we have
that KX +ϒ is semiample by [Laz04, 2.3.15], and then so is KE +∆|E = (KX +ϒ)|E . �

Finally a note about the general alternative philosophy. Since [HK00] it has become
clear that adjoint rings encode many important geometric information about the variety.
In particular, Theorem 1.2 in the case of a Fano variety X implies that X is a Mori dream
space [HK00, 2.9], and therefore all the main theorems and conjectures of Mori theory
hold on X , such as the Cone and Contraction theorems, existence and termination of flips,
abundance [HK00, 1.11]. In particular, the following conjecture applied to Mori dream
regions [HK00, 2.12, 2.13] seems to encode the whole Mori theory.

Conjecture A.7. Let X be a projective variety, and let Di = ki(KX +∆i) ∈ Div(X), where
(X ,∆i) is a log canonical pair for i = 1, . . . , `. Then the adjoint ring R(X ;D1, . . . ,D`) is
finitely generated.



ADJOINT RINGS ARE FINITELY GENERATED 45

REFERENCES

[Amb03] F. Ambro, Quasi-log varieties, Tr. Mat. Inst. Steklova 240 (2003), 220–239.
[BCHM06] C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, Existence of minimal models for varieties

of log general type, arXiv:math.AG/0610203v2.
[BDPP04] S. Boucksom, J.-P. Demailly, M. P ăun, and T. Peternell, The pseudo-effective
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