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Abstract

Every subgroup of the symmetric group defines a natural factor of the Cartesian
power of a transformation. We calculate the set of values of the spectral multiplicity
function of such factors (under certain conditions on a transformation) in terms of
numbers of orbits of diagonal actions of these subgroups. The analogous statement
is also valid for factors of tensor products of a unitary operator preserving 1. As
an application we prove, in particular, that for any n there exists a mixing (of
all orders) transformation having a staircase multiplicity function of length n, i.e.
essential values of the spectral multiplicity function are {1, 2, . . . , n}.
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1 Introduction

By dynamical system T we mean an invertible measure preserving map (trans-
formation) acting on a non-atomic Lebesgue space (X, µ). Iterations (powers)
of this map define an action of Z, thus forming a subgroup of a group of all
measure preserving transformations.

Spectral invariants of T , i.e. the spectrum of a unitary (Koopman) operator
induced on L2 : T̂ f(x) = f(Tx) have become classical in the theory of dy-
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namical systems. In this paper we study ( in a special interesting subclass)
the following general problem:

to determine precise conditions on the spectrum of a unitary operator under
which it can be realized by a dynamical system (see [6, p.36]).

Let us recall that the spectrum of any unitary operator U is completely de-
termined by the spectral multiplicity function M(U) and the measure σU of
the maximal spectral type defined on the one dimensional torus. Below we
will concentrate our attention at M(T̂ ), and its values denoted by the same
symbol. It is said that a transformation has a homogeneous spectrum of mul-
tiplicity n if M(T̂ ) ≡ n, where the Koopman operator T̂ is considered on the
main invariant subspace L0

2 = {f ∈ L2 :
∫
fdµ = 0}. We refer the reader to

surveys [8],[10] having sufficiently complete information concerning the history
of spectral invariants in ergodic theory. Let us only stress the recent solution
of the homogeneous spectrum problem (see the case n = 2 in [2],[13], and [4]
for the case of the complete generality). In spite of the fact that in the set of
all ergodic transformations we have almost full information concerning possi-
ble values of M(T̂ ), the case of mixing transformations is still weakly studied,
because many useful methods applicable for typical transformations do not
work in the subset of mixing transformations.

Next we study M(T̂ ) for mixing T . Staircase constructions of rank 1 trans-
formations are used in search of series of mixing transformations with various
multiplicity functions. In particular, we prove that there exist dynamical sys-
tems with staircase multiplicity functions. More precisely,

Theorem 1. For any n there exists a mixing transformation T such that

M(T̂ ) = {2, 3, . . . , n} on  L0
2,

this gives

M(T̂ ) = {1, 2, 3, . . . , n} on L2.

Remark 1. For n = 2 it was proved by Ryzhikov (see [14]).

Remark 2. Theorem 1 also gives an answer to a question of Robinson (see
[12], and [8, Subsect. 5.3]) about possible values of m(T ) = max M(T̂ ), who
showed that for any n there exists a mixing T with n < m(T ) <∞.

Remark 3. All mixing transformations constructed in this paper are mixing
of all orders, or, in other terms, they are k-fold mixing for any k > 1.

Let Sn be the symmetric group acting on {1, . . . , n} by permutations, and
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G be any subgroup of Sn. For any 1 ≤ k ≤ n denote by the same symbol
G the diagonal action of G on Ik = {1, . . . , n}k. Consider a restriction of the
G-action to a G invariant subset

I ′k = {ik = (ik(1), . . . , ik(k)) ∈ Ik : ik(l) = ik(m) iff l = m}.

Suppose ∼ is an orbital equivalence relation naturally defined by G on I ′k. Let
us define

Dk = ]I ′k/ ∼ (1 ≤ k ≤ n), and DG(n) = (D1, . . . , Dn).

In Sects. 3-5 we will show that DG(n) has a direct connection (see Theorems 2-
4) to spectral multiplicity functions of natural factors of the Cartesian powers.
Roughly speaking, in the framework of our construction to have a serious of
sets (without 1!) as the set of essential values of the spectral multiplicity func-
tion on L0

2, we need to calculate DG(n). This construction can be considered
as a source of mixing transformations having new ( highly nonhomogeneous)
spectral multiplicity functions.

2 Elementary properties of DG(n)

Proposition 1. Let G be a subgroup of Sn. Then DG(n) has the following
properties:

(1) DG(n) = (1, . . . , 1) if G = Sn.
(2) DG(n) = (n, n(n− 1), . . . , n!, n!) if G = {e}.
(3) DG(n) = (2, 3, . . . , n, n) if G = {g ∈ Sn : g(n) = n}.
(4) Dk ≤ Dm if k < m.
(5) Dn−1 = Dn.
(6) [∀j Dj = D1] ⇔ [n = 2 or G = Sn].
(7) Dn = n!/]G.
(8) DG(n) ≤ DG1(n) if G1 is a subgroup of G.

