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1. ALGEBRAIC GROUPS AND TRANSCENDENCE

Let G be a connected algebraic group of dimension n defined
over a number field K and g = LieG its Lie algebra of
invariant derivations which has a natural structure as a K-algebra.
Then we denote by GE the Lie group obtained from G by base
extension from X to € . This is a complex Lie group and we

have an analytic homomorphism

exp gm _ Gm
from gm = g@KE .into GE
Given a Lie subalgebra I of 8, we obtain by integration a
Lie subgroup B of Gm which need not be closed. We say that
B is defined over @ if bcge,d

It is well-known that the algebraic group G is an extension

of an abelian variety A by a linear algebraic group L :
0 —> L —> G —>A — 0 .
If G is commutative then we can write L , after a base

change, as a product of a power of Ga » the additive group, and

of Gm , the multiplicative group,



Let us now consider the set B(@Q) of @- valued points on B .

Suppose that there exists an algebraic subgroup H<G with

(i) H defined over (Q ,
(ii) dimH>0
(1ii) HpcB

where Hm is the subgroup of G obtained by base change.

Then

0+ H(Q = H (@) < B, (M)

T C

so BE(E) is different from 0 . The following theorem shows that

the converse is also true.

THEOREM 1 ([W1]). B, (@ # 0 if and only if there exists an
algebraic subgroup H of G such that (i), (ii) and (iii) hold.

REMARK. Actually in [Wi1] the theorem is only proved for G
commutative but it is not difficult to extend the proof also to

the noncommutative case.

Theorem 1 has a very straight forward corocllary which proves an
0ld conjecture of Waldschmidt and is also of some independent

interest.

COROLLARY 1 ([Wi2]). Let hg;gm be a Lie subalgebra of g,

generated over § by algebraic tangent vectors b , i.e.




bEexp_1(G(E)) , and I the smallest Lie subalgebra defined

over @ containing h . Then h is the Lie algebra of an

algebraic subgroup defined over Q

Theorem 1 is actually a transcendence statement as one can see
very easily. A striking example is Baker's theorem in its non-

effective version. For this let Qyreeo sy be non-zero algebraic

numbers.
COROLLARY 2 ([Ba]). If B,loga,+...+B loga =0 for algebraic
numbers 81""'Bn not all zero then there exist rational inte-

gers b‘l""-’-bn not all zero such that

b1 logc::1+...+bnlogan =0 .

n

PROOF. Let G = G n

Then 8¢ = C and

Z Z :
. _ 1 n
exp : z = (21,...,zn)€g_ml—>(e yee.g€ )EG(I:

Now let h be the Lie subalgebra generated by the tangent vector

a = (loga1,...,logan)
Then exp(a) = (a1,...,an) is algebraic. The dimension of &
is strictly less than n since 8121 + ..+ ann = (0 defines a

proper Lie subalgebra containing &k

Corollary 1 implies now that & is algebraic and therefore the
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Lie algebra of an algebraic subgroup H of G of codimension
at least one. But it is well-known that algebraic subgroups H
of GE are defined in Lie(ﬁg by linear forms with integral

coefficients. Hence there exists such a linear form

not identicélly zero, which vanishes on &I hence on a . This

proves the corollary.

2. SKETCH OF THE PROOF OF THEOREM 1

The proof of Theorem 1 is done by transcendence arguments and

is an interplay between analytic, arithmetic and algebraic argu-
ments. We divide it in a natural way into a number of steps. In

~order to be able to give references and to avoid technical com-

plications we restrict ourselves to the case that G is

commutative.

STEP 1. We first embed G into some projective space EN . For

this we write G as an extension of an abelian variety A by a
product of a torus G; and a unipotent group which we assume

to be of the form GZ :

0 —> ka GR —> G —> A —> (0
m a
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Then we compactify G and obtain a homogeneous space G on
which G acts. This is described in all details in [F-W] ,
which is based on ideas of Serre. G now is embedded into a

projective space PN for some N
¢ <5 g =2, pN

This gives us then the analytic functions we need for the

analytic part of the proof. They are by

f=9poioexp : o s LieGG: ——>]PN .

