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Let G be a dual space of a group G, i.e., the set of all equivalence classes
of unitary irreducible representations of the group G. Our far reching goal
is to describe G for G = hgn G, where G,, = B(n,k) is the group of all
upper triangular matrices with units on the principal diagonal with natural
inclusion G,, C Gj41, where k = R or k = F, is a finite field Z/pZ, p is
prime.



We mention here only some results concerning representations of algebraic
groups over a finite field. The book by G, Lusztig [24] presents a classifica-
tion of all (complex) irreducible representations of a reductive group with
connected centre, over a finite field. To achieve this, the author uses etale
intersection cohomology, and detailed information on representations of Weyl
groups.

From the article by P. Deligne and G. Lusztig [6]: “Let us consider a
connected reductive algebraic group G, defined over a finite field [F,, with
Frobenius map F. We shall be concerned with the representation theory of
the finite group G¥', over field of characteristic 0. In 1968, Macdonalds con-
jectured, on the basis of the character table known at that time for (GLy4, Sp,)
that should be a well defined correspondence which, to any F-stable maxi-
mal torus T of G and a character § of T in general position, associate an
irreducible representation of G¥'; moreover, if " modulo the centre of G is
anisotropic over IF,, the corresponding representation of G should be caspi-
dal. In this paper we prove Macdonald’s conjecture. More precisely, for T" as
above and 6 an arbitrary character of T we construct virtual representations
RY. which have all the required properties.”

The group G, = B(n,F,) is finite, hence the set G, in principal, is
known (it is numerated by the set of all conjugacy classes) and all irreducible
representations are contained in the regular representation. “Nevertheless
the complete classification of the complex irreducible representations of this
group has long been known to be a difficult task” [27] . Recently in 2006,
Ning Yan, have introduced in [27] “a natural variant of the orbit method, in
which the central role is played by certain clusters of coadjoint orbits. This
method of clusters leads to the construction of a subring in the representation
ring of B(n,[F,) that is “rich in structure but pleasantly comprehensible”.

The article by V. Gorin, A. Vershik and S. Kerov [8] is devoted to the
representation theory of locally compact infinite-dimensional group GLB of
almost upper-triangular infinite matrices over the finite field with ¢ elements.
From [8]:“ The group G LB consist of all almost triangular matrices of infinite
order. An infinite matrix ¢ = (g;5), 4,7 = 1,2,..., is said to be almost
triangular if the number of its subdiagonal elements g;; # 0, ¢ > 7, is finite.
This group was defined by S. Kerov, A. Vershik, and A. Zelevinsky in 1982
as an adequate for n = oo analogue of general linear groups GL(n,q). It
serves as an alternative to GL(o0, q), whose representation theory is poor.
Our most important results are the description of semi-finite unipotent traces
(characters) of the group G LB via certain probability measures on the Borel
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subgroup B and the construction of the corresponding von Neumann factor
representations of type I1,..”

Coming back to our group BY(F,) = lim G, where G, = B(n,F,), we
mention that with the natural homomorphism p?., : Gn41 — G, (see (1.1))
we can associate an inclusion Gn — én—i—l therefore, Go Un Cjn In the case

k = R one may use Kirillov’s orbit method to describe G,,. We define DPrt1
as follows:

B(n+1,k) 3>z =a""x, = p', (z) =z, € B(n,k), (1.1)
where for

r=1+ Z TimErm € B(n+ 1,k),  we set

1<k<m<n+1

2 — I+Z$kn+1Ekn+1> Tp =1+ Z TremErm.- (1.2)

k=1 1<k<m<n

Obviously, z = 2"z, and B(n + 1,k) is a semi-direct product
B(n +1,k) = k" x B(n, k). (1.3)

Remark 1.1. The group BY(F,) is compact, the corresponding Haar mea-
sure on this group is infinite tensor product of the normalised invariant mea-
sures on [F,,, where pf" is defined by (2.4)

h = Miny = ®1§k<nﬂi‘€7?v- (14)

Therefore, all irreducible representations of the group BY(F,) are finite-
dimensional and are contained in the decomposition of the the regular rep-
resentation of BY(F,). Moreover we have

BN(F,) = U B(n,F,). (1.5)
n>1

The group BY(F,) = limy B(n,F,) is subgroup of BY(F,,) therefore, BY(F,) D
BN(FF,). We construct the infinite-dimensional irreducible representations of
the group BY(F,) as guasiregular representations. The most important obser-
vation is that the measure on the homogeneous space X™ (see (2.1) below),
we use for this, has the property that its projection and the projection of the
Haar measure on subspace X*) (see (2.6) below) are orthogonal.
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Remark 1.2. We show that G\ (Un én> # (. Namely, G\ (Un én) con-

tains "regular” and ”quasiregular” representations of the group G.

The criteria of the irreducibilty of quasiregular representations in the case
of the field [F, is established. Some new conditions of the irreducibility are
found, if we compare with the Ismagilov conjecture 2.1 in the case k = R.

To construct some representations of a group G we shall use the well-
known concept of G—space. Let we have the measurable action o : G —
Aut(X) of the group G on a measurable space (X, i) with G-quasi-invariant
measure | having the following property: pu* ~ p Vit € G. With these
dates one can associate a representation 7**~ : G — U(L*(X,du)) defined
as follows:

(7 ) () = (@Al () /du(@) P f (), [ € (X ). (16)

In the case of invariant measure this representations is called Koopman’s rep-
resentation, see [11].  Consider the centralizer Zaux)(a(G)) of the subgroup
a(G) ={o € Aut(X) | t € G} in the group Aut(X)

Zaux)(@(G)) = {9 € Aut(X) | {g. v} = goug™ oy = e VL € G}.
The following conjecture was proved for some infinite-dimensional groups.

Conjecture 1.1 (Kosyak, [17, 18]). The representation w**X : G —
U(L*(X, p)) is irreducible if and only if
1) w9 L Vg € Zawx)(a(G))\{e}, (where L stands for singular),
2) the measure pu is G-ergodic.

We recall that a measure u is G-ergodic if f(ay(x)) = f(x) Vt € G implies
f(z) = const u a.e. (almost everywhere) for all functions f € L*(X, p).

2. Regular and guasiregular representations of the group B(Rf (Fp)

2.1. Regular and quasireqular representations of infinite-dimensional groups,
the case of k =R

Let the group G be a locally compact, X = GG and h be the Haar measure.
If o is right or left action of the group G on itself then p = 7% and
A\ = whE are well known right and left reqular representations. Quasireqular
representation is a particular case of the representation 7**% defined by



(1.6), where X = H\G, H is some closed subgroup of G and pu is some
G-quasi-invariant measure on X.

Recall the notions of the regular and quasiregular representations for
infinite-dimensional groups and the Ismagilov conjecture 2.1. To define a
" reqular representation” for infinite-dimensional group G the initial group G
as a candidate for X is not suitable since on G there is no Haar (invariant)
measure (Weil, [28]) no a G-quasi-invariant measure (Xia Dao-Xing, [26]). It
is natural to consider some bigger topological group G containing the initial
group G as the dense subgroup and a G-quasi-invariant measure p on G.

Definition 2.1. Representations T%# = 7%%C where o = R (resp. a = L)
we call the right (resp. the left) reqular representation of the group G.

Conjecture 2.1 (Ismagilov, 1985). The right regular representation T™F
G — U(L*(G, p)) is irreducible if and only if

1) pk Ly forall te G\{e},

2) the measure pu is G-ergodic.

Similarly, we can generalize the notion of quasireqular representation of a
group G associated with some subgroup H using a suitable completion X=
H\G of the homogeneous space X = H\G and constructing some G-right
quasi-invariant measure g on X.

Consider the group G = B)(R) = lim B(n,R). Let us fix the space X
and the measure p on X as follows, where FEj, are matrix units of infinite
order: B

X=G=B"={I+z|z= ) @mErn, zn € R},

1<k<n
dpip(2) = R1<kan(brn/T)" exp(—brnpy, ) dTpn, b= (bin)rn-
Theorem 2.2 ([12, 13]). Ismagilov’s conjecture holds, i.e., T®* e G if
and only if u* L u  for all t € G\{e}, and the measure u is G-ergodic.
Moreover
TR TR f and only if  py ~ po.

