Max-Planck-Institut für Mathematik Bonn

Locally nilpotent derivations of free algebra of rank two
by

Vesselin Drensky
Leonid Makar-Limanov

Max-Planck-Institut für Mathematik
Preprint Series 2019 (50)

Locally nilpotent derivations of free algebra of rank two

Vesselin Drensky
 Leonid Makar-Limanov

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
1113 Sofia
Bulgaria
Department of Mathematics
Wayne State University
Detroit, MI 48202
USA
Faculty of Mathematics and Computer Science
Weizmann Institute of Science
Rehovot 7610001
Israel

LOCALLY NILPOTENT DERIVATIONS OF FREE ALGEBRA OF RANK TWO

VESSELIN DRENSKY AND LEONID MAKAR-LIMANOV

To the 80th anniversary of Dmitry Fuchs

Abstract

In commutative algebra, if δ is a locally nilpotent derivation of the polynomial algebra $K\left[x_{1}, \ldots, x_{d}\right]$ over a field K of characteristic 0 and w is a nonzero element of the kernel of δ, then $\Delta=w \delta$ is also a locally nilpotent derivation with the same kernel as δ. In this paper we prove that the locally nilpotent derivation Δ of the free associative algebra $K\langle X, Y\rangle$ is determined up to a multiplicative constant by its kernel. We show also that the kernel of Δ is a free associative algebra and give an explicit set of its free generators.

1. Introduction

In this paper we study locally nilpotent derivations Δ of the free unitary associative algebra $K\langle X, Y\rangle$ over a field K of characteristic 0 . By analogy with the commutative case we shall call the kernel of Δ the algebra of constants of Δ and shall denote it by $K\langle X, Y\rangle^{\Delta}$. It is easy to see that Δ is of the form $\Delta(U)=0$, $\Delta(V)=f(U)$, with respect to a suitable system of generators U, V of $K\langle X, Y\rangle$. This follows from the description of Rentschler [R] of the locally nilpotent derivations of $K[x, y]$ and the isomorphism of the automorphism groups of $K[x, y]$ and $K\langle X, Y\rangle$ which is a consequence of the theorem of Jung-van der Kulk [J, K] and its analogue for the tameness of the automorphisms of $K\langle X, Y\rangle$ due to Czerniakiewicz $[\mathrm{Cz}]$ and Makar-Limanov [ML1]. This result is similar to the recent description of locally nilpotent derivations of the free Poisson algebra with two generators given by Makar-Limanov, Turusbekova and Umirbaev [MLTU]. Our main result is that the locally nilpotent derivations of $K\langle X, Y\rangle$ are determined up to a multiplicative constant by their algebras of constants. As a consequence of the result of Lane $[\mathrm{L}]$ and Kharchenko [Kh] the algebra of constants $K\langle X, Y\rangle^{\Delta}$ of the nontrivial Weitzenböck derivation Δ of $K\langle X, Y\rangle$ is a free associative algebra. A set of free generators of this algebra was given by Drensky and Gupta [DG]. We generalize this result and show that the algebra $K\langle X, Y\rangle^{\Delta}$ is free for any locally nilpotent derivation Δ of $K\langle X, Y\rangle$. As in [DG] we give an explicit set of free generators of $K\langle X, Y\rangle^{\Delta}$.

See also [Jo] where it is shown that $K\langle X, Y\rangle^{\Delta}$ is a free associative algebra for a nontrivial homogeneous derivation (and from which the freeness in our case can be deduced).

[^0]
2. Preliminaries

For an algebra R over a field K a linear operator $\delta: R \rightarrow R$ is called a derivation if it satisfies the Leibniz law $\delta(a b)=\delta(a) b+a \delta(b)$.

The kernel of a derivation δ is denoted by R^{δ} and the elements of the kernel are called δ-constants (or just constants when this is not confusing).

A derivation δ is called locally nilpotent if for any $r \in R$ there exists a natural number n (which depends on r) for which $\delta^{n}(r)=0$. The function

$$
\operatorname{deg}(r)=\max \left(d \mid \delta^{d}(r) \neq 0\right), \quad \operatorname{deg}(0)=-\infty
$$

is a degree function with familiar properties:

$$
\begin{gathered}
\operatorname{deg}\left(r_{1} r_{2}\right)=\operatorname{deg}\left(r_{1}\right)+\operatorname{deg}\left(r_{2}\right), \quad \operatorname{deg}\left(r_{1}+r_{2}\right) \leq \max \left(\operatorname{deg}\left(r_{1}\right), \operatorname{deg}\left(r_{2}\right)\right), \\
\operatorname{deg}\left(r_{1}+r_{2}\right)=\max \left(\operatorname{deg}\left(r_{1}\right), \operatorname{deg}\left(r_{2}\right) \text { when } \operatorname{deg}\left(r_{1}\right) \neq \operatorname{deg}\left(r_{2}\right)\right), \\
\operatorname{deg}(\delta(r))=\operatorname{deg}(r)-1 \text { if } \delta(r) \neq 0 .
\end{gathered}
$$

The set of all lnds (locally nilpotent derivations) of R is denoted by $\operatorname{LND}(R)$.
The intersection $\bigcap R^{\delta}, \delta \in \operatorname{LND}(R)$, of kernels of all locally nilpotent derivations of R is denoted by $\operatorname{AK}(R)$ (absolute Konstanten of R, sometimes denoted as $\operatorname{ML}(R))$.

