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Abstract
In this paper we disclIss some algebraic-geometric aspects of a (family of) integrable quartic potential(s)

in two degrees of freedom. lt is a special case of the so-called Garnier system, which was first, introduced
by Garnier when studying isomonodromic deformations of differential equat,ions. We show that the complex
invariant manifolds of t.h is illt.egrable system cOll1plete into Ahelian slirfaces of type (I 14) and use the specific
geometry of these sllrfaces t.o prove that, t,he system is algehmic complet.eIy iutegrable. The limiting case
of the potential (qr + qi):.! will also be disCIIS."l(~d, in particlliar a Lax pair for this lirniting pot.ential will be
found from the Lax pair we constrllCt. for thc generic case.

'Ne also show timt every Abelian surface of type (1,4) occllrs as an invariant manifold for oue of these
integrable potentials. This allows HS (alllollg other explicit. things) to compute explicitely a canonical map
between the moduli space of Aheliau SIl rfaces of t.ype (1,4) to the mod uli space of Jacobians of genus two
curves.
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Abeli",u .nrfa~e. of tYIHl (1,4)

1. Introduction

It is well-knowlI that there is a rieh interaction between algebraie geometry and algebraie
completely integrable systems (a.c.i. systems) both in the finite-dimensional case (e.g. Toda lattiees,
geodesie ftows on Lie grollps, classical tops) and the infinite-dimensional case (e.g. KdV and KP
equations, non-linear Schrödingel' equation) (see [AvMl], (D], [M2], [Sh]).

The main fact: is that the generic illtegral curve of the Hamiltonian vector field of such an
illtegrable system is dense in an Ahelian variety, i.e., in a. cornplex algebraic torus (run with complcx
time). The different Abelian varicties whieh eorrespond to thc different integral curves fill up the
phase spaee and are called the (complex) invariant maniJolds of the vector field. Equations for
(an affine part of) these invariant manifolds are given by a maximal set of independent functions,
invariant for the ftow of thc vector field (often called constants oJ motion or first integmls) one of
which is the Hamiltonian function defining the vector field. It follows that knowing these constants
of motion leads to explicit eqllatiolls for affine parts of Abelian surfaces. On the one hand they
yield by direct methods some interesting I'esllits about the family of Ahelian varieties which appear
ill the system, which often descrihe the fuH modllii of Abelian varieties of a given type (at least in
sIllall dimensions). Remem hel' that Abelian va,rieties (of dimension g) are deseri bed by means of
CL set of discretc parameters (8}, ... ,8g ) giving the (polarization) type and by means of aRiemann
matrix Z (i.e., a symmet.rie 9 X 9 matrix with positive definite imaginary part). On the other hand
algebraic geometry ca.n he use<! loo stlldy the integrable system, for example to linearize the flow
of the veetor field or to find transformations hetween different systems (see [VI] and ScctiOll 2.2
below).

Thc present paper dea.ls with an intcgrahle system defined by a quartic potential in two degrees
of freedom, whose genel'ic invariant manifolds are Abelian surfaces of polarization type (1,4). In one
direction, lohe specific geometry of these Ahelian surfaecs will be used to prove algebraie complete
integrability of the potential and ill the other directioll the explicit (affine) coordinates provided
hy the system will he llsed loo provc SOIllC Ilew results alld perform some explicit constrnctions for
Abeliau surfaces of t.ype (1,4). In this W<lY we pl'ovidc and exploit an essentially llew case of the
interaction between aJgehraic geometry an<! a..e.i. systems (the prescnt potential is the first known
a.e.i. system leading loo Abeliau surfaees of type (1,4)).

The potential is a qnadratic perturhatioll

(1)

of the potential

(
2 2)2Voo = fit + (12 ,

thc latter heing obviollsly in tegrable since it is a cClltral potential. However, although Voo aB weil as
lIaCt' are only Liouville illtegrahle (hut not a.e.i.) the perturbation Vaß becomes a.e.i. for a :f ß· lIaß

can be illterpreted as a potential which dcscribcs an anisotropie harmonie oscillator in a central
field; remark that the central field liDO is except.ional in the sense t.hat an anisotropie harmonie
oscillator in a. general centraJ field is not ill tegrahle.

Newton 's equatiolls of motion take the symmetrie form

ih = - 2lJl (2(d + 2lJ~ + 0') ,
ih = -2lJ2 (2lJ~ + 2(l~ +ß) ,
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and it is eheekecl at allee that

is a canstant of motian, independent of the Hamiltonian

1(.2 .2) (2 2)2 2 ß2H = - fJl + '12 + 'it +q2 +aql + '12·2

It was pointed out to me by A. Perelomov that this potential was first studied by Garnier in
the beginning of tlüs eentury. In fact the Garnier system is a. mueh more general system whieh
contains a. lot of integrable systerHs; the derivation of the potentials Vaß (and their generalizations
to higher dimensions) will be given in the Appendix (see [G], [PD.

Ta prove that the potentials Vaß definc an a.c.i. system we use the result of [BLSJ (explained in
SectiOll 2.1) whieh sta.tes that the line hundle I:- which defines the polarization on a generic Abelian
surfacc of type (1,4) in<! lIees a biratiollal map 1>c: Tl ~ IP 3

, whose image is an oetic of a eertain
type; an equation for thi::; oct.ic is given with respct to wcll·chosen coordinates for lP3 by

(2)

for some (AO: Al: A2: A3) E ]p3 \ S wllere S is some divisor of D)3, which we will cletermine. Moreover
each octic of this type occurs in that way. It will allow us to show that the invariant surfaces of
the Hamiltonian vector field a.~sociated to the potential Vaß, (a -:f ß), are Ahelian surfaces, and
we show that the ftow of this vector field is linear on the invariant tori. Cornhining these resnlts
leads to the proof that the potentials Vaß define an a.c.i. system for a -:f ß and we derive a Lax
representation for it.

Do the Abelian surfaces gellcrated by the potcntials (1) aCeOltnt for aU moduli of(1,4)-polarized
Abel ian sn rfaces? The answer is yes. In 0 reIer to state p reci sely this answer (as giYen in SectiOll 4),
we first make a detailed study of the mod nli space A(l,4) of Abelian surfaces of type (1,4) and of
some associated rnodllli spaces (Scction 4). We use some reslllts from [BLS] to construct a map 'Ij;
from A(1,4) to an algebraic COlle M 3 of dimension three, which lives in weighted projective space

W(I ,2,2,3,4). The map is bijective on the dense suhset ..4(1,41 of Abelian surfaces for which the ~hove

ruap 1>c is birational allel the image is an affine variety M \ D where D is some divisor in M 3
j the

two·dimensional suhset A(1 ,4) \ Ä(1 ,4) whieh cOllsists of those Abelian sllrfaces (Tl, 1:-) fol' which 1>c
is 2: 1 however maps to a Cllfve C (minus two points P, Q), which itself is a divisor in D. It follows
that. the image of the map 'IjJ: A(1 ,4) ~ D)( 1,2,2,3,4) cOllsists of the 11 nion

I = (M 3
\ D) U (C \ {P,Q}),

and the cone M 3 call he considcred a,', a cornpactificatiotl of A(1,4). Equatiolls for M 3
, D, C and

coordinates for the points P alld Q will be explicitly calculated. We prove that for every point in
the eone M 3 (except for its vert.ex) thcl'e is a1. least one invariant surface of some potential Vaß
corresponding to it nndel' 1/) (Theorem 3).

'Ne also define a. map frolll ..4(1,4) onto the moduli spaee of two-dimensional Jacobians, or what
is the same the modnli spaee of smooth Cllrves of genus two. Namely we show (Seetion 5) that for

2
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4: 1
------*J

every V E .4.(1,4) tllere exists exact.ly one .1 acohi sm'face .J = J('72
) (with curve r = f('Jl)) such

that. the map 2J (multiplication I>y 2 in J) factorizes over V (henee also over its dual 72,) i.e.,
there is a COffiffilltative diagram

14:1:aÄ 14 :1

'72 ~ J

(3)

We call this Jacobiall the CUHo7tical J acobian (of T2); it will also appear naturally in Section 3
whell linearizing the veetor field defined 1>y the potentials VOß. One sees from the diagram that
Tl cannot be recollstl'uct.ed frolll J (ar r); indeed T2 induces a decomposition A = Al ffi A2 of
auy latticc A defining J ={:2 / A (alld a partition W = W1 U W 2 of the set of Weierstraß poiuts
of r, whieh is represent.ed most llaturally by an incidence diagram for the 166 configuration on
its Kummer surfaee) and this extra datum suffices t.o reconstruct T2 from J (ar r). This will he
shown in Section 5.

The problem arises to calculat.e this llIap explicitely as weil as the extra data. We know of no
direct algebraic way to do this. Illstead we salve this problelll (in Section 6) by l'elying heavily on
the particular coordinates pl'ovided by the pot.entials Vaß . Some geometrieal illvestigations then

lead to the following reslll .. : if (T2,.c) E .4.(1,4) and C/>C is given by (2), then the curve f('Jl)
c01'l'espondillg to 7 2 is givclt 1>y

when the coordinate x is chosen such that it sends the points of W 2 to 0, 1 and 00; W 1 contains
thc ot.her three Weierstraß point.s on this curve. We ohtain this result by two different methods:
Olle wlnethod uses t.he eover J -jo 7 2 alld the other uses the cover T1. -jo J. It would be nice to
calculate this map in a direct wa.y, i.e., without llsing the \loß .

In the final SCCt.iOll (SeetiOll 7) we study t.he degencrate case Vao as a limit of the generic
case \10 .0 (0' f: ß). Sillce the potentials \lno are celltral they are obviously integrated using polar
coordinates; these coordillates will he obtained as a limit of the linearizing variables for thc generic
case (Voß' a f: ß) as weH (\$ the Lax representatioll (with a spectral parameter). This shows that
the systematic techniques developed in [VI] to obtain linearizing variables and Lax equations for
generic two-dimensional a.c.i. systems can lead to these data for integrable systems whose invariant
nlanifolds are not Abeliall varieties. We prove that in this degeneratc case the affine invariant
manifolds are C'" -bllndles over an elliptic Cllrve, which itself is the spectral curve going with the
Lax pair. Also we show that the invariant manifolds of all centl'al potentials Von corresponds to
the special point P E M 3 at the houndal'Y of I.

3
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2. Preliminaries

In this sectiOll we recall some restllts ahotl t Ahelian sllrfaces of type (1,4) which will he used
in this paper (see (BLS], [GlI], (LB]), as weIl as the ba.."ic 1.echniques 1.0 s1.ndy 1.wo-dimensional
(algebraic) completely integrable systems (see [VI]).

2.1. Abelian surfaces of type (1,4)

Let A be a rank 4 lattice in (;2, and form the associated complex torus T2 = C2
/ A. By a

theorem of lliemanH, 'Jl. is an Abelian slIrface ~i.c., can oe embedded in projective space) if and
only if there exists a eomplex hase {EI, e2} for C and an integer base {>'1, ... , '\4} for A such that
the latter base can he written in terms of the former as

a b)
b c

(i.e., A, = 0, c" ...) wherc 0, I 02 E IN and \}. (~ :) > O. The integers 0, and 02 are not invariants

for the Abelian sllrface 7 2 itself, hut for 7 2 eqnipcd with some additional da1.a: if [, is an umple
line bundle on T2 (i.e., a line hundle for which the sections of some power of the line bllndle emheds
the surface in projective space) then a base >'1, ... , '\4 for A can be chosen slIch that the first ehern
dass Cl ([,) is givell i11 tenw. of coordinates :t: 1, .•• , :1:4, cl nal 1.0 ,\ 1, ••• , '\4, hy

Cl ([,) is caJled the polunzatio71 determined by [, aud depeuds only on [, up to algebraic equivalence;
b} and b2 are invariants of cd.c). The pair (b}, 02) is called the type of [" (01' the type 0/ the
polmization Cl (.e)). Loosely speakiug we orten say that the Abelian surfaee 'Jl has type (6}, 62 ),

7 2 is said 1.0 be principal polarized if it haB type (1, 1). A principal polarized Abelian sluface is
eithel' isomorphie 1.0 a product of clliptic elll'VeS (eaeh taken with its principal polarization), or to
the .Jaeobian of a slllooth Clll'Ve of genus two, polarized by its theta divisor 0.

For a. generie Ahelian sUl-faee the line hllndle [, = [V] corresponding 1.0 any effective divisor V
is rtmple anel one ha$ the followillg usefnl string of identities:

(4)

where g(V) is the virtlla[ genus of V, whieh ean (for Abclian sllrfaees) be definecl in terms of
interseetiOll of divisors by

V·V
g(V) == -- + 1j

2
(5)

ifV is nOll-siIliu1ar, g(D) is jnst the topologieal genus ofD. To [, there is ~'isociated a rationalluap
1>1:.: y2 ~ WS1

2-
1 which is elefincd hy mertns of the sections of the sheaf O(.c), or equivalently by

means of the elements of L(V), whcl'e

L(V) = {/ I / merolllol'phic on 7 2 allel (/) +V 2:: O}.

