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IRREDUCIBILITY OF SOME ORTHOGONAL
POLYNOMIALS

SH. AKHTARI AND N. SARADHA

Abstract. We give an explicit upper bound for the degree of
reducible generalized Hermite-Laguerre polynomials in some par-
ticular cases.

1. Introduction

For any integer n ≥ 1, we denote by P (n)− the greatest prime factor
of n with P (1) = 1; ω(n)− the number of distinct prime divisors of n
with ω(1) = 0;π(n)− the number of primes ≤ n with π(1) = 0. Let
u ≥ −1, v > 0, m > 0 be integers with gcd(u, v) = 1. Let aj ∈ Z and
bj ∈ Z for 0 ≤ j ≤ m. We consider

(1) f(x) = f(x, u, v) =
m∑
j=0

(vm+ u) . . . (v(j + 1) + u)xj

and

(2) g(x) = g(x, u, v, {aj}) =
m∑
j=0

aj(vm+ u) . . . (v(j + 1) + u)xj.

Two special families of orthogonal polynomials are Hermite and La-
guerre polynomials denoted by Hm(x) and Lm(x). These are related
to g(x) as follows:

H2m(x) = g

(
x2,−1, 2,

{(
m

j

)
2j
})

,

H2m+1(x) = xg

(
x2, 1, 2,

{(
m

j

)
2j
})

,

Lm(x) = g

(
x, 0, 1,

{(
m

j

)
j!

})
,

2000 Mathematics Subject Classification. Primary 12D05, Secondary 12E05.
Key words and phrases. Irreducibility, Newton Polygons, Hermite-Laguerre

Polynomials, Thue Equations, Pell’s Equations.
1



2 SH. AKHTARI AND N. SARADHA

(3) L∗m(x) = g

(
x, u, v,

{(
m

j

)
j!

})
, u ≥ 0,

the last being called generalized Laguerre polynomial. Thus we see
that irreducibility questions concerning these classical polynomials can
be answered by considering the polynomial g(x). Note that f(x) is
a special case of g(x) with a0 = · · · = am = 1. As it turns out, (see
Lemma 2.1 below), information on factors of g(x) can be obtained from
the factors of f(x). Schur [16, 17] proved the irreducibility of some of
these polynomials using algebraic tools. Following a paper by Coleman
[4], Newton polygons became an integral part of the method to study
the irreducibility of these polynomials as shown by Filaseta and his
co-authors, see [1, 2, 8, 9] to cite a few. Another important tool used
is results on greatest prime factor of

∆k = ∆k(u, v) = (vm+ u) . . . (v(k + 1) + u) .

This has been extensively studied and applied in a sequence of papers
recently, for example see [11, 12, 13, 18]. In particular, these papers
address the question of large factors of g(x).

In [10], Filaseta and Lam showed that for all but finitely many posi-
tive integers m, the polynomial L∗m(x) is irreducible over the rationals.
Our aim in this paper is to make the result explicit, i.e., to give an
explicit lower bound for m in some particular cases. We say that a
polynomial of degree m is almost irreducible if it may be written as a
linear factor times an irreducible polynomial of degree m− 1.

Theorem 1.1. The polynomial g(x) with |a0| = |am| = 1 and v ∈
{1, 2, 4} is almost irreducible for all m ≥ m0 where

(4) m0 = exp{10(vµ+ u)2(1.65)(vµ+u)}

with

µ =

{
u if v = 1, 2

max(600, 10u) if v = 4.

Further the number of integers m for which g(x) may fail to be almost
irreducible is at most

(5) n0 = 2(vµ+ u)2π(vµ+u) + θ,

where

θ =

 11 if v = 1
1 if v = 2
0 if v = 4.
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In the next theorem, we restrict to aj =
(
m
j

)
bj, i.e., the case of

generalized Hermite-Laguerre polynomials. Here linear factors can also
be included. We show

Theorem 1.2. The polynomial g(x) with aj =
(
m
j

)
bj for 0 ≤ j ≤

m, |b0| = |bm| = 1 and v ∈ {1, 2, 4} is irreducible for all m ≥ m0 and
the number of m for which it fails to be irreducible is at most n0, where
m0 and n0 are as given in (4) and (5).

