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1. ALGEBRAIC GROUPS AND TRANSCENDENCE

Let G be a connected algebraic group of dimension n defined

over a number field K and 9 = Lie G its Lie algebra of

invariant d~rivations which has a natural structure as a K-algebra.

Then we denote by G~ the Lie group obtained fram G by base

extension fram K to ~ . This is a complex Lie group and we

have an analytic homomorphism

exp 9 --> G([ ([

fram Ba: = 9 ~Ka; , in to Ga;.

Given a Lie subalgebra b af B([ we obtain by integration a

Lie subgroup B of G~ which need not be closed. We say that

B is defined over W if h ~ g ~KW

It is well-known that the algebraic group G is an extension

of an abelian variety A by a linear algebraic group L:

Q->L->G->A->O

If G is cornmutative then we can write L, after a base

change, as a product of apower of

of ffirn , the multiplicative group,

~ , the additive graup, anda
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Let us now consider the set B (W) of W- valued points on B ·

Suppose that there exists an algebraic subgroup He G with

(i) H defined over W,

(ii) dirn H > 0

(iii) Ha: ~ B

where Ha: is the subgroup of Ga: obtained by base change.

Then

so Ba:(W) is different from 0 . The following theorem shows that

the converse is also true.

THEOREM 1 ([Wü1]). B~(W) ~ 0 if and only if there exists an

algebraic subgroup H of G such that (i), (ii) and (iii) hold.

RE~ARK. Actually in [Wü1] the theorem is only proved for G

commutative but it is not difficult to extend the proof also to

the noncommutative case.

Theorem 1 has a very straight forward corollary which proves an

old conjecture of Waldschrnidt and is also of some independent

interest.

COROLLARY ([Wü2] ). Let b ~ ga: be ~ Lie subalgebra of !Ja:

generated over W
r

~ algebraic tangent vectors b , i.e.
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b E: exp-, (G (W)) , and 11 the smallest Lie subalgebra defined

over W containing h. Then b is the Lie" algebra of an

algebraic subgroup defined over W •

Theorem , is actually a transcendence statement as one can see

veLy easily. A striking example is Baker's theorem in its non-

effective version. For this let u
1

, ••• ,u
n

be non-zero algebraic

numbers.

COROLLARY 2 ([Ba]). If ß,109 a, +... +ßnlog an ;;;;; 0 for algebraic

numbers not all zero then there exist rational inte-

b 1 ,···,b.. n not all zero such that

b, log a, + ... + bn log an = 0

PROOF. Let G = {Gn . Then ß(C ;;;;; {[n andm

Z, Z
exp z ;;;;; (z, ,... ,zn) E Q([ I-->(e , ... , e n) E Ga:

Now let h be the Lie ~ubalgebra generated by the tangent vector

a = ( log Cl, , ... , log an)

Then exp(a) = (Ol, ... ,an ) is algebraic. The dimension of h

proper Lie subalgebra containing b.

is strictly less than n since + ••• + defines a

Corollary , irnplies now that h is algebraic and therefore the
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Lie algebra of an algebraic subgroup H of G of codimension

at least one. But it is well-known that algebraic subgroups H

of (bn are defined in Lie (bn
m m by linear forms with integral

coefficients. Hence there exists such a linear form

not identically zero, which vanishes on h hence on a. This

proves the corollary.

2. SKETCH OF THE PROOF OF THEOREM 1

The proof of Theorem 1 is done by transcendence arguments and

is an interplay between analytic, arithmetic and algebraic argu-

ments. We divide it in a natural way into a nurnber of steps. In

order to be able to give references and to avoid technical corn-

plications we restriet ourselves to the case that G is

cornrnutative.

STEP 1. We first ernbed G into same projective space wN . For

this we write G as an extension of an abelian variety A by a

product of a torus (bk and a unipotent group which we assurne
m

to be of the form (b9..
a

o -> (bk x (b9. -> G -> A -> 0
m a
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Then we compactify G and obtain a homogeneous space G on

which G acts. This is described in all details in [F-W]

which is based on ideas of Serre. G now is embedded into a

projective space F N
for same N

G d:....> G d...> JPN

This gives us then the analytic functions we need for the

analytic part of the proof. They are by

f = tp 0, i 0 e"xp {Cn -> Lie Ga:: N
->]?