In this papel' we eoncentrate Oll Ahclian surfaees of type (1,4). These Abelian surfaces have
a very rich geomctry, whieh we dcserihe 1l0W (see [BLS]). As in [ßLS] we will without furthcr
mClltion always rest.rict ollrsclves to those Abelian surfaees of type (1,4) whieh are not isomorphie

4
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to a pl'odnct of elliptic c\lrves as polarized Abelian surfaces. Let L be a line bundle of type (1,4)
on an AbeIian surface T'l. It follows from (4) that dirn HO(T2, 0([,)) = 4 and L induces a rational
lIla» rPc: Tl -+ IP3

.

• In the generic case, the image of this Illap CJ = <PC(T2) C IP3 is an octie and <Pe is birational
on its image. Let I((!) be the kernel of the isogeny

I e:T2 -+ 72

(l 1----* taL ® [,-1

between T'l and its dual 'f1. (defined as the set of alliine bundles on Tl of degree 0; tu is tra.nslation
by (L E 7 2), then ](([,) is a group of translations, isomorphie to 7l/471 EIl 7l/471. Picking any such
isomorphism, let er a.lld r he genera.tors of the subgroups corresponding to this decomposition. Then
homogeneous coordinates (Ya: YI: Y2: Y3) for IP3 can be pickerl, such that er, rand the (-1 )-involution
Z Oll y? (defined as t(z}, Z2) = (-Zl' -Z2) for (ZI, Z2) E C2

/ A) act as follows (see [MI]):

er(yo: YI: Y'l.: Y3) = (Y2: Y3: Ya: -Yd,

r(yo: YI: Y2: Y3) = (YI: Yo: iY3: iY2)'

t(Yo: Yl: Y2: Y3) = (Ya: YI: Y2: -Y3),

(6)

(strictly speaking it. lllay be necessal'Y to l'cplace r hy 3rj it is easily checked that these coordinates
exist only for (a, r) allel (3a, 3r) 01' for (a, ;~r) and (3a, r)). [BLS] show that the octic CJ is given in
theRe coordinates by

,\2 2 2 2 2 \ 2 ( 4 4 4 4) ,\2 ( 4 4 4 4) \ 2 ( 4 4 4 4)OYOYl Y2 Y3 + A} YoYt +Y2Y3 + 2 YOY2 + YI Y3 + ""3 YOY3 + YI Y2 +

(
2 'J 2 2) ( ~ '2 '2 2 ( 2 2 '2 2 ) ( 2 2 2 2

2).1).2 YoYi + Y2Y3 YIY3 - YOY2) + 2'\}'\3 YOY3 - YIY2 YoY} - Y2Y3)+
\ \ ( 'J 2 2 2)( 2 2 '1.?)2""2 A 3 YiY2 +YOY3 YI Y3 +YoY:;' = 0,

(7)

for some ().a: ,\~: ).2: ).3) E IP3 \ 5 where S is some divisor Of]p3 which we will determine later
(Section 6.4). Relllark that for any Ei = ±l, tlle coordinates (foYo: f} YI: f2Y2: fOf} f2 Y3) will also
satisfy (6) and these are the only coordinates wi t.h this property. It is also seen that, if (a, T) is
replaced by (3er,3r), thell the coordinates (YO:YI:Y2:Y3) are replaced by (YO:Yt:Y2: -Y3)' Since the
eqllation of 0 depends only on yr t.hese choices do not affcct the equa.tion (7), so there is associa.ted
to a decomposition ](!.) = ](1 EB ]{2 (where 1\"1 and ]{2 are cyclic of order 4) an equation for
O. [BLS] also show that the polarized Ahelian surface a.s weIl as the decomposition of K(!.) can
bc recovered from (7) a.nd that every octic of the t.ype (7) (with (AO:).l: ).2: ).3) rt S) is the irllage
c/Jc(T2) of some (1, 4)-polarized Ahelian sllrface (Tl, !.).

If we denote hy Ä(\,4o) tlle 1Il0duli space of (isomorphism classes of) (1,4)-polarized Abelian

sllrfaces for which <Pe is hiratioual, equiped with a decompositioll of Ji."(f,) as above, then it follows
that

(8)

MOl'eovel', if we denote by l{ the snhgroup of ]{(!) of two-torsion elements,

]( = {O, 2er, 2r, 2r +2a},

5
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then T2 / J( is a principaJ polarized Abeliall sllrface, which is the .lacohian of a curve of genus two;
we call 7 2 / J( the cwwnicu{ Jflcobim~ associated to T2. Recall that for a two-dirnensional Jacobian

J its Kummer surface is the image of 4>[281 C IP3
1 where 0 is the theta divisor of J. Then it

is seen from (6) tha" an eqllatioll for the Ku mIller slirface of 7 2
/ J{ is given by the quartic Q in

IP3
, obtained by replacing yl by Zi in the equation (7) for 0 and there is an obvious projection

jJ: 0 -1' Q. In fact, choosing the origiH of 7 2 such that 12 becornes symmetric, 12 is the puli-back of
a line bUlldle N Oll T2 /]{ of type (1,1) via the canonical projection

and 4>N'J induces the Kummer mapping; [BLS] prove that the following diagram commutes

T2 ~ 0

Ip Ip
Tl./]( ~ Q

(9)

• If 4>e. is not biratiollal, theu it. i8 2: 1 and 4>e.(T'-) is a quartic in IP3
, given by one of the equations

\ ( 2 2 2 2) \ ( 2 2 2 2) 0
"'1 YOYI + Y2Y3 + "'2 YI Y3 - YOY2 = ,
\ ( 2 2 2 2) \ ( 2 2 2 2) 0
"'1 Y2Y3 - YOYI + "'3 YIY2 - YOY3 = ,
\ ( 2 2 2 2) \ ( 2 2 2 2) 0
"'2 YI Y3 + Yo Y2 + "'3 YI Y2 + Yo Y3 = ,

depending on the choice of the decolllposition; in this case the Abelian sllrface as weil as the
decompo8itioll of ]{(f.) call only partly be recovered from these equations alld T2 /]{ is a prodllct
of elliptic curves (in particlliar T 2 is isogenous to a prodllct of elliptic eurves). SCIllaring eaeh of
these equations we Dlld equatioll (7) respectively with

(10)

Summarizing, in the first case (the genel'ic case), <Pe.(V) is an octic, V / J( i8 a Jacohian allel
V as weIl as the decol1lposition of A"(L) ean he reconstrueted from the octie; in the other ease
cPe.(T2) is a quartic, V /]{ is a product of elliptic curves alld 'J2 cannot be reconstructed from the

quartic. The rational Iuap <Pe. provides us with a natural snrjective map

7jJ0: AC1,4) -1' ((lP3
\ s) U(t.hree rational enrves in S, eaeh missing eight points)) /(,\0 ,...., -"\0),

where A(\,4) dellotes the lHodllli spa.ee of (iSOlllOl'phislll da.sses of) (1, 4).polarized Ahelian surfaces

togethel' with a decomposit.ioll of ](([,) (as above). The map 7jJ0 extends the bijection (8) defined

6



Al.eliftll .UrfRCell of type (1 •• )

on the dense subset Ä(I,4) of A(I,4) alld maps 1.he (1.wo-dimensional) complement of .Ä~1,4) 1.o1.he

three rational curves, which are thought of as lying inside the houndary of 1/JO(Ä(1 ,4))' i.e., in Sj
the generic point of S however does not correspolld 1.0 Abelian surfaces, hut 1.0 surfaces which can
be interpreted as degene rat ions of A belian surfaces (see [BL5]).

2.2. Two-dimensiollal a.c.i. systems

We now reca11 the ba.... ic tools 1.0 study two-dimensional a.c.i. systems (see [AvMl], [VI]). At
fi 1's t, an integmb/e system Oll (lR2

n , w) (w may be any symplectic structu re on lR2
n but the case 1.hat

w is the standard symplectic structure on lR4 will suffice for this paper) consists of a Hamiltonian
vector field X H, defined as

w(XH ,·) = dH( '),

for which there exist n - 1 additional invariants, i.e., there are n independent, Poisson-commuting
fUllctions H 1(= H), .. . ,11n on IR2n

; Poisson-commuting functions F, G E COO(IR2n), are by defini­
tion functions for which thcir Poisson bracket {F, G}w = w(XF, X G) vanishes. The intersection

Hn{x E ffi.
2n I Hi(X) = cd

i=l

is by Poisson-commutativity illvariallt [01' the flows of all X H; and is smoo1.h for generic valucs of
c = (Cl, ... , cH ). By the well-known Arnold-Liouville Theorem, the compact connecteel components
of these invariant manifolds are diffeolllorphic 1.0 real tori (the non-compact components being
diffeomorphic 1.0 cilinelres, assuming t.hat the fiow of the vector fields X Hi is complete on them)j
mOl'eover the fiows of the vector fields ..X. Hi are linear, when seen as ßows on the tori (cilindres)
nsing the diffeomorphism. 7! is called the dimension of thc system.

A notable case - which appears most often in hoth the dassical and recent, mathematical
anel physics literat.ul'e - is the ca$C that there exist coordinates fJ], ... , fJ2n for rrt2n

, in which
all H i, (i = 1, ... ,11.) as weil as a11 hrackcts {(li, (lj} w, (i, j = I ... , 2n) are polynomials (strictly
speaking, for the 1ctrger da.ss of these examples (IR2n

, {', . }w) is replaced by the more general Poisson
manifold (rn,rn, {', .} ), where {".} does not necessarily come from a sym plectic s1.rllct ure). Then
the symplectic st.ructure an<! the vector field are easily complexified, giving a Poisson commuting
family of functions on G~2n and for generic C = (Cl, ... ,Cn ) (where the Ci may now also take values
in lf~) the invariant. mallifolds

11

Ac = n{x E o:;2n I Hi(x) = cd
i=1

are affine (algehraic) varieties. In stich a si t nation, the integ1'able system will he called a/gebraic
comp/ete/y i11tegrab/e if these genel'ic invariant mallifolds Ac are affine parts of an Abelian variety
T~~, Ac = T: \ Dc, whcre D c is the minimal divisor where the coordinat.e functions (restricted 1.0

the iuvariant. manifolds) hlow Hp, allel if the (coll1plex) flow of the vector fields on Tc is linear (sec
[AvM3]).

In the two·dimensioIlal case (n = 2) the invariant manifolds complet.e into Abelian surfaces by
adding one 01' several (possi hly singular) Cllfves to the affine surfaces Ac. In this ca.se, the following
a.lgori thm, proposed in [V 1], leads to an explicit li nearization (i.e., integration) of the vector field
X H (steps (1) anel (2) are due 1.0 Adler and van Moerbeke, see [AvMl]).

7



A helitm· IlUrfllCI'l. of typtl (1,4)

(1) COInpute the first few terms of the Laul'ent solut.ions to the differential equations, and use
these to construct an emhedding of thc generic invariant ma.nifolds in projective space (see
[AvM3], [VI] a.1Hl [V2]).

(2) Deduce from the emheddillg the strllctUl'e of the divisors V c to be adjoined to the (generic)
affine inva.riant manifolds Ac in order to complete them into Abelian surfaees. At this point
the type of polarization induced by eaeh irreducihle component of V c can also be detefInined.

(3) a) If Olle of the cOlllponellts of "Pe is a smooth cllrve r e of genus two, cOlnpute the image of
the rational lllap

<P12r,,]: T; -+ !p
3

whieh is a singlllal' sllrface in !p
3

, the KlImmer surface Kc of Jae(re).
b) Otherwise, if one of the components of V c is a d: 1 unramified cover Ce of a smooth curve
r c of genus two, p: Ce ~ r e, the map Tl extends to a map p: T; -+ Jac(fe). In this case, let
[e denote the (Ilon-complete) linear system p-12reie l2Cel which corresponds to the cOluplete
linear system 12rcl alld cOIllpllte now the Kummer surface K e of Jac(re) as the image of

<PE,,: T; -+ IP 3
.

c) Otherwise, change the divisor at infinity so a.s to arrive in ca.."e a) or h). This can always be
done for a generic Aheliall :H1l'face (i.c., for an Ahclian surface which ha..., 110 automorphisms
except idelltity «nd the (-1 )·illvollltioll).

(4) Choose a Weierstraß point W on the curve r e and coordinates (zo: ZI: Z2: Z3) for IP3 such that
<P12f

c
](W) = (0:0:0: 1) in ease (3) a) alld <PE.,(W) = (0:0:0: 1) in case (3) h). Then this point

will he a singular point (node) fol' }Ce alld }Ce has an eqllation

P2(ZO,ZI,Z2)z5 + P3(ZO,ZI,Z2)Z3 +P4(ZO,ZI,Z2) = 0,

where the Pi are polYllomials of degrcc i. After a projective transformation which fixes
(0: 0: 0: I) we may (l$sume that

(5) Finally, let Xl ;Lud X2 be the I'oots of thc qlladratic polYllomial P( x) = zox2 +ZI X +Z2, whose
discriminant is ]12 (Zo, ZI, Z2), with the Zi expressed iu terms of the original variables f[i. Then
the differential eqllations descrihing the vector field 4'"YH are rewritten by direct eomputation
in the c1assical \Veierstraß form

where 0'1 and 0'2 depend on c (i .e., Oll t.he torus) only, and f( x) is of degree fi ve or six.
By evaluating P(;r:) in two zeroes of J( x), the symmetrie fu nctions Xl + X2 (= - ZI / zo) and
:1;1 X2 (= Z2 / Zo) alul hence also the original variables f[i ean he written in tenns of the Riemann
theta fllnctioll a...,sociated to t hc Cllrvc y'2 = f( x).