If $\delta \in \operatorname{LND}(R)$ and characteristic of K is zero then the linear operator

$$
\exp (\delta)=1+\frac{\delta}{1!}+\frac{\delta^{2}}{2!}+\cdots
$$

is an automorphism of R.
In the sequel we fix a field K of characteristic 0 and consider the polynomial algebra $K[x, y]$ and the free associative algebra $K\langle X, Y\rangle$. Let

$$
\pi: K\langle X, Y\rangle \rightarrow K[x, y]
$$

be the natural homomorphism. We denote the elements U, V, etc. of $K\langle X, Y\rangle$ by upper case symbols and their images under π by the same lower case symbols u, v, etc. Let C be the commutator ideal of $K\langle X, Y\rangle$. It is generated by the commutator

$$
Z_{1}=[Y, X]=Y X-X Y
$$

By the theorem of Jung-van der Kulk [J, K], the automorphisms of $K[x, y]$ are tame, i.e. are compositions of affine automorphisms

$$
x \rightarrow a_{1} x+a_{2} y+a_{3}, y \rightarrow b_{1} x+b_{2} y+b_{3} ; a_{1} b_{2}-a_{2} b_{1} \neq 0
$$

and triangular automorphisms

$$
x \rightarrow x, \quad y \rightarrow y+p(x), \quad p(x) \in K[x] .
$$

A similar theorem of Czerniakiewicz [Cz] and Makar-Limanov [ML1] states that the automorphisms of $K\langle X, Y\rangle$ are also tame. Therefore

$$
\Psi\left(Z_{1}\right)=c Z_{1}, \quad c \in K^{*}
$$

for any automorphism Ψ of $K\langle X, Y\rangle$ (indeed, just check that this is true for affine and triangular automorphisms).

The structure of the automorphism groups of $K[x, y]$ and $K\langle X, Y\rangle$ is also known, it is a free product of the subgroups of affine and triangular automorphisms with amalgamation along their intersection $[\mathrm{Se}]$. So we can think that there is a group G isomorphic to Aut $K[x, y]$ and $\operatorname{Aut} K\langle X, Y\rangle$ which acts on $K[x, y]$ and $K\langle X, Y\rangle$.

Any automorphism of $K\langle X, Y\rangle$ induces an automorphism of $K[x, y]$ and, since the structure of the group G insures that this is one to one correspondence, any automorphism of $K[x, y]$ can be uniquely lifted to an automorphism of $K\langle X, Y\rangle$.

We shall use below a lexicographic ordering of monomials of $K\langle X, Y\rangle$ defined by $Y \gg X>1$ and denote by \bar{S} the leading monomial of $S \in K\langle X, Y\rangle$.

3. Description of locally nilpotent derivations

Though the lnds of $K\langle X, Y\rangle$ are similar to the lnds of $K[x, y]$ there are also significant differences.

It is quite clear that $\operatorname{AK}(K[x, y])=K$ (just observe that the partial derivatives $\frac{\delta}{\delta x}$ and $\frac{\delta}{\delta y}$ are locally nilpotent) but $\operatorname{AK}(K\langle X, Y\rangle)=K\left[Z_{1}\right]$.
Lemma 1. $\delta\left(Z_{1}\right)=0$ for any lnd of $K\langle X, Y\rangle$.
Proof. If $\delta \in \operatorname{LND}(K\langle X, Y\rangle)$ then $\lambda \delta \in \operatorname{LND}(K\langle X, Y\rangle)$ for any $\lambda \in K$. Take $\Psi_{\lambda}=\exp (\lambda \delta)$; then $\Psi_{\lambda}([Y, X])=c(\lambda)[Y, X]$, where $c(t) \in K[t]$ (recall that δ is an lnd). On the other hand $\Psi_{\lambda} \Psi_{\mu}=\Psi_{\lambda+\mu}$, i.e. $c(s) c(t)=c(s+t)$. Since $c(s) \neq 0$ this is possible only if $c(t)=1$. Hence $\delta([Y, X])=0$.

Of course this proves only that $\operatorname{AK}(K\langle X, Y\rangle) \supseteq K\left[Z_{1}\right]$. We shall see that $\operatorname{AK}(K\langle X, Y\rangle)=K\left[Z_{1}\right]$ later.