We leave the proof of these simple statements to the reader. Let us only
mention that part 6 follows from the obvious claim D2 ≥ D1(D1 − 1).

Remark 4.DG(n) is closely related to the average numbers of fixed points. In-
deed, due to the Cauchy-Frobenius lemma (see [11]) if G acts by permutations
on a finite set X, and D is the number of its orbits, then

D =
1

]G

∑

g∈G

]F (g), (1)
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where F (g) denotes the set of all fixed points of g. Associate with G the
polynomial P (z) =

∑
biz

i, where bi = ]{g ∈ G : ]F (g) = i}. Obviously,
P (1) = ]G. Using (1), it can easily be checked that

DG(n) = (P ′(1), . . . , P (n)(1))/P (1).

This expression of DG(n) does not give extra information concerning possible
values of DG(n), but is more useful for calculations. For example, for a unique
nontrivial normal subgroup of Sn, i.e. it is the case of n = 4 and we consider
the set of all permutations with two cycles of 2 length equipped by e, we have
P (z) = 3 + z4, and DG(n) = (1, 3, 6, 6).

Remark 5. DG(n) can be also expressed in probability terms. Namely,

DG(n) = (E(ξ), E(ξ(ξ − 1)), . . . , E(ξ(ξ − 1) · · · (ξ − n+ 1))),

where E(η) is the expectation of a random variable η, and ξ(g) is the number
of all fixed points of g.

3 Multiplicity functions of factors of tensor products

Given a subgroup G of Sn, and (D1, . . . , Dn) = DG(n), let

MG(n) = {D1, . . . , Dn}.

Every element g ofG naturally defines a permutation of the coordinates viewed
as a transformation, say g, of (Xn, µn), i.e. g(x1, . . . , xn) = (xg(1), . . . , xg(n)),
and a unitary operator on L2(X

n, µn). So we have a certain unitary represen-
tation, say V , of G by operators on L2(X

n, µn). Denote

Hinv(G) = {f ∈ L2 : ∀g ∈ G [Vgf = f ]}.

Then the subspace of all square integrable functions which are invariant with
respect to any permutations of the coordinates, namedHsym(n), is justHinv(Sn).
Obviously, for any unitary operator U acting on L2(X, µ), g ∈ Sn, U (n)Vg =
VgU

(n) and U (n)Hinv(G) = Hinv(G), where U (n) = U ⊗ · · · ⊗U (n times) is a
tensor product of U .

Definition. We say that a unitary operator U
(n)
G is a factor of U (n) associated

with G, if it is just a restriction of U (n) to Hinv(G).
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Note that the choice of this name was done, because this operator looks as a
natural generalization of operators adjoint to (measure-theoretical) factors of
dynamical systems.

For any Hilbert subspace, say H, of L2(Y, ν) we will write H0 instead of
{f ∈ H :

∫
fdν = 0}. Obviously, if 1 ∈ H, then H = H0 ⊕{c1 : c ∈ C}.

Theorem 2. Suppose U is a unitary operator preserving 1, i.e. U(1) = 1,
and U (n) has a simple continuous spectrum on H0

sym(n); then

M(U
(n)
G |L0

2
) = MG(n). (2)

Remark 6. It is not difficult to construct a unitary operator U (U(1) = 1)
such that U (n) has a simple spectrum on Hsym(n) (and H0

sym(n)), and (2) is
not valid for some G. However, in the case of a unitary operator U coming from
a dynamical system, the simplicity of the spectrum of U (n) onHsym(n) implies
that U on L0

2, consequently, U (n) on H0
sym(n) has a continuous spectrum.

Denote by σU the measure of the maximal spectral type for U on an invariant
subspace L0

2, and by σn the measure σU ×· · ·×σU (n times) on Tn. The image,
say σ(n), of the measure σn under the map

π : (λ1, . . . , λn) → λ1 · · ·λn,

, i.e. σ(n) = π(σn), is named a convolution of measures σU .

Let us first prove the following lemma.

Lemma 1. Assume U satisfy the conditions in Theorem 2; then for any k ≤ n
and ik ∈ I ′k, there exists a (nonzero) Hilbert subspace Hik in L0

2(X
n, µn) such

that the following properties are hold:

(1) L0
2(X

n, µn) =
⊕

k≤n

⊕
ik∈I′

k
Hik .

(2) Hik is orthogonal to Hjm
iff ik 6= jm.

(3) For any ik ∈ I ′k, U (n)Hik = Hik , moreover, U (n)|Hik
has a simple spec-

trum, and σU(n)|Hik

∼ σ(k).

(4) For any g ∈ Sn, ik ∈ I ′k, VgHik = Hg(ik), and if g(ik) = ik, then Vg|Hik
=

E.

