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ANALYSIS OF SCHRÖDINGER OPERATORS WITH INVERSE
SQUARE POTENTIALS I (REGULARITY RESULTS IN 3D)

EUGENIE HUNSICKER, HENGGUANG LI, VICTOR NISTOR, AND VILLE USKI

Version: 2.2; Revised: 14 July, 2011; Run: December 27, 2011

Abstract. Let V be a potential on R3 that is smooth everywhere except at
a discrete set S of points, where it has singularities of the form Z/ρ2, with
ρ(x) = |x − p| for x close to p and Z continuous on R3 with Z(p) > −1/4
for p ∈ S. Also assume that ρ and Z are smooth outside S and Z is smooth
in polar coordinates around each singular point. We either assume that V is
periodic or that the set S is finite and V extends to a smooth function on the
radial compactification of R3 that is bounded outside a compact set containing
S. In the periodic case, we let Λ be the periodicity lattice and define T := R3/Λ.
We obtain regularity results in weighted Sobolev space for the eigenfunctions
of the Schrödinger-type operator H = −∆ + V acting on L2(T), as well as
for the induced k–Hamiltonians Hk obtained by resticting the action of H to
Bloch waves. Under some additional assumptions, we extend these regularity
and solvability results to the non-periodic case. We sketch some applications
to approximation of eigenfunctions and eigenvalues that will be studied in more
detail in a second paper.
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1. Introduction and statement of main results

We study in this paper regularity and decay properties of the eigenfunctions of
Schrödinger type operators with inverse-square singularities. We either assume that
the potential is periodic or that it has a nice behaviour at infinity and only finitely
many singularities. In order to explain our assumptions and results in more detail,
we organize our Introduction in subsections, concentrating on the case of periodic
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potentials, the non-periodic case being similar, but simpler. We first introduce
the operators Hk obtained from the Hamiltonian −∆ + V acting on Bloch waves.
In the second subsection of the Introduction, we explain our assumptions on the
potential V . Finally, we state our main results and we summarize the contents of
the paper.

This paper is written to put on a solid foundations the numerical methods de-
velopped in [21]. We have thus written this paper with an eye to the numerical
analyst. More theoretical results on Hamiltonians with inverse square potentials
in arbitrary dimensions will be included in the third part of this paper.

See [5, 8, 36, 42, 43] for other papers studying Hamiltonians with inverse square
potentials, both from the point of view of physical and numerical applications. See
also [9, 10, 11, 13, 12, 14, 18, 20, 40, 41, 44] for some related results.

1.1. The Hamiltonian Hk. Let V be a periodic potential on R3 with Bravais
lattice (of translational symmetries) Λ ∼= Z3. Assume that V is smooth except
at a set of points S, which is thus necessarily also periodic with with respect to
the lattice Λ. We assume that there are only finitely many elements of S in any
fundamental domain P of Λ. Let p ∈ S be a singular point and ρ(x) = |x− p| for
x close to p and ρ smooth outside S. We assume that around p the potential V
has a singularity of the form Z/ρ2, where Z is continuous across p and smooth in
polar coordinates around p. We shall study numerically Hamiltonian operators of
the form

(1) H := −∆ + V.

Systems with such potentials have been studied as theoretical models both from
the viewpoint of classical mechanics and from the quantum mechanical viewpoint.
In addition, they arise in a variety of physical contexts, such as in relativistic quan-
tum mechanics from the square of the Dirac operator coupled with an interaction
potential, or from the interaction of a polar molecule with an electron [36].

A standard method for studying these operators is through their action on Bloch
waves. For any k ∈ R3, the Bloch waves of H with wave vector k are elements of
L2
loc(R3) that satisfy the semi-periodicity condition that, for all X ∈ Λ,

(2) ψk(x+X) = eik·Xψk(x).

(It is enough to consider k in the first Brillouin zone P∗ of the reciprocal lattice to
Λ. Also, the equality is that of two L2

loc functions, and hence it holds only almost
everywhere in x.) A Bloch wave with wavevector k can be written as

(3) ψk(x) = eik·xuk(x)

for a function uk that is truly periodic with respect to Λt and thus can be considered
as living on the three-torus T := R3/Λ ' (S1)3 (obtained by identifying points in
R3 that are equivalent under the action of the lattice Λ by translations). Note
that the periodicity condition that a Bloch wave satisfies prevents it from being in
L2(R3), thus a nontrivial Bloch wave that satisfies the equation

(4) Hψk = λψk
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is not, properly speaking, an eigenfunction of the Hamiltonian operator H. Rather,
it is a generalized eigenfunction, corresponding to a value in the continuous spec-
trum of H. If ψk is a Bloch wave that is a generalized eigenfunction of H with
generalized eigenvalue λ, then the function uk := e−ik·xψk(x) will then be an actual
λ-eigenfunction of the k–Hamiltonian Hk on L2(T) defined by

(5) Hk := −
3∑
j=1

(∂j + ikj)
2 + V.

Indeed, this follows from the equation

(6) H(eik·xuk(x)) = eik·xHkuk(x).

Thus, it is useful to understand the regularity of eigenfunctions uk for the operators
Hk, as well as to arrive at theoretical estimates for the accuracy of various schemes
to estimate them and their associated eigenvalues.

1.2. Assumptions on the potential V . In this paper, we extend and test the
results of [23] to deal with the more singular potentials that have inverse-square
singularities. More precisely, we extend the results of the aforementioned paper
from potentials where ρV is smooth in polar coordinates to potentials where ρ2V
is smooth in polar coordinates and continuous on T. (Recall that ρ is a function
that locally gives the distance to the singular point). In particular, we obtain
regularity results in weighted Sobolev spaces that will then permit us to derive
estimates for the accuracy of two approximation schemes that we design and which
are studied in detail in the forthcoming second part of this paper. The first scheme
is a finite element method with a mesh graded towards the singular points as
in [23, 7]. The second scheme is an augmented plane-wave method, similar to a
“muffin-tin” method [32].

