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LOCALLY NILPOTENT DERIVATIONS

OF FREE ALGEBRA OF RANK TWO

VESSELIN DRENSKY AND LEONID MAKAR-LIMANOV

To the 80th anniversary of Dmitry Fuchs

Abstract. In commutative algebra, if δ is a locally nilpotent derivation of

the polynomial algebra K[x1, . . . , xd] over a field K of characteristic 0 and w
is a nonzero element of the kernel of δ, then ∆ = wδ is also a locally nilpotent

derivation with the same kernel as δ. In this paper we prove that the locally

nilpotent derivation ∆ of the free associative algebra K〈X,Y 〉 is determined
up to a multiplicative constant by its kernel. We show also that the kernel of

∆ is a free associative algebra and give an explicit set of its free generators.

1. Introduction

In this paper we study locally nilpotent derivations ∆ of the free unitary asso-
ciative algebra K〈X,Y 〉 over a field K of characteristic 0. By analogy with the
commutative case we shall call the kernel of ∆ the algebra of constants of ∆ and
shall denote it by K〈X,Y 〉∆. It is easy to see that ∆ is of the form ∆(U) = 0,
∆(V ) = f(U), with respect to a suitable system of generators U, V of K〈X,Y 〉.
This follows from the description of Rentschler [R] of the locally nilpotent deriva-
tions of K[x, y] and the isomorphism of the automorphism groups of K[x, y] and
K〈X,Y 〉 which is a consequence of the theorem of Jung–van der Kulk [J, K] and its
analogue for the tameness of the automorphisms of K〈X,Y 〉 due to Czerniakiewicz
[Cz] and Makar-Limanov [ML1]. This result is similar to the recent description of
locally nilpotent derivations of the free Poisson algebra with two generators given by
Makar-Limanov, Turusbekova and Umirbaev [MLTU]. Our main result is that the
locally nilpotent derivations of K〈X,Y 〉 are determined up to a multiplicative con-
stant by their algebras of constants. As a consequence of the result of Lane [L] and
Kharchenko [Kh] the algebra of constants K〈X,Y 〉∆ of the nontrivial Weitzenböck
derivation ∆ of K〈X,Y 〉 is a free associative algebra. A set of free generators of
this algebra was given by Drensky and Gupta [DG]. We generalize this result and
show that the algebra K〈X,Y 〉∆ is free for any locally nilpotent derivation ∆ of
K〈X,Y 〉. As in [DG] we give an explicit set of free generators of K〈X,Y 〉∆.

See also [Jo] where it is shown that K〈X,Y 〉∆ is a free associative algebra for a
nontrivial homogeneous derivation (and from which the freeness in our case can be
deduced).
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2. Preliminaries

For an algebra R over a field K a linear operator δ : R→ R is called a derivation
if it satisfies the Leibniz law δ(ab) = δ(a)b+ aδ(b).

The kernel of a derivation δ is denoted by Rδ and the elements of the kernel are
called δ-constants (or just constants when this is not confusing).

A derivation δ is called locally nilpotent if for any r ∈ R there exists a natural
number n (which depends on r) for which δn(r) = 0. The function

deg(r) = max(d | δd(r) 6= 0), deg(0) = −∞,

is a degree function with familiar properties:

deg(r1r2) = deg(r1) + deg(r2), deg(r1 + r2) ≤ max(deg(r1),deg(r2)),

deg(r1 + r2) = max(deg(r1),deg(r2) when deg(r1) 6= deg(r2)),

deg(δ(r)) = deg(r)− 1 if δ(r) 6= 0.

The set of all lnds (locally nilpotent derivations) of R is denoted by LND(R).
The intersection

⋂
Rδ, δ ∈ LND(R), of kernels of all locally nilpotent deriva-

tions of R is denoted by AK(R) (absolute Konstanten of R, sometimes denoted as
ML(R)).

If δ ∈ LND(R) and characteristic of K is zero then the linear operator

exp(δ) = 1 +
δ

1!
+
δ2

2!
+ · · · .

is an automorphism of R.
In the sequel we fix a field K of characteristic 0 and consider the polynomial

algebra K[x, y] and the free associative algebra K〈X,Y 〉. Let

π : K〈X,Y 〉 → K[x, y]

be the natural homomorphism. We denote the elements U, V , etc. of K〈X,Y 〉 by
upper case symbols and their images under π by the same lower case symbols u, v,
etc. Let C be the commutator ideal of K〈X,Y 〉. It is generated by the commutator

Z1 = [Y,X] = Y X −XY.