Proof. Consider a map s : L0
2(X, µ) → H0

sym(n) defined by

s(φ) =
1√
n

∑

i

φ(xi).
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The map s is a unitary isomorphism between Hilbert spaces L0
2(X, µ) and

s(L0
2(X, µ)), and one has sU = U (n)s. Therefore a unitary operator U has a

simple continuous spectrum on L0
2(X, µ). This implies that U has a simple

spectrum on L2(X, µ), and σU is a continuous measure.

By the spectral theorem, there exists a unitary isomorphism between Hilbert
spaces L2(X, µ) and L2(T, σ1), say Φ, such that the image of U is just a
multiplication by λ, where σ1 = (σU + δ)/2, and δ is a one point measure
concentrated at 1, i.e. δ({1}) = 1. Denote by ϕ the primage of 1 via Φ. Since
σU({1}) = 0, Φ(L0

2(X, µ)) = 1T\{1}L2(T, σ1), and Φ(
∫
ϕdµ) = 1{1}, where 1B

is the indicator of B.

We will next repeatedly use a certain unitary isomorphism between Hilbert
spaces L2(X

n, µn) and L2(T
n, σn

1 ), say Φn, defined by Φ. Obviously, Φnϕn = 1

(= 1Tn), where ϕn(x1, . . . , xn) = ϕ(x1) · · ·ϕ(xn).

For any ik ∈ I ′k (1 ≤ k ≤ n), let

Bik = {(λ1, . . . , λn) ∈ Tn : ∀j[λj 6= 1 iff ∃p[j = ik(p)]]},

where ik = (ik(1), . . . , ik(k)). We will use the order on T\{1} coming from a
certain correspondence between T\{1} and (0, 1). Put

Bik = {(λ1, . . . , λn) ∈ Bik : λik(1) < λik(2) < · · · < λik(k)}.

It is easy to see that sets Bik are mutually disjoint (ik ∈ I ′k, 1 ≤ k ≤ n), and
a remaining set to Tn\{(1, . . . , 1)} is a subset of a union of the following sets:

Rj1,j2 = {(λ1, . . . , λn) ∈ Tn : λj1 = λj2 6= 1}, (j1 < j2 ≤ n).

Since σU is the continuous measure, for any j1 < j2 we have

σn
1 (Rj1,j2) = σ2{(λ1, λ2) ∈ T2 : λ1 = λ2} = 0.

Collecting all above remarks, we conclude that L2(T
n, σn

1 ) can be represented
as

L2(T
n, σn

1 ) = 1{(1,...,1)}L2(T
n, σn

1 )
⊕ ⊕

k≤n

⊕

ik∈I′
k

1Bik
L2(T

n, σn
1 ).

Let us check that for any ik ∈ I ′k Hilbert spaces Φ−1
n (1Bik

L2(T
n, σn

1 )) can be
chosen as Hik . Indeed, part 1 of Lemma 1 follows from Φn(c1) = 1{(1,...,1)},
where c = (

∫
ϕdµ)n. Parts 2 and 4 are obvious, because for any g ∈ Sn an
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image of Vg via Φn is just a unitary operator defined by the permutation g of
coordinates on Tn.

In order to prove part 3 we consider a spectral representation of the operator
U (n). The operator U j1 ⊗U j2 ⊗· · ·⊗U jn on L2(X

n, µn) is unitarily isomorphic
to the operator λj1

1 · · ·λjn
n · Ê on L2(T

n, σn
1 ). Therefore, it is clear that for any

ik ∈ I ′k, U
(n)Hik = Hik . Fix k. By part 4, spectral invariants of U (n) on Hik do

not depend on our choice of Hik . Let ik = (1, . . . , k). Obviously, the Hilbert
space 1Bik

L2(T
n, σn

1 ) is naturally isomorphic to 1CL2(T
k, σk), where

C = {(λ1, . . . , λk) ∈ Tk : ∀j[λj 6= 1]&λ1 < λ2 < · · · < λk},

and the image of Ũ (n) = λ1 · · ·λn · Ê via such an isomorphism is Ũ (k). Since
σU is a continuous measure, we have

1Tk =
∑

g∈Sk

1gC σk a.e.

Since σk is a symmetric measure, we have

∀p 〈Ũ (k)p1C , 1C〉 =
1

]Sk

〈Ũ (k)p1, 1〉 =
1

k!
(
∫
λpdσU)k.

Using the fact that the Fourier transform of a multiplication is a convolution,
we see that the spectral measure of 1C ∈ L2(T

k, σk) is σ(k)/k!. Obviously, σ(k)

is the measure of the maximal spectral type of Ũ (k) on L2(T
k, σk). Therefore

σ(k) is the measure of the maximal spectral type of U (n) on Hik .