In order to state our results, we first need to set some notation and introduce
our assumptions on the potential V . Let S ⊂ T := R3/Λ be the finite set of
points where V has singularities. By abuse of notation, we shall denote by |x− y|
the induced distance between two points x, y ∈ T. Let then ρ : T → [0, 1] be a
nonnegative continuous function smooth outside S such that

(7) ρ(x) = |x− p| for x close to p ∈ S,

as before, and further assume also that ρ(x) = 1 for x far from S.
Our first assumption on V is that ρ2V be smooth in polar coordinates up to

ρ = 0 near each singularity. Let us explain this in more detail. We first replace
each singular point p ∈ S with a 2-sphere in a smooth way, thus obtaining a space
denoted T r S. This is the usual procedure of blowing up the singularities. We
think of stretching out the holes where the singularities of V are and compactifying
the result using boundary spheres. It would be possible to carry out analysis similar
to the calculations in this paper with only the assumption that ρ2V be smooth on
T r S. To simplify some calculations and to obtain closed form results, however,
we will further require the resulting function Z to be constant on the blow up of
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each point in S, which can be reformulated as saying that ρ2V is also continuous
on T. Our first assumption on the potential V is therefore

(8) Assumption 1 : Z := ρ2V ∈ C∞(T r S) ∩ C(T).

Assumption 1, more precisely the continuity of Z at S, allows us to formulate our
second assumption. Namely,

(9) Assumption 2 : η0 := min
p∈S

Z(p) > −1/4.

Thefore, the constant

(10) η :=
√

1/4 + η0,

which will play an important role in this paper, is a positive real number. This
constant will appear in many results below. We will use Assumptions 1 and 2
throughout the paper, except in Section 2, where we prove more general forms of
our results, not requiring Assumption 2.

1.3. Regularity and approximation results. The domains of all the Hamilton-
ian operators considered in this paper will be contained in weighted Sobolev spaces
on T r S. We define these spaces by:

(11) Kma (T r S) := {v : T r S → C, ρ|β|−a∂βv ∈ L2(T), ∀ |β| ≤ m}.

These spaces have been considered in many other papers, most notably in Kon-
dratiev’s groundbreaking paper [26]. They can be identified with the b-Sobolev
spaces of [33] (associated to a manifold with boundary), but with a different index-
ing and notation. These spaces were generalized in [3] to more general manifolds
with corners with additional structure (Lie manifolds).

To formulate the stronger regularity for eigenvalues, we shall need the following
notation. For each point p ∈ S, let

(12) ν0(p) =


2 Z(p) ≥ 3

4

1 +
√

1/4 + Z(p) Z(p) ∈ (−1
4
, 3
4
)

1 Z(p) ≤ −1
4
,

and

(13) ν0 = min
p∈S

ν0(p).

For each point p ∈ S for which Z(p) ∈ (−1/4, 3/4], define a smooth cutoff function
χp that is equal to 1 in a small neighborhood of p and is zero outside another small
neighborhood of p, so that all the functions χp have disjoint supports. Define the
space Ws to be the complex linear span:

(14) Ws =
∑

Z(p)∈(−1/4,3/4]

Cχpρ
√

1/4+Z(p)−1/2.

Using also the notation introduced in the previous subsection, we then have the
following result, whose proof follows from the proof of Theorem 2.3 below.
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Theorem 1.1. Consider a potential V satisfying Assumptions 1 and 2. Then
the Hamiltonian operator Hk acting as an unbounded operator on L2(T) has a
distinguished self-adjoint extension with domain

D(Hk) = K2
2(T r S) +Ws ⊂ K2

ν(T r S), ν < ν0 = min
p∈S

ν0(p) ∈ (0, 2].

In particular, if η0 := η0 := minp∈S Z(p) ≥ 3/4, then Hk is in fact essentially
self-adjoint and, if η0 > 3/4, then D(Hk) = K2

2(T r S).

The importance of the above theorem is the following corollary, which says that
under Assumptions 1 and 2, the Hamiltonian operators Hk = −

∑3
j=1(∂j+ikj)

2+V

acting on L2(T) can be completely understood through their eigenfunctions and
eigenvalues.

Corollary 1.2. Under the assumptions of Theorem 1.1, there exists a complete
orthonormal basis of L2(T) consisting of eigenfunctions of Hk.

We can now state a regularity theorem for the eigenfunctions of Hk near a point
p ∈ S, or equivalently, for Bloch waves associated to the wavevector k. Recall the
functions χp supported near points of S and used to define the spaces Ws.

Theorem 1.3. Assume that V satisfies Assumptions 1 and 2. Let Hku = λu,
where u ∈ D(Hk), u 6= 0. Then, for any m ∈ Z+,

u ∈ Km+1
a+1 (T r S), ∀a < η := min

p∈S

√
1/4 + Z(p).

Moreover, we can find constants ap ∈ R such that

u−
∑
p∈S

χpρ
√

1/4+Z(p)−1/2 ∈ Km+1
a′+1(T r S), ∀a′ < min

p∈S

√
9/4 + Z(p) .

The next result, which is the last we will mention in this introduction, will permit
us to construct approximation schemes for the solutions of equations of the form
(λ+Hk)u = f .

Theorem 1.4. Let us use the notation of Theorem 1.1 and both Assumptions 1
and 2. Then there exists C0 > 0 such that λ+Hk : Km+1

a+1 (T r S)→ Km−1a−1 (T r S)
is an isomorphism for all m ∈ Z≥0, all |a| < η, and all λ > C0. In particular, Hk

is symmetric and bounded below, thus has a Friedrichs extension, which is equal to
the closed extension considered in Theorem 1.1 above.