The best way to see that this algoritlun is very effective and ea.."y to apply is to look at one or
several of the worked-out examples in [VI]. In the prescnt paper this algorithm will not be used as
it stands, sillce we do Hot know ill advanee that. our system is a.c.i.; illstead we will see how it can
be helpful when provillg algebraic eomplete integrability. We remark that it is shown in [VI] how
a Lax pair for the system derives from the above lincariza.tion.

8



Abeliftll aurfftcea of typtl (1,",)

3. The quartic potential vaß and its integrability

It is shown in [CC] that fol' any A= (A 1, ... , An), the potential

(11)

defines an integrable system on m.2" = {(ill, ... ,iJn,Pll ... ,Pn) I qi,Pi E ffi..}, equiped with the
standard symplectic stnlcture w = L: dqj 1\ iIPi, when the Hamiltonian is taken as the total energy

(T is the kinetic eUe7'!1Y). This reslllt also follows immediately from the integrability of thc Garnier
system, which will be recalled in the Appendix. We stlldy here the case n = 2 (two degrees of
freedom) writing

Vnß = ((li +qi) 2 +aqr +ßqi.

It would be interestiug to stlldy also the higher-dimensiollal potentials as weIl a...<; other cases of the
Garnier system from the point of view of algehraic geometry.

Fixing arbitrary parameters (t =F ß, let H = T +Vcrß ' Then the eqllations for the vector field
LYH , defined by w(X lf ,') = dH(.) are given by

iJI = PI,

q2 = P2,

1)1 = -2ql(2iJi +2iJi + a),

j)2 = -2ij2(2q; +2ifi +ß).
(12)

Für any f,!J consicler the a.ffine snrface A j 9 defilIed by

F == (qlJ12 - if21)t}2 + (ß - a) (pi +2qt + 2qi ili + 2aqi) = f,
G == (iJI]J2 - iJ2P.)2 + (0' - ß) (p~ + 2iJ~ + 2q;qi + 2ßq?) =!J,

(when the dependence Oll 0' and ß is important we will denote this surface by A(a,ß,f,g»). Then .
Afg is invariant under the flow of L\H since both Fand G Poisson commute with H. Since

F - G = 2(ß - 0:)11

alld a -# ß, any pair of fllllctions taken form {F, G, H} can be taken a.s a maximal set of independent
Poisson commuting fUllctions; in order to simplify some of the formulaB in the sequel we let, for
given f alld 9, the constaut h be determined by f - [] = 2(ß - cr)h.

The surface Ajy has t.he following independent. involutions:

11(i}I,Q2,])l,P2) = (-Ql,iJ2,-Pl,]J2),

12 (iJl , Q2, 1)1, ]12) = (i11, - iJ2 , Pl, -]12),

which both preserve the vector field, and Olle other (independent) involution



A heliftll .UrfftCp.1I of tY1'1l (1,.)

which rcverses the dil'ectioll of the vector field. These three involutions generate a group isomor­
phie to (71./271.)3. MOl'eover oue sees that for fixed 0', ß, f aud 9 all Ap.a,>'ß,>.31,>.39 ) , ,\ E C* are
isomorphie. It is thercfore na.tural to eonsider (0', ß, /,9) as helonging to the weighted projective
spaee) IP(1,1,3,3). A trivial OhRel'Vatioll whieh will turn out to he important is that also A(0,ß.1,9)

and A(ß,O,9,j) a.re isomorphie.

Remark that if a = ß then F( = G) is just the square of the momentnm

(13)

whieh obviously POiSSOH-eOlllmlltes with the energy eorrcsponding to a eentral potential. What is
rema.rkable however is that if (t 1= ß thcn the equations defining AI9 can be rewritten (birationally)
in tenns of q), q2 alld t.he momentum ij, giving precisely the equations (7) of the octic 0 with

')

'\i = 9,

,\~ = 2(0' - ß)3,

,\~ =/,

Yo = {!19,
Yl = fJl {!2(n - ß)g,

Y2 = ij,

Y3 = ij2 y'2( 0' - ß)f.

(14)

It follows that for gCllerie /, 9 the sl1rfaee AI9 is birationally eql1ivalent to the affine part 0 0 =
o n {Yo f; O} of the octie 0 which is itself birationally equivalent to an Abelian surfaee of type
(1,4). We show in the followillg theorcm that ..A19 actually is (isomorphie to) a.n affine part of an
Abelian surfaee of type (1,4).

Theorem 1 Fixing U71y 0' f; ß E C;, the affine Bwjace AI9 C C4 defined by

is 1m' generic2 /,g E 4~ iB01IL01phic to an affine po.d of an Abelia71 sur/ace 719' of lype (1,4),
oblained by 1'Cmoving U s1Hooth CW1Je D19 of genus 5,

(lnd the vector field X Hexlends to (l liuellr vecto1' field on. TJ9"
Proof
(i) Let G be the groll}) genera.ted by the involutions 11,12, and J. Our first aim is to show that
A1y/G is (isomorphie t.o) an affine pa.rt of a. Kummer surfaee. Sinee fand gare generie, we may
slIppose that ('\0:)1]:'\2:'\3) given by (14) do Hot helollg to S. For these '\i, let Q be the quadrie
(Kummer surfaee)

\2 \2( 2 2 2 2) \2( 2 2 + 2 2) \2( 2 2 2 2)+
"'OZOZI Z 2 Z3 + "'1 ZOZ) + ZzZa + "'2 ZOZ2 Z)Z3 + "'3 ZO Z3 + Z1 Z2

2A1A2(ZOZl + Z2 Z3)( ZI Z3 - ZOZ2) +2,\) '\3( ZOZ3 - ZI Z2)( ZOZ) - Zz Z3)+

2'\2'\3(ZIZ2 + ZOZ3)(Z1Z3 + zozz) = 0,

1 a quiek introductiOil to weighted jlrojective spaees is given in an appendix to [AvM3]
2 precise eonditions will be givell later (Theorem 6)

10
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AheUftu surfftces of tYI''l (1.4)

which is obtained [rom (7) by setting Zi = yr, i.c., there is an lInramified 8: 1 cover 0 -+ Qj this
map restricts to a map Po: 0 0 -+ Qo, where Qo =Q n {zo f; O}. Also the rational map 4>: A jg -+ 0 0

given by (13) an<! (14) iu(hlCeS abirational map ~: Ajg/G -+ Qo, giving rise to a commutative
diagram

0 0

(16)

Qo

Since Qo is normal, it suffices to show that ~ is bijective. Obviously ~ is surjective: if (Xl, Xz, XJ) E
Qo, let (Yl, Y2, YJ) be such that yr =Xi aud let ql, qz, q be determined from (14). Then these satisfy
the eondition under which PI,TJZ exist such that (ql,qZ,PbPz) E A lg and q = qlPZ - qZPI' Then

J>(fJ], qZ,PI ,pz) = (Xl, Xz, :l:J)' At the other hand, if (~01r)(qbqZ,PI,PZ) = (~o1r)(qL q~,p~,p;) then
fJI = flq~,q2 = f2q~,q = fq', (where q' = q~p~ - q~pD for f},fZ,f E {-1,1}. Then one sees that

where i~k means t/o; in ca...'ie f/o; = -1 a.nel identi ty for (/0; = 1. It follows that 1r(ql, fJ2 l PI, lJz) =
1r (fJ~ , q~, p~, p~), and ~ is iujective. This shows that ~ is aB isomorphism, hencc Af 9 / G is isomorphie
to the (affine) Kummer slIl'face deHned hy Qo. .

(ii) We proceed to show that A lg is isomorphie to a.n affine part of an Abelian surface, more
precisely to the nonnalization A of 0 0 (the octic is singular along the coordinate planes). This
normalization can he obtained via. the hirational map <Pr,: Tl -+ O. In particular, by restriction of
(9) to an affine piece we get a comlllutative diagram

A rP~
--+

lpo
/\,'0

rP",'J
--+

0 0

(17)

Qo

where 4>}./'2 is an isolllorphism. Ir we comhine both diagrams (16) and (17) we get

A

with r.p the birational mal' (P"c 1 <p aad '-P the iSOIllOl'phislll 4JN;~' Now the two covers Alg -+ Ajg/G
an<! A -+ ]('0 are only ramified in discrete points and Af 9 and Aare smooth (since fand gare
generic); the same holeIs trlle if A aud A 19 are replaceel hy their closllres: the closlIre of A is just
7 2 and the closllre of Afg is ohtained froll1 the explicit emhed<!ing which will be given in ·Section
6.1. By Zariski's Main Theorem the norlllality of T2 implies that the lifting r.p of ~ must also be
an isomorphism allel we get

Alg =T1g \ 'O Jg

for same divisor V 19 Oll a (1, 4). polal'ized Aheli aB surface Tl9' It is seen t hat V j 9 is a 4: 1 unram ified
cover of a translate of the lliemann theta divisor of the canonical Jacobian, henee 'Oj9 is smooth
anel has genus 5; an equation for 'D19 will he given in SectiOlI G.

11



Ahdiftll .ur(ftce. o( type (1,4)

(iii) Finally we show that X Hextends to a linear vector field on 7lg • Lettillg 80 = 1, 81 = qr
allel 03 = q2, we have shown that an equatiotl fol' the Kummer surface of the canonical Jacobian
associated 1.0 AJg is a quartic in these variables. From (14) and (7) the leading term in B5 is given
by ((0' + ß)Bo + 01 + (2 )2 - 4(o:ßBo + ßB1 + 0'(}2), or, in tel'IIlS of the original variables,

(18)

We let Xl and X2 be the roots of the polynomial

as suggested by thc algorithm reealled in Seetion 2.2 ("suggested" beeause we did not prove yet
that the system is a.c.i.). Explieitely, let

Xl + X2 = -(q; +qi + a +ß),

Xl :1:2 = O'ß + ('((li + ßq;,

Xl + X2 = -2(QIPI +Q2P2),

Xl i:2 +Xl X2 =2(ßq1Pl + o:q2P2),
(19)

then it is not hard 1.0 rewrite the equations F = I, G = y, defilling A fy , in tenns of XI, X2, XI, X2'

This gives

• 2 8(Xj + a)(:t:i + I;) (x; + (0' +ß)xr + (aß - h)Xi + (ßI - 0'9)/2(0 - ß))
x· = -------....:.....-----:----:-=------------....:....

I (Xl - X2)2

so that

(20)

where

(
3 ') ßI-ay )1(:t:) = (x +a)( x + ß) X + (0' +ß) x w + (0:ß - h) x + 2(a _ ß) .

Illtegrating (20) we see that X H is a linear vector field on A f g, which ohviously extellds 1.0 a linear
vector field on 7lg • From this expression the symmetrie fnnctions Xl + x2 a.nd Xl X2, hellce the

variables ql , q2, Pl,]J2 ca.u be wri t tell at onee in terms of theta. fu nctions; nalnely, P( - 0') = (ß - 0' )qi
a.nd P( -ß) = (a - ß)q?, hence {lt and fJ2 are both ratios of two translates of the Riemantl theta
functiotl which differ by a half period (see [M2]).

Remark that a...'\ a. by-prodllct we find an equation

2 ( 3 ') ß1 - 0'9)Y = (:1: + a)(:1: + ß) X + (0' +ß)x~ + (aß - h)x + 2(0' _ ß) .

for the Cllrve whose .1a.cobian is the canonical .lacobiall associated 1.0 7Jg.
The theorem leads 1.0 the followillg important corollal'Y:

Corollary 2 /1 n :j:. ß then ihe lJotential

V ( 2 2)2 2 ß 2
0' {1 = lJI + (12 + rxlJI + {h

12
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A hdiau all rf"cell of tY11 e (1,.)

defillcs an (l.c.i. sy,'tlem (iH tlw seHSC of[AvMlJ) on Ut1 with llte cmlOnical sY7l1[Jlectic structu7'c. A
Lax 7'Cpresentation of ihe vecl07' fielt! ~YH I whe7'C Jl = t(pi +pn + Vo-ß1 is !liven by

whc7'e

d (v( x)
dt w(x)

u(x)) = /2 [( v(:r.)
-v(x) w(x)

lL(x)) ( 0
-v(x) , x-2(Qr+Qi) ~)] ,

Proo[
The Liouville iutegrability is pl'OVell in [G] anel [CC]; it ifl in 0111' case provcn easily by showing

that {F, G} =0 (F, G PoissolL e01l111lltte) an<! that F anel G are independent on a dense subset of
IR4

. To show that for 0' f; ß the sYfltem is a.e.i. wo need 1.0 prove in addition the following three
claims:

(i) the generic (complcx) affine invariant. surfaee Aig is an affine part of an Abelian surface
7]g, A ig = 7}g \ Vjg, whcrc Vjg ifl some divisor on 7}9'

(ii) V j 9 is the minimal divisor where the variables lJl, lJ2, Pl and P2 blow up,

(iii) the vector fields X F anel X Hextend 1.0 holomorphic (= linear) vector fields on TJ9'
(i) and half of (iii) are shown in Theorem 1. To show the other half of (iii), which coneerns the
extension of X F, thc lilleariziug variables are defined ill the same way, but. their derivatives are now
ealculated using X F instead of ~YH. Finally, sinee thc variables (!l, (/2, [Jl alld ]J2 do not blow up on
A j 9' and since V I 9 is irred Beible, t.hey all blow up along 'D j 9' showing (ii).