Now we shall prove that lnds of $K\langle X$,$\rangle are similar to those of K[x, y]$.
Proposition 2. Let Δ be a locally nilpotent derivation of $K\langle X, Y\rangle$. Then there is a system of generators U, V of $K\langle X, Y\rangle$ and a polynomial $f(U)$ depending on U only, such that $\Delta(U)=0, \Delta(V)=f(U)$.
Proof. Let Δ be a locally nilpotent derivation of $K\langle X, Y\rangle$. Clearly, Δ induces a locally nilpotent derivation δ of $K[x, y]$. By the theorem of Rentschler [R], $K[x, y]$ has a system of generators u, v such that $\delta(u)=0, \delta(v)=f(u)$ for some $f(u) \in$ $K[u]$.

As was mentioned above this pair of generators can be uniquely lifted to the pair U, V of generators of $K\langle X, Y\rangle$.

Let us consider the automorphisms

$$
\Phi=\exp (\Delta) \in \text { Aut } K\langle X, Y\rangle=\text { Aut } K\langle U, V\rangle
$$

and

$$
\varphi=\exp (\delta)=1+\frac{\delta}{1!}+\frac{\delta^{2}}{2!}+\cdots \in \text { Aut } K[x, y]=\text { Aut } K[u, v]
$$

Then

$$
\varphi: u \rightarrow u, \quad \varphi: v \rightarrow v+f(u) .
$$

From the uniqueness mentioned in Preliminaries

$$
\varphi(u)=u, \quad \varphi(v)=v+f(u)
$$

implies $\Phi(U)=U, \quad \Phi(V)=V+f(U)$. Since $\Phi=\exp (\Delta)=1+\Theta$, where

$$
\Theta=\frac{\Delta}{1!}+\frac{\Delta^{2}}{2!}+\cdots
$$

and $\Theta^{n}(S)=0$ for $S \in K\langle X, Y\rangle$ and a sufficiently large n, we have that

$$
\Delta=\log (1+\Theta)=\frac{\Theta}{1}-\frac{\Theta^{2}}{2}+\frac{\Theta^{3}}{3}-\cdots
$$

and Φ determines uniquely the lnd Δ. Hence $\Delta(U)=0, \Delta(V)=f(U)$.
Another difference between the locally nilpotent derivations of $K[x, y]$ and $K\langle X, Y\rangle$ is that in the latter case they can be distinguished by their algebras of constants.

Theorem 3. Let Δ_{1} and Δ_{2} be two non-zero locally nilpotent derivations of $K\langle X, Y\rangle$. Then Δ_{1} and Δ_{2} have the same algebra of constants if and only if $\Delta_{2}=\alpha \Delta_{1}$ for a nonzero $\alpha \in K$.

Proof. Changing the coordinates of $K\langle X, Y\rangle$, by Proposition 2 we may assume that $\Delta_{1}(X)=0, \quad \Delta_{1}(Y)=f(X)$ for some nonzero $f(X) \in K\langle X, Y\rangle$. By Lemma 1 $\Delta_{1}\left(Z_{1}\right)=0$ and this implies that the algebra of constants $K\langle X, Y\rangle^{\Delta_{1}}$ is generated by $f(X)$ and the commutator ideal C of $K\langle X, Y\rangle$. Since $K\langle X, Y\rangle^{\Delta_{1}}=K\langle X, Y\rangle^{\Delta_{2}}$ we have that $\Delta_{2}(X)=0$. Let us consider the automorphisms $\Phi_{1}=\exp \left(\Delta_{1}\right)$ and $\Phi_{2}=\exp \left(\Delta_{2}\right)$ of $K\langle X, Y\rangle$. Since Δ_{1} and Δ_{2} have the same algebras of constants we obtain that their images δ_{1} and δ_{2} in $K[x, y]$ also have the same algebras of constants. Hence $\delta_{2}(y)=g(x)$ and $\Delta_{2}(Y)=g(X)+W(X, Y)$ for some nonzero $g(X) \in K\langle X, Y\rangle$ and $W(X, Y) \in C$. Then

$$
\Phi_{2}(X)=X, \quad \Phi_{2}(Y)=Y+g(X)+W(X, Y)
$$

But the only automorphisms of $K\langle X, Y\rangle$ with $\Phi_{2}(X)=X$ have the property $\Phi(Y)=\varepsilon Y+h(X), \varepsilon \in K^{*}, h(X) \in K\langle X, Y\rangle$. Hence $W(X, Y)=0$ and $\Delta_{2}(Y)=g(X)$.

A direct computation gives that $Z_{2}=Y Z_{1} f(X)-f(X) Z_{1} Y \in K\langle X, Y\rangle^{\Delta_{1}}$. Hence $\Delta_{2}\left(Z_{2}\right)=g(X) Z_{1} f(X)-f(X) Z_{1} g(X)=0$ which implies that $g(x)=\alpha f(x)$ for some $\alpha \in K$. Therefore $\Delta_{2}=\alpha \Delta_{1}$. Since $\Delta_{1}, \Delta_{2} \neq 0$, we obtain that $\alpha \neq 0$.