In the case v = 3, we are able to give only ineffective result as follows.

Theorem 1.3. The polynomial g(x) with |a0| = |am| = 1 and v = 3 is
almost irreducible except for n1 number of values of m where

n1 = 8× 5π(3µ1+u)

with
µ1 = max(500, 4u).

Similar assertion is true for irreducible generalized Hermite-Laguerre
polynomials.

Remark 1. The particular cases v = 1, u ≤ 30; v = 2, u < 29, u odd;
v = 3, u = 1, 2 and v = 4, u = 1, 3 have been treated in [18, 11, 12] and
[13], respectively.

The following theorem is on small factors of g(x) for arbitrary u and
v.

Theorem 1.4. Let 2 ≤ k ≤ m
e2.5(v+1) . Let α = max(e2.5(v+1), u). Then

g(x) with |a0| = |am| = 1 has no factor of degree k except perhaps for

(6) M = 2× (3ω(v) + 1)5π(vα+v)

number of values of m. This assertion is true for 1 = k in the case of
generalized Hermite-Laguerre polynomials.

Apart from the usage of Newton polygon, the proof in [10] depends
on three ingredients, viz.,

• (i) Prime Number Theorem for Arithmetic Progressions.
• (ii) A combinatorial argument due to Erdős.
• (iii) Finiteness of the number of solutions to Thue equations.

Explicit results in (i) are known only for restricted values of v, by
the works of Ramaré & Rumley [15] and Dusart [5, 6]. The second
ingredient (ii) works well when the degree k of a factor of g(x) is large
compared to u and v. A Theorem of Evertse [7] gives an upper bound
for the number of solutions of Thue equations. Although effective meth-
ods are known for finding the solutions of Thue equations, they give
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generally very large bounds which are complicated for explicit compu-
tations.

Let v ∈ {1, 2, 4}. A lower bound δ(u) for k in terms of u is obtained
in Lemmas 4.1 and 4.2. Then we consider k ≤ δ(u). We resort to Pell’s
equations of the form

X2 −DY 2 = E

and we need to find solutions in (X, Y ) where both X and Y belong to
a set of integers composed of primes from a given set. In 1960, Cassels
[3] had shown that these solutions can be obtained in a finite number of
steps. In 1962, Lehmer [14] considered the particular cases E = 1 and 4
in connection with a problem of Störmer. Using divisibility properties
of Lucas sequences he showed that all the required solutions can be
obtained in finite number of steps and further these solutions can be
explicitly bounded from the bounds for the fundamental solution. Thus
for v = 1, 2, 4 we get explicit results as given in Theorems 1.1 and 1.2.

2. Lemmas

Lemmas based on Newton polygons

We begin with the following useful lemma from [8].

Lemma 2.1. Let k and l be integers with k > l ≥ 0. Suppose F (x) =∑m
j=0 fjx

j ∈ Z[x] and p is a prime such that p - fm, p|fj for all j ∈
{0, 1, . . . ,m − l − 1}, and the right most edge of the Newton polygon
for F (x) with respect to p has slope less than 1

k
. Then for any integers

g0, g1, . . . , gm with |g0| = |gm| = 1, the polynomial G(x) =
∑m

j=0 fjgjx
j

cannot have a factor with degree in the interval [l + 1, k]. In fact, the
assertion is even true if only p does not divide g0gm.

Remark 2. Let

(7) ∆j = (vm+ u) · · · (v(j + 1) + u).

By Lemma 2.1, it is enough to study factors of f(x) =
∑m

j=0 ∆jx
j

given by (1) in order to know the factors of (2). Further we can restrict
to factors of degree k with 1 ≤ k ≤ m

2
. We shall always assume this

restriction on a generic factor of degree k for f(x) without any mention.
The following lemma is an application of Lemma 2.1.