By the theorem of Jung–van der Kulk [J, K], the automorphisms of K[x, y] are
tame, i.e. are compositions of affine automorphisms

x→ a1x+ a2y + a3, y → b1x+ b2y + b3; a1b2 − a2b1 6= 0,

and triangular automorphisms

x→ x, y → y + p(x), p(x) ∈ K[x].

A similar theorem of Czerniakiewicz [Cz] and Makar-Limanov [ML1] states that
the automorphisms of K〈X,Y 〉 are also tame. Therefore

Ψ(Z1) = cZ1, c ∈ K∗,

for any automorphism Ψ of K〈X,Y 〉 (indeed, just check that this is true for affine
and triangular automorphisms).

The structure of the automorphism groups of K[x, y] and K〈X,Y 〉 is also known,
it is a free product of the subgroups of affine and triangular automorphisms with
amalgamation along their intersection [Se]. So we can think that there is a group
G isomorphic to Aut K[x, y] and AutK〈X,Y 〉 which acts on K[x, y] and K〈X,Y 〉.
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Any automorphism of K〈X,Y 〉 induces an automorphism of K[x, y] and, since
the structure of the group G insures that this is one to one correspondence, any
automorphism of K[x, y] can be uniquely lifted to an automorphism of K〈X,Y 〉.

We shall use below a lexicographic ordering of monomials of K〈X,Y 〉 defined by
Y >> X > 1 and denote by S the leading monomial of S ∈ K〈X,Y 〉.

3. Description of locally nilpotent derivations

Though the lnds of K〈X,Y 〉 are similar to the lnds of K[x, y] there are also
significant differences.

It is quite clear that AK(K[x, y]) = K (just observe that the partial derivatives
δ

δx
and

δ

δy
are locally nilpotent) but AK(K〈X,Y 〉) = K[Z1].

Lemma 1. δ(Z1) = 0 for any lnd of K〈X,Y 〉.

Proof. If δ ∈ LND(K〈X,Y 〉) then λδ ∈ LND(K〈X,Y 〉) for any λ ∈ K. Take
Ψλ = exp(λδ); then Ψλ([Y,X]) = c(λ)[Y,X], where c(t) ∈ K[t] (recall that δ is an
lnd). On the other hand ΨλΨµ = Ψλ+µ, i.e. c(s)c(t) = c(s+ t). Since c(s) 6= 0 this
is possible only if c(t) = 1. Hence δ([Y,X]) = 0. �

Of course this proves only that AK(K〈X,Y 〉) ⊇ K[Z1]. We shall see that
AK(K〈X,Y 〉) = K[Z1] later.

Now we shall prove that lnds of K〈X, 〉 are similar to those of K[x, y].

Proposition 2. Let ∆ be a locally nilpotent derivation of K〈X,Y 〉. Then there
is a system of generators U, V of K〈X,Y 〉 and a polynomial f(U) depending on U
only, such that ∆(U) = 0, ∆(V ) = f(U).

Proof. Let ∆ be a locally nilpotent derivation of K〈X,Y 〉. Clearly, ∆ induces a
locally nilpotent derivation δ of K[x, y]. By the theorem of Rentschler [R], K[x, y]
has a system of generators u, v such that δ(u) = 0, δ(v) = f(u) for some f(u) ∈
K[u].

As was mentioned above this pair of generators can be uniquely lifted to the pair
U, V of generators of K〈X,Y 〉.

Let us consider the automorphisms

Φ = exp(∆) ∈ Aut K〈X,Y 〉 = Aut K〈U, V 〉
and

ϕ = exp(δ) = 1 +
δ

1!
+
δ2

2!
+ · · · ∈ Aut K[x, y] = Aut K[u, v].

Then
ϕ : u→ u, ϕ : v → v + f(u).

From the uniqueness mentioned in Preliminaries

ϕ(u) = u, ϕ(v) = v + f(u)

implies Φ(U) = U, Φ(V ) = V + f(U). Since Φ = exp(∆) = 1 +Θ, where

Θ =
∆

1!
+

∆2

2!
+ · · ·

and Θn(S) = 0 for S ∈ K〈X,Y 〉 and a sufficiently large n, we have that

∆ = log(1 +Θ) =
Θ

1
− Θ2

2
+
Θ3

3
− · · ·
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and Φ determines uniquely the lnd ∆. Hence ∆(U) = 0, ∆(V ) = f(U). �

Another difference between the locally nilpotent derivations ofK[x, y] andK〈X,Y 〉
is that in the latter case they can be distinguished by their algebras of constants.