4. Algebras of constants of derivations of $K\langle X, Y\rangle$

By Proposition 2, up to a change of the free generators of $K\langle X, Y\rangle$ every nontrivial locally nilpotent derivation Δ of $K\langle X, Y\rangle$ is of the form

$$
\Delta(X)=0, \quad \Delta(Y)=f(X)
$$

where $0 \neq f(x) \in K[x]$. In the sequel we shall fix $\operatorname{deg}(f)=m \geq 0$ and Δ as defined above.

Now we can check that $\operatorname{AK}(K\langle X, Y\rangle)=K\left[Z_{1}\right]$. Indeed, let us consider derivations

$$
\delta_{m}: \delta_{m}(X)=0, \quad \delta_{m}(Y)=X^{m}
$$

Suppose $\delta_{m}(P)=0$ for all m. We may assume that P is homogeneous relative to X and Y. Write $P=X P_{0}+Y P_{1}$, then

$$
0=\delta_{m}(P)=X \delta_{m}\left(P_{0}\right)+X^{m} P_{1}+Y \delta_{m}\left(P_{1}\right)
$$

Hence $\delta_{m}\left(P_{1}\right)=0$ and we can assume by induction on deg_{Y} that P_{1} belongs to the subalgebra $K\left\langle X, Z_{1}\right\rangle$ of $K\langle X, Y\rangle$ generated by X and Z_{1} and write $P_{1}=$ $X P_{10}+Z_{1} P_{11}$. If $P_{11} \neq 0$ then $\overline{X^{m} Z_{1} P_{11}}$ cannot be canceled by any monomial of $X \delta_{m}\left(P_{0}\right)$ if m is sufficiently large. Hence $P_{11}=0$ and $P_{10} \in K\left\langle X, Z_{1}\right\rangle$. Therefore

$$
P=X P_{0}+Y X P_{10}=X P_{0}+Z_{1} P_{10}+X Y P_{10}=X\left(P_{0}+Y P_{10}\right)+Z_{1} P_{10}
$$

Then $\delta_{m}\left(P_{0}+Y P_{10}\right)=0$ because $Z_{1} P_{10} \in K\left\langle X, Z_{1}\right\rangle$ and we can assume by induction on deg_{X} that $P_{0}+Y P_{11} \in K\left\langle X, Z_{1}\right\rangle$, i.e. $P \in K\left\langle X, Z_{1}\right\rangle$. Of course

$$
\operatorname{AK}(K\langle X, Y\rangle) \subseteq K\left\langle X, Z_{1}\right\rangle \bigcap K\left\langle Y, Z_{1}\right\rangle=K\left[Z_{1}\right]
$$

since we can switch X an Y.
Consider the operator \boxtimes on $K\langle X, Y\rangle$ defined by

$$
\odot(a)=Y a f-f a Y .
$$

We shall prove in this section that the algebra of constants of Δ is the minimal algebra A_{f} which contains $K\left\langle X, Z_{1}\right\rangle$ and is closed under this operator. Since $\square \Delta=$ $\Delta \square$ it is clear that $A_{f} \subseteq K\langle X, Y\rangle^{\Delta}$. It is worth observing that the kernel of \square is $K[Y]$ if $\operatorname{deg}_{X}(f)=0$ and 0 if $\operatorname{deg}_{X}(f)>0$ and that $\operatorname{deg}(\square(a))=\operatorname{deg}(a)$ (where deg is the degree function induced by Δ) if $\operatorname{deg}_{X}(f)>0$. We shall also denote $\square(a)$ by $\{a\}$. This bracketing is a bit unusual since $\square^{n}(a)$ will be recorded as $\{\{\ldots\{a\} \ldots\}\}$ with the same number n of the left and right brackets and there can be more than two terms inside of a pair of brackets, but as in the ordinary bracketing in a configuration of three brackets like this $\left\{a_{1}\left\{a_{2}\right\}\right.$ the first bracket cannot match the third bracket, it should be matched by a bracket $\}$ to the right of the third bracket and second and third brackets are matched.