Lemma 2.2. Suppose there exists a prime p > vk + u such that p
divides ∆m−k. Then f(x) has no factor of degree k.



IRREDUCIBILITY OF SOME ORTHOGONAL POLYNOMIALS 5

Proof. Let νp(n) denote the order of p in any positive integer n. The
last slope of the Newton polygon of f(x) with respect to p equals

(8) L = max
1≤j≤m

νp(∆0)− νp(∆j)

j
.

Suppose

(9) L <
1

k
.

Since p|∆m−k, we see that p|∆j for 0 ≤ j ≤ m − k. Then by (9) and
Lemma 2.1 with l + 1 = k, we see that f(x) has no factor of degree
k, by taking F (x) = f(x) and gj = 1 for 0 ≤ j ≤ m. Now we show
inequality (9). If 1 ≤ j < k, then νp ((u+ v) . . . (u+ vj)) = 0. Hence

vp(∆0)− νp(∆j)

j
= 0 <

1

k
.

Now suppose j ≥ k. We observe that

νp(∆0)− νp(∆j)

j
=

νp ((u+ v) . . . (u+ vj))

j

≤ νp((u+ vj)!)

j

<
u+ vj

j(p− 1)
≤ u+ vj

j(u+ vk)
≤ 1

k
.

This completes the proof of the lemma. �

A lemma on estimates

Lemma 2.3. We have

(i) π(n) ≤ n

log n

(
1 +

1.2762

log n

)
, for n > 1,

(ii)
∏
p≤x

p ≤ (2.72)x,

(iii) νp(k!) ≥ k − p
p− 1

− log(k − 1)

log p
, for k > 1 and p ≤ k,

(iv) k! <
√

(2πk)e−kkke
1

12k , for k > 1.

The first estimate (i) and (ii) are due to Dusart [5, 6] and (iii) is
a classical result due to Legendre. The estimate (iv) is obtained from
the well known Stirling’s approximation.

Lemmas based on a method of Erdős
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The following lemma is fundamental in finding large prime factors
of ∆m−k. This is available in various forms in many of the papers on
this problem mentioned in References. From the proof of Lemma 4 in
[11] the following lemma can be easily derived. Let πv(n) denote the
number of primes not exceeding n and co-prime to v.

Lemma 2.4. Let k ≥ 2, c0 > 1, c1 > 0 and k − πv(c0k) ≥ 1. Let

Λ = n(n+ v) . . . (n+ (k − 1)v)

with gcd(n, v) = 1 and n ≥ c1kv and P (Λ) ≤ c0k. Then

(10) (c1vk)k−πv(c0k) ≤ (k − 1)!
∏
p|v

p−νp((k−1)!).

Now we apply the estimates in Lemma 2.3 together with Lemma 2.4
to derive the following result.

Corollary 2.5. Let k ≥ 2, c0 > 1, c1 > 0. Suppose p is a prime
dividing v and p < c0k. Assume that k − πp(c0k) ≥ 1 and n ≥ c1kv. If
P (Λ) ≤ c0k, then(

1

p− 1
− p+ 1

k(p− 1)

)
log p ≤

(
1 +

1.2762

log k

)
c0−

(
1− c0

log k
− 1.2762c0

(log k)2

)
log c1.

Proof. Since the conditions of Lemma 2.3 are satisfied and πv(c0k) ≤
π(c0k)− 1 we get by (10) and Lemma 2.3(iii) that

(k − π(c0k)) log(c1k) ≤ (k − π(c0k)) log(c1vk)

≤ (k − 1) log k −
(
k − 1− p
p− 1

− log(k − 2)

log p

)
log p

≤ k log k −
(

k

p− 1
− p+ 1

p− 1

)
log p.

Now we apply Lemma 2.3(i), to get

(log p)

(
k

p− 1
− p+ 1

p− 1

)
≤ π(c0k) log k − (k − π(c0k)) log c1

≤ c0k

(
1 +

1.2762

log k

)
− k

(
1− c0

log k
− 1.2762c0

(log k)2

)
log c1.