From now on, we shall write Hk for the Friedrichs extension of the original
operator defined in Equation (6) and D(Hk) for its domain.

We observe additionally that with the exception of Corollary 1.2, all of the results
above extend to Hamiltonian operators on R3 associated to a non-periodic potential
with a finite number of inverse square singularities satisfying Assumptions 1 and
2 and radial limits at infinity. This is because the techniques employed to obtain
the results are local, and a Hamiltonian operator over R3 with a smooth potential
that has radial limits at infinity is always essentially self-adjoint. Of course, in this
situation, there are only isolated eigenvalues below the continuous spectrum, and
the bulk of the spectrum is continuous.
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The paper is organized as follows. In Section 2 we prove Theorem 1.1 identifying
a closed self-adjoint extension of the operatorHk, and Theorem 1.3 giving regularity
results for eigenfunctions of this closure. Some of the results of this section do not
rely on Assumption 2. Beginning with Section 3, however, we shall require that
Assumption 2 be satisfied. In that section, we prove that for η > −1/4, Hk is
bounded from below, and we can thus identify the closure from Section 2 as the
Friedrichs extension of Hk. In Section 4 we discuss how our results extend to the
the nonperiodic case and how to use them in numerical methods.

Acknowledgements. We would like to thank Alexander Strohmaier, Joerg Seiler,
Thormas Krainer, Jorge Sofo, and Anna Mazzucato for useful discussions. We also
thank the Leverhulme Trust whose funding supported the fourth author during
this project. This project was started while Hunsicker and Nistor were visiting the
Max Planck Institute for Mathematics in Bonn, Germany, and we are greatful for
its support.

2. Regularity and singular values

The regularity analysis of the operators Hk is done locally in the neighborhood
of each p ∈ S. Let us recall that Z := ρ2V ∈ C∞(T r S) ∩ C(T), which is our
Assumption 1, which we will require to hold true throughout this paper. In this
section, we shall mention explicitly when Assumption 2 is used, since some of the
results hold in greater generality.

For simplicity of the notation, we shall assume that S consists of a single point
p. The results for potentials with several singularities with different values of Z(p)
can then be pieced together from local versions of the result in the one singularity
case. The proofs of Theorems 1.1 and Theorem 1.3 (which we prove in this section
in more general forms not requiring Assumption 2), rely on the pseudodifferential
operator techniques of the b-calculus and b-operators [4, 33, 30, 39]. A review
of these basic tools is contained in [23], so we will not go into detail about them
again here. Throughout this paper, we will refer to b-operators and the b-calculus,
although the properties can be equivalently described in terms of cone operators
and the cone calculus, and in fact, in some of the references in this section, they
are referred to in this way. For a discussion of the equivalence of the b- and cone
calculi, see [29].

2.1. The boundary spectral set. In order to use the b-calculus, we study the
associated b-differential operators

Pk,λ := −ρ2(Hk − λ).

We can write such an operator in polar coordinates around p ∈ S as

(15) Pk,λ = (ρ∂ρ)
2 + ρ∂ρ + ∆Sn−1 − ρ2V − ρBk,λ,

where

Bk,λ := ρ

(
n∑
j=1

(−2i∂j + k2j )− λ

)
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is a first order b-operator.
The operator Pk,λ is an elliptic b-operator on T r S. We calculate the indicial

family of Pk,λ at a point p ∈ S, denoted (P̂k,λ)p(τ), by replacing ρ∂ρ with τ in
Equation (15), and by replacing the coefficients with their values at ρ = 0. Doing
this, we find that the indicial families for Pk,λ at p ∈ S are, in fact, independent of
λ and k, since the dependence on k and λ affects only Bk,λ, and ρ vanishes at the
singular points. We summarize this discussion in the following lemma.

Lemma 2.1. Let P := P0,0. Then the indicial family of Pk,λ at p ∈ S is given by

(16) (P̂k,λ)p(τ) = P̂p(τ) = τ 2 + τ + ∆S2 − Z(p).

Lemma 2.1 allows us to calculate the boundary spectral set Specb(Pp) for Pk,λ

at a given p. The boundary spectral set for Pk is then defined by ([33])

Specb(Pp) := {(τ, n) | P̂p(τ)−1 has a pole of order n+ 1 at τ}.
By Lemma 2.1, the set Specb(Pp) will also be independent of k and λ. To calculate
the spectral set Specb(Pp) explicitly, recall that the eigenvalues of ∆S2 are −l(l+1),
for l ∈ Z≥0, and define

βl,p :=

√
(1 + 2l)2 + 4Z(p)− 1

2
, l ∈ Z≥0(17)

αl,p :=
−
√

(1 + 2l)2 + 4Z(p)− 1

2
, l ∈ Z≥0.(18)

By an abuse of notation, we take
√

(1 + 2l)2 + 4Z(p) to denote the positive imag-
inary root when the quantity under the root is negative. Our discussion gives the
following.

Lemma 2.2. If Z(p) /∈ {−(1/2 + l)2}∞l=0, we have

(19) Specb(Pp) =
⋃
l∈Z≥0

{(βl,p, 0) , (αl,p, 0)} ,

and, if Z(p) = −(1/2 + lp)
2, for some lp ≥ 0, lp ∈ Z, then

(20) Specb(Pp) = {(−1/2, 1)} ∪
⋃
l∈Z≥0

{(βl,p, 0) , (αl,p, 0)} .