To construet a La.x pair, Hote that. if u(x) is dcfined a..'l u(x) = (x - xd(x - X2) and i}(X)
is its derivative (suitable normalised), then fex) - 'v 2(x) is divisible by v.(x), where fex) is the
polynomial introduced in tlle proof of Theorcm 1. The quotient

( )
_ f( x) - i}2 (x)

10 X - ( )u x

is easily calclllated. The form of the Lax pair then follows from [VI].

13
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A heliRIi SII rfRCell of tYI'" (1,4)

4. Some moduli spaces of Abelian surfaces of type (1,4)

In this sectiOil we describe a map 1f; [rom the modnli space A(1,4) of polarized Abelian surfaces
of type (1,4) into au algehraic cone M 3 in some weighted projective space. To he precise we
recall that (1,4)-polarized Ahelian snrfaces which are prodllcts of elliptic Cllrves (with the prodllet
polarization) are excluded from A(1,4)' The map will be bijective on the dense subset ..4(1,4) which

is the moduli space of polarized Abelian surfaces (V,!) for which the rational map 4>e : T'- ---'f IP3

is birational. An alternative way to construct the map 1/J and the cone M 3 will corne Hp later.

Recall from SectiOil 2.1 that A(1,4) maps onto

P IP3 \ S U( I . I . S h" . I . )= \ \ t lree l'atlOua Cllrves III , eac ffilssmg elg It pOInts ,
AO f'V -"0

bijectively on the first com pOllent (which is dense); the three rational curves are thought of a.s lying
in IP3/(..\0 f'V -..\0) at the hOllllda.ry of t.his compollent. A(J,4) is a 24: 1 (ramified) covering of A(1,4):

let a alld 7 be elements of order 4 such that ]-([.) = (a) EB (7), and define

.K1 = {O,a,2a,3a},

](2 = {O, 7, 27,37},

]i"3 = {O, a +7,2(1 +27, 3a +37L

]i"4 = {O,a+27,2(1,3(1+27},

](r, = {O,2a+7,27,2a+37},

](6 = {O, a +37,2(1 +27,3(1 +7}.

These are the ollly cyclic slIhgroups of order 4 of R'(!). It is ea.sy to see that taking all possible
isomorphisms ]{(C) ~ 7l./471 EB 7l/471 we find exactly the 24 decompositiolls

We descri be the cover

Ao 24:1 A
(1,4) ---+ (1,4)

and cOllstruct a 24: 1 cover P ---'f M 3 alld a lIlap 1/1: A(1,4) ---'f M 3 , where M 3 is an algebraic variety

(lying ill weighted projective space IP(1 ,2,2,3,4)), such that there l'esll1ts a connnutative diagraul

24:1
---+

24:1
---+

A(1,4)

l~
M3\D

(22)

in whicll the restriction ;j; of ljJ to A(1,4) is a bijectioll (D is a divisor on M 3 which will he determilled
explici tely).

The main idca. in this constructioll is to see how the Galois group of tlle cover A(I,4) -+ A(1,4)

aets on P and defille M 3 1,0 be tlle l}t1otieut. This quotient will he easy to calculate since it is a
quotient of (a Zariski opell subset of) IP~\ by a grollp which acts linearly. The fact that this action is
so simple is surprizing and was suggested to 1IS by the ohvious observation that the affine invariant
surfaces Ac and Ac', with c = (0:, ß, /,!J) and c' = (ß, 0', !J, /) are isomorphic, showing by (14) that
>'1 and ..\3 can (ill some way) be illtCl'changed.

14



Thc group G = G L(2, 7l/471) acts trausitively on (ol'dcrcel!) bases as folIows: jf 0', r are such

that K(I.) = (a) EIl (T) a"d (: ~) E c: then

(
(CL b)d . (0', r) = (aa +br, ca +dr),

giving a new decomposition R"(L) = (aa +br) $ (ca +dr). We denote by H the normal subgroup
of Gwhich consists of those elements of Gwhich a.re congruent 1.0 the identity matrix, lUOd1110

2. Then H acts on the set of decompositions of I((L), thus H acts on A
C
\,4); to determine the

corresponding action Oll the isomorphie spaee P, it is snfficient to take any eleruent of H, act to
obtain a new base anel eletermine the new coordinates (Ya: VI: Y2: Y3) according 1.0 (6). Snbstituting
these in (7) the new parameters (±Aa: AI: A2: ),3) are fonnd immediately. The result i8 contained
in the following table (sillce diagonal matrices act tl'ivially only one representative of each eoset
modulo diagonal luatl'ices is ShOWll):

H hase 1\"(L) eoo. for IP3 moduli in P

(~ n (a,r) 1(1 ffi 1(2 (Ya : YI : Y2: Y3 ) ( ± AO: AI: A2: ),3)

(~ n (a +2r, r) /(4 ffi /(2 (YO: YI : i V2: i Y3 ) (±Ao: -AI: ),2: A3)

Cn (a, 2a + r) ](lEB J(5 (YO: iYI: Y2: iY3) (±Ao: ),1: -A2: A3)

Cn (0' +2r, 20' + r) 1(4 ffi!(.5 (Ya: iYI: iY2: -Y3) (±AO: AI: A2: -A3)

Tahle 1

The upshot of the table is that aB (±Ao: ±Al: ±A2: ±A3) correspond 1.0 the same Abelian
surface. The quotient spaee is given by

p'= p
(±AO: AI: A2: A3) '" (±Aa: ±AI: ±A2: ±A3) (23)

~ (IP3
\ Sf) U(th ree rational curvcs in S', each missing thrce points),

upon defin.ing Pi = ,\i a...'l coordinates for the quotient IP3
, from which in particular equations for

the three rational cnrves, as welt a...'l for the threc points are immediately 0 btained (the fact that
there are three missiug points instead of two is due 1.0 ramificatioll of the quotient map at two
of the three points). The divisors S alHI S' will be calcnlated later. We will also interpret this
"illtermediate" lllodnli space P'.

Rernark that G/ll is isomorphie t.o the permuta.tion gronp 53, so we have an action of S3 on
P' (which extcIlds 1.0 fi.11 of IP3 si uce i t is lillefi.l"). Choosi ng six reprcselltatives for G /1/ we filld as
above the followillg ta.lJle:
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Ahcllau ~\Irf",c.,. of type (1,4)

53 G/H base J{(f.) eoo. for Ir3 modllii in P'

() 0n (a,7) J(1 EBJ(2 (Va: VI : Y2: V3) (,ia: /il : J1-2: 11'3)

(12) n~) (T, 3a) J(2ffi ](1 (Yo: Y2: Y1 : i Y3 ) (-/iO: li'J: /ll: /i3)

(13) Cn (a,a+7) 1'(1 EBK3 (v;.Y2: Y1: v;.Yo: Y3) (Iio: J-l3: - /-lZ: lid

(23) 0 D (a+7,T) J(3EB]{Z (VI: Yo: .;iyz: v;.Y3) (/10: -/-lI: /t3: 11z)

(123) (~ 3) (37, (7+7) /\'2 ffi J(3 (...j{VI : i Y2: ...j{Yo: Y3) (/1'0: -/1'3: 'lI: - JI2)1

(321) C~) «(7+T,3(7) J(3 ffi J(1 (J"{V2: .JiVa: -VI: -iYJ) (/la: /-lz: - JlJ: -lId

Trl,hle 2

The tables 1 anel 2 togethel' show how to reconstruct explieitly the eleeomposition of ](f.)
from the eql1ation of the octic. More illlportant, it allows l1S to eonstruct the quotient spaee M 3

as is shown in the following theorem.

Theorem 3 The1'C is u bijectlvc map ~: Ä(1,4) ---,lo M 3
\ D, wherc M 3 I" the cone dejined by

11 = ft(4li - 271i)

in weighted IJ1vjeetivc s]mce IP(l,2,2,3,4) (with coordinates (10:"': 14)) and D = DI + D2 is the
divis01' whose two i1'1-cducible components m·e cut off from M 3 by the hypcrsmjaces

DI : 14 = fICfl - 312),

D 2 : 512/4 = -lG (16 fi + 72/1 h - 271; - 48/0/3) +3fJ (1J + 24ft - 32/2) •
(24)

Jn particulw' the moduli S]HICC Ä(1,<1) Iws the st11lct1L1"C 01 an affine tJm'iety. The map ;j; extends in
II nutund way 10 a mup

1/;: A(1,4) ---,lo M 3
,

the image of the (two-dimcusi01wl) uouudmy A(t ,4) \ Ä(t ,4) beiuy C \ {P, Q}, whem C is the ralional
curve (inside D) givc1l by

C:3/J =4(4/2 - h),

and P,Q E C are given by P = (4:0:3:2:0), andQ = (2:1:1:0:-2). Morcover, apllrtfrom its top
(1: 0: 0: 0: 0), alt points in the coue M 3 corres[Jond to same invm'ia1l t smjace A(0,.0 ,j ,9) for some
a,ß,1 und 9, with 0' i ß·

Proof
First we describc the quotient of IP3 hy the actiou of S3, anel show that it is (isomorphie to)

the algebl'aie variety M 3 given hy an eqnatioll 11 = 11 (41t - 271i) in weighted projective space
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IP( 1,2,2,3,4). To do this we use the (ind uccd) actioll of 83 on C3 which is givell in tenns of affine

coordinates Xi = Jlj /1"0 for a:;3 by

(1,2)' (:/;1, Xz, :/;3) = (-X2, -x}, -X3),

(1,2,3)' (Xl,X2,X3) = (-X3,Xt,-X2).

Since the action is orthogonal, it lllust be reducihle, having an invariant line and an invariant plane
orthogonal to it. Illdeed let

11.1 = Xl - X2,

1L3 =Xl +X3,

(25)

then Ul is anti-invariant for (1,2) and is invariant for (1,2,3); U2 and 113 are chosen orthogonal to
Ul' Then invariants

12 = u~ - 1L21L3 + u~,

13 = 11'2 '/L3 (1l2 - 1/.3),

for the action of S3 are faHnd. Also thcl'C is

which is (1, 2)-anti-invariant anel (1,2, 3)-inval'iant., giving a new invariant 14 = UI ß. Since hand
13 generate the illVal'iants depending on 7J,2, 1L3 tlle inva.riallt L1 2 is expressible in terms of 12 anel

13,
ß2 = 41~ - 271i,

i.e., ß2 is llothing else thau tlLe discriminallt of the cubic polynomial x 3
- 12X +13. It follows that

11 = ft (41~ - 27/f), (26)

where 11 =ui· Remark that (11,12,13,14) have degree (2,2,3,4) so that the quotient of IP
3 by the

action of S3 is givell by (26) viewcd as an cql1at.ion in weighted projcctive space IP(l,2,2,3,4) with
respect to coordinates (10: 11: 12: 13: 14)' In conclusion we have established the cover P ~ M 3 and
there is an induced map 1/): A(l,4) ~ M 3 which makes

(27)

iuto a eomlllutative diagralll (since the aetioIlS Oll A(I,4) are the same hy const.rllction).

The reducihle divisor D is ca.."ily eOlllputed Ollee explicit cqlltions fol' 8 (or S') are known.
Since we know of no easy direct way to determinc S, we post pOlle the eornputation of S to Section
6.4, where the potentials will he used to eompute S in a straightforward waYi we will show there
that S' breaks Hp in foul' irredueihle pieces 11.1 = 0,1"2 = 0, IL3 = 0 and disc(Pj'(x)) = 0 where P3

is the polynomial
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A h.,Ii'UI 1I11r{ftC11l1 o{ type (1,4)

and dise(P:f( X)) ::::: 0 denotes its diseriminallt (in x). Graut.ed Uds, we take 11,1 =0, let Xl = 0 and
eliminate X2 anel X3 [rom ft, hand I". Theu the relation

is found at oneej obvioHsly the same equation is found for IL2 = 0, Jt3 = O. The eomputation for
dise( P:f (x)) = 0 is longer bu t also straightforward . Namely, by a siro pie translation in x the l110nie
polynomial P:f( x )/(41Lz) ean be written as x3 - ax + b, with discriminant 4a3

- 27bz. When this
discriminant (dependillg on ILd is writtcn in terms of 11'i using the inverse of (25), the equatioll (24)
for Dz is read off irnlllediately.