These functions have order of growth at most 2. Furthermore

if f = (fO, ... ,fN) then the functions

f.
1g. =

J. f o
(i = 1, ••• ,N)

satisfy a system of differential equations,

with polynomials h. . (T 1 ' . • • , TN)1J .
for 1 :S i :S n and 1:Sj:iN.

These polynomials have coefficients in W •

STEP 2 . Let s1,···,sb be coordinates on b ~ erb and

a a the corresponding derivations in 11 ~ f\a; LetaS 1
,

'~
.

b
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g E" G (<L) be a cornplex point with Xo (g) t- 0 and V c G a

complete algebraic subset; UcFN (not necessarily reduced)

the open set defined by XC:f 0 and V I = V n u . Suppose that

gEV(<L) Then we say that 9 is a point of multiplicity at

least T on

F= F(~1 ,
o

v along B if for all F E I (V I )

,:N) ,and all y = (y1' ... 'Yn) E: exp-1 (g)
o

(
d )T 1 (_d )Tb

ar:- ... dl;: F·o (00 i 0 exp (Yl , •••
1 b

for all 0 ~ T1' ... ,Tb such that

For sirnplicity we shall further assume that b = n-1 . Assurne

now that g:f 0 is in B[(W) and again for sirnplicity that g

is not a torsion point. We choose the coordinates xO' ... 'XN

such that X o (s g) t- 0 for all s E::N • Then one constructs by

the socalled Siegel Lemma for a certain triple of positive real

nurnbers S,T,D »1 such that

a hypersurface X on G of degree at most D that vanishes

on the set {sg, 0 :;;; s < S} to order at least -T along B .

STEP 3. By the socalied Schwarz Lemma one shows next that for
r

certain real nurnbers· S',T I with
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the hypersurface constructed in Step 2 vanishes on the set

{sg, 0 ~ s < S'} to order at least TI.

STEP 4. The vanishing statement in Step 3 can be transformed

into a statement in linear algebra. It means that the coeffi

eients of the defining equation of X have to satisfy a system

of

linear equations and the condition S IT I n-1 »Dn just means

that the number of equations is much larger than the number of

coefficients which is about Dn . In order to get a contradiction

one hopes that the system has maximal rank which would imply

that all coefficients are zero; in other words X ~ Gwhich

contradicts the definition of a hypersurface. Hence the system

can not have maximal rank. By means of some complicated

machinery, the socalIed " mu ltiplicity estimates on group

varieties" developed in [Ma-Wü1], [Ma-Wü2] and [Wü3], this

statement is translated into statements on the group generated

by g and the analytic subgroup B. The results in [Wü3] imply

that the analytic subgroup B is degenerate in a certain

sense; more precisely they say that B contains an algebraic

subgroup H such that (i) - (iii) hold. This completes the

sketch of the proof of Theor~m 1.
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3. HODGE THEORY

Let X be a smooth proper variety of dimension n over an

algebraic number field K. Then there are various ways for

associating with X cohomology theories.

The first one is the singular cohomology. For this let

a K --> ~ be an embedding and define

Xa: .- X ~K{[

via this embedding. Then x~ is a complex manifold and its

isingular cohornology H (X~,~) is defined and one puts

H~(X) i
• - H (Xc['~) ~ W (i=0,1, ... )

the socalled Betti-cohomology.

The de Rharn cohornology is defined as folIows. Let n~/K(i=0,1,... )

be the sheaf of algebraic differential i-forms. One obtains

the complex

Then the algebraic de Rham cohomology 'is defined to be
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* *where m (x,n
X

/ K) is the hypercohomology defined in turn

as follows. Let

* * *S1X/ K --> ] '

*be aresolution of nX/ K by sheaves of injecitve 0x-modules.

*Take its associated simple complex K' defined as

Ki ::::: ffi ja,b
a+b:::::i

Then

* * * *m (x,n
X

/
K

) .- H (X,r (X,K ))

* .
Then there is the Hodge-cohornology HHodge(X) defined as

Hi (X)Hodge := a( rlb )
Gl ,H X, X/K

a+b:::::J.
(i:::::O,1, ••• )

The two cohomologies and *HHodge(X) are related by

the usual spectral sequence

=> Ha+b(X)
DR

*and d~fines a fil~ration on HDR(X) , the Hodge filtration.