When Z(p) < −1/4, a finite number of these values of α and β will be complex
with real part equal to −1/2. This is one of the reasons why we have introduced
Assumption 2, which states that Z(p) > −1/4 for all p ∈ S. Of course, if Assump-
tion 2 is satisfied, Specb(Pp) is given only by Equation (19). The case when Z(p) is
close to −1/4 is important because it gives to some interesting numerical phenom-
ena and also because in various applications, it has an interesting interpretation,
see for instance [36].

The machinery of the b-calculus now gives us information about closed self-
adjoint extensions of Hk (see [30, 17, 16, 38] for details). Note that in this set-
ting, we are considering extensions of our operator acting on the core consisting of
smooth functions supported away from the points of S. For Z(p) < 3/4, there will
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be several possible self-adjoint extensions. Compare this to the case of extending
the Laplacian operator on T from acting on the core consisting of all smooth func-
tions. In this case, there is a unique self-adjoint extension. This is because the core
is larger than in our case. The extension obtained using the larger core is one of
the possible extensions obtained using the smaller core, but it is not the only one.
This is why one does not see the issue of choosing a self-adjoint extension arising
when the potential is of the form Zρα for α > −2, for instance, in the Coulomb
case considered in [23].

With the above lemmas in place, we can now prove Theorem 1.1. In fact, we
shall prove a stronger result that does not require Assumption 2.

Theorem 2.3. Consider a potential V satisfying Assumption 1 and assume that
S consists of just one point p. Then the Hamiltonian operator Hk acting as an
unbounded operator on L2(T) has distinguished self-adjoint extension with domain
D(Hk) ⊂ K2

ν(T r S) for all ν < ν0 ∈ (0, 2]. In particular, if Z(p) ≥ 3/4, then Hk

is in fact essentially self-adjoint and, if Z(p) > 3/4, then D(Hk) = K2
2(T r S). If

Assumption 2 is satisfied, we also have

D(Hk) = K2
2(T r S) + Cχρη−1/2, η =

√
1/4 + Z(p).

where χ is a cutoff function that is zero outside some neighborhood of p and equals
1 close to p.

Proof. For each k and λ, the operator Hk−λ is a symmetric, unbounded b-operator
on L2(T) (see [33, 30, 17]). Define the operator A = ρ1/2Hkρ

−1/2. Then A is a
symmetric unbounded b-operator on ρ−1L2

b(TrS) = K0
1/2(TrS). The self-adjoint

extensions of A correspond exactly to those of Hk − λ with domains shifted by
weight ρ1/2, so we will study the self-adjoint extensions of A as the calculations are
somewhat easier in this case.

By Lemma 2.1, the indicial roots of A are the roots of Hk shifted by 1/2. So we
let

(21) β̃l =
√

(l + 1/2)2 + Z(p) and α̃l = −β̃l.

Note that 0 6= β̃l ∈ R if Z(p) > −(l + 1
2
)2, there is a double root at β̃l = 0 if

Z(p) = −(l + 1
2
)2, and 0 6= β̃l ∈ iR if Z(p) < −(l + 1

2
)2. The critical strip for self-

adjointness of unbounded operators on ρ−1L2
b(TrS) is (−1, 1), that is, an operator

is essentially self-adjoint if and only if it has no indicial roots with real part in this
interval (see [30, 17]). Recalling that l ∈ Z≥0, we see that for Z(p) ≥ 3

4
, there are

no roots in the critical strip so the operator is essentially self-adjoint. If further
Z(p) > 3

4
we get the somewhat stronger result that D(Hk) = K2

2(T r S). For

Z(p) ∈
(
−1

4
, 3
4

)
we get two real roots in the critical strip corresponding to l = 0,

for Z(p) = −1
4
, we get a double root at 0 in the critical strip corresponding to

l = 0, and for Z(p) < −1
4
, we get a finite number of complex conjugate imaginary

root pairs and possibly two real roots or a double root at 0 in the critical strip
corresponding to some finite set of l.
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By the theory in [17], the space E := Dom(Amax)/Dom(Amin) is finite dimensional
and spanned by functions local around p of the form:

(22)
⋃

|<(β̃l)|∈(0,1)

l⋃
m=−l

{wρβ̃lψml , wρ−β̃lψml } ∪
⋃
β̃l=0

l⋃
m=−l

{wψml , w ln ρψml },

where w is a local cutoff function that equals 1 near p and 0 for ρ large, and where
the ψml are an orthonormal basis for spherical harmonics with eigenvalue l(l + 1).
Further, the operator A with domain D := Dom(Amin) + span(u1, . . . , un) is self
adjoint if, and only if, linear combinations of these basis functions form a maximal
set on which the pairing, [u, v]A is trivial, where

(23) [u, v]A :=
1

2π

∮
γ

Âû(σ) ·S2 v̂(σ) dσ.

Here γ is a simple closed loop around the indicial roots of A in the critical strip,
ˆ represents the Mellin transform and ·S2 denotes the standard L2 paring on S2.
Since the ψml are orthonormal, this pairing reduces to a sum of loop integrals of
the form:

(24) [ul, vl]A = − 1

2π

∮
γ

(σ2 + β̃2
l )ûl(σ)v̂l(σ) dσ,

where ul = u+wρ
β̃l + u−wρ

−β̃l and vl = v+wρ
β̃l + v−wρ

−β̃l if β̃l 6= 0 and ul =
u+w + u−w log(ρ) and vl = v+w + v−w log(ρ) if β̃l = 0.

We can consider three cases: β̃l > 0, β̃l = 0 and β̃l ∈ iR. First, as in [17], define

Φ(σ) = −̂ρ∂ρw(σ) := −
∫ ∞
0

ρ−iσw′(ρ)dρ.