To show the simplicity of the spectrum of U (n) on Hik , consider a symmetriza-
tion map ψ : Hik → H0

sym(n) defined by

ψ(φ) =
∑

i′
k
∈I′

k

φi′
k
,

where φi′
k
∈ Hi′

k
, and φi′

k
= Vgφ for some g ∈ Sn. Since ψU (n) = U (n)ψ, U (n)

has a simple spectrum on Hik . Lemma 1 is proved. �

Proof of Theorem 2. Given an ik ∈ I ′k (k ≤ n), f ∈ Hik , let Oik(G) =
{g(ik) : g ∈ G}. For any g ∈ G, denote by fi′

k
the function Vgf , where

i′k = g(ik) . Therefore, by Lemma 1, fi′
k
∈ Hi′

k
, and for any i′k ∈ Oik(G), fi′

k

does not depend on our choice of g. Consider a symmetrization map SGik :
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Hik → ⊕
i′
k
∈Oik

(G)Hi′
k
, defined by

SGik(f) =
1√

]Oik(G)

∑

i′
k
∈Oik

(G)

fi′
k
.

Put

Hsym(ik, G) = Hinv(G) ∩
⊕

i′
k
∈Oik

(G)

Hi′
k
.

It is easy to see that SGik(Hik) is just Hsym(ik, G). Clearly, SGik is a unitary

isomorphism. Moreover, SGik intertwines U (n) and U
(n)
G (= U (n) on Hinv(G)),

because, for any g, VgU
(n) = U (n)Vg. Thus Lemma 1 part 3 implies that

U
(n)
G |Hsym(ik,G) has a simple spectrum of the maximal spectral type σ(k). Con-

sequently, U
(n)
G |⊕

ik∈I′
k

Hik
has Dk simple (mutually orthogonal) components of

the maximal spectral type σ(k), because H0
inv(G) is a sum of U

(n)
G invariant

mutually orthogonal subspaces Hsym(ik, G), ik ∈ I ′k, k = 1, . . . , n.

To prove Theorem 2, it is remain to show that σ(k1) ⊥ σ(k2) if k1 < k2 ≤ n.
Let us mention first that U (n) invariant subspaces Hsym(ikj

,Sn) (j = 1, 2) of

Hsym(n) are mutually orthogonal. The operator U (n) has a simple spectrum
on Hsym(n). Therefore measures of the maximal spectral type (σ(kj)) of U (n)

on these subspaces (j = 1, 2) are mutually disjoint. Theorem 2 is proved. �

4 Applications to dynamical systems

Every subgroup G of Sn acts by permutations of coordinates on Xn, and
defines an orbital equivalence relation ∼ on Xn. Since for any g ∈ Sn trans-
formations g and T (n) commute, T (n) defines a transformation, say T

(n)
G , on a

non-atomic Lebesgue space (Xn/ ∼, ϕ(µn)), where ϕ is a canonical map from

Xn to Xn/ ∼. The dynamical system T
(n)
G is named a factor of T (n). It is easy

to see that Koopman’s operator
̂
T

(n)
G is unitarily isomorphic to a factor T̂

(n)
G .

Let us recall that the set of all transformations (automorphisms of the σ- al-
gebra of measurable sets) of (X, µ) is a Polish (complete metrizable separable)
topological group, noted Aut(µ), with respect to the weak (coarse) topology
defined by

Tn → T ⇔ µ(T−1
n A∆T−1A) → 0 for each measurable A
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(we identify transformations if they are coincide up to a set of measure zero).
We say that a property holds for a typical element from a topological space
D if the set of elements from D with this property contains a dense Gδ subset
of D.

Theorem 3. For a typical dynamical system T , T
(n)
G is weakly mixing and

M(
̂
T

(n)
G |L0

2
) = MG(n).

Remark 7. In particular, if ]G = 1, we have

M(T̂ (n)|L0
2
) = {n, n(n− 1), . . . , n!}

for a typical T . It was proved in [2] as an answer to Katok’s conjecture.

Proof. It is well known that a typical (generic) transformation has a simple
continuous spectrum on L0

2. Therefore every (nontrivial) factor of T (n) (in

particular, T
(n)
G ) is weakly mixing. To apply Theorem 2 it remains to show

that for a typical transformation T the operator T̂ (n) has a simple spectrum
on Hsym(n). The proof of this statement is appeared (not very explicitly) in
[2],[3]. In spite of that fact, for the sake of clarity we next give an adapted
proof.

It is well known (see, for example, [4, Corollary 2]) that, for a typical T , and
any α ∈ (0, 1), there exists a sequence mi(α) such that

T̂mi(α) → Qα,

where Qα = αÊ + (1 − α)T̂ , and the symbol ”→” denotes the weak operator
convergence. Therefore

T̂ (n)mi(α) → Qα ⊗ · · · ⊗Qα. (3)

We will use the notation described in Sect. 3. (3) then can be rewritten as
follows.