Theorem 3. Let ∆1 and ∆2 be two non-zero locally nilpotent derivations of K〈X,Y 〉.
Then ∆1 and ∆2 have the same algebra of constants if and only if ∆2 = α∆1 for a
nonzero α ∈ K.

Proof. Changing the coordinates of K〈X,Y 〉, by Proposition 2 we may assume that
∆1(X) = 0, ∆1(Y ) = f(X) for some nonzero f(X) ∈ K〈X,Y 〉. By Lemma 1
∆1(Z1) = 0 and this implies that the algebra of constants K〈X,Y 〉∆1 is generated
by f(X) and the commutator ideal C of K〈X,Y 〉. Since K〈X,Y 〉∆1 = K〈X,Y 〉∆2

we have that ∆2(X) = 0. Let us consider the automorphisms Φ1 = exp(∆1) and
Φ2 = exp(∆2) of K〈X,Y 〉. Since ∆1 and ∆2 have the same algebras of constants
we obtain that their images δ1 and δ2 in K[x, y] also have the same algebras of
constants. Hence δ2(y) = g(x) and ∆2(Y ) = g(X) + W (X,Y ) for some nonzero
g(X) ∈ K〈X,Y 〉 and W (X,Y ) ∈ C. Then

Φ2(X) = X, Φ2(Y ) = Y + g(X) +W (X,Y ).

But the only automorphisms of K〈X,Y 〉 with Φ2(X) = X have the property
Φ(Y ) = εY + h(X), ε ∈ K∗, h(X) ∈ K〈X,Y 〉. Hence W (X,Y ) = 0 and
∆2(Y ) = g(X).

A direct computation gives that Z2 = Y Z1f(X) − f(X)Z1Y ∈ K〈X,Y 〉∆1 .
Hence ∆2(Z2) = g(X)Z1f(X)− f(X)Z1g(X) = 0 which implies that g(x) = αf(x)
for some α ∈ K. Therefore ∆2 = α∆1. Since ∆1,∆2 6= 0, we obtain that α 6= 0. �

4. Algebras of constants of derivations of K〈X,Y 〉

By Proposition 2, up to a change of the free generators of K〈X,Y 〉 every non-
trivial locally nilpotent derivation ∆ of K〈X,Y 〉 is of the form

∆(X) = 0, ∆(Y ) = f(X),

where 0 6= f(x) ∈ K[x]. In the sequel we shall fix deg(f) = m ≥ 0 and ∆ as defined
above.

Now we can check that AK(K〈X,Y 〉) = K[Z1]. Indeed, let us consider deriva-
tions

δm : δm(X) = 0, δm(Y ) = Xm.

Suppose δm(P ) = 0 for all m. We may assume that P is homogeneous relative to
X and Y . Write P = XP0 + Y P1, then

0 = δm(P ) = Xδm(P0) +XmP1 + Y δm(P1).

Hence δm(P1) = 0 and we can assume by induction on degY that P1 belongs
to the subalgebra K〈X,Z1〉 of K〈X,Y 〉 generated by X and Z1 and write P1 =
XP10 + Z1P11. If P11 6= 0 then XmZ1P11 cannot be canceled by any monomial of
Xδm(P0) if m is sufficiently large. Hence P11 = 0 and P10 ∈ K〈X,Z1〉. Therefore

P = XP0 + Y XP10 = XP0 + Z1P10 +XY P10 = X(P0 + Y P10) + Z1P10.

Then δm(P0 + Y P10) = 0 because Z1P10 ∈ K〈X,Z1〉 and we can assume by induc-
tion on degX that P0 + Y P11 ∈ K〈X,Z1〉, i.e. P ∈ K〈X,Z1〉. Of course

AK(K〈X,Y 〉) ⊆ K〈X,Z1〉
⋂
K〈Y,Z1〉 = K[Z1]
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since we can switch X an Y .
Consider the operator � on K〈X,Y 〉 defined by

�(a) = Y af − faY.