These functions have order of growth at most 2. Furthermore

if £ = (fo,...,fN) then the functions
fi
g, = == (L =1,...,N)
i fO

satisfy a system of differential equations,

d _
52 gj = hij(g1,...,gN)
1

with polynomials hij(T1,...,_’I‘N

These polynomials have coefficients in Q@

) for 12isn and 15jsSN

STEP 2. Let Lqreserly be coordinates on h==¢b and

9 ;) . . . .
~— 1 --+ 1 7>— the corresponding derivations in h=~g, . Let
3L, Bab . T



g€ G(T) be a complex point with X (g) # 0 and VcG a
complete algebraic subset; UEIIE'N (not necessarily reduced)
the open set defined by X, # 0 and V' = VvNU . Suppose that
g€ vVv(C) . Then we say that g 1is a point of multiplicity at

least T on V along B if for all FE€I(V') ,

X, X iy
F=F——,...,~—M , and all v = (Y, ,--.,Y.) Eexp (g)
XO XO 1 n

T T
(_a_)1 (_a_*_ bF'°‘0°i°expw y.) =0
3;1 a0 ac .l'o--'

b n
for all O§T1,...,Tb such that

For simplicity we shall further assume that b = n-1 . Assume
now that g # 0 is in By (@) and again for simplicity that g
is not a torsion point. We choose the coordinates XO,.. "XN
such that Xo(sg) # 0 for all s €N . Then one constructs by
the socalled Siegel Lemma for a certain triple of positive real
numbers S,T,D »>>1 such that
D" 5> STn_1
a hypersurface X on G of degree at most D that vanishes

on the set {sg,0<s< S} to order at least ‘T along B

STEP 3. By the socalled Schwarz Lemma one shows next that for

r

certain real numbers S',T' with



—

S'T'n“1 >> Dn

the hypersurface constructed in Step 2 vanishes on the set

{sg,0£s<8'} to order at least T' .

STEP 4. The vanishing statement in Step 3 can be transformed
into a statement in linear algebra. It means that the coeffi-
cients of the defining equation of X have to satisfy a system

of

1 —_ —
s! (T Ai? 1) >>S'T'n !

linear equations and the condition S'T'n—1>>DI1

just means

that the number of equations is much larger than the number of
coefficients which is about D" . In order to get a contradiction
one hopes that the system has maximal rank which would imply

that all coefficients are zero; in other words X = G which
contradicts the definition of a hypersurface. Hence the system
can not have maximal rank. By means of some complicated
machinery, the socalled "multiplicity estimates on group
varieties'

" developed in [Ma-Wi1], [Ma-Wii2] and [Wii3], this

statement is translated into statements on the group generated

. by g and the analytic subgroup B . The results in [Wi3] imply

that the analytic subgroup B is degenerate in a certain
sense; more precisely they say that B contains an algebraic
subgroup H such that (i) - (iii) hold. This completes the

4

sketch of the proof of Theorem 1.



3. HODGE THEORY

Let X be a smooth proper variety of dimension n over an
algebraic number field K . Then there are various ways for

associating with X cohomology theories.

The first one is the singular cohomology. For this let

gt K-—> { be an embedding and define

via this embedding. Then XE is a complex manifold and its

singular cohomology Hl(XE,%) is defined and one puts
. i . .
Hg (X) 1= B (Xp,@) := Hl(Xﬂ:,%)afn (1=0,1,...) ,

the socalled Betti-cohomology.

The de Rham cohomclogy is defined as follows. Let Q;/K

be the sheaf of algebraic differential i-forms. One obtains

(i=0,1,...)

the complex

x o dy gl 4l g2 4

Q
Then the algebraic de Rham cohomology 'is defined to be

*
DR(

*

*
X} :=H (x,QX/K)

H



*
X/K’
as follows. Let

*
where H (X,Q is the hypercohomology defined in turn

* * ok

QX/K —> ]

*
be a resolution of QK/K by sheaves of injecitve Ox—modules.