T̃ (n)mi(α) → (α+ (1 − α)λ1) · · · (α + (1 − α)λn) · Ê, (4)

where T̃ (n) = λ1 · · ·λn · Ê acts on L2(T
n, σn

1 ), and ΦnT̂
(n) = T̃ (n)Φn. Put

Pn(λ1, . . . , λn,Θ) = (Θ + λ1) · · · (Θ + λn).
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It is clear that if T̂ ni → Q for some linear operator Q, then, for any f ∈ L2,
Qf ∈ span{T̂ jf : j ∈ Z}. Taking into account (4), we have

Pn(·, . . . , ·,Θ) ∈ span{T̃ (n)j1 : j ∈ Z} for any Θ ∈ R+. (5)

Consider a system of canonical conditional measures, say νn(·|c), for σn
1 nat-

urally defined by a partition of Tn on fibers

F (c) = {(λ1, . . . , λn) ∈ Tn : λ1 · · ·λn = c}.

It is easy to see that, for any f ∈ L2(T
n, σn

1 ), f is an element of span{T̃ (n)j1 :
j ∈ Z} if and only if f is equal (σn

1 a.e.) to an f̃ , where for any c f̃ |F (c) ≡ const.
(5) then implies that polynomials Pn(λ1, . . . , λn,Θ) are equal to constants on
the ”typical” fiber F (c) for a.e. (λ1, . . . , λn) with respect to the measure νn(·|c),
where ”typical” means for σ

(n)
1 a.e. c, and σ

(n)
1 = π(σn

1 ).

Consider Pn(λ1, . . . , λn,Θ) as a polynomial of degree n in the variable Θ on
the fiber F (c). Then both the first and the last coefficients are constant. Since
the number of various Θ is at least n − 1, this polynomial is uniquely de-
fined, i.e. its remaining coefficients are equal to constants for a.e. (λ1, . . . , λn)
with respect to the measure νn(·|c) on the fiber F (c). Thus it has only one
collection of zeros for νn(·|c) a.e. (λ1, . . . , λn), where λ1 · · ·λn = c. However
zeros of Pn(λ1, . . . , λn,Θ) are (−λ1, . . . ,−λn). It implies that supp νn(·|c) is a
single point modulo permutations of coordinates. Besides since σn

1 is a sym-

metric measure, for any g ∈ Sn, and σ
(n)
1 a.e. c, we have g(νn(·|c)) = νn(·|c),

equivalently, νn(·|c) is a symmetric measure.

Collecting all above remarks, we conclude that every function in ΦnHsym(n),

say f , is equal (σn
1 a.e.) to an f̃ , where for any c f̃ |F (c) ≡ const, and, conse-

quently,

ΦnHsym(n) = span{T̃ (n)j1 : j ∈ Z}.

Therefore T̂ (n) has a simple spectrum on Hsym(n). Theorem 3 is proved. �

5 Applications to mixing transformations

Theorem 1 is a natural corollary of Proposition 1 and the following theorem:
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Theorem 4. For any subgroup G of Sn, there exists a mixing (of all orders)
transformation T satisfying

M(T̂ |L0
2
) = MG(n).

Proof. It is well known that for any k > 1 both Cartesian products and
factors of k-fold mixing transformations are also k-fold mixing. Therefore, by
Theorem 2, to prove Theorem 4 we only need to find a mixing (of all orders)
transformation T satisfying the simplicity of the spectrum of T̂ (n)|Hsym(n)

condition. However such transformations exist even in the class of staircase
constructions of rank one transformations. It was announced by Ryzhikov
(see [14, Theorem 5.2]), and proved for n = 2. For full completeness, we
give another couple of such examples (see Subsect 5.3) using more spectral
arguments for proofs. Let us also recall that if a rank 1 transformation is
mixing then it is mixing of all orders. �

5.1 Staircase constructions

A transformation T has rank 1 if for any m, there exist an integer hm and a
tower (column)

Am, TAm, . . . , T
hm−1Am,

such that all levels T jAm, 0 ≤ j < hm, and the remaining set form a measur-
able partition of X, say ξm, and ξm → ε, i.e. for any measurable set B there
are ξm-measurable sets Bm such that µ(B∆Bm) → 0 as m → ∞. It is well
known that every rank one transformation can be defined inductively using
the procedure cutting and stacking described below for staircase transforma-
tions. Next we will consider realizations of rank one transformations by piece
wise shifts on disjoint unions of subintervals in R.