As for the curve to be added to J,(A{1,4») to obtain 7/;(A{1,4)) remark that the action of 5'3
identifies the three rational curves in (23), leading to a single curve. To compute its equatioll (as a
subvariety of Dd in terms of the coordinates h, let according to (10), It1 = 0 and ILo ::::: 2(Jlz +Jl3)'
Then in terms of lto anel ILz we get

leadillg to

(28)

by elimination of ILo <Llld IL'I.' As fol' the t.wo special points P and Q Oll this Cllrve, it is easy to check
that picking Jt1 =0, ILZ = IL3 alld 110 = 2(ltz + IL3) leads to the point (4: 0: 3: 2: 0) and a1ternatively
taking ILI = JLZ =0, Po =21L'j leads to the point (2: 1: 1: 0: -2). This gives explieit equations for all
these spaces and proves the annonllced resnlt in (22).

Finally, let (/0: ... : 14) E M;I be allY point. different from the top (1: 0: 0: 0: 0) of this cone. Then
ILz f. 0 for at least Olle of the six points (110: 11.1: ILz: IL3) lying over t1l is point. Define (fX, ß, I, g) E
IP(l ,1 ,3,3 by

0' = Jto + 21L1 + 21'·z + 2/L3,

ß =Ilo + 2/L1 - 21L2 + 21"3,

f = 128IL~/L3,

9 = 12811·~/Ll'

then a ::j; ß and a, ß, fand 9 sa.tisfy (14) wit.h ILi = Ar. This shows that, apart from the top, all
points in the cone M 3 correspond to some inva.riant surface A(O",ß,J,y) for some Ci f. ß, fand g.
This finishes the proof of the theorem. I
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5. The precise relation with the canonical Jacobian

]11 this section we want 1.0 show that a (1, 4)-polarized Ahelian surface Tl E Ä(1,4) is intimely
l'elated to its canollical .lacobia.n, denoted hy J(72

) (iutrodllced in Section 2), hence also to some
cllrve of genus two, denoted r(Tl). ]n fact there is more: at the level of the Jacobian, let J(y2) be
represented as C2

/ A, t.hell y2 illchlces a Ilon-degenerate decomposition of the lattice A and at the
level of the curve, 7 2 incltlces a decomposition of the set of Weierstraß points of f(Tl) which in turn
corresponds to an illcidellce diagralll for the 166 configuration on its Kummer surface; morcover,
the Abelian surface call he reconstrllcted from either of these data (Theorem 4).

Recall that the canonical .lacobian of a (1,4 )-polarized Ahelian surface Tl = (']2, J:,) E Ä(1,4)

is defined as the (irreducible principally polarized) Abelian sllrface J(72 ) = 7 2/ J{, where !{ is thc
(uuiqlle) sllbgroup of two-torsion elements of }{(!). As is well-known such an Abelian surface is
the Jacobian of a slllooth curve r of genus two, Le., it is given as C2

/ A, where A is the period lattice

consisting of all periods of w= t(Wl,W2), the Wi heing (indepcndent) holomorphic differentials on
r. The Abelian group 1l1(f,71) has an (alternat.ing) intersection form ~(.) and H1 (r,71) can be
decomposed into non-elegcnerate planes (in many different ways),

~( . )JIt anel ~( . )1l'J non-degenerate.

Such a decomposition leads to a decomposition A = Al EB A 2 lIpon elcfining

(29)

hoth 1ft (f, 7l) = H1 ffi JJ 'J, anel A = 1\ 1 ffi Az will be caJleel 7lon-deyenC1nte ([ecomlJOHitio71S. They are
called in addition 8ÜlllJ[C if each H i is genel'ated by cycles which come frolll simple closed curves
(Jordan curves) in IP 1 under some (hence any) double cover 11": r ---+ !pI.

"vVe also recall from the classical literat ure the 166 configuration on the Knmmer surface of
.Jac(f), whcre r is a cllrve of genus two. Let W t , . .. , Wß be the Weierstraß points on f, then t'he
points

W ij = {Wj w (mod A)
Jw;

are half-periods of .Jac(f), sixteell ill total since Wij = W ji and W ii = W jj for all i,j = 1, ... ,6.
There are also sixteen gelllls two cllrves f ij in .Jac(r), the translates IVij + fkk of the single curve
f 11 = ... = r66, whieh have the property that f 11, hence all f ij pass tlll'Ol1gh six poin ts W kl. Then
also each point belongs to six liues f ij' This whole confignration goes down to the Kummer slirface
in ]p3 and gives there a 1G6 configurat.ion, classically called Kumnw7"s couji9tlnltion. The sixteen
points are nodes (singular points) amI the sixteeIl planes the lines helong to arc tropes (singular
planes) of the Kummer snrface. The IGs configuration is best visualized by the incidence diayram,
which consists of a pair of squarc diagrams, sllch a.s

Wll W12 11'23 W13 fIt f 12 f 23 f 13

11145 W36 W16 W26 f 45 r 36 r 16 f 26

H'46 ~V35 l'V15 H'25 f 46 f 35 f 15 f 25

W56 W34 W14 W24 f 56 f 34 f 14 f 24

ID



NaUlely the points iucident wi th a Une at posi tion (7H, n) in tlle second square diagrarn are those six
points in the m-th row anel n-th cohulln, but not. in hoth, of the first square diagram. Dually, the
same applies for the lines incidcnt with a point. The 242 incidence diagrams obtained by pernluting
the rows 01' columns of both sq nare diagl'ams in an incidence diagram (in the same way) are defined
to be the same as the original incidence diagram (we will see that there are 20 incidence diagrams
which are different ill this sense).

The relevance of simple, llon-degenerate decompositiollS and incidence diagrams for (1,4)­
polarized Abelian sllrfaces is seell from the following theorem.

Theorem 4 Thcrc is a TwtuTnl correspondence between the /ollowing (isomoTphism classes) of
data:

(1) a (1, 4).polaT'ized Abe/ian sur/ace rz E Ä(I,4)'

(2) a lacobi smface J =C2
/ A + a simple, non-ilegenerate decomposition A =Al EIl A2 01 A,

(3) a smooth gcnus two curve r + adecomposition W = W1 U W2 , # WI = # W2 = 3, of its
Weierstruß ]Joints.

(4) a smooth geTws two Cflrvc r + (ln incidence diagra TTt fOT' lhe 1(j6 COnfi[]llTntion on as
corres]JOndillf) KllTllTHCr sllTface.

Tlte cOT",.espondeHcc (1) H> (2) is established iH two ways, Twmely J may bc taken as thc ijuC!tient of
7 2 llsing ;\2 or as a cover of 7 2 llSiHf) Al (OT' WI ). A1oreovCT', intcT'ChangiHg ihe components of the
decomposi iion i11 (2) ilTHOtLTltS to takiTlg thc dual 7 2

0 f 7 2 iTl (1). J is the JGcobian 0 f the curue
r which a]Jpea1'S in (3) mul (4) and iJ l ICT'dmTlging Al mul A2 iTl (2) amouTl ts to i nterchaTlging WI

and W2 in (3) mul takiHg the tT'ilns]Jose of bath SijlUlT'C diag1nms in the iTlcidencc diagmm in (4).
Sumnwrizi71g we !wve thc following COTHmutativc diag1'aTH, detcTmined by y2 (only),

(30)

.J

wheT'e 2J denotes TTlultiplicatioH by 2 in J mHI a Ai labdiTlg an arTVW TTlcaTlS tlwt a projection is
consideT'Cd on the quoticnt tor'us that is obtained by iloubling the sublattice Ai,

Proof

(3) ---+ (2) Given a genus two curve rand a decomposition W = WI U W2 of its Weierstraß
points, with # W i = J, let 71": r ---+ IP I be any two-sheeted cover of lP I. 1t is weH known that 71" has
brauch points exactly at W; the points in W a..'\ weIl a.s their projections uuder 71" will be denoted by
W I , . .. , W6 , also tr(Wi) will just be writtcn as W j • [f IP I is covercd with cOllnected open subsets
UI an<! U2 for which )lVi C Ui alld UI n U2 n)lV = 0 then lldr, 7l) decolllposes a.s H I ffi H2 where
H 1 and H 2 are defined rt.'\

Among the cydes in 11 i there a,re those which COIlle [rom simple dosed Cllrves in Ui \ W i encerding
two points in W i aud these gencrate JI i. Sillce any (different) of these iutersect (once) the restriction
~ ( . ) Bi is non-degellerate, hence leads (u pon using (29)) to a non-degenel'ate simple decomposition
A =Al ffi A2 for the period lattice. Thus (~2 / A and A =Al EIl A2 provide the corresponding data.

We now show that t.he cOllstrllcted data only depend (up to isomorphism) Oll the isomorphisIIl
dass of the data f, W = W I U W 2 • Let (1: f -+ f be an automol'phism which permutes the
Weierstraß points (stIch a.n autolllorphism only exists for special curves f). Then (1 extends linearly
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to Jac(f) 3! C2
/ A, heuce also 1.0 the lattiec A, giving a new dceomposition A = (TAl EB (TA2•

The lattice (TA i contaius the periods correspollding to the points aWi (w.r.t. the same basis of
holomorphic differential forms), hellce A = aAl EB aA 2 corresponds 1.0 the decomposition W =
O'WI U aW2 •

(2) -.. (3) By the cl~,>sieal TOl'elli Theorem, r can he reeonstructed fronl its Jacobian, actually in
dimension two, f is isomorphic to the theta divisor of.1 ac( r). The lattice A C C2 is the period lattice
of f with respect 1.0 same basis w= {WI, W2} of holomorphic differentials on r, which detcrmines
an isoIllorphism r/>: A ---4 Hdf,71), which in turn leads 1.0 a decomposition HI (f,71) = H I EB Hz
UpOH defining H i = r/>(A i ).

If we denote by W the set of Weierstraß points of f aud by 1f: r --+ Wl any two-sheeted cover as
above, then Hi has generators Ail' Ai2 for which 1f.Aij is a simple closed curve in W1

\ W, encircling
an even number of branch points W i , which reduees 1.0 two in this ease (there are only six points
Wi and ellcireling four points amounts to the same a.s encireling the other two points). Sillce the
deeomposition is non-degenerate, 1f .Ail a.nd 1f.Aiz encircle a eommon point, so we may take

Then # W I = # W z = ;~ and it is easy to see that W I n W2 = 0.
We show agai11 that the eonstruct.ed dat.a are independent of the choice of the base {WI, W2}

aud are well-defined 1Ip to isolllorphism. Ta do this reuHLrk first that wheu the choiee of base w"=
t(WI' wz) is not l1uique, say w' is allother hase prodncing A, thell w= Aw' for some A E GL(2,C),
hence

for any I E H I (f, 7l). We find that A = AA, i.e., A has a non-trivial symmetry grotlp. Then
Jac( r') = (;2/A has a 1101l- trivial an tOJllorphism gl'OUP and thc dat:a (C2

/ A, A = Al EEl Az ) anel
(C2

/ A, A = AAl EB AA 2 ) are isomorphic. Thus it suffiecs to show that the eOllstructed data are
well-defllled up to iSOlllOl'phislll. This follows (as in t.he first part of the proof) at onee from the
property that if .1 ac( f) has a nOll- tri vial an tOlllol'phism (1, then it is indueed by an all tomol'phism
on f. To see this property (which is particlllar for the ease in which the genus of r is 2) let e
be a generie trallslat.e of the Rjemann theta divisor passiug through the origin 0 of Jae(r). Then
0'( e) is aHother translate pa.'>Sillg tlll'ongh 0 (sincc every eu rve in J ac(f) whieh is isomorphie 1.0 f
is a translate of 0) henee eOlllposing (J with this translate determines an automorphism of f. This
shows the constructed data. are well-defincd.

(2) -t (1) Giveu J = lCZ/A and A = Al EB Az we form the eomplex t.orus

T 2 ~-,2 / A' . I A' 1A A
:;;:;: J Wltl =2' lEB z,

(i.e., the first lattiee is dOllhled ill both direetions) alld equip this torus with the polarization
iIldlieed by the principal polarization Oll J. 'vVe claim tha.t T 2 is a (1 , 4)-polarized Abelian slll'face
which belongs to Ä(1,4). To show this, first Jlotiee that. the cycles {All, A21, Al2' AZZ} introdnced

above, form a symplectic ba$c for HI(f, 7l), i.c., ~(Ali' A2i) :;;:;: 0, ~(Ail . Aiz) = 1, hence these cycles
lead to aperiod matrix of the form (sec [GH])
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satisfying the Riemann conditions. Sillce JJ 1 is spalltled by An and An (which correspond 1.0 the
first and third COhllllllS of this matrix) A' ha~'\ ill terms of slightly different coordinates the period
matrix

(
1 0
o 4

a 2b)
2b 4c

which leads immediately 1.0 the resilit that T 2 is a (1,4 )-polarized Abelian sllrface, 4: 1 isogellous
1.0 J (remark that thc right block of this matrix is positive definite). Since the original J = C2

/ A
is the callonical J acobiall of T 2 , we are in the generic case of Section 2 which implies T2 E Ä(1 ,4)'

Dually the surface is (up to isomorphism) also construeted by taking

but this decomposition iIl<luces a 4: 1 isogcny from J to (this) T2.
To show that the correspondence is well-defined, remark that

implies

the last two isomorphisrns heilig isolIlorphism of polarized Abelian surfaces.