*
Take its associated simple complex K ' defined as

Kl - ® Ja,b
at+b=i
Then
* Q* * I" K*
:IH (Xl X/K) := H (Xr (X: ))
* .
Then there is the Hodge-cohomology HHodge(X) defined as
HE gee ) 1= @ HAX,QY ) (1=0,1,...)
g a+b=i
* *
The two cohomologies HDR(X) and HHodge(X) are related by
the usual spectral sequence
a,b _ b a . a+b
E1 = H (X,QX/K) =D HDR (X)

and defines a filtration on HDR(X) » the Hodge filtration.

Now a well-known result says that

* ~ oy *
H (X,C) —> HDR(X) ®KE



- 10 -

Using this isomorphism one defines the periods as follows:

Let

1 Ny i
el . .,e Y e.ntxz (i=0,1,...)

be a basis of Hl(X,E) and €qreser8y the dual basis in
i
Hi(X,Z) . Furthermore let
w w € Hi (X) (1=0,1 )
1'...’Ni DR - ’ F 2L
be a basis for H (X) . Then
DR
N,
& )
wk - lz‘l wk,ge (k“1,ccorNi) .

The coefficients W, o are called the periods (of weight 1 )
and can be expressed in the usual way; namely by integrating

Wy along erlEHi(X,%) one finds

N. N,
f ] et = § S
w = w . e = w = W .
S e, ol kot fr,e T %k

So the complex numbers w are indeed what are claséically

k,2
known to be periods.

The vector spaces Hl(X,E) carry a socalled Hodge structure,

i.e. they admit a canonical decomposition



b (x,c) = @ n3'P
atb=i
such that Ha’b - pPr2 They are said to be of weight i .

EXAMPLE 1: We consider an elliptic curve

2 3
E : y~ = 4x ~gyX = J3 s g2,g362K

Then EE is the complex torus &/L for a lattice L of rank 2

that generates T over the reals. Hence

H1(X,%) = ZY1 @ %Yz .

The de Rham cohomology is obtained as follows. Let

Then w is a differential of the first and n one of the

second kind. They generate HéR(E) over K . The first one

1
E/K

second one has two poles without residues. The periods are

is everywhere holomorphic and therefore in HO(E,Q ) . The

(.Ui=fw ) ni=In (i=1I2) 4
Yi Yi

and L can be taken to be the lattice generated by W, and

wWo



REMARK 1, It is not necessary to restrict ourselves to proper
schemes. If X 1s arbitrary the theory of "logarithmic
differentials" leads also to an analogous theory which includes

differentials of the third kind.

REMARK 2. Everything extends to socalled variations of Hodge
structures which arise as follows. Let S be a smooth scheme
over € and f : X —> S a proper and smooth morphism. Then
one has to replace the functors Hi by the higher direct image
functors Rif* and obtains socalled variations of Hodge

structures.

REMARK 3. One often finds the situation that a Hodge structure
of weight 1 1is isomorphic to a Hodge structure coming from a
Hodge structure of weight Jj for some j . This is where one

has to introduce the socalled Tate-twists mB(1)',m (1)

DR
defined as

WB(1) = ZN%Q ' (1) = K

QDR

and for integers m

* L ®m
HB(X) (m) = HB(X) ®(DB(1) ’
* Lk ®
HDR(X) (m) = HDR(X) @(DB(H
and writes QB(m) = (DB(H®m ; and the same for mDR(m) .

r



QB(1) defines a Hodge structure of weight -2 and its Hodge

decomposition is

an(1)®ct=H'2'0eH' o H

The comparison isomorphism relates the algebraic de Rham
cohomology with the analytic Betti cohomology. This interplay

between analytic and algebraic leads to a transcendence problem.

CONJECTURE. Let X be a smooth proper scheme of dimension n

over K . Then the periods of X of weight i are either zero

or transcendental.

For i = 1 this conjecutre is due to Crothendieck ([Gr]).

The following theorem solves this conjeéture of Grothendieck.