A rank-one transformation T is called a staircase construction if there exists
a sequence (rm)∞m=1 of natural numbers rm > 1 such that each column Cm+1 is
obtained by cutting Cm into rm subcolumns, say Cm(i), of equal width, placing
i−1 spacers only on the subcolumn Cm(i) for 1 ≤ i < rm, and then stacking the
subcolumn Cm(i+1) on top of Cm(i) for 1 ≤ i < rm. For the column Cm, let hm

be its height and let dm be a measure of its one level, i.e. its width, where m ≥
1. Note that is a modification of staircase construction (see [1]) because we do
not add spacers on the top of the subcolumn Cm(rm). The pair (h1, (rm)∞m=1)
defines a unique staircase transformation up to a metrical isomorphism. Since
our next considerations are independent of the initial choice of h1, we will
denote by T = T(rm) such a transformation.
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Let Om(0) = Cm\Cm(1). Define Om(j) = Cm(1) ∩ · · · ∩ Cm+j−1(1)\Cm+j(1)
(j = 1, 2, . . .). From the geometry of the construction we immediately get that

(1) Each Cm consists of pairwise disjoint subcolumns Om(j) (j = 0, 1, 2, . . .)
of height hm and width (rm+j − 1)dm+j+1.

(2) Each Om(j) consists of pairwise disjoint subcolumns Om(j) ∩ Cm+j(i)
(i = 2, . . . , rm+j) of height hm and equal width.

(3) T−hm∆k(i) = T i−2∆k(i − 1), i = 2, . . . , rm+j, where ∆k(i) is kth level of

Om(j) ∩ Cm+j(i) if i = 2, . . . , rm+j, and ∆k(1) is kth level of Cm+j(1).

Apriori staircase transformations constructed above act on the collection of
mutually disjoint intervals (levels) of R. Note that all properties we are in-
teresting are independent of the mutual location of these intervals on R. We
will consider only finite staircase transformations, i.e. staircase transforma-
tions acting on the space X of finite measure. Choosing the length of the first
column level (d1) appropriately , we can assume that all finite staircase trans-
formations are defined on the unit interval in R under standard Lebesgue
measure. Obviously, bounded staircase transformations, i.e. transformations
T = T(rm) such that lim supm→∞ rm < ∞, form a natural subclass of finite
staircase transformations.

5.2 Subsets of limit polynomials

Next we will use the compactness of the set {U ∈ L(L2) : ‖U‖ ≤ 1} with
respect to the weak operator topology, where L(L2) is the space of bounded
operators on L2.

Denote

Pk(z) =
1

k − 1

k−2∑

j=0

zj (k > 1),

and

Bp,α,β(z) =
1

1 + α + β
(Pp(z) + αPp+1(z) + βPp+2(z)) (α, β ∈ R).

Proposition 2. For any p > 1 there is a sequence of positive integers rm such
that |rm − p− 1| ≤ 1 and for any pair (α, β) ∈ I1 × I2

T̂−hmk → Bp,α,β(T̂ ) as k → +∞, (6)
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where T = T(rm), mk = mk(α, β) → +∞, and Ii (i = 1, 2) is a countable
subset of R.

Proof. It is enough to show (6) on pairs of functions running independently
over some dense set in L2(X, µ). Therefore we can assume that f and g are

constant, say fm(j) and gm(j), on each jth level of Cm for every sufficiently
large m.

Obviously, if µ(Xi) → 0, then 1Xi
T̂ ki → 0 for any sequence ki . Thus

T̂−hm −
∑

j

1Om(j)T̂
−hm → 0 as m→ +∞.

It is easy to see that on every set Om(j)∩Cm+j(i) the function T̂−hmf is ”al-
most” T̂ i−2f , and then 〈1Om(j)T̂

−hmf, g〉 is ”almost” µ(Om(j))〈Prm+j
(T̂ )f, g〉.

Moreover

∑

j

〈1Om(j)T̂
−hmf, g〉 −

∑

j

µ(Om(j))〈Prm+j
(T̂ )f, g〉 → 0 as m→ +∞.

Therefore,

T̂−hm −
∑

j

µ(Om(j))Prm+j
(T̂ ) → 0 as m→ +∞.

Note that for any j

µ(Om(j)) =
rm+j − 1

rm · · · rm+j

µ(Cm),

and µ(Cm) → 1 as m→ +∞.

Collecting all above remarks we conclude that a sequence rm we need is, for
example, any weakly normal sequence of symbols {p, p + 1, p + 2}, i.e. a
sequence satisfying the following property: for any finite couple of elements
of {p, p + 1, p + 2}, say (α0, . . . , αk), there exists a countable set of positive
integers ij such that, for any j, rij+q = αq, q = 0, . . . , k. Proposition 2 is
proved. �

Every rank 1 transformation has a simple spectrum (see [5]). Therefore, under
the notation described in Sect. 3, for any finite staircase transformation, Φn

is an isomorphism between Hilbert spaces L2(X
n, µn) and L2(T

n, σn
1 ).