Then we get: Φ̂(σ̄) = Φ̂(−σ) and Φ(0) = 1. Also, using the properties of the Mellin
transform, we find that for any σ ∈ C,

ŵρ±β̃l(σ) =
Φ(σ ± iβ̃l)
σ ± iβ̃l

.

Now consider the case β̃l > 0. Carrying out the loop integral by evaluating
residues, we arrive at the equation

[ul, vl]A = k(u+v̄− − u−v̄+)

for a constant k 6= 0. If we set [ul, ul] = 0, this reduces to arg(u+) = arg(u−). Thus
to get a self-adjoint boundary condition at p for A we can fix any ratio of |u+| to
|u−|. We will choose to enlarge the minimal domain by the set with |u−| = 0, so

spanned by {wρβ̃lψml }lm=−l. Note that if Z(p) > −1
4
, we have l = 0, so to create

a self-adjoint extension of A = ρ1/2Hkρ
−1/2, we only need to expand the minimal

domain by the span of wρη = wρ
√

1/4+Z(p).
Next consider the case when β̃l = 0. In this case we get

ŵ(σ) =
Φ(σ)

σ
and ŵ log ρ =

Φ(σ)

σ2
− Φ′(σ)

σ
.
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Carrying out the loop integral in this case, we arrive at the equation

[ul, vl]A = k(u+v̄− + u−v̄+).

Again setting [ul, ul]A = 0, we arrive this time at the condition u+ū− ∈ iR. So we
may this time again choose to fix u− = 0 and enlarge the minimal domain by the
set spanned by {wψml }lm=−l.

Finally, consider the case when β̃l = ia. This time we get the equation

[ul, vl]A = k(u+v̄+ − u−v̄−).

Setting [ul, ul] = 0 we arrive at the condition |u+| = |u−|. We can choose u+ = 1
and u− = −1 to get a self-adjoint condition by enlarging the minimal domain by
the set spanned by {w cos(a log ρ)ψml }lm=−l.

In order to get back to the corresponding choice of self-adjoint extension ofHk−λ,
we multiply each basis element by ρ−1/2. Since each of these basis functions is in
ρµL2(T) for all µ < 1, overall we find that D(H) ⊂ ρµL2(T) for all µ < 1. This
completes the proof of Theorem 1.1. �

2.2. Some corollaries. We now prove some consequences of Theorem 2.3. First,
its proof implies the following stronger result:

Corollary 2.4. If η0 > 0, then D(Hk) ⊂ H2(T) ∩ ρεC0(T), for some ε > 0.

We now deduce Corollary 1.2 from Theorem 1.1 and its proof. This corollary is
specific to the periodic case.

Proof. (of Corollary 1.2). The extension of Hk is self-adjoint, hence has real spec-
trum, so we get that for λ /∈ R, the operator

λ−Hk : D(Hk)→ L2(T)

is a bounded invertible operator with bounded inverse Qk,λ, which is the resolvent
of Hk at λ. By Theorem 1.1, by the definition of the weighted Sobolev spaces
Kma (T r S), and by the b-Rellich lemma [3, 33], we have for some ε > 0 that

D(Hk) ⊂ K2
ε (T r S) b L2(T).

(Recall that b means “compactly embedded”.) Thus for λ /∈ R, the resolvent of
Hk,

Rλ(Hk) : L2(T)→ L2(T)

is a compact operator. By standard results of functional analysis, if a self-adjoint
operator has compact resolvent, then L2 has a complete orthonormal basis consist-
ing of eigenfunctions for this operator. �

2.3. Singular functions expansion. To prove Theorem 1.3, we again use results
of the b-calculus, this time primarily from [33]. Again, we prove a more general
statement that does not require the Assumption 2. Let ν0 be as in Equation (12).
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Theorem 2.5. Assume S = {p} and Z := ρ2V satisfies Assumption 1. Assume
Hku = λu where u ∈ D(Hk). Then for any m ∈ Z+ and any ν < ν0,

u ∈ Kmν (T r S).

Further, near each p ∈ S, where Z(p) 6= (l+ 1/2)2 for any l ≥ 0, u has a complete
(though not unique) expansion of the form:

(25) u = u0 +
∑

ργgγ, γ ∈ IZ(p), <(γ) > −1/2,

where the formula for IZ(p) is given in Equation (27) below, u0 is smooth up to
ρ = 0 in polar coordinates and vanishes to all orders there, hence is in fact smooth
on T and vanishes to all orders at p, and the coefficient functions gγ are smooth
functions on S2. Under the additional Assumption 2, when Z(p) > −1/4, the first
coefficient gη−1/2 is a constant function.

Proof. Any eigenfunction u of Hk must be in its domain, thus in K2
ν(T r S) for

all ν < ν0. Our first goal is to improve the degree of smoothness from 2 to m
for m ∈ N. To do this, we use the fact that any λ ∈ C, the operator Hk − λ is
Fredholm as a map between weighted Sobolev spaces:

(26) Hk − λ : Kma (T r S)→ Km−2a−2 (T r S)

for all a ∈ R such that a /∈ ∪l∈Z≥0
{βl,p + 3

2
, αl,p + 3

2
} = Specb(Hk) + 3/2. By general

b-calculus theory, the set Specb(Hk) is a discrete subset of C and furthermore, for
any γ0 and η, it has only a finite number of elements in the strip γ0 ≤ <(z) ≤ η.
Thus for any ν0, there exist arbitrarily close ν < ν0 such that the condition on a
is satisfied for a = ν + 2s, where s ∈ N. Together with standard bootstrapping
arguments, this allow us to improve the regularity of eigenfunctions of Hk in terms
of weighted Sobolev spaces to Kmν (T r S) for all m and ν < ν0.