Quasireqular representations for the group G = Bj. Let us consider two
subgroups of the group BY(R):

Bm:{[+$€BN|ZE: Z Thn Een, xkneR}v

m<k<n

B"={I+zeB"[z= > zpEwm}.

1<k<m,k<n



The group BY(R) is a semi-direct product BY = B,, x B™. Fix the corre-
sponding decomposition x = z,, - z™. Define X™ = B,, \ BY ~ B™. Right
action R of G on X™ is well defined Ry(x) := (zt™1)™, z € X™, t € G. The
measure on X" is defined by

d:u?g,a) (l’) = ®1§k§m,k<n(bkn/ﬂ'>1/2 GXP(—bkn(Ikn - akn)z)dl‘kn-
Quasiregular representation is defined by TF+®.am = glte.a)X™

Theorem 2.3 ([17]). Conjecture 1.1 holds, i.e., quasi-regular representa-
tion TTHe.™ s irreducible if and only if conditions 1) and 2) of Conjec-
ture 1.1 holds. Moreover,

Thrm PRI o = and g ~ s,

Conjecture 1.1 for quasiregular representations of the group Bj(R) is proved
by A. Kosyak and S. Albeverio in [2] for a tensor product of arbitrary one-
dimensional measures and for more general Gaussian measures by A. Kosyak
and S. Albeverio in [3].

2.2. Regular and quasiregular representations and criteria of irreducibility,
the case k =T,

We show that in the case k = F), Conjecture 1.1 does not hold but may be
corrected easily. More precisely, two conditions of the irreducibility 1) and
2) of the Conjecture 1.1 are not sufficient, since the commutant of the right
quasiregular representation may be generated not only by the operators of the
left representations, as in the case of k = R, but also by some operators acting
in L? on infinite rows and existing only in the case when the corresponding
measures are equivalent with the infinite tensor product of the invariant
measures (see conditions 3) of Conjecture 2.5.

Define a quasiregular representations for the group By (F,) = limy | B(n,F,).
Let us consider two subgroups of the group of all upper triangular matrices

BN(F;D):

Bu(Fy) ={I +2 € BYF,) |2 = @knBin, Tkn € F,},

m<k<n

B"(F,) ={I+x€B"(F,) |z= Y zpEpm, Tk €F,}.

1<k<m,k<n



The group BY(F,) is semi-direct product BY(F,) = B,,(F,) x B™(F,). Fix

the corresponding decomposition x = z,,-x"™. Define the homogeneous space

X™:= B,,(F,) \ BY(F,) ~ B™(F,). (2.1)

The measure p, = M,EZ”) on the space X™ is defined as infinite tensor
product:

(m)

pl = @1<k<mbentloy, = Opoiph, where pk =@, i, (22)

of the probability measures p,,, on IF, defined as follows:
F, 37+ o, (1) = agn(r) >0 and Z agn(r) = 1.
ref,

The right action R : BY(F,) — Aut(X™) of the group BY(F,) on the factor
space X™ = B,,,(F,) \ BN(F,) is well defined by Ry(x)=(xt=1)™.

Lemma 2.4. The right action of the group Bl (F,) on the space X™ is ad-
missible, i.e., (po) ~ po Vt € BY(F,).

Quasiregular representation T™#>™ is defined in the space L?(X™, u,) by
(3.2). For 1 < k < m define the measures p* and uf, as follows:

k .__ o) kK _ o) kn _om k
Mo -= ®n:k+1/'l/akn7 Hiny = ®n:k+1:uim)7 Hinv = ®k:1:uim)7 (2?))
where £ is the normalized invariant measure on F,, i.e.,

Hino(r)=p~", 17 €Ty (2.4)

Conjecture 2.5. Let m € N. The quasireqular representation T+
BY(F,) = U(L*(X™, 1ua)) of the group B (F,) is irreducible if and only if

1) gt L opa Vt € B(m,Fp)\{e},

2) the measure pi, on the space X™ is By (F,)-right-ergodic,

3) for the measure i, = QT holds pk L uk, for all1 < k <m (it is
sufficient to verify this condition only for k =m),

4) two irreducible representations TH+e™ and THHs™ are equivalent
Thuem S TRus Gf and only if m=n and pio~ .

We would like to mention here a nice problem to solve. Define a regular
representation of the group B{(F,) as before. On the group BY(F,) of all
upper triangular matrices define the measure pu, as follows:

Ha = Onflay, = OFiHy- (2:5)
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Lemma 2.6. The right action of the group BY(F,) on the group BN(F,) is
admissible, i.e., ()™ ~ po Vt € BY(F,).

Conjecture 2.7. The regular representation T™He . BY(F,) —
U(L*(BN(F,), 1)) of the group BY(F,) is irreducible if and only if

1) gt L opa Yt € By(Fy)\{e},

2) the measure pi, on the group BY(F,) is By (F,)-right-ergodic,

3) two irreducible representations T™+e and TTHs are equivalent TTHe ~
T4 4f and only if po~ .

2.3. Idea of the proof of the irreducibility of the regular and quasiregular
representations

Below we show that conditions 1)-3) of Conjecture 2.5 and 1)-2) of Con-
jecture 2.7) are necessary for the irreducibility of the representation T%ram
(resp. of TR#e). The remaining part of the chapter is devoted to the proof
of the fact that these conditions are sufficient for the wrreducibility of the
representations TT#em,

The conditions 1) — 3) of the conjecture are necessary for the
irreducibility of T%#>™ and T™*~. Indeed, let conditions 1) does not
hold, then uks ~ pu, for some s € B(m,F,)\{e} therefore, the operator
TEhem — glua:X™ iy well defined and commutes with the representation
THR#em  Similarly, the operator T+ commutes with TR#e.

The necessity of the condition 2) is evident. Indeed, if the measure f,, is
not G-ergodic on the space X™ (resp. X =~ BY(F,)) then X™ = X, U X,
(resp. X = X7 U Xy) where X}, are G—invariant and pu,(X%) > 0, k= 1,2.
In this case L*(X™, o) = Hy & Ho (vesp. L*(X, o) = Hy & Hy) is a direct
sum of two nontrivial G-invariant subspaces.

To explain the condition 3) we define the elementary representations
TR#e() of the group G as follows. Consider the subspace

XO={T+ " @By} (2.6)
n=k+1

of the space X™ and the projection u* of the measure p, on the subspace
X®) then

X" = XXX Wy = @, where  pll = @02 oy, -



In this case the following decomposition of the representation 7%#a™ holds:
T = @ TS in D207, ) = @ LX), k).
We shall use the following notations

Thn := TP ™, T (r) := Ty, (2.7)

n

The following decomposition holds for the quasiregular representation 7%«
Tkn = ®];:1T]m(7"), 1< k < m, Tkn = ®Z;1Tkn(r)7 k> m. (28)

For the regular representations T%#e in L2(BY(F,), ita) = @32, L2(X®) k)
we have:

K
TtR#a’m = ®EO:1TtR7“a’(k)7 Thn = ®§:1Tkn(r>7 k<n. (2'9>

In Section 4.2 we describe the commutant (2A™)" of the von Neumann
algebra

"

A" = (T |t e @) (2.10)

To be more precise, define the Laplace operators A and Ay where

A(m):ﬁAk, Ay = ﬁ p ' C(Tin(k)) and C(T):= ) T". (2.11)
k=1

n=k+1 ref,

By Lemma 4.6 we conclude that the operator Ay, is well defined and belongs to
the commutant (A™)" of the corresponding von Neumann algebra U™ if pk ~
uk . for some 1 < k < m. This shows that condition 3) of Conjecture 2.5
are necessary conditions of the irreducibility of the representation T#am

Remark 2.1. We were able to prove Conjecture 2.5 only in the case m =
1, p is arbitrary and m = 2, p = 2. The general case of m and p is open.
We shall try to study these cases later.