(1) -+ (2) For given 'J2 E A(l,4)' let J he its canonical Jacohiall J(T2
). Then 'J2 -+ J is

part of the isogeny 2 J : J -+ J hellce there is a unique complementary isogeny J -+ Tl. with
kernel 71./271. ffi 71./271.. Writillg J as J = C2

/ A, the latter isogeny induces an injective lattice
h01110morphism cjJ: A -+ A whose cokcl'nel is isolllorphic 1.0 7l/271 ffi 7l/271. Then cjJ detennines a
unique decomposition A} EB A2 of A for whicll cjJI A2 is an isomorphism and 4>I A1 is llluitiplication ~y

2. We have seen that such a decompositioll is simple. It is also non-degenel'ate, since otherwise T2
would not have an illduced (1,4)-polal'ization (see Remark 1 below).

Obscrve that in t.he exceptional ca..,;;;e that T2 -+ J is anothcr part of the isogeny 2J, the two
isogenies combine to an automorphisIll of J l leading to isomorphie data in (3).

(:3) ~ (4) This is cla..'\sical (see [HlI)); we prove it as follows. Given a decomposition of W, say
W ={H'}, W2 , W3 }U {W4 , W5 , WG} the corrcspollding incidence diagram is ta.ken Hp to perrnutation
of the rows alld the C01UIHllS of l>ot1l square diagra.ms (in the same way) a.s

Wll W 12 ~V23 W13 r ll r 12 r 23 f}3

H'45 W3G \1'16 W26 r 45 f 3G r16 f 26

W46 W35 H'}5 W25 f 46 f 35 r 15 f 25

l-V56 H'34 W14 H'24 f 56 f 34 f 14 f 24

and obviously the decompositiotl of W is reconstrncted from it at once by looking qt the row and
the column W ll belollgs to. To show that every incidence diagram is of this form, remal'k at
first that we have the freedoßl to permllte the 1'0WS as weil as the columns, so that we can put .
Wll = ... = W 66 in t he 11 pper left COl'ller. The curves r ij this point W 11 helongs to are the elltries
in the first row and the first. COIUlllll (cxcept f 11) of thc square dia.gram on the fight. If the origin
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belangs to f ij n f jk , (j ":f k), then it also belangs to r jk • Then 1"'11 is easily identified as the image
of the lIlap f ~ Jac(f) defilled hy

(remark that the order of lVi, Wj a.nd Wk is imma.terial in this formula) and the other threc curves
are r1m,rmn and f ln with {i,i,k,I,11l,n} = {l,2,3,4,5,6}. Hence the incidence tabel take~ thc
above form from which the decomposition of W can be read off.

If the curve has non-trivial automorphisms, we define diagrams which correspond to such
automorphisms a.s heing isomorphie, so as to obtain the equivalenec (3) +-+ (4) at the level of
isomorphism classes.

Finally we eoneclltrate on the dual T2 of TJ. and its relation with the canonieal Jacobian o[
7 2 • At first recall from [GH] tha.t the period matrices of 7 2 and TJ relate as

co
4

a 2b)
2b 4c

7 2 '" (4 0 4a 2b),....., (1 0
o 1 2b c 0 4

2b)
2b 4a.

showing that j-"2 is const.rncteel [1'0111 J by takillg Al EI) tA2 instead of taking tAl EI) A2 when

eonstrHcting 7 2 from J. It follows that the isogeny 2J factorizes via j-1 as weil anel that taking the
dual of r correspollds to iuterchanging the components of the decomposition of A. This finishes

tlle proof of the theorem. I

R.emarks
1) If in (2) above one cOllsiders sim ple rlegenerate decom positions (instead of non-degenerate)

then the decomposition in (3) is altered into W = W I U W 2 U W 3 , # Wj = 2 aud the order of the
components in the decomposition of W is now irrelevant. The eorresponding ohject in (1) is then
a Jaeobi surface frolll wh iell the original Jacohi su rface (01' the cu rve) cannot he reeonstrueted.

2) Since (~) = 20, there are 20 different ineidence diagrams and 20 possible decompositions
of the isogeny 2J: J -+ .J, SOlne of which a.re isomorphie if and only if J (hence f) has a non­
trivial automorphism group (i.e., different from ~2)' It follows [rom the ahove theorem that thc
20 intermediate Ahelian surfaecs appeal' in 10 groups of dual pairs.

3) Let C(2) denote the lllodnii spa.ee of all smooth cnrves of genus two. Then we have the

following isomorphisms

Ä(1,4) ~ {({WI ,W2 ,W3 },{H'4,H'r.,ll'G}) I Wi E IP I
, i -#j => 11'j":f W j } /modIPGL(2,C),

C(2) ~ {{W1 , H'2, 11'3, W4 , I'Va, J1'G} I H'i E }pI, i -# i => 11'i -# Wj } / mod IPGL(2,C);

and both spaces are related by au obvious lluramificd covering projectiou ..4( I ,4) ~ C(2). We have

seen that ..4(1,4) ha$ a. natural strllctlll'C of an affine variety which is eOlllpactified in a natural way

into its projective closure, whieh is thc (singular) algelHaic val'iety M 3 . At the othel' hand, C(2) has
also a natural cOlnpa.ctifieatioll (the M111Ilfonl-Deligne com pactification). It would be interesting
to figure out how both compactifications a.re related.
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4) Among t.he different. ways t.o define (allel charactel'ize) the canonical Jacobian J(72 ) of
'J2 t here is a final Olle. It jH that J = J(72 ) is the ollly Jacohian for which the diagl'am

7 2

14:1 'r~
J~T1

comIlllltes (2T is lllllitiplicatioll hy 2 on V). The proof is easy using the ideas of the above proof.
Observe that this diagralll is (30) with T1 and J interchangecl; we cDuld drop a sllperfluous triangle
since j = J.
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6. The relation with the canonical Jacobian made explicit

We have ShOWIl in Sectioll 5 that tllere is rt$sociated to an Abeliall ~>ltrface of type (1,4) the
Jacobi surface of a genus two Cluve r allel some additional data. Also we have seen (in Sectioll 3)
that these Abelian surfaces appear as invariant surfaces of the Hamiltonian vector field defined hy
one of the potentials Vaß. This allows 1IS to make this relation very explicit (using two different
methods) and to calculate preciscly the lOCHS 5 in IP3 for which the associated quartic fails to be
a Kmnmer surface (and hence the associated (1,4 )-polarized Abelian sllfface fails to be birational
to an octic). We kllOW of HO direct method (i.e., withollt using integrable systems) to do this. We
refer to [Bu] for an alternative approach, llIlder current investigation, which uses another illtegrable
system (some geodesic flow on 50(4)).

6.1. An embeddillg of the Abelian surfaces in IP 1S

Our calculatiolls rely on the explicit construetion of an embedding of 'Jl in projective space,
which is found by Ilsing the Laurcnt solutions to the differential equations (12). Since we know
that the potential Vaß is a.c.i. (for a :j:. /1), thc vector field X H has a cohereIlt tree of Laurent
solutions (see [AvM1]), in particular it has LaUl'ellt solutions dependillg on dimlR4

- 1 = 3 free
parameters (princi]xd ba/uflces). Moreovel', since the divisor V Jg to be adjoined to a (generic)
invariant manifold A Jg is irreducihle, tllere is only olle such family. Also '11, q2 and '1 = fJITJ2 - i}2P1
have a simple pole along V J9 since their SClllares descencl to .Jac(r) with a double pole aJong (some
translate of) its theta divisor. vVith this information the principal balance is given by

(31)

where 2n2 + 2b2 + 1 = 0; the serief' for PI ;uId P2 are fonud by differentiation. USillg the Laurcllt
solutions it is easy to find an elllheclding of Tjg in projective space: since 2VJginduces a polarizatioll
of type (2,8), it is very alllpie and this can he done llsing the sixteen fnllctions with a double pole
aloug V Jg, to wit,

Zo = 1,

Z3 = '1 = '11112 - lJ2Pl,

Z4 = PI,

Zr; = Jl'2,
_ 2

Z6 - lJI'

Z7 = lJIlJ2,

')

Z8 = qi,

Z9 = lJlfJ,

ZlO = C}2Q,

Zu = (lJi + lJi)fJ + CH}I P2 + ßC/21J1'

Z12 = {'lI, Cl},

zl3 = {lJ2,Q},

z14 = 2lJ1lJ2 «(d + lJi) +PI P2 ,
_ 2

Z15 - lJ ,
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6.2. Abelian surfaces of type (1,4) as quotients of their canonical Jacobians

A first way to compute the correspondence hetween the data is to IIse the cover J -;. T2; recall
from Section 5 that givell T2 E .4(1,4) there is a lI11iquc .1acohian J = J(']2) such that

yields a factorization of the map 2J (multiplication by 2). This implies the existence of a singular
divisor in T2 whose components are biratiollal to r = r(T2) as is shown in the following proposition.

Proposition 5 The image PI (K:) 0/ Kwnmer's 166 configurntion K. consists oJ Jour CU7'VCS, all
]Jassing through the half pen()(ls of 7 2,. these ]XJints are the images 0/ the sixteen points in the.
configwYjtion and each of the four image C1lilJeS has an ordinnry three-fold point at one 01 these
]Joints, with tangents llt this ]Joint, which are diffe,.ent /7'Om thc tanycnts to the othe7' curves. Each
curve is birntionally equivnlent tu rand ind1lces II (1,4) -po/mlzatioll on 7 2

• The image P2 (PI (K))
is one single CUMJe, biHltional to r with an onli71my six.Jold ]Joint.

Proo[
The map PI identifies all half-periorls which appeal' in a row in the first square diagram of the

illcidellce diagram which eonesponds to 7 2 . Thcrefore PI also idelltifies tl~e curves which appear
in a row in the secoud square diagr<tlll of this illcidence diagralll and we obtain fOlll' curves passing
through the four image points, every curvc havillg a three-fold POiHt at the image of the three
points in the same row (lJut not the sa.me COlUlllll) of the first square diagraul. Since K: in(hlCeS
a (16, 16)-polarization on J 1 ]11 (K) in(hlCeS a (4, 16)-polarization on 'J1., hencc each component
illduces a (1,4)-polarization. The virtual genus of each component is thus five, and since each
is obviously birational to r via PI, the thrcefold point must he ordinary and there are no other
singular points.

The intersectiOll of two of these components is the self-intersection of one of them (since they
are translates of caeh otller), hence is by (5) cqual to 2(5 - 1) = 8; at thc other hand, sincc cach
passes through the tluee-fold point of the other and since they have two simple points in commOll,
this gives already 3+3+ 1+ 1 = 8 so all tangents must be different and there are no other illtel'section
points. The fact that. P2(IJI(K:)) ha~" an ordinary six-fold point and is birationally equivalent to r
is shown in a similar Wrty. I

The ima.ge 2J(0) is a divisor ß with a six-fold point, first stlldied in [VI] (where it was an
essential ingredientin the const.rllctioll of linearizing variables for integrable systems) alld PI (lC) is
nothing hut piß. vVe have also ShOWIl therc that this divisor is the zero lOCHS of the leading term
in the equation of the Kummer sUl'face of .J (when nOl'lIlalised as in the algorithm in Sectlon 2.2).

To apply this in the prescnt case, we use the lcading term (18) of the eqllation of the Kummer
sllrface of J(7]9) (which is expressed in terms of the original variables), and illvestigate its zero
locus, i.c.,

This factorizes completely a.s

II [fJ2 - EI Ja - ß - E2 i fJI] = O.
l;=±l
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refleeting the faet tha.t ]J2.6. is rcdueible. In order to fiBel an cquation for r(T]g), let '12 = €1-va=73+

f2i'11 in the equatiolls for A jg • Elimiuttting [J2 Olle finds an equation for the eurve

whel'e

Q(x) = f1f2i(O - ß)3/2:r.3 + (a - ß)(2a - ß)x2 + fl f 2 i VO: - ß(h + a(ß - o:))x - f,
P is some polynomial of e1egree three. This eurve is clearly isomorphie to the eurve

z2 = x(x - iflf2~)Q(X). (32)

(33)

In order to deeide to whieh deeomposition of the Weierstraß points this eorresponels, let
PI, ... ,P4 be the followillg points in lP 15

PI = (0:···: 0: -iVO' - ß:-~: 1: +i(o - ß)),

P2 = (0: ... : 0:+i~: +Va - ß: 1: +i( (Y - ß)),

P3 = (0:·· -: 0: +iVa - ß:-~: 1: -i(o: - ß)),

P4 = (0:···: 0: -iVn - ß:+~: 1: -i(a - ß)),

and let '16 denote thc thrce roots of Q(x). Theu it is casily eheeked hy piekillg loeal parameters
arol1nd the points at illfinity of .6.[1 [2 that the incidencc relation of the Pi on the .6. 101 102 is given by
the following table:

'11 ----;. 0 '11 ----;. 00 '11 ----;. '1f, (/1 ---+ (lf2i~

.6.+ 1,+1 PI P4 3PJ P2

.6.- 1 ,+1 P2 P3 3P4 PI

.6.+ 1 ,-1 P3 P2 3P1 P4

.6.- 1 ,-1 P4 PI 3P2 P3

Table 4

The table is in agreement with the fact that eaeh enrve has a. three-fold point and passes
tlll'ough the other singularities. Moreover it shows that thc three points qb were identified lInder
the map PI when going from J 1.0 7 2

, hellce these forlll the subset W I in Theorem 4 and W2 '=
{0,00,f1 f 2 i -va=73}

Ir we substitute
x + 0: .