Theorem 4. If $\Delta^{n}(F)=0$ then F belongs to the linear span A_{f}^{n} of elements $a_{1} Y a_{2} Y \cdots Y a_{k}$, where $k \leq n$ and each $a_{i}, 1 \leq i \leq k$, is a monomial from A_{f}, endowed with an arbitrary number of matching pairs of brackets $\}$.
Proof. We consider two cases separately.
(a) $m=0$ (we can assume that $\Delta(Y)=1$). Consider the sequence of elements $Z_{1}, Z_{2}, Z_{i}, \ldots$ defined by $Z_{1}=Y X-X Y, Z_{i+1}=\square^{i}\left(Z_{1}\right)$. In this case $\overline{Z_{i}}=$ $Y^{i} X$ and any element $S \in K\langle X, Y\rangle$ can be written as $S=\sum_{j=0}^{k} S_{j} Y^{j}$ where $S_{j} \in$ $K\left\langle X, Z_{1}, \ldots, Z_{i}, \ldots\right\rangle$. Since $\Delta(S)=\sum_{j=0}^{k} j S_{j} Y^{j-1}, \Delta^{n}(S)=0$, and $\Delta^{k}(S) \neq 0$ if $S_{k} \neq 0$ it is clear that $k<n$.
(b) $m>0$. Let us introduce a weight degree function on $K\langle X, Y\rangle$ by $w(X)=$ $1, w(Y)=m$. Then the space V_{N} spanned by monomials of the weight not exceeding N is mapped by the derivation onto itself. We proceed by induction on $w(S)$. If $w(S)$ is sufficiently small, say does not exceed m, the claim is obvious. Assume that for the weight less than N the claim is true.

Take an F for which $w(F)=N$ and $F^{(k)}=0$ (here and further on $F^{(k)}$ denotes $\left.\Delta^{k}(F)\right)$. We can assume that $F(X, 0)=0$ and write

$$
F=F_{m} f+\sum_{i=0}^{m-1} F_{i} Y X^{i}
$$

Then

$$
F_{m}^{(k)} f+k \sum_{i=0}^{m-1} F_{i}^{(k-1)} X^{i} f+\sum_{i=0}^{m-1} F_{i}^{(k)} Y X^{i}=0
$$

Hence $F_{i}^{(k)}=0$ for $i<m$ and

$$
\left(F_{m}^{\prime}+k \sum_{i=0}^{m-1} F_{i} X^{i}\right)^{(k-1)}=0
$$

Therefore $\hat{F}^{(k)}=0$ for $\hat{F}=F_{m} f+\sum_{i=0}^{m-1} F_{i} X^{i} Y$.

It is sufficient to check the claim for \hat{F} since $F-\hat{F}=\sum_{i=0}^{m-1} F_{i}\left[Y, X^{i}\right]$ satisfies the claim by induction $\left(w\left(F_{i}\right)<N\right.$ and $\left.\left[Y, X^{i}\right] \in A_{f}\right)$.

Write $\hat{F}=F_{m} f+F_{0} Y$. Then $F_{0}^{(k)}=0$ and $\left(F_{m}^{\prime}+k F_{0}\right)^{(k-1)}=0$. Hence $F_{m}^{(k+1)}=0$ and $\widetilde{F}^{(k)}=0$ for $\widetilde{F}=k F_{m} f-F_{m}^{\prime} Y$. It is sufficient to check the claim for \widetilde{F} since $k \hat{F}-\widetilde{F}=\left(k F_{0}+F_{m}^{\prime}\right) Y$ and $k F_{0}+F_{m}^{\prime}$ satisfy the claim by induction.

Since $F_{m}^{(k+1)}=0$ and $w\left(F_{m}\right)<N$ we can write

$$
F_{m}=\sum_{\mathbf{j}} \alpha_{j_{0}} Y \alpha_{j_{1}} Y \cdots Y \alpha_{j_{k}}+S
$$

where $\alpha_{j_{i}} \in A_{f}$, the summands are endowed with brackets $\}$, and S is the sum of terms in which Y appears less than k times. We can omit S since $k S f-S^{\prime} Y \in A_{f}^{k}$.

Take one of the summands $\mu_{\mathbf{j}}$ and consider $\nu_{\mathbf{j}}=k \mu_{\mathbf{j}} f-\mu_{\mathbf{j}}^{\prime} Y$. Since Δ and \square commute

$$
\nu_{\mathbf{j}}=k \mu_{\mathbf{j}} f-\sum_{i=1}^{k} \alpha_{j_{0}} Y \alpha_{j_{1}} Y \cdots \alpha_{j_{i-1}} f \alpha_{j_{i}} Y \cdots Y \alpha_{j_{k}} Y
$$

where each term $\alpha_{j_{0}} Y \alpha_{j_{1}} Y \cdots \alpha_{j_{i-1}} f \alpha_{j_{i}} Y \cdots Y \alpha_{j_{k}} Y$ has the same bracketing as μ.
Consider $P_{\mathbf{j}, i}=\mu_{\mathbf{j}} f-\alpha_{j_{0}} Y \alpha_{j_{1}} Y \cdots \alpha_{j_{i-1}} f \alpha_{j_{i}} Y \cdots Y \alpha_{j_{k}} Y$. It is clear that $P_{\mathbf{j}, i}^{(k)}=$ 0 so we should check that $P_{\mathbf{j}, i}$ can be recorded as a sum of terms containing only $k-1$ entries of Y (we do not count Y 's appearing in \square).