Remark 2.2. Idea to prove the irreducibility. Roughly speaking, to prove
that conditions 1) — 3) are sufficient for the irreducibility, it is sufficient to
show that in this case operators T,,, defined by (3.10) and

T o= diag(0,1,....p=1)=> rE,, 1<k<m, k<n, (212)

relfy
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acting on the Hilbert spaces Hy,
Hyy = H,,, = L*(Fp, ta,,,), (2.13)

belong to the von Neumann algebra 20 generated by the representation
TH#am To be more precise, consider two infinite families of operators X},
and T, defined as follows: Xy = (2, | Kk < n) and T, = (T,., | 7 < n)
for 1 < k,r < m. For m = 1 we prove that X; C 2! therefore, (A!)" C
(L>(X1)) = L*°(X;) since the von Neumann algebra L*°(X;) is maximal
abelian (see Definition 3.1). For m = 2 we prove that, depending on the
measure, one of the families (X1, Xs), (X1,Ts), (11, X3), (T1,T3) belong to
2. For an arbitrary m it is sufficient to prove that one of the following
families (F, Fy, ..., Fy,) belongs to the von Neumann algebra 0™ where Fj,
is X; or Ty for 1 < k < m. To prove the irreducibility it is sufficient to
prove that the von Neumann algebra L*(F}, Fy, ..., F},) is maximal abelian
therefore, (A™) C L*>®(Fy, Fy, ..., F,,) and use the ergodicity of the measure

fa-

Remark 2.3. For shortness we shall use the same notations Aj, for the op-
erator A, acting on the Hilbert space Hy and the operator Ay, = I ® -+ ®
I®A,®I®... acting on the finite H, = ®_, H,, or infinite tensor product
H = ®$LO:1Hn-

3. The space X and the measure

Let us consider the finite field F,=7Z/pZ of p elements F,={0, 1, ...,p—1}.
The group B)(F,) is defined as the inductive limit (with natural inclu-
sion) BY(F,) = lim | B(n,F,), where B(n,F,) is the group of n-by-n upper-
triangular matrices with unities on the principal diagonal with entries from
F,. For the group BY(F,) we have the following description

BE)\I(IFP) ={I+ Z TinEin | Tpn € Fp, g, = 0 for large n}.

1<k<n

Let BY(FF,) be the group of all upper-triangular matrices: BN(F,) = {I +
Y i<kenTinLin | Ten € Fp}. We have the following semi-direct product
BY(F,) = B,,(F,) x B™(F,), where B™(F,) is normal subgroup in BY(F,)
and

By(F,) ={I+z€B"F,) |z= Y B},

m<k<n

11



B™F,) ={I+z€B"F,) |z= > zwmb}
1<k<m,k<n
and we shall write BY(F,) 3 z = z,,, - ™ € B,,,(F,) - B™(F,). We define the
space X™ as the factor-space X™ = B,,(F,)\B"(F,) ~ B™(F,). The right
action Ry of the group BY(F,) is correctly defined on the factor-space X™
by the formula R;(z) = (zt=1)™, t € BY(F,), » € B™(F,). We have

Ri(x) = xt™ ', if t € B™(F,), and Ry(x) = tat™ !, if t = t,,t" ¢ B™(F,).
(3.1)

To prove (3.1) we get
B, (F,) - B"(F,) 2 2y, - 2™ T T M - U™ = Tt (6 T )

hence, (2™t,,t™)™ =t 1zt and (xt™!)" = t,at™ ! for © € B™(F,). We use
relation (¢t71),, = (t,)~*. The measure i, on the space X™ is defined as
infinite tensor product

_ . m k k . 00
Po = @1<k<mb<nbag, = Qpeilly, Where pg = O =kt 1 Mg

of the probability measures ,,, on IF,, defined as follows:
Fp 31 fia,, (1) = () > 0 and - p (1) = 1.

Lemma 3.1. We have pft ~ u,, for all t € BY(F,).

Define the unitary representation T+e™ : BI(F,) — U(L?*(X™, 1,)) in a
natural way, i.e., for f € L*(X™, u,) set

(T f)(x) = (dpa(R;H (2)) /dpa (@) 2 (R (x), t € By (F,).  (3.2)

Conjecture 3.2. The quasireqular representation T™#™ of the group By (F,)
is irreducible if and only if conditions 1)-3) holds:

1) pk L pio VE € B(m, F,)\{e},

2) the measure i, is G-ergodic,

3) for the measure p, = @ uk holds p™ L ui, .

4) Moreover, THre™ ~ THus™ if and only if m = n and pe ~ g

Remark 3.1. In the case of the field £ = R and the measure being a Gaus-

sian product-measure, the irreducibilty holds if and only if the condition 1)
and 2) are valid (see [17, 18]) hence, the case k = F), is richer.

12



The right action R of the group B{(F,) on the space X™ is given by the
formula (3.1). The left action L of the group B(m,F,) on the space X™ is as
follows: L(z) = tx, t € B(m,F,), v € X™. Let us consider the case p = 2
and m = 2, i.e., the space X2. Set Fj,(d) = [ +dE, € G, d € F,. We have

Ep(d)z = (§¢) (o 2o o i) = (g ogtd mafdeas o aunbdran .

For t = [ + Ej,, 1 <k < n the right action is R;(z) = 2t~ (see (3.1))

-1
1 T2 13 ... Tin .- RI|+_>E1" 1 12 13 ... Tin + 1 ...
0 1 o3 ... Top ... 0 1 Tog ... Ton ’
-1
1 12 13 ... Tip .- RI+E2n 1 T19 13 ... Tip +T12 ...
= )
0 1 o3 ... Top ... 0 1 To3 ... ZEQn—Fl

—1

(1 12 T13 ... T1k ... Tln ) I+Egy, (1 12 T13 ... T1k .. Tin+T1k )
0 1 x93 ... Tog ... Tap ... 0 1 x23 .. Tog ... Tan+xok ... /) °

Therefore, we have four actions to study:

Rilp, ttmr v+ 1, (T, 210) = (T T1a + 21), (3.3)
Ti12 Tin R;'£E>2n T2 Tip + T12 Tk Tin R;é;’kn Tk Tin + Tik
1z, 1 zo+1 )7 \ 2o T2 Tog Ton + Top )
(3.4)
and p
T1in Tip + ATop
Livam, : ( ! )H( ! 2 ) deT, (3.5)
Lon Lon
Set
Hz'm; == L2<Fpa ,umv) and Ha == L2(Fpa Ma) (36)

where the normalized Haar measure fi;,,, on the additive group IF, is defined
by

fino(r) =p~ ', 7 €F,, and p.(r)=a(r), with Z a(r)=1. (3.7)

The operator T;,, on the Hilbert space H,,, associated with the action z —
x — 1 on F, is defined by the following formula

dptiny(z — 1) > 1/2

(vaf)(x):< e flx—1)= f(x—1), f(x)=(fo, f1,---, fp—1)€CP.

13



Take the orthonormal basis (o.n.b.) in the space H, as follows:

(e¥)rer,, where eff = (€3(7))rer,, €n(r) = (a(r))_l/Q(Sk,r, k,r e F,. (3.8)

For ey (r) = (p) Y204y, k,7 € F, we get (Teg)(r) = ex(r — 1) = egy1(r), s0

T(Z frer) = kaek—i-l ka: 1ex  hence, T = ZET+1T
P

kel keFy relfp

To define the corresponding operator T, on the Hilbert space H, we use the
following commutative diagram:

H, = H,

Uu L U
Hinv %} Him)

where U, : H, — Hj,, is the isomorphisms defined by

Un = (dpta(x) /dpins(x))""* = diag((pa(0))/?, (pa(1))/*,..., (pa(p — 1))/).

Finally, the operator T}, is equal to T,, = U, 'T},,U, hence, we have for p = 2

1 0 0 (1)
T, = (”‘*(‘” ) (75) ( e ) = ( ”‘“”) . (39
0 \/ﬁ 10 0 2a(1) CIR

For general p we have in the basis (ef)ker,

0 0 0.. 0 el
@ o o 0 0 000..01
— 10000
T, = R , Tme=1|010700]. (3.10)
o Jedo.. o 0
000..10
0 0 0. ,/22=20

a(p—1)

3.1. The Kakutani criterion

We find the condition of orthogonality uiI”E” L pi, d €F,\ {0}, using
the Kakutani criterion [9]. The Hellinger integral H(u,v) for two measures
p and v on the space X is defined [23] as follows:

/ w(x) dv(z)
H(p, v
p(x) dp(x)




where p is some measure on X such that both measures p and v are absolutely
continuous with respect to the measure p. For example, one can take p =
s(p+v).