Next, to obtain the expansion in 1.3 we use a general result in the b-calculus
literature, see eg [33], that implies that any u ∈ ∪m,aKma (T r S) which is an
eigenfunction forHk in some weighted L2(T) in fact has much stronger regularity: it
polyhomogeneous in ρ near each p ∈ S with index set IZ(p). If Z(p) /∈ {−(l+ 1

2
)2}∞l=0

(for instance if Z(p) > −1/4), then the index set is simply a set of complex numbers
that is finite in any strip γ0 ≤ <(z) ≤ η:

(27) IZ(p) =
∞⋃
n=0

{βl,p + n, αl,p + n}l∈Z≥0
.

This means that around each p ∈ S, there exist smooth coefficient functions gγ ∈
C∞(S2) such that for all N ,

(28) uN := u−
∑

ργgγ ∈ ρNCN(T r S), γ ∈ IZ(p)<(γ) ≤ N

that is, uN is N times continuously differentiable up to ρ = 0 in polar coordinates
at p and in these coordinates, vanishes with all of its derivatives up to order ρN

there. We take the limit in the topology of the smallest Kma to which u belongs.
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If Z(p) 6= −(l+ 1
2
)2 for any l ≥ 0 and if u ∈ L2(T), when we let N →∞, we find

that

u = u0 +
∑

ργgγ, γ ∈ I,<(γ) > −1/2,

where u0 is smooth up to ρ = 0 in polar coordinates and vanishes to all orders
there, hence is in fact smooth on T and vanishes to all orders at p.

Since the set of γ that appear in this expansion is discrete in R, we get that
the smallest exponent that appears will in fact be somewhat better than −3/2.
This first exponent will be ν0 if Z(p) ≤ 3/4. If Z(p) > 3/4, then eigenfunctions
will in fact be in a space with higher weight than K2

2(T r S): the weight will be

1 +
√
Z(p) + 1/4.

Finally, we can note that the terms of the expansion of an eigenfunction for Hk

that are not in K2
2(TrS) will be of the forms determined in the proof of Theorem

1.1 (see, eg [19] for a proof). So, for instance, if Z(p) ≥ −1/4, the leading term of
any eigenfunction u will be constant in S2, and u minus its leading term will vanish
at p. Further, if Z(p) ≥ −1/4, then the exponents γ will all be real numbers. Thus
we obtain:

(29) u = u0 + ρη−
1
2 gη−1/2 +

∑
ργgγ, γ ∈ IZ(p)γ > η − 1/2,

where gη−1/2 a constant. This completes the proof of Theorem 1.3. �

3. Invertibility

In this section we prove the boundedness and invertibility result in Theorem 1.4.
From now on, we require both Assumptions 1 and 2 to be satisfied by our potential
V .

3.1. Preliminary results. We begin with a few standard results lemma.

Lemma 3.1. Let m, a ∈ R. Then

(i) For any f ∈ C∞(T r S), the multiplication map

Kma (T r S) 3 u→ fu ∈ Kma (T r S) = ρa−3/2Hm
b (T r S)

is continuous for all m ∈ Z+ and all a ∈ R.
(ii) The operator Hk − λ maps Km+1

a+1 (T r S) to Km−1a−1 (T r S) continuously.
(iii) The operator ρ−1Bk,λ maps Km+1

a+1 (T r S) to Kma (T r S) continuously.
(iv) ρ−1Bk,λ : Km+1

a+1 (T r S)→ Km−1a−1 (T r S) is compact.

Proof. The simple proofs of these results are the same as that of the analogous
results in [23], and follow directly from properties of b-operators [3, 33, 30]. �

We also need the following standard lemma (again, see [23] for its proof).

Lemma 3.2. Let a ∈ R be arbitrary and assume that u ∈ K2
1+a(T r S) and that

v ∈ K2
1−a(T r S). Then (∆u, v) + (∇u,∇v) = 0.

We shall also need the following consequence of the general properties of the
b-calculus [33, 39].



SCHRÖDINGER OPERATORS 13

Proposition 3.3. Let us fix λ ∈ C and a /∈ {β̃l,p, α̃l,p} = ∪l∈Z≥0
{βl,p + 1

2
, αl,p + 1

2
}.

Let N be the number of elements in the set {β̃l,p, α̃l,p} that are between 0 and a,
counted with multiplicity. Then the operator Hk− λ is Fredholm as a map between
weighted Sobolev spaces:

Hk − λ : Km+1
a+1 (T r S)→ Km−1a−1 (T r S)

and has index −N if a > 0, respectively N if a < 0.

Proof. We consider again the operator P0,0 = ρ(Hk − λ)ρ, which is a b-differential
operator. It is unitarily equivalent to ρ1/2P0,0ρ

−1/2 acting on b-Sobolev spaces (see

the proof of Theorem 2.3), which has {β̃l,p, α̃l,p} as a b-spectrum. The result then
follows from the characterization of Fredholm b-differential operators [33, 27, 28].

It remains to determine the index of Hk−λ. Let ma be the index of the operator
for a fixed value of a. Then it is a standard result that ma −mb is given by the
number of singular functions with exponent between a and b [27, 33, 39, 35]. This
is enough to complete the proof. �

See [22] for an extension of this result and for more details.
Now recall the Hardy inequality, which states that

(30)

∫
RN

r−2|u(x)|2dx ≤ (2/(N − 2))2
∫
RN

|∇u(x)|2dx

for any u ∈ H1(RN), N ≥ 3, where r is the distance to the origin [15]. We can
use this to prove the following important lemma. To simplify notation, after the
lemma statement, we shall let (u, v) := (u, v)L2(T).

Lemma 3.4. There are constants C, γ > 0 such that for any u ∈ K1
1(T r S),

(Hku, u)L2(T) + C(u, u)L2(T) ≥ γ(u, u)K1
1(TrS) := γ

∫
T

(
ρ−2|u(x)|2 + |∇u(x)|2

)
dx.