Write $\mu=v_{1} Y u_{1}$ where Y is the one which is replaced by f in $P_{\mathbf{j}, i}$ and introduce two operations:

$$
\nabla_{r, u}\left(v_{1} Y u_{1}\right)=v_{1} Y u_{1} u f-v_{1} f u_{1} u Y \text { and } \nabla_{l, u}\left(v_{1} Y u_{1}\right)=f u v_{1} Y u_{1}-Y u v_{1} f u_{1} .
$$

We shall write ∇_{r} and ∇_{l} when $u=1$, so $P_{\mathbf{j}, i}=\nabla_{r}\left(v_{1} Y u_{1}\right)$.
The operator \square is defined on all algebra while the operations $\nabla_{r, u}, \quad \nabla_{l, u}$ are defined only on specially recorded elements and their extension does not seem to be canonical.

Assume that $v_{1} Y u_{1}=\square\left(v_{2} Y u_{2}\right)$. Then we need to simplify $\nabla_{r}\left(\square\left(v_{2} Y u_{2}\right)\right)$. In order to do this let us compute $\left[\nabla_{r}, \square\right]\left(v_{2} Y u_{2}\right)$.

This is a bit tedious but not difficult:

$$
\begin{gathered}
\nabla_{r}\left(\square\left(v_{2} Y u_{2}\right)\right)=\left[Y\left(v_{2} Y u_{2}\right) f-f\left(v_{2} Y u_{2}\right) Y\right] f-\left[Y\left(v_{2} f u_{2}\right) f-f\left(v_{2} f u_{2}\right) Y\right] Y, \\
\square\left(\nabla_{r}\left(v_{2} Y u_{2}\right)\right)=Y\left[\left(v_{2} Y u_{2}\right) f-\left(v_{2} f u_{2}\right) Y\right] f-f\left[\left(v_{2} Y u_{2}\right) f-\left(v_{2} f u_{2}\right) Y\right] Y
\end{gathered}
$$

Hence

$$
\begin{gathered}
{\left[\nabla_{r}, \boxtimes\right]\left(v_{2} Y u_{2}\right)=-f\left(v_{2} Y u_{2}\right) Y f+f\left(v_{2} Y u_{2}\right) f Y-Y\left(v_{2} f u_{2}\right) f Y+Y\left(v_{2} f u_{2}\right) Y f} \\
=\left[Y\left(v_{2} f u_{2}\right)-f\left(v_{2} Y u_{2}\right)\right][Y, f]=-\nabla_{l}\left(v_{2} Y u_{2}\right)[Y, f]
\end{gathered}
$$

Therefore

$$
\nabla_{r}\left(\square\left(v_{2} Y u_{2}\right)\right)=\square\left(\nabla_{r}\left(v_{2} Y u_{2}\right)\right)-\nabla_{l}\left(v_{2} Y u_{2}\right)[Y, f] .
$$

Since $w\left(v_{2} Y u_{2}\right)<w\left(v_{1} Y u_{1}\right)$ we can apply induction.
Assume now that either $\mu=v \boxtimes\left(v_{1} Y u_{1}\right)$ or $\mu=\square\left(v_{1} Y u_{1}\right) u$. If $\mu=v \boxtimes\left(v_{1} Y u_{1}\right)$ then $\nabla_{r}\left(v \boxtimes\left(v_{1} Y u_{1}\right)\right)=v \nabla_{r}\left(\square\left(v_{1} Y u_{1}\right)\right)$. If $\mu=\boxtimes\left(v_{1} Y u_{1}\right) u$ then $\nabla_{r}(\mu)=$ $\nabla r, u\left(\square\left(v_{1} Y u_{1}\right)\right)$. Now,

$$
\left[\nabla_{r, u}, \triangleleft\right]\left(v_{1} Y u_{1}\right)=\square\left[\nabla_{r}\left(v_{1} Y u_{1}\right) u-\nabla_{r, u}\left(v_{1} Y u_{1}\right)\right]-\nabla_{l}\left(v_{1} Y u_{1}\right) \boxtimes(u)
$$

and induction can be applied in these cases as well.

The last case is when Y does not belong to a bracketed subword. Then $\mu=v_{1} Y u_{1}$ and $\nabla_{r}(\mu)=v_{1} \boxtimes\left(u_{1}\right)$.

The proof is completed.
Corollary 5. The algebra of constants $K\langle X, Y\rangle^{\Delta}$ coincides with the algebra A_{f}.
Proof. As we already mentioned $A_{f} \subseteq K\langle X, Y\rangle^{\Delta}$ and it is sufficient to show that if $\Delta(F)=0$ for $F \in K\langle X, Y\rangle$, then F belongs to A_{f}. But this is a direct consequence of the case $n=1$ in Theorem 4.