Let we have two probability measures ji, and 1 on the group F, defined
as follows: pa(r) = a(r), >-,cp, o(r) =land pug(r) = B(r), 3. Blr) =1
The Hellinger integral H (pq, p15) for two measures p, and g is given in this
case by

H(jto, 115) /IF\/d,ua z) dps( )>d,Umv Z /o

Aptino () dptiny (v =

Let us consider two probability measures (o, = Qpenfla, and pg = Qneniig,
defined on the space (F,)>* = F, x F, x ... as the infinite tensor product,
where f1,, and pg,, n € N are probability measures defined on the space [,
as before. The Hellinger integral H (i, p15) for two measures p, and pg is
given in this case by

H(Manuﬂ) = H H(Manvﬂﬁn) = H Z V O‘n(r)ﬁn(r)'

neN neNref,

We use the notation p/(A) = p(f~1(A)) for a measure p on the space X
and a measurable bijection f : X — X. For two measures p, ® pg and
(o @ pg)r+derz on F, x F, where Liiam, : (z,y) = (z + dy,y) (see (3.5))
we have

(fta @ p1g) 1552 (k1) = (a(R)B(r)) T eme = a(k + dr)B(r).  (3.11)

Hence, we have for the Hellinger integral the following expression:

ity = 1 (G0 © 00) 7812, 10 @ 115) = 32 4/ (@(W)B0)) T 2a(4)5(r)

r,keF,
Z Valk+dr)B ZB Z\/a(k+dr)a(k).
rk€F, reFy keF,

15



Lemma 3.3. For the measure fia, = @1<k<m k<nllay, ON the space X™ five
following conditions are equivalent:

1)yt L e, YVt € B(m,Fy) \ {e},

2) (po) B 1 pg, Vd €F,\ {0}, 1<l <s<m,
3) (Ha) Pt L pte, 1<1<s<m,
DI (o) = [ Hus= [ D cn(r) D Ve (k + dr)on, (k) =0,
n=s+1 n=s+1rekF, kelF,
SLd Z Zasn ( — Z \/aln(k—i—dr)aln(kz)) = 00.
n=s+1reckF, keF,\{0}

PROOF. Obviously 1) = 2) = 3) = 4). We show also that 4) < 5). The
implication 5) = 1) will follow from the irreducibility that we prove later.

We show that 2) < 3). Indeed, since (pq)"+%s and p, are product
measures, by Kakutani criterion we conclude that (uq)"*s and p, are
orthogonal or equivalent. It is sufficient to show that 3) implies 2) for all
d € Fy =T, \ {0}. Let us suppose the opposite, i.e., that for some d € [}, :=
F,\{0} holds (p1a)""*4%t: ~ pu,. Since F% is a multiplicative group there exists
an inverse a =d ! € TF »- For this element a we then get

fl ~ (Iua)L(IL+dEzS = (MQ)L(HdElS)a — (MQ)LI+adEl5 _ (,ua)L”Ezs_

This contradicts with 3). We have 4) < 5) since

D () Y Ve (k + ) (k) = a.(0)

relf, kelF,

+ 3 ) Y Vo +r)omk) =1= > awm)+ Y auw(r)
reF,\{0} kelFp reF,\{0} reF,\{0}
x> Vet an®) =1- 3 aw) (1= D Vonlk+ ran®)).

keFp reF,\{0} keFy

0

Remark 3.2. If y!, ~ p!  for some I, 1 < I < m then by Lemma 3.3, 4)
we get (ftq ) +Eis ~ g for | < s < m hence, the representation is reducible.
Therefore, only one condition from the list of conditions 3) in Conjecture 3.2
is independent, namely: g L u !

16



PROOF. If we replace the factor !, in the expression for the measure y, =
@ 1k by pl, we get the equivalent measure p, and the representation
TH#arm equivalent with the initial one T%#o™  For this measure we have
(far)“1#981s ~ 1 for s 01 < s < m. Indeed, in this case we have

D ke, Vi (k 4 dr)ag,(k)=1hence, TI;%(11) = 1. The representation 7F#a'm

is reducible in this case, since the operator T, +Z‘*E generated by the transfor-

mation Ly, 4, is well defined and commutes Wlth the representation THa/ ™.
O

Examples. 1) In the particular case p = 2 we have
H,, 10 = 5(0) + 28(1)v/a(0)a(l) = ag,(0) + 2a2,(1)v/ a1, (0) 1, (1)
=1- OéQn(l)<1 -2 Oéln(O)()éln<].)).

Hence, for X = X? and [, we have

11a) H Hyio = H (1 ~ o (1)(1 = 2 aln(O)aln(1)> L (312)

n=3

We see that 1155 (11,) = 0 if and only if Si5' (1ta) = co where
Sta(pa) = SlLZl (Ha) ZO‘M (1 —2 aln(0>a1n<1)> :
2) For X = X? and F, we have

15! () = Hmm{H%@+mw>%m%my

n=3

i) H Hys = H (90 0) + 205, (1) Vi (0)ara(1))

o) Hmm—HQm@+MMDaMWm®)

n=4

17



3) For F3 and X2 we have
Hyj, =p(0) (a(0) + (1) + a(2))
+8(1) (Va@a(0) + va@)a(D) + Va0)a(2))
+6(2) (%a a(0) + v/a(0)a(D) + Va(Da(2))
B(0) + (81) + B(2)) (Va2)a(0) + va0)a(1) + va@)a@))

hence, for F5 and X? we have

=B(0

1135 (pto) H Hyo= [ (02n(0) + (aan(1) + a20(2)) (3.13)

neNn>2

% (Var@am©) + VanO)an®) + VanDam?)) .
We study first the condition 1) of Lemma 3.3.

Lemma 3.4. The following three conditions are equivalent:

1)y L gy, 1 <1< m,

o

2)H11</,La = H —(1+Z Z \/Oéln Oélnk‘i‘T):O,
n=it1? r€F) keF,\{0}
D) = Y Y (1= 3 Vaulir en®) - .
n=l+1reF,\{0} keFp

Particular cases. 1) p =2 and m = 1. We have only one condition:

Shm) =3 (1 - 2v/an@an(D) = .

n=2
2) The case p = 2 and m € N. We have the following conditions for 1 < k <
n<m:

o

SE (o) = 00,  where SE (o) = Z <1—2 akr(O)akT(l)), (3.14)
Stipa) = Y am(l)(l—Q akr(O)akr(l)), k< n. (3.15)

18



Remark 3.3. The conditions 3) of the Conjecture 2.5 mean the following.
The space X® =T[>°, | (F,), is isomorphic to the set Z, = {z € Q, :
||lz]|, < 1} of entire p-adic numbers of the field Q, of all p-adic numbers since
Z, has the following description: Z, = {>_ -, a,p" | a, € F,}. The measure

pk on X® is the Haar measure on Z, under this identification.