We shall prove in this section that the algebra of constants of ∆ is the minimal
algebra Af which contains K〈X,Z1〉 and is closed under this operator. Since �∆ =
∆� it is clear that Af ⊆ K〈X,Y 〉∆. It is worth observing that the kernel of � is
K[Y ] if degX(f) = 0 and 0 if degX(f) > 0 and that deg(�(a)) = deg(a) (where
deg is the degree function induced by ∆) if degX(f) > 0. We shall also denote
�(a) by {a}. This bracketing is a bit unusual since �n(a) will be recorded as
{{. . . {a} . . .}} with the same number n of the left and right brackets and there
can be more than two terms inside of a pair of brackets, but as in the ordinary
bracketing in a configuration of three brackets like this {a1{a2} the first bracket
cannot match the third bracket, it should be matched by a bracket } to the right
of the third bracket and second and third brackets are matched.

Theorem 4. If ∆n(F ) = 0 then F belongs to the linear span Anf of elements
a1Y a2Y · · ·Y ak, where k ≤ n and each ai, 1 ≤ i ≤ k, is a monomial from Af ,
endowed with an arbitrary number of matching pairs of brackets {}.

Proof. We consider two cases separately.
(a) m = 0 (we can assume that ∆(Y ) = 1). Consider the sequence of elements

Z1, Z2, Zi, . . . defined by Z1 = Y X − XY, Zi+1 = �i(Z1). In this case Zi =

Y iX and any element S ∈ K〈X,Y 〉 can be written as S =

k∑
j=0

SjY
j where Sj ∈

K〈X,Z1, . . . , Zi, . . .〉. Since ∆(S) =

k∑
j=0

jSjY
j−1, ∆n(S) = 0, and ∆k(S) 6= 0 if

Sk 6= 0 it is clear that k < n.
(b) m > 0. Let us introduce a weight degree function on K〈X,Y 〉 by w(X) =

1, w(Y ) = m. Then the space VN spanned by monomials of the weight not exceed-
ing N is mapped by the derivation onto itself. We proceed by induction on w(S).
If w(S) is sufficiently small, say does not exceed m, the claim is obvious. Assume
that for the weight less than N the claim is true.

Take an F for which w(F ) = N and F (k) = 0 (here and further on F (k) denotes
∆k(F )). We can assume that F (X, 0) = 0 and write

F = Fmf +

m−1∑
i=0

FiY X
i.

Then

F (k)
m f + k

m−1∑
i=0

F
(k−1)
i Xif +

m−1∑
i=0

F
(k)
i Y Xi = 0.

Hence F
(k)
i = 0 for i < m and

(F ′m + k

m−1∑
i=0

FiX
i)(k−1) = 0.

Therefore F̂ (k) = 0 for F̂ = Fmf +
∑m−1
i=0 FiX

iY .
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It is sufficient to check the claim for F̂ since F − F̂ =

m−1∑
i=0

Fi[Y,X
i] satisfies the

claim by induction (w(Fi) < N and [Y,Xi] ∈ Af ).

Write F̂ = Fmf + F0Y . Then F
(k)
0 = 0 and (F ′m + kF0)(k−1) = 0. Hence

F
(k+1)
m = 0 and F̃ (k) = 0 for F̃ = kFmf − F ′mY . It is sufficient to check the claim

for F̃ since kF̂ − F̃ = (kF0 + F ′m)Y and kF0 + F ′m satisfy the claim by induction.

Since F
(k+1)
m = 0 and w(Fm) < N we can write

Fm =
∑
j

αj0Y αj1Y · · ·Y αjk + S,

where αji ∈ Af , the summands are endowed with brackets {}, and S is the sum of
terms in which Y appears less than k times. We can omit S since kSf −S′Y ∈ Akf .

Take one of the summands µj and consider νj = kµjf − µ′jY . Since ∆ and �
commute

νj = kµjf −
k∑
i=1

αj0Y αj1Y · · ·αji−1
fαjiY · · ·Y αjkY

where each term αj0Y αj1Y · · ·αji−1fαjiY · · ·Y αjkY has the same bracketing as µ.

Consider Pj,i = µjf−αj0Y αj1Y · · ·αji−1
fαjiY · · ·Y αjkY . It is clear that P

(k)
j,i =

0 so we should check that Pj,i can be recorded as a sum of terms containing only
k − 1 entries of Y (we do not count Y ’s appearing in �).