Now a well-known result says that

* ...... , *
H (X , ce) --> HDR (X) ~K a:
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Using this isomorphism one defines the periods as folIows:

Let

1 Ni i
e ,..., e E .H (X ,Zl ) (i=0,1, ... )

be a basis of and e 1 ' • • • , eN .
J.

the dual basis in

H. (X,'ll.) • Furthermore let
J.

be a basis for iHDR (X) . Then

(i=0,1, ... )

(k=1, ... ,N.)
1

The coefficients Wk,t are called the periods (of weight i

and can be expressed in the usual way; narnely by integrating

wk along e EH. (X,7l) one findsr 1

N. N.
J.

'~
1

J Wk = L Wk t· J e = L Wk:,~ ö = W
e 2=1 ' e ~=1

r,2 k,r
r r

So the cornplex nurnbers Wk,t are indeed what are classically

known to be periods.

The vector spaces Hi(X,~) carry a socalIed Hodge structure,

i.e. they admit a canonical decomposition
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m Ha,b
a+b==i

such that Ha,b == Hb,a . They are said to be of weight i

EXANPLE 1:

E

We consider an elliptic curve

Then E~ is the complex torus ~iL for a lattice L of rank 2

that generates ~ over the reals. Hence

The de Rharn cohomology is obtained as folIows. Let

dxw == y
dxn == xy

Then w is a differential of the first and none of the

second kind. They generate HDR(E) over K • The first one

is everywhere holomorphic and therefore in HO(E,ni/K) . The

second one has two poles without residues. The periods are

W. '== J W
l. y.

1.

(i==1,2)

and L can be taken to be the lattice genera ted by w1 and
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REMARK 1. It is not necessary to restriet ourselves to proper

schemes. If X is arbitrary the theory of I1logar ithmic

differentials" leads also to an analogous theory which includes

differentials of the third kind.

RE~~RK 2. Everything extends to socalIed variations of Hodge

structures which arise as folIows. Let S be a smooth scheme

over ~ and f: X --> S a proper and smooth mor9hism. Then

one has to replace the functors Bi by the higher direct image

functors

structures.

and obtains socalIed variations of Hodge

REMARK 3. One often finds the situation that a Hodge structure

of weight i is isomorphie to a Hodge structure coming from a

Hodge structure of weight j for some j . This is where one

has to introduce the soealled Tate-twists WB(1), WDR (1)

defined as

WDR (1) = K

and for integers m

* *HB(X) (m) = HB(X) 0W
B

(1)0ffi

* * ~mHDR(X) (rn)= HDR(X) ~<QB(1)

and the same for WDR(m)
,.
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WB (1) defines a Hodge structure of weight -2 and its Hodge

decornposition is

with H- 2 ,O = HO,-2 = 0 , hence

The cornparison isomorphism relates the algebraic de Rham

cohomology with the analytic Betti cohomology. This interplay

between analytic and algebraic leads to a transcendence problem.

CONJECTURE. Let X be a smooth proper scheme of dimension n

over K. Then the periods of X of weight i are either zero

or transcendental.

For i = 1 this conjecutre is due to Grothendieck. ([Gr]).

The following theorem solves this conjecture of Grothendieck.

THEOREM 2. Let X be a smooth proper scheme over K of

dimension n. Then the periods of weight 1 are either zero

or transcendental.

The proof of this theorem uses Theorem 1 and will be published

in the Mathematische Annalen ([Wü4]).

In many situations one can reduce the study of the periods of
,

higher weight to those of weight one.
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EXAMPLE 2. Let n = 2m + 1 ~ 3, n, m be integral and for

with integers a. > 1
].

let V (a) c JPn+r be
n - -

a complete intersection of dimension n of hypersurfaces of

degree a
1

, ••• ,a of "niveau de Hodge 1" . This means that, r

(i)

(ii)

p+q=n, lq-pl > 1

The list of possible V (a)
n - can be found in [Ra] . Then there

exists an isomorphism of polarized Hodge structures

where J(X) is the socalIed intermediate Jacobian of X

and defined as folIows. It is the cornplex torus

where

is the Hodge decornposition. Hence

One obtains then the fol~owing corollary.
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The periods of the Hodge structure n
H

B
(X) (m) are

either zero or transcendental.

EXAMPLE 3. Let X be an algebraic K3-surface over K . Then

again one associates with H~(X) (1) via the Clifford algebra

constructed from the primitive cohomolog~ and the intersection

pairing on X a certain abelian variety and again one can

apply Theorem 2.