X J--+ ~t.

yn-ß
in the eqnation (33) for the Clll'VCS Otlf.2 thcn we find thc equation (21),

2 ' ( 3 2 ßf - ( 9 )
y =(:r+n)(:t;+ß) :r. +(o+ß)x + (o:ß-h):r.+ 2(a-ß) .

Thon the decomposit.ion of W is givell as follows: W1 contaills the roots of x3 + (0' + ß)x 2 + (O'ß ­
h)x +(ßf - 0:9)/(20 - 2ß), anel }V2 = {oo, -0', -ß}.
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6.3. Abelian surfaces of type (1,4) as covers of their canonical Jacobians

An alternative way 1.0 compute t.he da.ta corresponcling 1.0 Tl
9

is by using the cover 'Tl ~ J.
First we calculate an equat.ion for TJ Ig hy substituting (31) in the invariants. Eliminating olle of
the free para.meters from the res111ting equations yielels the followi ng equations defining a curve:

(34)

Put
x = iy'2(a - ß)a, y = y'2(a - ß)b,

to find tha.t this non-singular curve is isomorphic to the curve

(35)

Ta check that the genus of TJ J9 equals 5 (as we saw in Section 3), let C' clenote the CUfve

fC': Z2 = x6 + (ß - 2a)x4
- (h +n(ß - 0:))x2

- -,
2

whieh has genus two. Thell the ohvious mal' 1r: C ----10 C' is a 2: 1 eovering map with four ramification
points (the points where y = 0). By Riemann-Hurewicz ,

X('D Ig ) = 2X(C') - ramificatioll(1r),

it fallows that g(TJ19) = 5.

Lettillg t = x 2 - 0', (3G) is ohviously eqllivalent to

\

') 3 2 ßf - og
Z: =1 + 1 (a + ß) + I( aß - h) + 2(a _ ß)'

:r.~ = 0' + t,

y2 = ß+ 1.

(36)

where we used f -!I = 2(ß - o:)h in the first equation 1.0 write it in a symmetrie form. Define now
11- = xyz anel find that TJ I 9 is expressed a~" a 4: 1 l111ramified eover

\

2 ( 3 ~ ßf - a y ):2 : ~: ;)(1 + ß) 1 + 1 (<r + ß) + I(aß - h) + 2(a - ß) ,

y2 = ß+ t

of the hyperelliptic CUl've given by

Z2 = (I + a)(1 + ß) (1 3 +1
2
(a + ß) + l(aß - h) + :ra -=-1J) ,
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which we fonnel in (21) alld (34). 1'0 see this, rcmark that if u2 = f( t) is an equation of any
hyperelliptic curve rand l(td = j(t2) = f( t3) =°(i.e., t 1, t2 and t3 correspond to Weierstraß
points), then the CUl've

1/.Z = f(t), 2 t - tl
X =--,

t - tz

is a 4: 1 cover of r anel haB genus 5j in our case {tl, t z, t3} = {(X), -0', -ß}. When this 4: 1 cover
is extended to the cover 'j2 ~ Jac(r) the half-periods on V corresponding to {-O', -ß, oo} are
identified with the origin, hcnce W z = {-a, -{3, oo} and W 1 consists of the other three Weierstraß
points, in agreement with OUI' previous calculation.

6.4. The exceptional locus S C ]p3

Suppose tha.t (TZ J.c) E Ä(l,4) and let the surface be represented by a surface A(a,ß,/,g), for
sorne 0' f:. ß (using (28»). Then the curve r(T'l) corresponding to it nnder the basic bijection
explained in Section [) Illust he smooth. SillCC we know from Scction 6.2 (or equivalently 6.3) that
an equation for r(T2

) is given by

(37)

we concluele that eliSC(P3(J;)) f:. 0 and P3( -0') f:. 0, P3 ( -ß) #- 0, the last condition meaning just
that f f:. 0 and 9 f:. O. Conversely, hoth conditiollS together are sufficient to guaranty that thc
curvc is smooth and the corresponding Abelian surface is in A{1,4)' In order to state this result in

terms of the coordinates JLj for ]p3, use (28) to rewrite (38) in the sim pie form y2 = x( X - 1)Pj (x)
wherc

(x anel y are slightly rescaled)j in this l'epresentatioll W2 = {O, 1,00} and W 1 contains the roots of
P~l(x). The condition for (JLo: Jtl: Jtz: Jl3) to corrcspollu to a surface in A(l,4) is now that JLULzJL3 #- 0
and disc(P~l(x)) #- O. It shows that the 10CllS S' is given by the fOllr divisors JLtJLZJL3 = 0 anel
disc( P:f(x)) = 0 allel the exceptional lOCHS S is fOllnd immediatcly from it hy substitll ting Ar for
Jli in these equations. (These eqllatiom; for S can in principle be fOllnd pllrely algebraic, but the
calculations are very te<!iolls an<! some cases are easily overlooked. In fact [BLS] claim (without
proof) in their paper that the only condit.ioll is JLIJLzJl3 #- 0, therehy overlooking the more subtle
condition disc(Pjl(J;») #- 0). Comhilling this with Theorem 1 wc have shown the following theorem.

Theorem 6 Thc tim!uce A(er,ß,J,g) is UH uffiue lXI1'l T 2
\ 1) of ml A bcliull swface (Tl, [DD E A(1,4)

ij and only ij 0' #- ß, f f:. O,!J f:. 0 mul disc( P3 (x» #- O. Equivulently (11.0: JLt : JL2: JL3) E ]p3 are moduli
comiug from the iJirrJt i01UlI 1IW]}3 4>c: T2 ~ IP3 wilh (TZ, [,) E ..4.(1,4) if and only if Jl'1 JL2 Jl3 #- °and
disc( Pt (x)) #- 0. The CU7iJC r (T2) C07TCS]JO 7ldi119 f,o the ca110n ical Jacobia11 ()f 'J2 is then written
as

3 recall that JLi = Ar, where Ai are takcn frolll (7)
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when the coordinates x /07' TI) I is taken such that W2 = {O, 1, 00 }. Conversely the equation 0/ the
octic (7) is written down at oHce when giving the equation 0/ the genus two curve and a deco7nposi­
tion W = W1 U W2 of its set oj Weierst7'ap points: the coefficients of the octic U7'e Ai = ..[iii wherc

Il'i (H'e essentially the symmetr-ic functions 0/ W2 when the coordinate x jor lP 1 is taken such that
W2 = {O, 1, 00 } .

Taking also the HO Tl-gene ric case i 11 to flccoun t, there is an A belian swJace A(a,ß, / ,9) C07'7'e­

s]J071ding ta each point in the. image 1/J(A(l ,4») = (M 3
\ D) u (C \ {P, Q}).

I

The following importallt corollary follows at Ollee from this theorem.

Corollary 7 Let D C T2 be an u71rmnified cover of a 8mooth ctlrve 0/ genus two. Ij (T2, (D]) E
Ä(1,4) then the affine va7'iety T 2 \ D is (isomorphic to) a complete intersection 0/ two quartics in
(;4 .

I

Remarks
1) The eqllations of the qllartic in Corrolary 7 are jl1st the equatiolls for A(a,ß,/,g) wherc

a, ß, fand gare obtained from the equatiolls of D by combining Theorem 6 with (28).
2) Reealling thc deseriptioll of Ä(l ,4) from Remark 5.2 one has the following descl'iption of

the modllli space Ä(1 ,4):

A(1 ,4) ~ {( {WI 1 H'2, I-Y3 } , {1-Y4 , ~Va, I-Yü }) I Wi E ]pI , i f:. j ::} Wi f:. W j } / mod ]PGL(2,C),

~ {{W4l Wa, W6 } ll-Yi E C \ {O, I}, i f:. j ::} Wj f:. Wj } /53,

whcl'e the action of .'h eonsists of pennutillg 0,1 and 00 in the equation y2 = x(x -l)(x - W4)(:C­
~Va)(x - W6 ), i.e., it is gellerated hy replacing x by l/x and 1 - x in this equation. Obviously the
ring of inval'iants of the symmetrie funetions of W 4 , Wij alld Wo is just the cone M 3

, which explains
why Ä(1,4) has such a Idee stl'uctllre. Dsing Tahle 2, this lea.ds t.o a geometrie interpretation of the

"intermcdiate" mod llii sJlaee ll)3 \ S', lla.lI1ely

To cxplain this, remark that ta.king the hase vecton; mod 2 in the third eolmnn of TalJle 2 determines
an ordering for the 4 half-periods on the eanonical .T acobiall whieh eorrespond to t.he lattice A2 1

whieh in turn indllee an ordering in the points in W 2 ; at. the other hand, all elements in the second
eolumn of Table 1 are the same mod 2.

3) In the cla..'>sical literat.ul'e one defines a. Rosenhain te17Ylhed7'011 for a KUffimer S1I rface as a
tetrahedron in ]p3 with singula.r pla.ncs of thc surfaee as faces and singular points of it as vertices.
111 (Hu] the author shows t.hat the equation for the KUlllmer st1l'faee with respect 1.0 a Rosenhain
tetrahedron is written a.,'l the quartic (15). It t.hen follows from Theorem 6 how to read off frmIl
tlle equation of a Kummer snrface with respcct to a Rosenhain tetrahedron, an cquation for the
curve corresponding to t.his Kummer sl1rface alld vice versa. It seems that this result is not known
in the classical or recent. literaturc.
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7. The central potentials v(\'(\'

In this final sectiOIl we eoneentrate Oll thc potentials V(\'(\' which were always exeluded up to
now. It is interestillg to eOIuparc thc ela..'lsieal lillearizatioll of the cClltral potential Vaa which uses
polar coordinates with the 0 = ß-limit of the linearization of the perturbed potential Vaß (a f; ß):
they will be seen to coincidc. We will also construet a Lax pair for this limiting case and discuss
the geornetry of the invariant manifolds of the vector field.

At first, consider for generic vallIes of h, k the invariant sllrface Ahk defined hy

whieh in terms of polar coordinates (p,9) becomes

h = ~ (p2 + p2iP) + p4 +ap2,

k = p2iJ,

leading 1.0

1 ".') 6 .. ') k2

--p~p~ = P + o:p" - hp~ +-.
2 2

This sllggests setting er = p2, yielding

Secondly the transformation (19) re(hlCeS for 0' = ß to

J:l + X2 = - (q; + qi + 20) ,

XIX2 = 0
2 +O'q; + nqi,

altd (20) becOInes

(38)

(39)

. ')

x ": -
'I -

8(J:i + 0')2 (:1:; +2ax; + (0'2 - h)Xi - (ho: + f /2))
(Xl - X2)2 (40)

The equivalence of (39) allel (41) becomes eleal' after the simple translation J: i = Xi + 0' on the
CUl've; indeed (40) becomes

81 +82 = - (q; + fJi) ,
$1 S2=O,

so that only one of the Si differs from zero, say 0 f; SI = -(qf +qi) = -s, (the last eqllality is a
definition), which matches the linearizillg variahle er introdllced ahove. In terms of S (41) is redllced
to Olle equation which reads

·2 f
_~ = ,,3 +082 _ hs + _

8 L. 2'

which is exactly (39) since f = (fJlfJ2 - fJ2pt}2 = k2.
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It is also intcrest.illg thaI. tbe Lax pa.ir gives in the limit 0' = ß a Lax pair for the potential
Von' The polynomials u(:J:), v(J:) and 1lJ(J:) are now aB divisible hy (x + n),

u( J:) = (:l: +n) (J; + fJr +qi +a) ,
1

v( x) = J2 (x +n) ((}1 IJ] +q2lJ2 ) ,

w(x) = (x +,,) (x 2 + (x - q~ - qi) x - ~ (p~ +pD - " (q~ +qi) ) ,

which leads to a. simpler Lax pair by canceling the factar (x + n).

Finally we describe the affine invariant slIrfaces far the central potentials Vno ' These turn out
ta be C*-hundles over the elliptic Cllrves (39), a...c; described in the following theorem,

Theorem 8 For uuy k, h E C, lel Ahk denale the affine sur/ace defined by

{

1 (2 2) (2 2)2 (2 2)h = - .Pt + TJ2 + fJl + fJ2 + 0' fJt + fJ2 ,Ahk: 2
k = qlP2 - '12]11'

(41 )

If k f; °then Ahk is fl ~~* -buwllc OV€1' the elliptic C1l1've

r 2 k2

[hk: -2 = (13 +0'(12 -IUT +2' (42)

lvJ01'Cover the C* -actioH OFt Ahk is fl Hamiltonial1 action, t1w Hamiltouian fuuction c01Tesponding
to i t being lhe 17W11L e7L11l1 H fJl1'2 - fJ2]1t .