Dividing by k, we get the inequality in the corollary. �

Let c0 and c1 be fixed. It is easy to see that the function on the right
hand side of the inequality in Corollary 2.5 is a decreasing function of
k while the left hand side is an increasing function of k. Thus if for
some value of k = k0, the right hand side function becomes ≤ 0, while
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the left hand side function is > 0, then we get a contradiction for all
k ≥ k0. Then we conclude that

P (Λ) > c0k for k ≥ k0.

Now we set c0 = v+ 1 and c1 = e2.4(v+1). Let k = k0 = e2.5(v+1). We see
that for v ≥ 2 the right hand side expression does not exceed

(1.171)(v + 1)− (1.27)(v + 1) = −(.9)(v + 1) < 0

and the left hand side remains positive since p|v. Thus for the chosen
values of c0 and c1, we have P (Λ) > c0k for k ≥ k0. Let us now consider
∆m−k. The smallest term of this product is

u+ (m− k + 1)v.

This exceeds c1kv = e2.4(v+1)kv provided

m− k + 1 > e2.4(v+1)k.

It suffices that
m > e2.5(v+1)k.

From the above discussion we conclude the following proposition.

Proposition 2.6. Letm > e2.5(v+1)k ≥ e2.5(v+1) max(e2.5(v+1), u). Then

P (∆m−k) > vk + u.

Remark 3. In [10], c1 is taken as (log k)2 for large k and hence
m > k(log k)2. In the above proposition this condition is weakened to
m > e2.5(v+1)k.

For application to small values of v, we need a more precise version
of Corollary 2.5. We use the inequality (iv) of Lemma 2.3 in (10) to
get the following result. As the derivation is similar to Corollary 2.5,
we omit the proof.

Corollary 2.7. Let k ≥ 2, c0 > 1, c1 > 0. Suppose p is a prime
dividing v and p < c0k. Assume that k − πp(c0k) ≥ 1 and n ≥ c1kv. If
P (Λ) ≤ c0k, then

log
(
c1vep

1
p−1

)
≤

c0

(
1 +

1.2762

log c0k

)(
log c1vk

log c0k

)
+

1

k

(
1 +

1

2
log 2π +

1

12(k − 1)
+
p+ 1

p− 1
log p

)
.

A Theorem of Evertse

A result due to Evertse [7] gives an upper bound for the number of
solutions of Thue equations. The following lemma is a particular case
of his result for cubic Thue equations.
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Lemma 2.8. Let ∣∣Nx3 −My3
∣∣ = v

with N and M given positive integers. Then the above equation has at
most

4× 3ω(v) + 3

solutions in positive integers (x, y).

3. Proof of Theorem 1.4

By Proposition 2.6 and Lemma 2.2, we conclude that f(x) has no
factor of degree k ≥ α, where α = max(e2.5(v+1), u). Let us now con-
sider the case 2 ≤ k < α. We take

∆2 = (mv + u) ((m− 1)v + u) .

We may assume by Lemma 2.2 that

P (∆2) ≤ vk + u < vα + u =: β.

Let 2 = p1 < p2 < . . . < pπ(β) be the sequence of all the primes ≤ β.
Then

(11) mv + u = pa11 . . . p
aπ(β)
π(β) and (m− 1)v + u = pb11 . . . p

bπ(β)
π(β) ,

with ai ≥ 0, bi ≥ 0 for 1 ≤ i ≤ π(β). Since gcd(u, v) = 1, these
two integers have no common factors. We reduce the powers ai and bi
modulo 3. Then we get a cubic equation

(12)
∣∣Ax3 −By3∣∣ = v

with gcd(Ax3, By3) = 1. For any prime p ≤ pπ(β), we have (νp(A), νp(B)) ∈
{(0, 0), (1, 0), (2, 0), (0, 1), (0, 2)}. Thus totally we have 5π(β) choices for
A and B. Since we consider only absolute value on the left hand side
of (12), we get (5π(β)−1)/2 number of distinct cubic equations in (12).
Now by Lemma 2.8, equation (12) has at most 4 × 3ω(v) + 3 solutions
in (x, y). Thus the number of m for which (11) holds is at most(

4× 3ω(v) + 3
) (

5π(vα+u) − 1
)
/2 < 2(3ω(v) + 1)5π(vα+u).