THEQOREM 2. Let X be a smooth proper scheme over K of

dimension n . Then the periods of weight 1 are either zero

or transcendental.

The proof of this theorem uses Theorem 1 and will be published

in the Mathematische Annalen ([Wi4]).

In many situations one can reduce the study of the periods of

higher weight to those of weight one.



EXAMPLE 2. Let n = 2m+ 12 3,n,m be integral and for
a = (a1,...,ar) with integers a, > 1 let Vn(g)gIPn+r be
a complete intersection of dimension n of hypersurfaces of

degree Aqreessay of "niveau de Hodge 1" . This means that

(i) Hq(X,Q§'>=O for p+g=n, |g-p|>1 ,

The list of possible V (a) can be found in [Ra] . Then there

exists an isomorphism of polarized Hodge structures

~

n 1
a : Hp(X) (m) —> Hy(J(X))

where J({X) is the socalled intermediate Jacobian of X

and defined as follows. It is the complex torus

J(x) = 8™x,2) \u"(x,) /E0t1m

where

m+1,m m,m+1

1 (x,C) = H ® H

is the Hodge decomposition. Hence

m,m+1

J(X) = H / Y (X,Z) .

One obtains then the following corollary.



CORQLLARY. The periods of the Hodge structure HE(X) (m} are

either zero or transcendental.

EXAMPLE 3. Let X be an algebraic K3-surface over K . Then

again one associates with Hg(x)(1) via the Clifford algebra

constructed from the primitive cohomology and the intersection
pairing on X a certain abelian variety and again one can

apply Theorem 2.

4. VECTOR SPACES ASSOCIATED WITH RATIONAL INTEGRALS

We consider a smooth quasiprojective variety X defined over

a number field XK and having a K-rational point, and

1

0

) & holomorphic differential form on X . We are

interested in the periods

J'UJ ’ YEH-I(XIE)
Y

The link between these periods and Theorem 1 is given by the

following result which generalizes a result of Serre [Se].

THEOREM 3. ([F-W]). Let wc€E F(X,Q;) be a holomorphic differen-

tial form with dw = 0 . Then there exists a commutative alge-

braic group G over K , a morphism ¢ : X —> G and an

*
aEn = 1_‘(G’Qé)const._“ g :

t

Lie G , such that

r



The proof of this theorem uses the construction of the socalled
generalized Albanese variety. If one combines this result and

Theorem 1 one obtains the following theorem.

THEOREM 4. ([Wii4]). The numbers

[ w (y € H, (X,2Z))
Y

are either zero or transcendental.

It is a natural question to look at vector spaces generated

by numbers

1

X/K”

0
Jw (y €H,(X,Z) ,w€H (X,0
Y
Since in general HO(X,Q;/K) is not finite dimensional one has
to look at canonical finite dimensional subspaces of this

space.

Special cases of questions.of this type have been treated by
various authors (Siegel, Schneider, Baker, Coates, Masser). But
they all dealed with low dimensional algebraic groups. Till now
we have not been able to work out a general result on this
question depending intrinsically on the cohomology of X . But
in important special cases we can give explicit results.

I3



For this let Y be a smooth projecitve variety and Dg<c¥Y
an ample divisor both defined over some number field K

Then put X = Y\ D . In this case we have a surjection

1 1

0
m : H (X,QX/K) —> H__({Y)

DR

by a result of Hodge and Atiyah [H-A]. Therefore we can find

a basis for H

HO(X,Q;/K) . We take therefore a section of m , i.e. a sub-

1)
X/K

gR(Y) {(up to exact forms) from forms in
space V of HO(X,Q Then we denote by V{(X}) the vector

space generated by

1,271, Jw (yE€ H1{X,%) , WE V)
Y

Let Alb(Y) be the Albanese variety of Y . Then up to

isogeny we have
n
Alb(Y) = A L S XAk

for pairwise nonisogenous simple abelian varieties A JA

1’--- k

defined over K . Then we have the following result.

THEQOREM 5. ([w{i4]). We have

k (dhnA.F
i

dimV =2 +4 Jim(ERd &)

i=1



One can for example apply this result in the case that Y is

a Fermat curve.