Remark 3.4. The lemma analogous to Lemma 3.3 holds in the case when
we replace the field k£ = IF,, by the ring k = Z. The measure p, on Z is defined
by pia(r) = a(r) > 0, r € Z such that > _, a(r) = 1. The corresponding
conditions are the following:

1) Bl L oVt € Bm,Z)\ {e},
2) (po) 1+ 1 g, Vd € Z\ {0}, 1 <1< s<m,

3) Hll;d(:uoc) = H Hn,ls = H Zasn(r) Z \/an(k’ + dr)aln(k) =0.

n=s+1 n=s+1 reZ keZ

3.2.  Fourier transform.

Let us consider an additive group of the field IF,. The Haar measure ft;n,
on F, is defined by pn,(r) = 1/p, v € F,. The set of unitary characters
Xr(r), R € F,, are defined as follows:

2miRr

F,>r— xr(r) =exp c st (3.16)

The Fourier transform F is defined on the space Hy,, = L*(F,, ftiny) by the
formula

x _ 1 2miRr
amw:ﬂm:ﬁwmmmwmmzﬁéymm@-p)

(3.17)
The operator F is a unitary operator on the space L?(F,, ftiny)-

Lemma 3.5. The image va = FT,,F~1 of the operator Ty, with respect
to the Fourier transform is defined by

2miR

(Tinf)(R) = exp (= ) F(R), (3.18)

i.€., irmv:dlag(S(l(O)’ X1(1)7 s aXl(p - 1)) :dlag(la )\7 RN Apil)a AZXl(l)
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PROOF. Indeed, by (3.10)we have T}, : f(x) — f(z — 1) hence,

F(R) = 1 Zf(r) exp (_ 2mR7‘> o Zf (r—1) exp( 2mR7’> _

5 e (- R D) < oxp (- 225 fi)

To define the Fourier transform F, : H, — Hg, where the measure & on F,
is defined by (3.22), we use the following commutative diagram:

L2<Fp7,ua) &; L2<Fp7,ud)

Uy i + Us
L2(Fp7/%nv> £> L2(Fp7/%nv>

where (U, f)(r) = (pa(r))*?f(r). We have F, = U;'FU, hence (compare
with the case of the Fourier transform (3.20) in L*(R, i) defined below)

(Ff) () = e 3 Vallf () e (). e

(,Y TEIF

Remark 3.5. Let us denote by F}. the one-dimensional Fourier transform
corresponding to the measure fig, (see [15] formula (6) and (7))

PR B LR, fign) /

1/2 ~ - 1/2

Ul = (dﬂizlr;(x)> 1 ! Ul = (M;JM)
LXR,dz) 5 LXR, dy).

By definition, F/ = (U )"\ FU"

kn>

(FI) = <= / £(2) expliya)de,

where

so we have

(FE F)(y) = (dﬂlzlr;/(y)>_l/2 Nir / f(z) exp(iyx) (du;;;( ))1/2 d?g 20)
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/2 . .
, 18 positive,

In the case where the Fourier transform F/L,lm/f of the function ,u,i,n

we define the density

. 1/2

Firn (9) =] (Fpu)(w) | (3.21)
of the corresponding measure djig,(y) := fixn(y)dy.

Remark 3.6. We compare the conditions pu%t 1 p,,Vt € B(m,k) \ {e} for
k =R and k = F, when m = 2.
(a) In the case k = R we have

1 215 213 ... = .
2 _ 12 T13 1n
X_(O 1 To3 ... Tapn )’
m bkn 2
dpy' (x) = @1<k<2, ken — exp(—brnTyy, ) AT pn.-
For the operator Ul (t) := T/ 4% = exp(itAL), t € R acting on L2(X2, ),
where Ay, = Do + D305 w2 D1y, we have

U{é(t) = exp (Zt(D12+Z l’Qlek)) = exp(itDlg) H exp(itxszlk) = H Ulf(t),
k=3 k=3 k=2

Sh(r) = AL = (Dt Y waeDui )12 = [ Drod I+ e |2 Duid Iy,
k=3 k=3

NP D)UY o P FuDu 1, =gt 43 st P lignt [,
k=3 k=3
bio | = 1 by
2 > b 2
k=3
(b) In the case k = Fy we have X? and p, = ®1<k<2 k<nfla,,- Using (3.5)
we get (“12) = (“*t1) and (3i7) — (“ni*2n). Hence, the corresponding
operator UL (t) = Tﬁ;’;gi, t € Fy acting on L?*(X?, i), has the following
form for t = 1:

UL (1) = @2,Uk(1), where Uy—1 = (T, —1), Up—1=P (T, ~1), k > 3.

1k

To get the two latter expressions we use (3.10) and (5.5). Therefore, we get

1
S e = DL = [[(Tar, — D13, + D 1P PN Tay, — D1,
k=3

k=3
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= ||(Tor, — D% +Z||P2k 12(Toy, = DI,

= (1—2 a12(0)aga(1 > Zagn <1—2 aln(o)aln(1)>'

Remark 3.7. Suppose that the square of the Fourir transform of the square
root of the measure p, on F, is again a measure on F,. Compare with the
case of the field R, Remark 3.5. The latter condition is equivalent with the
following one: F,1 = 1 that means by (3.19 the following;:

(Ful) (R) = — Z Valr) ex p( 2”;RT) =1, ReF, (3.22)

& TGF

For p = 2 we get (F,1) (0) = (F,1)(1) =1or

(Va(0) + va(1)/v2a(0) =1, (Va(0) = vVa(1))/v2a(1) =

hence, we get if a(0) > a(1)
= (14 2v/a(0)a(1))/2, a(1)=(1-2ya(0)a(1))/2

For p = 3 we get (F,1) (0) = (F,1) (1) = (F,1)(2) = 1if /a(0) > (v a(1)+
Vva(2))/2 and «a(l) = a(2). Indeed, we get
= (Va(0) + \/a ) + vV a(2))/+/3a(0)
1) = (Va(0) + \/a(l)exp —2mi/3) + v/ a(2) exp(—4mi/3))\/3a(1) =1,
2) = (v a(0) + va(l) exp(—4ri/3) + v/ «(2) exp(—87i/3))/+/3a(2) = 1

hence,

va(0)+(—%+i§) a(1)+(—%—z‘§)\/ﬁ:
Val0) — 2(/all) + Val) + L2 (v/alD - Va@) > 0

For general prime p we get > pp /() exp(—2mRr/p) =1 for R € F,,.
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3.83.  Mazximal abelian subalgebra and a simple spectrum

Definition 3.1. An abelian subalgebra of a von Neumann algebra 2l is called
maximal if it is not properly included in any other such subalgebra of 2.

Consider a finite-dimensional Hilbert space H = C" with the standard
scalar product (z,y) = > 1 _, TxT.

Definition 3.2. A spectrum Sp(A) of an operator A in an n-dimensional
Hilbert space H we call simple if Sp(A) consists of n distinct eigenvalues.

Lemma 3.6. A von Neumann algebara L°(A) generated by a diagonal op-
erator A = diag(A\)}i_, in H = C™ is mazimal abelian if and only if the
spectrum of A is simple. In addition, L>°(A) = {P(A) | ord P < n — 1}
where P(x) = 71—y apz®, a;, € C.

PROOF. We know that for a von Neumann algebra 2 holds ()" = 2( there-
fore, L*(A) = (A)"”. We show that

(L>*(A))" = (A)" = {diag(bi)i_y | b= (br)i=, € C"}.
Indeed, let [A, B] = 0 where B = (bgm )} =1 then
)\kbkm = bkm)\m, for all & 75 m.

Therefore, by, = 0 for k # m since Ay # \,,. By the same arguments we
show that

L=(A) = (A)" = {diag(ax)i- | a = (ar)i=, € C"}.
When A = diag(A1, A2, A\2) with Ay # Ao then L>®(A) # (L>(A))’ since

=4y = { (¥ a0 Jlamech, @y ={(¥ a2 0) | am € C}.

0 0 ass 0 asz2 as3

O

Denote by L*(T,) the von Neumann algebra of operators acting on H, ~ C?
generated by operator T, defined by (3.10), i.e., L>(T,) = (T4)".

Lemma 3.7. The von Neumann algebra L*(T,) is a maximal abelian sub-
algebra in B(H,), i.e., (L®(Ty,)) = L*>(T,). In addition, L=(A) = {P(A) |
ord P <p—1}.
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PROOF. By Lemma 3.18 T}, ~ Nim, and va is the diagonal operator with
different eigenvalues: Sp(T},,) = {exp(—ikn/p) | k € F,}. O

Lemma 3.8. The von Neumann algebra L>(x) generated by the operator
r=diag(k)rer, is a maximal abelian subalgebra in B(H,), i.e., (L™(x))' =
L*>(x).