Pfaaf
The linearizing variables, calelllated ahove suggest to eansider the map

~: [:4 -l- C2

(qt,fJ2,Pl,}J2) 1---+ (l1,T) = (q; + qi,qlPt +Q2P2)'

Dur first aim is that the image ~(Ahk) is given hy the plane elliptie curve (43). Indeed, one easily
obtains for fJf + lJi "# 0,

fJ2 k - (}1 T

PI = 2 2'(it + (12

fJI k + q2 T

])2 = - ? 2'
lJi + (12

whi eh leads by di reet su bsti t II tion in the fi TSt eq uation of (42) ifII mediately to

For qr +qi = 0, i.e., fJ2 = ±ifJt one gets

1 2 2
h = -(Pt +P2)'2

k =lJt (]1'2 =F ipl)'

T = fJt(l1t ± ip2),
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frolll whieh we dednee T = ±ik, giving tlle poiut (a, T) = (0, ±ik) on [hk, proving the first claim.

Seeondly, we determinc the fiber ~-I ((7, T) over eaeh point on [hk. To do this, observe that
thc lIlultiplieative grOll)) of nOll-zero cOlllplcx 1111111hers,

aets on Ahk by

(

(l

-u
aud the surjeetive map ~ is C* -invariant. It is proved by direet ealculation that the action is free,

hence eaeh fiber of ~ cOllsists of Olle 01' more circles. If (0', T) E [hk then PI anel P2 are determined
frolll fJI aud '12 (at least ir"fJf + fJ! :j:. 0), which themselves are determined (up to thc action of C*)
by fJ; + '1i = p, so exactly Olle eircle lies over eaeh point (fJI, q2, PI, P2) for whieh q; +qi 1= Oj in the
special ca.r;;e that {li + fJi = 0, the same is t rue, since PI alld P2 are determined (up to the action of

([;*) by pi + P5 = 2h, and fJl, lf2 are mliq uely detcnnined fr01ll PI and P2. It follows that Ahk is a
C· -bundle over the elliptic curve [hk.

Fillally, remark that tlLe Hamiltollian vectol' field correspollding to the momentum fJIP2 - '12 PI
is given by

fJl = -fJ2,

fJ2 = fJl,

Pl=-]J2,

P2 = PI,

frolll which it is seen that tlle cOlllplex How of t.his vect.ot" field IS glVCIl hy the (C* -action, provi~g

the last claim in tbe theorem. I

Let 11S define (alld calculate) t.he llloduli (ill Ir(I,2 ,2,3,4») correspollding to an invariant sllrface

AhkOf a central potential for k :j:. 0 as 1.he limit4

Thcn an easy complltat.ioll shows that this limit exists, is independent of f :j:. 0, h aHd 0' =ß and
llloreover is exa.ctly eqllal to thc special point P at the bOllndary of VJ (A(1,4)) defined in Theorenl

3. Namely for f -,0 9 an<! 0 -,0 ß one fill<ls

so that

hence by weight homogeneity the assoeiatecl 1II0duli corresponcl 1.0 P. Remark that the poiIit is
independent of 0' = ß as weIl a.r;; of f = g, so t.hc map 1jJ does not clistinguish hetween any of the

invariant surfaees of any ccntral potential Voo '

AckllowledgmelJts. I wish to thallk M. Adler, .I. Bertiu, P, Hueken, eh. Birkenhake, K. Hulek,
W. Obbcls, A. Perelolllov l P. va.u r..10cl'heke alld D. van Stl'at.cn for sevel'al useful comments and
stilllulating discussions cancern illg this paper. The warlll hospi tality of the M ax- Planek- Institut,

whcre the final version of this papel' was writtcll, is also greatly acknowledgecl.

4 l'eca.ll that f - 9 == 2(ß - n)h
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8. Appendix: The Schlesinger system, the Garnier system and
the quartic potentials VA

In this appendix we explain thc origin of the qllartic potentials VA' which were first discovered
alld studied in the begiuuillg of this celltury by Garnier in [Cl. Our exposition is alollg the lines of
that paper.

At first, considel' a linear different.ia.1 eqnation of order 1n with n + 3 regular singularities, say
at the points tI, ... , t n , t n +l = 0, t n +2 = 1 in the plane an<! at infinity (it is convenient to put also
x = to). The most general form of such an eqllation is given by

1 m n+2 Ai
(Yk L L hk-- Yh --
dx - x - t·

h=1 i=I t

(h=l, ... ,m),

the A~k being eonstauts. This can be written more compactly in matrix-form a.s

dy
- =yA
dx

apou defilling a ma.trix A with entl'ies

n+2 Ai
A - L hk.hk - --I

X - t·
i=I I

(43)

i t has 1n independent sol1l tions Ydx), ... , Ym (x) which are IIlulti va.l ned fUIlctions of x. Using m
fundamental solutions as rows in a. matrix, an 'm X 11l-matrix Y is formcd. When sueh a matrix
solntioH Yl (x) is COll tinned alla1ytically around a elosed path encireling a singular point ti, then a
new salu tian Y2 (x) is obtained, which is a matrix whose rows are linear eombinations of the rows
of Y1 (x), henee tllere is all associa.t.cd lIIonodro1llY matrix Ali elefined hy

In this way, 11. + 3 lllollodromy ma.tricefoi are obtained anel they depend Oll the position of the poles
ti as well as on the vallles of the constrwts A}lk' Olle of thc hasic prohlems in the elassical work
about linear differential equa.tiollS is the following isomonodromic prohlem: .

JIow call Olle ma.ke UJe coefficicllts Atk depelHlent Oll t1, ... , t n such that the monodromy
matrices A1i herome independent. of t I , ..• , t n ?

Sehlesingel' shows in [5] tha." tlle dependclIce of the rnatrices Ai = (A;~k)h,k=l, ... ,m on tlle ti is
given by the following set of partia.l differentia.l cquations:

(j # i),

(44)

Indeed let Y be a matrix solution of (44),

eiY
-=YA,
(lJ;
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alld define

(i==O, ... ,n),

in particular define ßo == A. Expl'essing tlle in t.egrabili ty cOllditioll

o2y ß2y

OliOtj - OtjOti

leads to
{}ßi {}ßj
{}tj - {}tj = [ßil ßili (45)

1ll01'eOVer it can be ShOWll that {'i is holomorphic, away from x = ti and ßi + A is holomorphic
around x ::::; ti. It follows that

with '/i independent. of :/:. Actua.lly, wit.hout loss of gene1'ality, all '/i may he supposed to be zero.
Expressing (46) in tenlls of Ai lIsiug (47) (with '/i = 0) allel putt.ing x = t j leads immediately to
Schlesinger's system (45).

From (45), Ganlier eOll st 1'11cts t he so-ealled Silllpli fied system, si m ply hy replacing

ti ----;. O'i + fti,

Ai ----;. (-lAi

(i=I, ... ,n)

and taking the limit ( ----;. O. Tlle I'csulting system reads

(j ;f; i)

(47)

(48)

Ir a matrix B is defilIed a...'l
n

B = Ax(x - 1) [I(x - (ti),
i=1

then the clltries of Bare polYllomials ill x of degree n +1 allel the simplified form of (4G) for j =0
is given by

OB [Ai,B]

Dti x - O'i

Garnier proves that the speetral Cllrve dct( B(x) - AZ) =:: 0 is independent of all ti anel linearizes
the flow of the vector Held. 0 h8Cl'Ve tha.t the matrices ß = B( x) alld Ai are rcla.ted as follow8:

n+2

B(O'd = Ai [I (ni - O'j).

j::f.i

This shows that the Lax pair eoillcides with the Lax pair eOllsidered hy A. Bea11ville in [Be].
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The Lax pair (49) contains CL lot of integrahle systems. Garnier considcrs two special ca.."es,
whieh both lead to hypcl'clliptic elll'VeS;

i) det(B( x) - AZ) = 0 is quaelratie in z, i.e., B is a 2 X 2 matrix: this leads after some suitable
normalizations (see [Be]) to what we called the odd master system (see [VI] anel [M2]).

ii) det(B(x) - AZ) = 0 is quadratic in y: then there is uo loss of generality in supposing that
B has the form

(

x2 +C11

b21 x + C21
B=

bmlx +- Cml

Then (49) is written out for i = 1 as

blm x +Clm)
b2m x +C2m

Cmm

Define ~k a.llel "]k by

(49)

t]
ba = ~k exp ---,

1 - fit

bring C 1.0 its ca.llonical form (supposed here 1.0 be diagonal), define (Li = cii and choose
C11 = -<2

'
/2 - ... - ~m "Im' Then (50) red uees ta

an integrahle system w!lieh is knowll tl.-'l the Gal'nier system. Restricted 1.0 the invariant
subspaee ~i = 17i it gives exaetly Newton 's eql1ations fol' the integrahle potentials V)..

36



A I.clilul Ulrf"cll. of ty I' 01 (1,4)

References

[A] Arnold, V. : Mn thematicHI A1etlu)(Js 0 f Classical MeclUlnics. Springcr- Verlag (1978)
[AvMI] Adler, M., van Moerheke, P.: A IgelJ1nic cumpletdy integ7Ylble systems: (I systematic apIJ1,(){ICh.

Perspectives ill Mathema.tics, Acadcmie Press (to appea.r in 1992)
[AvM2] Adler, M., vall Moerheke, P., Reprcsenting the Kowalevski and Henon-Heiles motions a.s Man­

akov geodesie flows Oll SO( 4) and a two-dimensional family of Lax pairs, Communications in
!vIathematical Plt ysics, 114, 1·41 (1987)

[AvM:J] Adler, M., vau Moerbeke, P., The complex geomctry of the Kowalewski-Painleve analysis,
Invent. MaUl., 97, 3-51 (1987)

[B] Baltuch, J.: Iuteg7nblc systems (l1uJ reducible Abelian surfaces of type (1,2). Doetoral thesis at
Brandeis University, 1991

[Ba] Barth, W.: Ab eH an surfaces wit h (1, 2) polarization, Confere nce on A1gebraic Geometry, Sendai
(1985)

[Be] Beauville, A., .lacobielllles des eourbes spectrales et systemes hamiltoniells completerncnt in­
tegrables, Acta Aluth., 164, 211-235 (1990)

[BLS] Birkellhake, C., Lauge, H., va.n Straten, D., Aheliall sllrfaces of type (1,4), Malh. Ann, 285,
625-(i46 (1989)

[Bu] Bueken P.: A gelxlesic fiow on SO( 4) and Abe/iml sm/uces of type (1,4). (Preprint)
[CC] Chudnovsky, D. V., Chllclllovsky, G. V., A completcly illtcgrable dass of mechanical systcms

eonnected with Korteweg-de Vl'ies allel llluitieomponent Schroödinger equations, Lett. Nuovo
Cim., 22/4,47-51 (1978)

[D] Dubrovin, B.A., Theta funetiolls alHlllonlillear equations, Russian MtJ,th. S'urveys, 36/2,11-92
(1982)

[F] Flasehka, H., ivlonodromy- and Spcctrllm-Preserving Deformatiolls I, Com711un. mnth. Phys.,
76, 65-116 (1980)

[G] Garnier, R., Sur 11 HC dasse de systemes el ifferen t.iels abeliens ded l1i ts de theorie des eqnations
lineaires, Renli. Cin:. Matlt. Pale7'1Iw, 43/4,155-101 (1919)

[G r] Griffiths, P.A., Lillca.l'izing lIows allel Cl. eohomologieal intcrpretation of Lax equations, Am. J.
of !vlath., 107,144.5·148:3 (1985)

[GH] Griffiths, P. aud HaITis, .1.: P"inciplcs of Algeu1Ylic Geomctry. Wiley-Intcrscienee, New- York
(1978)

[Hu] Hll<lson, R.vV.H.: Kummer'... fj1w,.tic smface. Camhridge: Cambridge Ulliversity Press (1990);
first pnblishcd in 1905

[LB] Lange, H., ßirkenhake, C.: Complex Abelian V'.lrieties. Spl'illger-Verlag (1992)
[MI] Mumford, D., On the equations defining Abelian varieties I, Invent. MatlL, 1,287-354 (1966)
[M 2) Ml1mford, D.: Tata lectun;s ()7! Theta 2. ßirkhäuscl' (1984)

[P] Pel'elomov, A.ivl.: lutegnlulc systems of c/assical meclwnics and Lie algebms I. Birkhäuser
(1990)

[S] Schlesinger, L., Ubcr eine Klasse VOll Differcntialsystemell beliehiger Ordnung mit festen kri­
tischen Punkten, J. !ü,' A1ath., 141, 96-145 (1912)

[Sh] Shiota, T., The characterization of .1 acohian varict.ies ill terms of solitou eqnations, bwent.
Math., 839, 333-382 (198G)

[VI] Vanhaeeke, P., Linearizing two-dimensional integrable systems anel the constrnction of action­
angle va.riables, Math. Z., 211, 265-313 (1992)

(V2] Vanhaecke, P., Strati/icatio71s of hypcrelliptic Jacobians mul lhe S'ato G'7nssmaunian. (MPI
Preprint/93-24)

37