Proof. For an operator T : K1
1(T r S) → K−1−1(T r S), we shall write T ≥ 0 if

(Tu, u) ≥ 0 for all u ∈ K1
1(T r S). Now let φ ≥ 0 be a smooth functionon T that

is equal to 1 in a small neighborhood of S and has support on the set where ρ(x)
is given by the distance to S and let V0(x) = Z(p)φ(x)ρ−2(x) for x in the support
of φ and close to p ∈ S. Outside the support of φ, we let V0 = 0. Then Hardy’s
inequality applied to φ1/2u, which we can think of as living now on R3 rather than
T, gives

(31)
(
φ1/2(−∆ + zV0)φ

1/2u, u) ≥ 0 and
(
φ1/2(−∆)φ1/2u, u) ≥ 0.

We can think of this as saying that the most singular part of the operator Hk,
that is, T = φ1/2(−∆ + zV0)φ

1/2, satisfies T ≥ 0. We will prove Lemma 3.4 by
decomposing the operator Hk + C as a sum of four operators

Hk = T1 + T2 + T3,C + T4,C ,

which we will show are all bounded from below for sufficiently large C.
Recall we can write

Hk = −∆ + V0 + V1 + ρ−1Bk.0,
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where V1 := V − V0 satisfies ρV1 ∈ C(T) and ρ−1Bk.0 is a first order differential
operator over T with smooth coefficients.

Assumption 2 and Equation (31) imply that for ε < 1, the operator

(32) T1 := (1− ε)T ≥ 0.

Fix any suitable value for ε > 0. Then we can write Hk + C in terms of T1 by
decomposing in terms of the multiplication operators φ1/2 and (1− φ1/2:

(33) Hk + C = εT + T1 − ψ1/2∆ψ1/2 − (1− φ1/2)∆(1− φ1/2) + V1 +R1,

where R1 is a first order differential operator with smooth coefficients and ψ =
2φ1/2(1− φ1/2).

Let T2 := −ψ1/2∆ψ1/2 − (1 − φ1/2)∆(1 − φ1/2). Then T2 ≥ 0 by the Hardy
equality applied to ψ1/2u and to (1 − φ1/2)u. Define T3 := −ε∆ + R1 + C/2 and
T4 = εφρ−2 + V1 + C/2. We claim that for C large enough, T3 ≥ 0 and T4 ≥ 0,
which will prove the result.

The proof that T4 ≥ 0 for C >> 0 follows from a straightforward calculation
minimising the function εφρ−2 +V1. The proof that T3 ≥ 0 for C >> 0 is basically
the same as the proof that a Schrödinger operator with periodic Coulumb type
potential is bounded below. This is proved, for example, in [23].

�

Note that the above lemma implies that Hk is bounded from below as an operator
K1

1(TrS)→ K−1−1(TrS), which is the special case of Theorem 1.4 when m = a = 0.
In addition, if we define the form α(u, v) := ((Hk + C)u, v), where the right-hand
side is the natural pairing between elements of K−1−1 and K1

1, then this lemma
implies that α(u, v) satisfies the assumptions of the Lax-Milgram lemma for the
vector space V = K1

1(T r S). This and Céa’s lemma imply that for any element
u ∈ K1

1(TrS) and any finite dimensional subspace V ⊂ K1
1(TrS) we can construct

a unique (Galerkin) approximation uV ∈ V for u that, up to a multiple independent
of u, is the best approximation for u in V .

If we could also use the K1
1 norm in our approximation results, we would now have

the necessary tools to prove it. However, we need to use the slightly smaller space
K1
a+1 instead. Thus we the stronger result, Theorem 1.4 to ensure the Lax-Milgram

theorem and Céa’s lemma apply to the analogous form on these spaces.
We shall also need the following regularity result.

Proposition 3.5. Let a, λ ∈ R, m ∈ Z+. There exists a constant C > 0 such if
u ∈ K1

a+1(T r S) and (λ+Hk)u ∈ Km−1a−1 (T r S) then u ∈ Km+1
a+1 (T r S) and

‖u‖Km+1
a+1
≤ C

(
‖(λ+Hk)u‖Km+1

a+1
+ ‖u‖K1

a+1

)
.

Proof. We consider again the operator P0,0 = ρ(Hk − λ)ρ, which is a b-differential
operator. Our result then follows from the regularity for b-pseudodifferential op-
erators [33, 3]. �

We now complete the proof of Theorem 1.4 as follows.
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Proof. (of Theorem 1.4). As in [31], by regularity for b-differential operators, if we
prove our result for m = 0, then the regularity result of Proposition 3.5 implies it
for all m ≥ 0. We shall thus assume m = 0 and focus on extending Lemma 3.4,
where a = 0, to the case when |a| < η.

Fix C as in Lemma 3.4. Let Da := C +Hk : K1
a+1(T r S)→ K−1a−1(T r S), that

is to say, C +Hk with fixed domain and range. As usual, we may identify the dual
of K1

b(T r S) with the space K−1−b(T r S) using the L2-inner product. Then using
the symmetry of Hk, we find that D∗a = D−a.

By Lemma 3.4, the operator D0 is invertible. By basic results in b-calculus,
Da is Fredholm for |a| < η since the weighted spaces in its domain and range
do not correspond to an indicial root as calculated in the previous section (see
Proposition 3.3). Hence, for such a, the family ρaDaρ

−a is a continuous family of
Fredholm operators between the same pair of spaces. Since index is constant over
such families, we have that ind(Da) = 0 for all 0 ≤ a < η. We want to know these
operators are all isomorphisms. By the index calculation, it now suffices to show
they are all injective.