Proposition 3. Let n ∈ N, p > 1, and T = T(rm) for any sequence rm coming
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from Proposition 2; then

n∏

i=1

Bp,α,β(λi) ∈ span{T̃ (n)j1 : j ∈ Z} (7)

for all pairs (α, β) of real numbers.

Proof. We will follow the proof of Theorem 3. (6) then implies that (7) is
valid for any pair (α, β) ∈ I1 × I2, and, consequently,

∏n
i=1Bp,α,β(λi) is equal

to the const (νn(·|c) a.e.) on a ”typical” fiber F (c) for any pair (α, β) ∈ I1×I2.

Given an α ∈ I1, and a ”typical” fiber F (c), consider
∏n

i=1Bp,α,β(λi) as a
polynomial of degree ≤ n in the variable β on the fiber F (c). Since the number
of various β ∈ I2 is countable, this polynomial is uniquely defined, i.e. all its
coefficients are equal to constants for a.e. (λ1, . . . , λn) with respect to the
measure νn(·|c) on the fiber F (c). Therefore, for any β ∈ R, it is equal to the
const for νn(·|c) a.e. (λ1, . . . , λn), where λ1 · · ·λn = c. This implies that for
any β ∈ R there exists an f̃ ∈ L2(T

n, σn
1 ) such that

∏n
i=1Bp,α,β(λi) = f̃ (σn

1

a.e.) and, for any c, f̃ |F (c) ≡ const. Therefore (7) is valid for any real β.

Given an arbitrary real β, by repeating the proof, we have that (7) is valid for
any real α. Proposition 3 is proved. �

Proposition 4. For any sequence rm coming from Proposition 2, for any n,
T

(n)
(rm) has a simple spectrum on Hsym(n). Moreover, one has

∀ϕ ∈ L2 [span{T̂ j
(rm)ϕ : j ∈ Z} = L2(X, µ) ⇒

∀n span{T̂ (n)j
(rm)ϕn : j ∈ Z} = Hsym(n)],

where ϕn(x1, . . . , xn) = ϕ(x1) · · ·ϕ(xn).

Proof. Given a β ∈ R and p > 1, choose an α satisfying

α

p
+

β

p+ 1
= − 1

p− 1
.

Then we have

Bp,α,β(z) = (
1

1 − p
+

1

1 + p
βz)zp−1.

Using Proposition 3, we then conclude that for any positive number n and
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β ∈ R,

n∏

i=1

λp−1
i (

1 + p

1 − p
+ βλi) ∈ span{T̃ (n)j1 : j ∈ Z},

or, equivalently,

n∏

i=1

(Θ + λi) ∈ span{T̃ (n)j1 : j ∈ Z} for any Θ ∈ R.

It is remain to repeat exactly all arguments in the proof of Theorem 3 starting
with (5). Proposition 4 is proved. �

5.3 Approximations by finite staircase transformations

Note that staircase transformations introduced in Subsect 5.1 can be non-
weakly mixing. However, using, for example, Remark 6 and Proposition 4,
we have that staircase transformations constructed in Subsect. 5.2 are weakly
mixing. It is easy to see that they are not mixing. Moreover, it is well known
that if a rank 1 transformation is mixing, then a sequence of cuts {rm} in their
definition (by cutting and stacking) tends to infinity.

By repeating with obvious changes of Adams’ proof (done for standard gen-
eralizations of classical staircase transformations (see [1])) , it is not difficult
to conclude that if rm tends to +∞ (rm is ”divergent” in the sense of [1]) and
the growth is not to fast (i.e. limn→∞ r2

m/hm = 0)), then T(rm) is also mixing.

Let pk → +∞. For any p = pk choose a sequence, say rm(k), as in Proposition
2. We wish to consider limits of finite staircase T(rm(k)). It is convenient to con-
struct every T(rm(k+1)) starting with an appropriate column of T(rm(k)), where
without loss of generality we shall assume that the first column of T(rm(1)) has
height 1 and weight 1. Therefore h1(k+1) = hm(k)(k), where a sequence m(k)

will be chosen later. Let Cm,k be the mth column of T(rm(k)). We will assume
next that T(rm(k+1)) is equal to T(rm(k)) on all levels of the column Cm(k),k, but
the top one. It is convenient to consider a union of levels of the column Cm,k as
an interval, say [0, a(m, k)) of R. Note that, in general, T(rm(k)) act on differ-
ent spaces (Xk, µ), where Xk = [0, ak), ak = limm→∞ a(m, k). However if m(k)
tends to +∞ sufficiently fast, then the difference is small, and µ(Xk) → c for
some 0 < c <∞.