This proves the first assertion of Theorem 1.4. �

A lemma on Generalized Laguerre polynomials

We include possible linear factors of g(x) with aj =
(
m
j

)
bj. For this

we need the following lemma.

Lemma 3.1. Let k ≥ 1. Suppose there exists a prime p > vk + u
dividing m. Then g(x) with aj =

(
m
j

)
bj has no factor of degree k.
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Proof. Consider(
m

j

)
=

(j + 1) . . .m

(m− j)!
, 0 ≤ j ≤ m− 1.

Hence p|
(
m
j

)
if m− j ≤ p− 1, i.e., if j ≥ m− p+ 1. Now

∆j = (vm+ u) . . . (v(j + 1) + u) .

Since this is a product of m − j terms in arithmetic progression with
gcd(v, u) = 1, it is divisible by p if m− j ≥ p, i.e., if j ≤ m− p. Thus

p |
(
m

j

)
∆j for 0 ≤ j ≤ m− 1.

Now we follow the proof of Lemma 2.2, to get the assertion of the
lemma. �

Proof of the second assertion of Theorem 1.4. By Lemma 2.1,
it is enough to consider g(x) with aj =

(
m
j

)
. By Proposition 2.6,

Lemma 2.2, we conclude that g(x) has no factor of degree k ≥ α where
α = max(e2.5(v+1), u). So we assume that 1 ≤ k < α. We take

am−1∆1 = m(mv + u).

By Lemmas 2.2 and 3.1, we may assume that

P (am−1∆1) ≤ vk + u < vα + u = β.

Now we follow the argument in the proof of the first assertion of The-
orem 1.4 to get the second assertion. �

4. The cases of v ∈ {1, 2, 3, 4}

The generalized Hermite-Laguerre polynomials for small values of v
has been dealt with considerably in the papers [11, 12, 13] and [18].
For the purpose of this paper we use Theorem 1.1 of [18] when v = 1
and Theorem 2 of [13] when v = 2. We state the results as a lemma
below in our notation. For the cases v = 3 and 4, a similar result is
not given explicitly in [12] and [13]. So we state this case in Lemma
4.2 and give the necessary details.

Lemmas for large k

Lemma 4.1.

(i) Let v = 1. Suppose k ≥ 2 and 0 ≤ u ≤ 3
2
k. If g(x) has a

factor of degree k, then

(m, k, u) ∈ {(6, 2, 3), (7, 2, 2), (7, 2, 3), (7, 3, 3), (8, 2, 1),

(8, 3, 2), (12, 3, 4), (13, 2, 3), (22, 2, 3), (46, 3, 4), (78, 2, 3)}.
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(ii) Let v = 2, k ≥ 1, 0 ≤ u ≤ k and a0an ∈ {±2t : t ≥ 0, t ∈
Z}. Then g(x) is irreducible for u 6= 1 and when u = 1 it is
almost irreducible.

Lemma 4.2. Let v = 3, 4. Suppose

k ≥

{
max(500, 4u) if v = 3

max(600, 10u) if v = 4.

Then g(x) cannot have a factor of degree k.

Proof. Let v = 3. Assume that k ≥ max(500, 4u). Suppose further we
have the smallest term of ∆m−k viz., X := (m−k+1)v+u ≤ 10.6×3k
and X ≥ 6450. Then from Corollary 2.3 [13] we get

P (∆m−k) > vk + u.