Now we are able to establish one of the main properties of the algebra of constants $K\langle X, Y\rangle^{\Delta}$.
Theorem 6. The algebra of constants $K\langle X, Y\rangle^{\Delta}$ is a free algebra.
Proof. By Corollary 5 we may work with the algebra A_{f} instead with $K\langle X, Y\rangle^{\Delta}$. When $m=0$ we saw (in the proof of Theorem 4) that A_{1} is generated by Z_{1}, Z_{2}, \ldots.. Since $\overline{Z_{i}}=Y^{i} X$ these elements freely generate A_{1}. For $m>0$ producing a generating set is more involved but the freeness can be deduced from a theorem of Jooste [Jo]. It follows from his theorem that the kernel of the derivation $\bar{\Delta}(X)=0$, $\bar{\Delta}(Y)=X^{m}$ is a free algebra. For this derivation any w-homogeneous component (recall that $w(X)=1, w(Y)=m$) is also a constant, hence there is a homogeneous free generating set F_{1}, F_{2}, \ldots of $A_{X^{m}}$. There is a bijection π between the elements of $A_{X^{m}}$ and A_{f} obtained by replacing X^{m} in each bracket of an element of $A_{X^{m}}$ by $f(X)$. Therefore $\pi\left(F_{1}\right), \pi\left(F_{2}\right), \ldots$ is a generating set of A_{f} which is free since $w\left(\pi\left(F_{i}\right)-F_{i}\right)<w\left(F_{i}\right)$.

It remains to produce a homogeneous set freely generating $A_{X^{m}}$.
Lemma 7. Algebra $A_{X^{m}}$ is generated by X and bracketed words

$$
Z_{1}^{i_{1}} X^{j_{1}} \cdots X^{j_{k-1}} Z_{1}^{i_{k}}
$$

where $i_{1}, i_{2}, \ldots, i_{k}>0$ and $j_{1}, j_{2}, \ldots, j_{k-1}<m$.
Proof. Denote by B the subalgebra of $A_{X^{m}}$ which is generated by words described in the Lemma. Any element of $A_{X^{m}}$ can be written as a linear combination of bracketed words $\mu=X^{j_{0}} Z_{1}^{i_{1}} X^{j_{1}} \cdots Z_{1}^{i_{k}} X^{j_{k}}$. We shall find an element $b \in B$ with the same leading monomial \bar{b} as the leading monomial $\bar{\mu}$ of μ in the lexicographic order defined by $Y \gg X>1$. Clearly this is sufficient for the proof of the Lemma.

To find the leading monomial $\bar{\mu}$ of a bracketed word μ we should replace all left brackets $\{$ by Y and all right brackets $\}$ by X^{m}.

If $\bar{\mu}$ starts with X then $\mu=X \mu_{1}$ (as an element of $K\langle X, Y\rangle$) where $\mu_{1} \in A_{X^{m}}$ and we can use induction on weight to claim that there is an element $b_{1} \in B$ such that $\overline{\mu_{1}}=\bar{b}$ (or even that $\mu_{1} \in B$).

If μ cannot be written as $\square(\nu)$ then $\mu=\left(\mu_{1}\right)\left(\mu_{2}\right)$ where brackets () separate elements of $A_{X^{m}}$ and $w\left(\mu_{i}\right)<w(\mu)$. Hence we can use induction to claim that $\overline{\mu_{1}}=\overline{b_{1}}, \overline{\mu_{2}}=\overline{b_{2}}$ where $b_{i} \in B$.

If $\mu=\square(\nu)$ then $w(\mu)=w(\nu)+2 m$ and we may assume that $\bar{\nu}=\bar{b}$ where $b \in B$. Since $b \in B$ we can write $b=\left(X^{j_{0}}\right)\left(v_{1}\right)\left(X^{j_{1}}\right) \cdots\left(v_{k}\right)\left(X^{j_{k}}\right)$ where $v_{i} \in B$ and $\left(X^{j}\right)=X^{j}$ and $\bar{\mu}=Y X^{j_{0}} \overline{\left(v_{1}\right)\left(X^{j_{1}}\right) \cdots\left(v_{k}\right)} X^{j_{k}+m}$. Inasmuch as $v_{i} \in B$ we may assume that the first and the last letters in all v_{i} (as bracketed words) are Z_{1}.

If $j_{0}>0$ then $\overline{Z_{1}}\left(X^{j_{0}-1}\right) \overline{\left(v_{1}\right)\left(X^{j_{1}}\right) \cdots\left(v_{k}\right)}\left(X^{j_{k}+m}\right)=\bar{\mu}$.