Write µ = v1Y u1 where Y is the one which is replaced by f in Pj,i and introduce
two operations:

5r,u(v1Y u1) = v1Y u1uf − v1fu1uY and 5l,u (v1Y u1) = fuv1Y u1 − Y uv1fu1.

We shall write 5r and 5l when u = 1, so Pj,i = 5r(v1Y u1).
The operator � is defined on all algebra while the operations 5r,u, 5l,u are

defined only on specially recorded elements and their extension does not seem to
be canonical.

Assume that v1Y u1 = �(v2Y u2). Then we need to simplify 5r(�(v2Y u2)). In
order to do this let us compute [5r,�](v2Y u2).

This is a bit tedious but not difficult:

5r(�(v2Y u2)) = [Y (v2Y u2)f − f(v2Y u2)Y ]f − [Y (v2fu2)f − f(v2fu2)Y ]Y,

�(5r(v2Y u2)) = Y [(v2Y u2)f − (v2fu2)Y ]f − f [(v2Y u2)f − (v2fu2)Y ]Y

Hence

[5r,�](v2Y u2) = −f(v2Y u2)Y f + f(v2Y u2)fY − Y (v2fu2)fY + Y (v2fu2)Y f

= [Y (v2fu2)− f(v2Y u2)][Y, f ] = −5l (v2Y u2)[Y, f ].

Therefore
5r(�(v2Y u2)) = �(5r(v2Y u2))−5l(v2Y u2)[Y, f ].

Since w(v2Y u2) < w(v1Y u1) we can apply induction.
Assume now that either µ = v� (v1Y u1) or µ = �(v1Y u1)u. If µ = v� (v1Y u1)

then 5r(v � (v1Y u1)) = v 5r (�(v1Y u1)). If µ = �(v1Y u1)u then 5r(µ) =
5r,u(�(v1Y u1)). Now,

[5r,u,�](v1Y u1) = �[5r(v1Y u1)u−5r,u(v1Y u1)]−5l(v1Y u1) � (u)

and induction can be applied in these cases as well.
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The last case is when Y does not belong to a bracketed subword. Then µ = v1Y u1

and 5r(µ) = v1 � (u1).
The proof is completed. �

Corollary 5. The algebra of constants K〈X,Y 〉∆ coincides with the algebra Af .

Proof. As we already mentioned Af ⊆ K〈X,Y 〉∆ and it is sufficient to show that if
∆(F ) = 0 for F ∈ K〈X,Y 〉, then F belongs to Af . But this is a direct consequence
of the case n = 1 in Theorem 4. �

Now we are able to establish one of the main properties of the algebra of constants
K〈X,Y 〉∆.

Theorem 6. The algebra of constants K〈X,Y 〉∆ is a free algebra.

Proof. By Corollary 5 we may work with the algebra Af instead with K〈X,Y 〉∆.
When m = 0 we saw (in the proof of Theorem 4) that A1 is generated by Z1, Z2, . . ..
Since Zi = Y iX these elements freely generate A1. For m > 0 producing a gen-
erating set is more involved but the freeness can be deduced from a theorem of
Jooste [Jo]. It follows from his theorem that the kernel of the derivation ∆(X) = 0,
∆(Y ) = Xm is a free algebra. For this derivation any w-homogeneous component
(recall that w(X) = 1, w(Y ) = m) is also a constant, hence there is a homogeneous
free generating set F1, F2, . . . of AXm . There is a bijection π between the elements
of AXm and Af obtained by replacing Xm in each bracket of an element of AXm

by f(X). Therefore π(F1), π(F2), . . . is a generating set of Af which is free since
w(π(Fi)− Fi) < w(Fi). �

It remains to produce a homogeneous set freely generating AXm .

Lemma 7. Algebra AXm is generated by X and bracketed words

Zi11 X
j1 · · ·Xjk−1Zik1 ,

where i1, i2, . . . , ik > 0 and j1, j2, . . . , jk−1 < m.

Proof. Denote by B the subalgebra of AXm which is generated by words described
in the Lemma. Any element of AXm can be written as a linear combination of
bracketed words µ = Xj0Zi11 X

j1 · · ·Zik1 X
jk . We shall find an element b ∈ B with

the same leading monomial b as the leading monomial µ of µ in the lexicographic
order defined by Y >> X > 1. Clearly this is sufficient for the proof of the Lemma.