4. VECTOR SPACES ASSOCIATED vlITH RATIONAL INTEGRALS

We consider a smooth quasiprojective variety X defined over

a number field K and having a K-rational point, and

o 1
wEH (X,S"2

X
/

K
) a holomo~phic differential form on X • We are

interested in the periods

The link between these periods and Theorem 1 is given by the

following result which generalizes a result of Serre [Se].

THEOREM 3. ([F-W]). Let be a holamorphie differen-

tial form with dw = 0 . Then there exists ~ comrnutative alge-

braic group G over K, ~ morphism ~ : X --> G and an

a. E"g * = r (G,n~)const.. g:= Lie G such that
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The proof of this theorem uses the construction of the socalIed

generalized Albanese variety. If one combines this result and

Theorem 1 one obtains the following theorem.

THEOREM 4. ([Wü4]). The numbers

are either zero or transcendental.

It is a natural question to look at vector spaces generated

by numbers

J w (y f H
1

(X ,LZ) , w € HO (X ,n~iK))
y

Since in general is not finite dimensional one has

to look at canonical finite dimensional subspaces of this

space.

Special cases of questions.of this type have been treated by

various authors (Siegel, Schneider, Baker, Coates, Masser). But

they all dealed with low dimensional algebraic groups. Til~ now

we have not been able to work out a general result on this

question depending intrinsically on the cohornology of X. But

in irnportant special cases we can give explicit results.

,
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Far this let Y be a smoath prajecitve variety and D c Y

an ample divisor bath defined aver same number field K •

Then put X = Y \ D • In this case we have a surjectian

TI
1-.-> H
DR

(Y)

by a result af Hodge and Atiyah [H-A]. Therefare we can find

a basis far
1 (up farms) from farms inHDR(Y) to exact

o 1 take therefore i. e . sub-H (X,r2X/ K) We a sectian af TI , a

space V of o 1
H (x,nX/ K) . Then we denote by V(X) the vector

space generated by

1,2ni, fw
y

Let Alb(Y) be the Albanese variety of Y. Then up to

isogeny we have

Alb(Y)

for pairwise nonisogenous simple abelian varieties A
1

, .•. ,Ak

defined over K. Then we have the following result.

THEOREM 5. ([Wü4]). We have

k (dimA.)2
dirn V = 2 + 4 L ~

i= 1 dirn (End Ai)
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One can for exarnple apply this result in the case that Y is

a Fermat curve.

EXAMPLE 4. Let X be the Ferrnat curve of degree N given by

where N 2: 3 • "Then a basis for 1
HDR(X) is given"by the

differentials (x,y affine coordinates)

Na-1 Nb-N dx (first kind)wa,b = x y

and
N-Na-1 -Nb dy (second kind)na,b = x y

where 'a and b are rational numbers satisfying 0 < a, b < 1 ,

a + b < 1 , Na ,Nb E 7l • The periods are given by numbers of the

form

J W b = c(a,b) B(a,b}a,
y

J n b = c' (a,b) B(1-a,1-b)a,y

where B(x,y) = f(x)f(y) when de"fined and c(a,b) c' (a,b) EW
f(x+y)

It is possible to decompose explicitely the Jacobian J(N) of

this Ferrnat curve and to obtain the dimension of the vector

space generated by the numbers

1,2ni , B(a,b) , B(1-a,1-b)
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for the given range of a,b. In particular one obtains the

following corollary.

COROLLARY. For rational numbers a,b with 0 < a,b < 1 ,

a + b < 1 the numbers

f(a) f(b)
1, 'JT , B(a,b) := f (a+b)

are W- linear ly independent.

B(a,b)

As an application of this Corollary to a problem of Lang let

X be a smooth projeci tve curve over <I1 of genus g > 1 . Then

the universal covering space is the open unit disc B
1

. Let

x E X (W) be a W- rational point and

a covering map with <.P 1 (0) = x • After a homothety of B1 into

B f or some r E CI: x one can get a new cover ing map
r

I _

such that <.Pr (0) = x and lPr (0) E: CO

THEOREM 6. ([W-W]). Let, f
1

be ~ torsion free'Fuchsian group

of finite index in a triangular group ß 1 c Aut B
1

. wi th signature

(p,q, s) and 0 ~ elliptic fix point of order p > 1 of ß 1 •

Then r is transcendental.
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