EXAMPLE 4. Let X be the Fermat curve of degree N given by

N N N
XO+N1+N2—0
1

where N23 . . Then a basis for HDR(X) is given by the

differentials (x,y affine coordinates)

w = xNa—1 be_N dx (first kind)
a,b

and

= xNa=T =Nb 4 (second kind)

where 'a and b are rational numbers satisfying O<a,b<1 ,
a+b<1 , Na,Nb€Z . The periods are given by numbers of the

form

w cla,b) B(a,b)

a,b

J
Y .
Yf Na.p = c'(a,b) B(i-a,1-b)

where B(x,y) = ﬂ}:ﬁj}g ) when defined and c(a,b) ,c'{(a,b) €Q.
It is possible to decompose explicitely the Jacobian J(N) of
this Fermat curve and to obtain the dimension of the vector

~space generated by the numbers

t,2mi , B(a,b) , B{1-a,1-b)



for the given range of a,b . In particular one obtains the

following corollary.

COROLLARY. For rational numbers a,b with 0<a,b<1 ,

a+b<1 the numbers

_ T'(a) T(b) T
T.m.B(a,b) = 557 * B(a,D)

are @ - linearly independent.

As an application of this Corollary to a problem of Lapg let

X be a smooth projecitve curve over @ of genus g>.1 . Then
the universal covering space is the open unit disc B1 . Let

X € X(Q) be a @-rational point and

@1 : B1 > XE
a covering map with m1(0) = x . After a homothety of B1 into
Br for some r€C" one can get a new covering map
©. Br —> Xp
such that wr(O) = x and wr(O)EI@
THEQREM 6. ([W-W]). Let F1 be a torsion free Fuchsian group

of finite index i

a triangqular group A, cAutB, with signature

1 1

(p,q,s) and 0 an elliptic fix point of order p>1 of by -

Then r 1s transcendental.

r



[Ba]

[F-W]

[Gr]
[H-A]
[Ma-Wii1]
[Ma-Wii2]
[Ra]
[Se]

[W-W]
[wWii1]
[wii2]

[Wii3]

[Wii4 ]

REFERENCES

A. Baker, Linear forms in logarithms of algebraic numbers I,
Mathematika 13 (1966), 204-216.

G. Faltings, G. Wistholz, Einbettungen kommutativer algebraischer
Gruppen und einige ihrer Eigenschaften, Journ. reine u. angew.
Math. 354 (1984), 175-205.

A. Grothendieck, On the de Rham cohomology of algebraic varieties,
Publ. Math. IHES 29 (1966), 95-103.

Ww.v.D, Hodge; M.F. Atiyah, 1Integrals of the second kind on an
algebraic variety, Ann. Math. 62 (1955), 56-91.

D.W. Massen, G. Wilstholz, Zero estimates on group varieties I,
Inv. math. 64 (1981), 489-516.

D.W. Massen, G. Wistholz, Zero estimates on group varieties II,
Inv. math. 80 (1985), 233-267.

M. Rappopornt, Complément a l'article de P. Deligne «La conjecture
de Weil pour les surfaces K3 », Inv. math. 15 (1972), 227-236.

J.-P. Serne, Groupes algébriques et corps de classes, Hermann,
Paris (1959).

J. Wolfant, G. WistholLz, Der Uberlagerungsradius gewisser
algebraischer Kurven und die Werte der Betafunktion an rationalen
Stellen, Math. Ann. 273 (1985), 1-15.

G. Wisthofz, Algebraische Punkte auf analytischen Untergruppen
algebraischer Gruppen, to appear in Annals of Math. :

G. Wistholz, Some remarks on a conjecture of Waldschmidt, in
"Approximations diophantiennes et nombres transcendants', Progr.
in Math. 31, Birkhduser (1983), 329-336.

G. Wisthofz, Multiplicity estimates on group varieties, to
appear in Annals of Math.

G. Wistholz, Periods of rational integrals, to appear in
Math., Ann.