Given a sequence mk of positive integers, let us finally define a staircase trans-
formation T(rm) so that for any k T(rm) is equal to T(rm(k)) on all but top levels
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of the column Cm(k),k. It is easy to see that T(rm) is well defined, acts on
X = [0, a), a = limk→∞ a(m(k), k), h1 = h1(1), and

(r1, r2, . . . , rm, . . .) = (r1(1), . . . , rm(1)−1(1), r1(2), . . . , rm(2)−1(2), . . .). (8)

Proposition 5. If the sequence m(k) tends to +∞ sufficiently fast, then for

any n the (mixing) transformation T
(n)
(rm) has a simple spectrum on Hsym(n),

where T(rm) is the mixing staircase transformation constructed above.

Proof. Obviously, rm → +∞, and for a sequence m(k) having the sufficiently
fast growth with respect to pk, µ(X) = a <∞, r2

m/hm → ∞. Therefore T(rm)

is mixing, and T
(n)
(rm) is mixing on every invariant subspace of L2(X

n, µn).

Given a positive integer n and L2([0, 1)n, µn), fix a countable dense sub-
set {fn,j} (j ∈ N) of Hsym(n) ⊆ L2([0, 1)n, µn). Let b > 0. The map
ψ1,b : [0, 1) → [0, b), ψ1,b(x) = bx defines a certain (non-unitary) isomorphism,
say ψn,b, between Hilbert spaces L2([0, 1)n, µn) and L2([0, b)

n, µn), and corre-
sponding symmetric spaces. Let gn,j,b = ψn,bfn,j (n, j ∈ N). It is convenient to
consider every gn,j,b as an element of L2(R

n, µn), where supp gn,j,b ⊆ [0, b)n.

Fix a sequence 0 < εk → 0 as k → +∞. For any T(rm(k)) as above (k ∈ N),
define 0 < δk < δk−1/2 (δ0 = 1) satisfying

|b− ak| < δk ⇒ ∀n, j ≤ k ‖ gn,j,b − gn,j,ak
‖L2< εk. (9)

Let us use the following well-known technical proposition:

Proposition 6. Let T be a weakly mixing rank 1 transformation of the Lebesgue
space (X, µ), and ξm be the corresponding sequence of partitions (see the defi-
nition in Subsect. 5.1). If ξm is monotonic, then

span{T̂ jϕ : j ∈ Z} = L2(X, µ),

where ϕ is the indicator of every level of every column.

Suppose χ is the indicator of the first level of the column C1,1, χn(x1, . . . , xn) =
χ(x1) · · ·χ(xn). Using Proposition 4, for any T(rm(k)) we choose numbers cq(n, j, k)
so that

∀n, j ≤ k ‖ gn,j,ak
−

∑

q

cq(n, j, k)T̂
(n)q
(rm(k))χn ‖L2< εk. (10)

Given k, m(k− 1), T(rm(s)), as, δs (s ≤ k), it is easy to see that we can choose
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m(k) so that

0 < ak − a(m(k), k) <
δk
6
, (11)

|ak+1 − ak| <
δk
6
, (12)

∀n, j ≤ k ‖
∑

q

cq(n, j, k)T̂
(n)q
(rm(k))χn −

∑

q

cq(n, j, k)T̂
(n)q
(rm)χn ‖L2< εk (13)

uniformly over all m(s) (s > k) (, and over transformations T(rm(s)) (s > k),
T(rm) defined by these m(s)).

Let us consider a sequence m(k) (and T(rm)) constructed above. Note that
|a− ak| < δk. Indeed, by (11) and (12) we have

|a− ak| = |a(m(k), k) − ak +
∑

i≥k

(a(m(i + 1), i+ 1) − a(m(i), i))| <

δk
6

+
∑

i≥k

|ai+1 − ai| +
δi
6

+
δi+1

6
< δk.

Therefore, using (9),(10), and (13), we conclude

∀k∀n, j ≤ k ‖ gn,j,a −
∑

q

cq(n, j, k)T̂
(n)q
(rm)χn ‖L2< 3εk.

This implies that

∀n, j gn,j,a ∈ span{T̂ (n)q
(rm)χn : q ∈ Z},

or, equivalently,

∀n Hsym(n) = span{T̂ (n)q
(rm)χn : q ∈ Z}.

Proposition 5 is proved. �

Remark 8. Since every staircase transformation is defined by the pair (h1, {rm})
uniquely up to a metrical isomorphism, Proposition 5 is valid for any staircase
T(rm) having the same sequence {rm} as above. Moreover, it is easy to check
that Proposition 5 is also valid for slightly more large subclass of staircase
T(rm), where rm is constructed in the same manner as in (8) but we admit
to place between blocks (r1(k), . . . , rm(k)−1(k)) finite blocks Bk under certain
conditions on Bk.
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