PROOF. Since the spectrum Sp(x) = {k | k € F, } of the operator z is simple
the proof follows from Lemma 3.6. O

4. The Laplace operator and the commutant description

4.1. The Laplace operator and the irreducibility

For approximationof an operator xy, defined by (2.12) we shall use the
well known result (see for example [4], Chap. I, §52)

. 2 . . L i
;relﬁg(;akxﬂ;xkl)(Zak) ,a, >0, k=1,2,...,n

We use the same result in a slightly different form with b, #0, k=1,2,...,n

:irelIiRI’lL (Zakxk | Zxkbk = 1) (kz: 21) : (4.1)

.. . . b n b2 -1
The minimum is realized for z; = 2= < Y et ﬁ)
Let p =2 and X = X! Set

_ a1, (1)
1 a1n(0)

a1,,(0) _
\/ 0412(1) 1

Remark 4.1. In order to approximate the operator z; := diag(0, 1) acting
on Hyy (see (2.13)) by linear combinations of Ty, — I = 213 ® (Tn,, — I) (see
(5.5)) it is sufficient to approximate the identity operator Id = I by linear
combinations ij:? thAa,, = 25:2 tn(Ts, —1) as N — oo (see Lemma 4.1
below).

(4.2)
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Notations. Set 1 =1®1®1®--- € L*(X™, u,) = ®1§k§m7k<nL2(Iﬁ‘p,u%n),

where 1 = (1,1,...,1) € L*(F,, i, ) and let c1, = 24/a1,(0 aln 1 As

before, for f € L'(X, 1) we use the following notation M f = [, f(x)du(x)
and let (f, | n € N) be a closed subspace generated by the set of vectors
(fn)nen in a space H.

Remark 4.2. Obviously, two series with positive a,, b, are equivalent:
Qn Qn
~ — 4.3

i.e., they are simultaneously convergent or divergent.

Lemma 4.1. Three following conditions are equivalent if p = 2:

(i) 1 € (A, 1|0 >2),

() sﬁ(ua):z(1—2 am(0)anm(1 ) S (1 ) = oo,
n=2 n=2
(140) o L flino-
PRrooOF. To prove ( (1) set &, = Aa,, 1. We have
aln 1 Oéln O
(Toy,1,1) = Vi (0)ar, (1) =cin,
- aln ( CVl'n - aln 1>1 1) = Cin — 17

H§n!|2 = HAamlH2 = (Aq,, 1, Aam ) (Tar, — D1, (Ta,, — 1)
=2—2(Ty, 1,1) = 2(1 — 1)

Finally, we have

Mg, = — (1 _9 aln(O)aln(1)> a2 =2 (1 —9 aln(O)aln(1)> .

If we take (t,), such that Zgj; tnM&, =1 we obtain (since §,—M¢&, L
gm_Mgm for n 7£ m )

N+2 N+2

1D todar, = 1)1 = I3t (Aay, = M€ =
n=2 n=2
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N+2 N+-2

D ol (Aay, = ME) TP = || > ta(&a—ME)|
n=2 n=2

N+2

Using (4.1) for b, = M¢, and a,, = [|&,||*— | M&, |? we conclude that

N+2 N+2
. 2 _ _ L -1
i (I3 e =PI 306 1) = (S5

where
N42 2 N+2 N+2

| ME, |? (4.3) | M&, [P _
St (ia) Z Z 1€nll>— | ME, |2 Z NEE

’Vl

N+2 (1 —9 oqn(O)aln(l)>2 =
2 2 (1 _9 a1n<0)a1n(1)) =5 ; (1 -2 oqn(O)oqn(l)) .

To prove (ii) < (iii) we have

/ Qln 'T « n + « n
:Ua1n7 ﬂmv / d,u - 1nv - \/ : \/ .
Fa ,uzm) 33'

Hence, we get

H (o fliny) = HH<Ma1m#inv) _ H \/051n<0>\‘/|’§\/061n(1)

By the Kakutani criterion we conclude that p, L p, if and only if

a1,(0) + /(1
H /JLO“/JL’LTL’U H \/ ! \/5\/ !

ﬁ (\/am(O):/ri\/am(l))? :o@ﬁ% <1+2\/m) -0

n=2

=0«

& Sh() =Y (1 — 2y/am( )aln(l)) — .

n=2
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Lemma 4.2. Denote by T,, = Ty,,, n > 2. The following strong limit of
operators Ay = s.limy_, Hn:2 ”'QT" 1s correctly defined if and only if the

following equivalent conditions hold:

~ iy S H V(0 \j— @n(1

> 0 < SE(1g) < oo.

Proor. We have

11/2(1 + T,)1||* = 1/4||(1 + T)1||* = 1/4[(1,1) +2(T,,1,1) + (T,1,T,,1)]

= 1/2(1+(T,1,1)) 2 1/2(1+2/a1, (0)ann(1)) = <\/a1n(0)\4/r§\/a1n(1)>2‘

Hence,

lim HH”THP (IO ety 2 ). 1

O

Consider the space X!, i.e., the case m = 1, and fix a prime p > 2. For the
operator T, we have (see (3.10))

a(p—1)
0 0 0. R
T % 0 0. 0 0
o = o Z B k-
0 a) g 0 0 k 1)
o) 7 keF, +
0 0 0 a(p—2) 0

Remark 4.3. To guess the expression for the right version of the opera-
tor Aa,, defined by (4.2), if p > 2, we observe that A,,, = T, — 1 =
ZTE]FZ T}, ~— 2 for p= 2. Hence, it is natural to replace the operator A,,,

in the case p = 2 by the expression C(T,,,) —p = Zremp T} ~—pin the case
of an arbitrary p.

Lemma 4.3. Three following conditions are equivalent for an arbitrary p:
() 1e((Ler, Tor —p)LIn22),
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(ii)  Sfi(pa) = oo, where

SE (pe) = Z Z ( Z\/ozlnk:—i—rozln )

n=2 relF,\{0} keFy

(131)  pra L fine-

PROOF. To prove (i) < (ii) we have

Z k~|— 1 ——— Bk, = Z

kel

k+r,k- (45>

Using the change of variables k+p—r=s, k=s—p+7r =s+r modp we
get:

Z k—i—p k+p rk — Z S+T ss+r'

keF, s€Fy

Finally, we have

Cr)=1"=3"% Burr=3_ > IZ Epr (4.6)

relfy relf, sefp keF, refy,

Set & = oy, = (C(Tam) - p)l = (Zre]Fp Tglnr - p) 1. We get
Mga = ((C(T) _p)]-? 1) = (O(T)]-? 1) — D=

=D (Z w/a(?“)/oz(/ﬂ))oz(k:) —p= Y Va(rak) -

keF, relf, rkelF,

|* we get using (4.6)

leal =323 };

keF, reF,

To calculate ||&,




=S (T dam+ Y Valals) - 203 Valalk)

keF, relF, r,s€F,, r#s refy
=Y (Palk) + Y Valals) —2p Y va(a(k)
kelF, r,5€Fp S
=" +p > Valr)als) =2p > Va(r)a(k)
r,s€Fp rkel,
=t =p Y Vamak) =p(p- Y. Valak).

Finally, we get

Mé==(p= Y Va@a®), l&l=p(p— Y Vatla®).

r,keF, r,keF,

If we take 25:22 t,ME, =1 we obtain (since §,—M§&,, L&, —ME,, for n # m)

N—+2
H(Zt (C(T) = p) = 1)1 = | 2 (O =) = M) 1P
N+2 N+2
=D tal&a—Me) 2 = D 2 (NeallP— | M&, ).
n=2 n=2
Using (4.1) for b, = M¢,, and a,, = [|&,||*— | M&, |* we conclude that
N+2 N+42
min (H[Zt - —f]lH | Zt M¢, = 1) (St ()™
where
N+2 N+2

L o | M&, |? (43) | Mé&x |2—
Stin(p) = ; 16al12— | ME, 2 Z IFAE.