Note that the proof of this part depends on the explicit bounds from the
results on primes in arithmetic progression when the common difference
is 3. Now we assume that X > 10.6× 3k. We apply Corollary 2.7 with
c0 = 3.25 and c1 = 10.6, p = 3 to find that the inequality in the
corollary is not valid. This means that P (∆m−k) > vk + u in this case
also. Lastly we consider 3.25k < X < 6450. Then 500 ≤ k ≤ 1984.
We directly check that in this range P (∆m−k) > vk+u. Now we apply
Lemma 2.2 to get the assertion of the lemma.

Let v = 4. Assume that k ≥ max(600, 10u). Suppose further we have
X = (m− k + 1)v + u ≤ 138× 4k. Then using Corollaries 4.5 and 4.3
of [12] we get

P (∆m−k) ≥ vk + u.

The proof of this part uses results on primes in arithmetic progression
when the common difference is 4. Now we assume that X > 138× 4k.
We apply Corollary 2.7 with c0 = 4.1 and c1 = 138, p = 2 to find that
the inequality in the corollary is not valid. This means that P (∆m−k) >
vk+ u in this case also. Now we apply Lemma 2.2 to get the assertion
of the lemma. �

Lemma of Lehmer

In order to make the small cases v ∈ {1, 2, 4}, effective, we avoid
cubic Thue equations as done in the proof of Theorem 1.4. We use
results of Lehmer on the problem of finding all pairs (s, s + v) both
belonging to a given set. We refer to Theorems 4, 5, 7, 8 and 9 of [14]
for the following lemma.

Lemma 4.3. Let Nd(t) be the number of pairs of integers (S, S + d)
whose product has its prime factors restricted to a given set of t primes
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q1 < . . . < qt and let Ld(t) be the largest S for which such a product
exists. Further let

M = max(3,
qt + 1

2
) and P = q1 . . . qt.

Then

(a) Nd(t) ≤M(2t − 1) if d = 1, 2

(b) N4(t) ≤ (M + 1)2t/3

(c) logL1(t) < M (2 + log(8P ))
√

2P

(d) logLd(t) < M (2 + log(4P ))
√
P for d = 2, 4.

Proof of Theorems 1.1, 1.2 and 1.3. By Lemma 4.1 for v = 1, 2
and Lemma 4.2 for v = 3, 4, we may assume that

1 ≤ k < k0

where

k0 =


2u
3

if v = 1
u if v = 2

max(500, 4u)) if v = 3
max(600, 10u) if v = 4.

We follow the proof of Theorem 1.4. We may assume that

P (∆2) ≤ vk + u < vk0 + u = β.

In Lemma 4.3, we take (m − 1)v + u = S, t ≤ π(β) and qt ≤ β. We
have

P = q1 . . . qt ≤
∏
p≤β

p ≤ (2.72)β,

by Lemma 2.3 (ii). Also

M = max

(
3,
qt + 1

2

)
≤ 2β.

Applying Lemma 4.3, we get

Nv(t) ≤ 2(vk0 + u)2π(vk0+u).

Further

logLv(t) ≤ 2β
(
2 + log(8× (2.72)β)

)√
2(2.72)β

≤ 10(1.65)ββ2.

Thus

(13) logLv(t) ≤ 10(vk0 + u)2(1.65)vk0+u
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Combining with Lemmas 4.1 and 4.2 we find that the number of
integers m for which g(x) is not almost irreducible is bounded by

2(vk0 + u)2π(vk0+u) + θ,

where

θ =

 11 if v = 1
1 if v = 2
0 if v = 4.

By (13) when v ∈ {1, 2, 4} the maximum of such m is bounded by
exp (10(vµ+ u)2(1.65)vµ+u) .

In the case v = 3, we combine Lemmas 2.8 and 4.2 and the argument
in the proof of Theorem 1.4 to get that the number of m for which g(x)
is not almost irreducible is bounded by 8× 5π(3µ1+u).

The assertions in Theorems 1.2 and 1.3 regarding generalized Hermite-
Laguerre polynomials are similar to the second half of the proof of
Theorem 1.4. �
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[15] O.Ramaré and R. Rumley, Primes in Arithmetic progression, Math. Comp. 65

(1996), 397-425.
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