The inclusion K1
a+1(T r S) ⊂ K1

1(T r S) allows us to compute (Dau, u) =
(∇u,∇u) + (u, u) for u ∈ K1

a+1(T r S), by Lemma 3.2. Assume Dau = 0, then
(Dau, u) = 0, and hence u = 0. This implies that the operator Da is injective for
0 ≤ a < η. Since it is Fredholm of index zero, it is also an isomorphism. This
proves our result for 0 ≤ a < η. To prove the result for −η < a ≤ 0, we take
adjoints and use Da = (D−a)

∗.
By the characterization in [17] of the Friedrichs extension of a b-operator which

is bounded below, we can see that the extension we constructed in Theorem 1.1 is in
fact the Friedrichs extension of Hk. The proof of Theorem 1.4 is now complete. �

The fact that the domain of the Friedrichs extension is (C −Hk)−1(L2(T r S))
and the theorem we have just proved give us a second way to identify the domain of
the Friedrichs extension of Hk. Following the method of [23], we see that when Hk

is Fredholm on K2
2(T r S), the domain of the Friedrichs extension of Hk consists

of the span of K2
2(T r S) and of the singular functions that are in K1

1(T r S) but
are not in K2

2(Tr S). This can be used to obtain an alternative proof of Theorem
1.1 if V satisfies both Assumptions 1 and 2, as follows.

Proposition 3.6. Let C0 be as in Theorem 1.4 and Ws be as in Equation (14).

Assume the set {β̃l,p, α̃l,p} does not contain 1. Then for λ > C0, the map

λ+Hk : Km+1
2 (T r S) +Ws → Km−10 (T r S)

is an isomorphism.

Proof. Let T := λ+Hk with the indicated domain and codomain. Proposition 3.3
shows that T is Fredholm with index zero. Since

Km+1
2 (T r S) +Ws ⊂ K1

1(T r S),

Theorem 1.4 shows that T is injective. Hence it is also surjective, hence an isomor-
phism. �
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4. Extensions and numerical tests

We now discuss the extension to the non-compact case and indicate some appli-
cations to numerical methods.

4.1. The non-compact case. Most of our results in the previous sections extend
to the non-compact case. Let R3

rad be the radial compactification of R3. We
assume that the set of singular points S ⊂ R3 is finite and we replace each of
the points in S with a two-sphere (that is, we blow up the singular points). Let

(R3 r S)rad denote the resulting compact manifold with boundary. By ρ we denote
a continuous function ρ : R3 → [0, 1] that is smooth outside S, close to each p ∈ S
it has the form ρ(x) = |x− p|, and it is constant equal to 1 outside a compact set.
(Thus the difference with the function ρ considered in the periodic case is that now
ρ is constant equal to 1 in a neighborhood of infinity.) Then in the non-compact
case, our Assumption 1 on Z := ρ2V is replaced with

(34) Assumption 1′ : Z := ρ2V ∈ C∞((R3 r S)rad) ∩ C(R
3).

Assumption 2 remains unchanged.
We consider now H = −∆ + V instead of the restrictions Hk. Assumptions 1′

and 2 allow us to extend to H all the results for Hk of the previous sections, except
Corollary 1.2 and Proposition 3.3. The weighted Sobolev spaces Kma ((R3 r S)rad)
are defined in the same way (but using the new function ρ).

Let be the infimum of V on the sphere at infinity. Then Corollary 1.2 must be
replaced with the following characterization of the essential spectrum σe(H) of H:

(35) σe(H) = [be,∞).

To prove this result, one needs also the Fredholm conditions for operators in the
scattering or SG calculus [28, 34, 38, 37]. Then in Proposition 3.3 one has to take
λ < be. Of course, in Theorem 1.4 one will have C0 > −be.

However, in the non-compact case, for applications to numerical methods, our
results on eigenvalues and eigenfunctions must be complemented by decay proper-
ties at infinity. The following is proved as in [2], Theorem 4.4. See also [1, 24, 25].
Let r : R3 → R be a smooth function such r(x) = |x| for x outside a compact set.

Theorem 4.1. Let V be a potential satisfying Assumptions 1′ and 2. Also, let
0 < ε < V (x) − λ for x outside a compact set and be u an eigenvector of Hk

corresponding to λ. Then eεru ∈ Kmν ((R3 r S)rad).

Under Assumptions 1′ and 2, a perturbation argument further yields following
result on the decay properties of the eigenfunctions and the solutions of the equation
(C +Hk)u = f .

Theorem 4.2. Let us assume that C +Hk : K1
1((R3 r S)rad)→ K

−1
−1((R3 r S)rad)

is invertible (which is the case if C > C0, with C0 as in Theorem 1.4), then for |a|
and |ε| small

C +Hk : eεrKm+1
a+1 ((R3 r S)rad)→ eεrKm−1a−1 ((R3 r S)rad)

is again invertible.
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Proof. The proof uses the same arguments used in the proof of Theorem 1.4, the
continuity of the family eεrHke

−εr in ε, and the regularity result 3.5. �

4.2. Applications and numerical tests. Let u be an eigenvector of Hk or the
solutions of equations of the form (λ + Hk)u = f , with f smooth enough. Our
results give smoothness properties for u. They also give decay properties of u in the
non-periodic case. These properties, in turn, can be used to obtain approximation
properties of u. Standard numerical methods results (Cea’s lemma or the results
reviewed in [6]) then lead to error estimates in the Finite Element Method for the
numerical solutions of the equation (C + Hk)u = f or for the eigenfunctions of
Hk. We have tested these approximation results in the periodic case using, first,
a graded mesh and, second, augmented plane waves. In both cases, the tests are
in good agreement with our theoretical results. These numerical and the needed
approximation results will be discussed in full detail in the second part of our paper
[21].
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