N+2 (29 — X _rkeF, O‘ln(r)a1"<k)> _ ENZ:H (p - > \/W)

n=2 P (p - Zr kEF, aln(r)aln(k)> p n=2 r,kelF,

To prove (it) < (iii) we have H (fiq, tiny) =

dite,, () aq, (k)
Aln ZTLU = ’an . 4'7
H (o H/ V' ditino() n— 2k€IF p o




So, by Kakutani’s criterion, we conclude that p, L i, if and only if

i) =TT 3022 <00 [T (32 222) o

n=2 keF, n=2  keF,

We note that

(> \/aln(k)y =3 Van®an®) = 3 Y VamBamk+7) =

keF, keF,, ref,, reF, keF,
1+ Z Z\/aln ap(k+r)=1+ Z Cin (1)
reF,\{0} keF, reF,\{0}

where ¢1, (1) Zker Vai(k)ar,(k +r). Finally, g, L i, if and only if

H_<1+ Z Z\/Oéln Oé1nk+r)):0

n—2 P reFp\{0} kEF,
SE(pe) = Z Z ( Z Vo (k+ r)ozln(k:)> = 0.
neNn>2 ref,\ {0} keF,

O

Lemma 4.4. Set C(T) = Zrele T" and T, = Ty,,. The following strong

limit Ay = s. limy_,o Hflzz ptC(T,), is correctly defined if and only if three
equivalent conditions hold:

(Z) Ha ~ Hiny,

(i) H (tta, pine) HZ 21n(r)

n=2rck,
(i11) STy (pa) < 00

PROOF. Using (4.6) we have ||C(T,)1|*=

> (320 oty 5 V) = )

keF, relf, relf,

(4.8)
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hence, by (4.7) we get

lim ||Hp ot = TL(S ) = (o)) (49)

n=2 relf,

O

Using Lemmas 4.3 and 4.4 we conclude that

Lemma 4.5. The following four conditions are equivalent for the measure
o, 01 the space X1:

(Z) Ha ™~ Hinv,
(i1) Sii(ha) < 00
(ii1) 1 ¢ ((C(Tn) —p) 1| n=2),

n

(1v) there exist a non trivial limit A, := lim Hp C(T1).

n—oo
k=2
Remark 4.4. Using Lemma 4.5 we conclude that condition 3) of Conjec-
ture 2.5 are necessary for the irreducibility of the representation THem,

Consider the measure p, = @, 1% on the space X™ and the representation
TR,,LLQ,m.

Lemma 4.6. If u* ~ pk  for some 1 < k < m then the Laplace operator

<ot I v Chath)

n=k+1

is well defined and commutes with the representation TT# =™ In particular,
if fo ~ finy = QT 1k then the Laplace operator A = AJA, . A, is
well defined and commutes with the representation.

PRrROOF. The operator A; is well defined by analogue of Lemma 4.4. To
prove that A; commutes with the representation, i.e., [A;, T/***™] = 0 for
all t € B)(F,) it is sufficient to prove commutation [A;, Tir:1] = 0 for all
k € N since the subgroups Eyj+1(t) = [ +tE41, t € Fp, k € N generate all
the group BY(F,).
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In the case m = 1 we prove the commutation relations [Ay, Tyxs1] = 0 for
all £ € N. The latter relation follows from [C(T}2),T12] = 0 that is evident,
since TC(T) = C(T)T = C(T) for T such that T? = I, and the relation
[C(T1k)C(T1k+1), Tek+1] =0 k>2. We prove more general relations:

[C(Twx)C(Tim), Tem] =0 for 1<k <m. (4.10)

We have

(4.14)

C(Twk) C(Tim) Tiom = C(T1) TimC(Tam) = > Ty TimC(Tim) =

relf,

Tom Y T5T,C(Tim) = Tom Y T1C(Tim) = TemC(Ti) C (Ti).
refp refp
For the general m we show that [A;, Tire1] =0 for 1 <1 < m and k € N.
First, using (2.8) we conclude that [A;, Tyry1] = 0 for 1 < k < [. Further,

we conclude that [A;, Tyry1] = 0 for £ > [ by analogy with the relation
p3177kk+1]::0 for k Etl. O

4.2. Commutant of the von Neumann algebra A™, case m =1

In this subsection we explain how the Laplace operator Ay (see (2.11))
in the commutant (A™) was found. Let

A" = (T/H" 1t e Q) = (T |1 <r < k)"

be the von-Neumann algebra generated by the representation T%#«™ acting
in the space H™ = L*(X™, n,) and let 2[™" be its von-Neumann subalgebra,

A" = (T [ 1<r<m,r<k<n)", (4.11)

where T}, are defined by (2.7). We have ™ = (UJ,-,, 2A™")". We would
like to describe the commutant (A™) = (=, (A™")" of the von Neumann
algebra A™ First, we shall do this for m = 1.

To describe (2A™™)" it is sufficient to consider the invariant measures fi;,,
since in the finite-dimensional space X™" (see below (4.32)) all considered
measures are equivalent. Set Hy, = L?(F,, uf"), where pin,(r) = pin (r) =
p~t. For m =1 and n = 3, we denote

X ={(z12,213) | 2pn € Fp}, H=Hy® Hy3= LQ(Fp7an) ® LQ(Fp7H’inU)-
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We fix the basis (ex)rer, in L*(Fy, ftiny), where er(v)=p%6)0, k,z €T, (see
3.8), i.e.,

eo = (p/%,0,...,0), ey =(0,p%0,...,0), ..., e,.1 = (0,...0,p"?).
Fix p = 2. We have in the spaces Hy» and H3
T12:T13:T1:Tmu:((1)é)-

In the space Hio ® Hyz we get Tio = Tipy ® I, Tiz = I & Ty (see Remark
2.3), i.e.,
Tio=(15)® (1), Tis=(s7)®(75)-

The basis in the Space LQ(FPa/'Lirw) ® L2(Fp7:uinv) 18 (ek’f‘ = ® er)k,’rEIFp-
Let us fix the lexicographic order on the set (k,7)x,er,. For p = 2 the basis
(€kr )k in His ® Hyg is ordered as follows:

€oo =€) ®ey, e =e®er, ep=e e, e11=e e

In this basis the operators Ti; and T3 on the space His ® Hi3 have the
following form:

01 01 1000 T g
00 :(10)?T13: 0001 :(OT)>
00 0010

where

I=(5%), T=(%)-
Consider the general case of p and . In the space H = H,,,®0H,,,®- - -®H,,,
the basis €igig...ins ig, i3, .. ,in c ]Fp is defined by €isig...in — Cigy ®6i3 Q- ®€Z’n7
and the scalar product for two elements f and ¢g in H

f = E fi2i3...in6i2i3...inu g = E Gigis..in Cigis..in
12,83 ,..,in EFp 12,13,...,in €Fp

is defined by the formula:

(f Q) Hstyo-cin, = > FiiseinGigi..in-012(i2)013(is) .. 01 (in).
12,835+, 9n EFp

(4.12)
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To describe (2A1?) when p = 2 we take any operator A on the space Hyo® Hi3

an ara bi1 bis
=g - (mmne).
co1 cos dai daa
Since Tyo = (9%), T3 = (T 2) the relations [A,T13] = 0 and [A,T15] = 0
gives us
[(2B).(§2)]=0 and [(Z5).(76)]=0,
or

(&r B1) = (to15) and (58)=(45)

The second relation gives us A = D and B = C, the first relation gives
TA = AT and TB = BT hence, we get

a21 a2\ __ (ai2 ail ba1 ba2 \ __ ( bi2 b1y
(au a12) - <a22 a21>7 and (bu b12) - (b22 bzl)'

Finally, we get A =D, B =C, a;; = a, a2 = a1, big = b, bia = by
where aq1, a2, b11, b12 € C hence,

all ai2 211 212
A= (B8 = (1) +aa (5 +ou (0D +ba (8 T)

bi2 b11 ai2 a1

= a11(1®]) -+ a12(1®T) + bll(T® [) -+ b12(T®T>

Finally, in the case of p = 2 the following statement is proved

Lemma 4.7. The von Neumann algebra L>(T12,T13) is mazximal abelian,
z'.e., (LOO<T127 T13)), = LOO<T12, T13)-

In the case of an arbitrary F, and the space X" denote by L>(Tya, ..., T1,)
the von Neumann algebra generated by operetors T, 2 < k < n.

Lemma 4.8. The von Neumann algebra L™= (T1a, . .., T1,) is mazimal abelian,
i.e., (L®(Tha,. .., Th,)) = L®(Tha,. .., Thn). In other words, any operator A€
(L>®(Tha,. .., Thn))" has the following form:

A= > i, TETE .. T (4.13)

29,83+, in€Fp
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ProOF. The proof follows from the fact that the von Neumann algebra
L>(Ty) is maximal abelian, i.e., (L®(T1)) = L*>(T1x), by Theorem 3.7.
Indeed, let us consider the operator T' = Tj,, = Zker Eri1r (see (3.10))
acting in the space L*(Fp, fliny), then Ty, = I @ [ ® - @ I QT ®I® - Q1.