If $j_{0}=0, j_{s} \geq m$ where s is the smallest possible then

$$
\overline{\left\{\left(v_{1}\right)\left(X^{j_{1}}\right) \cdots\left(v_{s}\right)\right\}\left(X^{j_{s}-m}\right) \cdots\left(v_{k}\right)}\left(X^{j_{k}+m}\right)=\bar{\mu} .
$$

If all $j_{s}<m$ then $\mu \in B$.
Theorem 8. The algebra $B=A_{X^{m}}, m>0$, is freely generated by X and words $\square\left(Z_{1}^{i_{1}} X^{j_{1}} \cdots X^{j k-1} Z_{1}^{i_{k}}\right)$, where $i_{1}, i_{2}, \ldots, i_{k}>0$ and $j_{1}, j_{2}, \ldots, j_{k-1}<m$, and $Z_{1}^{i_{1}} X^{j_{1}} \cdots X^{j k-1} Z_{1}^{i_{k}}$ is a bracketed word (we shall refer to these words as permissible and to $Z_{1}^{i_{1}} X^{j_{1}} \cdots X^{j k-1} Z_{1}^{i_{k}}$ without brackets as the root of the corresponding word).

Proof. It is sufficient to check that μ satisfying conditions of the Theorem cannot be presented as $\left(\mu_{1}\right)\left(\mu_{2}\right)$. To check this consider the leading monomial $\bar{\mu}=$ $Y^{b_{1}} \cdots X^{a_{s-1}} Y^{b_{s}} X^{a_{s}}$ of μ. (Observe that $b_{1} a_{s}>0$ since $\bar{\square}(v)=Y \bar{v} X^{m}$.) The number of Z_{1} in the bracketed representation of $\mu \in B$ must be equal to s since in any word from B a subword $Y X$ can appear in $\bar{\mu}$ only as $\overline{Z_{1}}$. So the number of brackets $\left\{\right.$ in μ is $\operatorname{deg}_{Y}(\bar{\mu})-s$. Of course the number of brackets $\}$ is the same. Since all permissible words have roots starting and ending with Z_{1} a monomial $Y^{b} X^{a}$ can appear in $\bar{\mu}$ only as $\left\{\ldots\left\{Z_{1}\right\} \ldots\right\} X^{d}$ where the number of left brackets is $a-1$, the number of right brackets is the integral part of $\frac{b-1}{m}$ and $0 \leq d<m$ is the remainder of the division of $b-1$ by m. Therefore the root and the bracketing of μ is uniquely determined by $\bar{\mu}$. The root and bracketing uniquely determine μ, i.e. the pairing of brackets is unique. Indeed if we have a configuration $\{v\}$ where v is a subword of the root then these two brackets must be paired and can be omitted. After that we can use induction on the number of brackets.

The Theorem is proved.

Acknowledgments.

The second author is grateful to the Max-Planck-Institut für Mathematik in Bonn where he is presently a visitor and where this project was (finally) finished. While working on this project he was also supported by a FAPESP grant awarded by the State of Sao Paulo, Brazil.

References

[Cz] A.J. Czerniakiewicz, Automorphisms of a free associative algebra of rank 2. I, II, Trans. Amer. Math. Soc. 160 (1971), 393-401; 171 (1972), 309-315.
[DG] V. Drensky, C.K. Gupta, Constants of Weitzenböck derivations and invariants of unipotent transformations acting on relatively free algebras, J. Algebra 292 (2005), 393-428.
[Jo] T. de W. Jooste, Primitive derivations in free associative algebras, Math. Z. 164 (1978), 15-23.
[J] H.W.E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine und Angew. Math. 184 (1942), 161-174.
[Kh] V. K. Kharchenko, Algebra of invariants of free algebras (Russian), Algebra i Logika 17 (1978), 478-487; Translation: Algebra and Logic 17 (1978), 316-321.
[K] W. van der Kulk, On polynomial rings in two variables, Nieuw Archief voor Wiskunde (3) 1 (1953), 33-41.
[L] D.R. Lane, Free Algebras of Rank Two and Their Automorphisms, Ph.D. Thesis, Bedford College, London, 1976.
[ML1] L.G. Makar-Limanov, On automorphisms of free algebra with two generators (Russian), Funk. Analiz i ego Prilozh. 4 (1970), No. 3, 107-108. Translation: Functional Anal. Appl. 4 (1970), 262-263.
[MLTU] L. Makar-Limanov, U. Turusbekova, U. Umirabev, Automorphisms and derivations of free Poisson algebras in two variables, J. Algebra 322 (2009), No. 9, 3318-3330.
[R] R. Rentschler, Opérations du groupe additif sur le plan affine, C. R. Acad. Sci., Paris, Sér. A 267 (1968), 384-387.
[Se] J.-P. Serre, Arbres, amalgames, SL_{2}, Astérisque 46, Société Mathématique de France, Paris, 1977. English translation: Trees, Corrected 2nd printing of the 1980 original, Springer Monographs in Mathematics, Springer Verlag, Berlin, 2003.

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

E-mail address: drensky@math.bas.bg
Department of Mathematics, Wayne State University Detroit, MI 48202, USA.
E-mail address: lml@math.wayne.edu

[^0]: 2010 Mathematics Subject Classification. 16S10; 16W25; 16W20; 13N15.
 Key words and phrases. Free associative algebras; locally nilpotent derivations; algebras of constants.