To find the leading monomial µ of a bracketed word µ we should replace all left
brackets { by Y and all right brackets } by Xm.

If µ starts with X then µ = Xµ1 (as an element of K〈X,Y 〉) where µ1 ∈ AXm

and we can use induction on weight to claim that there is an element b1 ∈ B such
that µ1 = b (or even that µ1 ∈ B).

If µ cannot be written as �(ν) then µ = (µ1)(µ2) where brackets () separate
elements of AXm and w(µi) < w(µ). Hence we can use induction to claim that
µ1 = b1, µ2 = b2 where bi ∈ B.

If µ = �(ν) then w(µ) = w(ν) + 2m and we may assume that ν = b where
b ∈ B. Since b ∈ B we can write b = (Xj0)(v1)(Xj1) · · · (vk)(Xjk) where vi ∈ B
and (Xj) = Xj and µ = Y Xj0(v1)(Xj1) · · · (vk)Xjk+m. Inasmuch as vi ∈ B we
may assume that the first and the last letters in all vi (as bracketed words) are Z1.

If j0 > 0 then Z1(Xj0−1)(v1)(Xj1) · · · (vk)(Xjk+m) = µ.
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If j0 = 0, js ≥ m where s is the smallest possible then

{(v1)(Xj1) · · · (vs)}(Xjs−m) · · · (vk)(Xjk+m) = µ.

If all js < m then µ ∈ B. �

Theorem 8. The algebra B = AXm , m > 0, is freely generated by X and words
�(Zi11 X

j1 · · ·Xjk−1Zik1 ), where i1, i2, . . . , ik > 0 and j1, j2, . . . , jk−1 < m, and

Zi11 X
j1 · · ·Xjk−1Zik1 is a bracketed word (we shall refer to these words as permis-

sible and to Zi11 X
j1 · · ·Xjk−1Zik1 without brackets as the root of the corresponding

word).

Proof. It is sufficient to check that µ satisfying conditions of the Theorem can-
not be presented as (µ1)(µ2). To check this consider the leading monomial µ =

Y b1 · · ·Xas−1Y bsXas of µ. (Observe that b1as > 0 since �(v) = Y vXm.) The
number of Z1 in the bracketed representation of µ ∈ B must be equal to s since
in any word from B a subword Y X can appear in µ only as Z1. So the number
of brackets { in µ is degY (µ)− s. Of course the number of brackets } is the same.
Since all permissible words have roots starting and ending with Z1 a monomial
Y bXa can appear in µ only as {. . . {Z1} . . .}Xd where the number of left brackets
is a− 1, the number of right brackets is the integral part of b−1

m and 0 ≤ d < m is
the remainder of the division of b−1 by m. Therefore the root and the bracketing of
µ is uniquely determined by µ. The root and bracketing uniquely determine µ, i.e.
the pairing of brackets is unique. Indeed if we have a configuration {v} where v is
a subword of the root then these two brackets must be paired and can be omitted.
After that we can use induction on the number of brackets.

The Theorem is proved. �
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[J] H.W.E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine und Angew.
Math. 184 (1942), 161-174.

[Kh] V. K. Kharchenko, Algebra of invariants of free algebras (Russian), Algebra i Logika 17

(1978), 478-487; Translation: Algebra and Logic 17 (1978), 316-321.
[K] W. van der Kulk, On polynomial rings in two variables, Nieuw Archief voor Wiskunde (3) 1

(1953), 33-41.

[L] D.R. Lane, Free Algebras of Rank Two and Their Automorphisms, Ph.D. Thesis, Bedford
College, London, 1976.

[ML1] L.G. Makar-Limanov, On automorphisms of free algebra with two generators (Russian),
Funk. Analiz i ego Prilozh. 4 (1970), No. 3, 107-108. Translation: Functional Anal. Appl. 4

(1970), 262-263.
[MLTU] L. Makar-Limanov, U. Turusbekova, U. Umirabev, Automorphisms and derivations of

free Poisson algebras in two variables, J. Algebra 322 (2009), No. 9, 3318-3330.



LOCALLY NILPOTENT DERIVATIONS OF FREE ALGEBRA OF RANK TWO 9

[R] R. Rentschler, Opérations du groupe additif sur le plan affine, C. R. Acad. Sci., Paris, Sér.
A 267 (1968), 384-387.
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