-~

k

Finally,

n

(LT, ..., Thn)) =(Tw [2< k<)’ = ﬂ(Tm)/ = Qpo(Ti)’
k=2
= Rpes (L7(T1r)) = @5 o L (Thy) = L=(Tha, - - -, Thn).
O

We calculate explicitly the commutant ((%") for p = 2 and small n = 3,4
to guess the general rule.

Lemma 4.9. In the case p = 2 the commutant (A'?) of the von Neumann
algebra AV = (Tya, T13, Toz)" is generated by operators Tio(I + Ti3) and T3
or by T12C(T13) and Ts:

(ALY = (T12C(Ths), Tis)" .
PROOF. Let A € (AM?), since (A?)" = (T1a, T13)' ((T23)’ so, by Lemma 4.8,
(A3Y = (A = al + bTis + cTip + dT1oTi | [A, Tos] = 0) .

The operator Tas has the following form (see (5.4))

o 0100
T23:(OT): 0001 ) -
0010

We prove that for k < r < s holds
Ty Trs = TrsTker37 T]:rTrs = TrsT]z}rTlgy (S Fpu (414>

in particular, for (k,r, s) = (1,2, 3) we have T15To3 = To3T12T13. Let us denote
By (t) = [ +tEy,, t €F,, k <7, then we have by (2.7) T}, ! := T&i?{?‘. We

calculate
0)( 00) <1tts> (1t0)(10 >
0 1s)]=(01s)=1(01s 01 =
1 01 001 001 00

E12 (t) E23 (S) = (
35
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100) (1t0Y (10¢s
= (858) (411) (B1Y) = Bl Brat) ua(or),
hence, Fi9(t)Eas(s) = Eas(s)Ea(t)E3(st), or if we take s =t = 1 we get
(4.14) for k =1, r = 2, s = 3, v = 1. The proof for an arbitrary v € F, is
similar.

USiIlg (414) we get for A = CLQ()[ + a01T13 + alon + a11T12T132
ATy = agoTas + a1 T13Ts + TosThoTi3(aro + annTis) =

aooTos + ao1T13Tos + TosTho(a10Ts + @11T123) =
aooThs + aoo1T13Tes + TosTia(a10Tis + arr).

Similarly, we have
Th3A = apoTss + ao1 11313 + TosTho(a10 + a11Ths).

The condition ATy = Th3A gives us (a19T13 + a11) = (a10 + a11113) or ajg =
ay;. Hence, A = agol + ag1T13 + a10T12(1 + T13) and lemma is proved. O

Lemma 4.10. The commutant (A*)" of the von Neumann algebra A is
generated by operators Tio(1 + Ti3)(I + Tha), Tis(I + T14) and Ti4 or by
Opemtors Tlgc(Tlg)C(T14), T130<T14) and T14.'

(A = (T120(T13)C (Tha), Ti3C(Tis), Tia)" .

PROOF. Let A € (9[1’4)/, since A4 = (Tlg, T13, T14, T23, T24, T34>” and To3134 =
T34T23T24 or {T23,T34} = TQ4, where {a,b} = aba‘lb_l we conclude that
(A = (T2, Thz, Tha)" ((Tos, T34) s0,

(A = (A € (Typ, Th3, Tha)' | [A, Tas) = [A, T34) = 0).
Using Lemma 4.8 we have for A € (T, T13,Th4)', A=
agoota1001 120101 15001 Thatar10T 12T 5101 T2 T a0 ThisTatar ThoT 13T

= apoo+a010713+a001 1144011113714+ 112 (@100 + a110T13 + a101714 + a111T13T14)
= agoo+a100T12+a001 T1a+a101T12T14+ T3 (@10 + a110Tie + ao11Tia + a111T12T14) -
The condition [A, Ths] = 0 gives us

0 = ATy — Tos A = T19Tss (ar00 + a110T13 + ar101T14 + ar11T13714)
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—T53T15 (@100 + a110T13 + a101714 + a111713714) -

Since T12T23 = T23T12T13, we have
T19T5;3 (amo + aroT13 + a1 114 + a111T13T14)

= To3T19T13 (a100 + a110T13 + a101T14 + ar111T13714)
= 1531719 (a100T13 +aio +ainTi3Tha. + CL111T14) .

Therefore,
a100113 + @110 + a101713714 + a111Tha = a0 + ar10713 + ar011ha + a111 713714

hence
)
@100 = G110, @101 = G111- (4.15)

Similarly, we get using condition [A, T34] = 0,
0= ATsy — T35, A = T15T54 (ao1o + a110T12 + ao1111a + ar111127714) —

T34T'5 (ap10 + ar10T12 + api1Tha + a111T127T14) -

Since T23T34 = T34T23T24 we have
T13T54 (ao10 + a110T12 + api1Tha + a111T12T14)

= Ts4T13T14 (ag1o + a110T12 + ao11 T4 + a111T12T14)
= T34T'3 (ap10T14 + a110T12T14 + aorn + a111712)

hence,
apr0l14 + arnoTi2Tha + aoir + a2 = aogio + aroli2 + aonn1ia + a1 Ti2714,

and finally, we get
apio = Qo11, A110 = A111- (4.16)

USng (415) and (416) we conclude a1p0 = Q110 = Q101 = A111, Ap10 = Q011
hence,

A = agool + ar00T12(1 + Thg + Tha + T13T14) + aoroT13(L + Tha) + apo1 T4

= agood + a100T12(I + T13) (1 + Tha) + apioT13(L + T14) + agor 114
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The previous lemmas were proved for Fy and von Neumann algebras A"
with n = 3, n = 4. For the general case 2" and arbitrary F, we can guess

Lemma 4.11. The commutant (A'") of the von Neumann algebra A" as
the linear space is generated by the following operators (we set A}L’j’;l =17 ):

Iny, __ 1r .__ r - —1 "
@@ = (Al =17, [[ p7'C(Tw) |2< s <n, r€eF,\{0}) . (417)
k=s+1

The dimension of the von Neumann algebra (2A") equals to (n—1)(p—1)+1.

PrROOF. We prove the statement first for p = 3 and n = 3. Any operator
A € L>®(Ty2,T13,T14) can be expressed as follows:

_ i1 i i3
A= E Qi g is 112 T304

11,12,i3E€F3

Rewrite the operator A in the following form:

_ R > Ye alk:! s AP Y alk! 2 Y a0 Ye alk}
A= § Q0,05 113114 + T12 § A1iyis 113174 + Ty § 2,05 1131145

12,i3€F3 12,i3€F3 i2,i3E€F3

A= " a0 TETE+Tis Y a1 THTS + T Y ai, 24, Ti3T1E.
i1,i3€F3 i1,i3€F3 11,03€F3
Using (4.14) we get
Ty Tos = Tos T, T3, 13130 = Taa 1317,
Using the relation AT53 = Th3A, we conclude that

123 12 i3
T3 E a1yi5 113174 = E a1y,i5 1131145

i2,i3€F3 i2,i3€F3
2 io iz g s
T7i; E a2,i.i5 113114 = § a2,iyi5 1131145
i2,i3€F3 i2,i3€F3
therefore, we get
Ainyis = Qlig+1gy A2iniis = A2ip+2,i5: Viz € F3. (4.18)
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Using the relation ATs4 = T34 A, we conclude that

o iz RN (3 [}
T § iy 1,5 115108 = E iy 14511174,

i1,i3€F3 11,i3€F3
2 i1 i3 i1 i3
17, E iy 205112174 = E iy 25115114,
i1,i3€F3 i1,i3€F3
SO, @iy, 115 =iy, 1ig+1, Qiy 2,55 = iy 2,i5+2, Viz € Fy. (4.19)

Using (4.18) and (4.19) we conclude that
A2iniy = 200, Alinis = G100, Vi2,%3, € F3, ao1iy = G010, Go2i; = @20, Vi € F3.
This implies that A has the following form:

A = agool + aporTia + aooaTEy + a010T13C (Tia) + ao0 T C(Tia)+

a100T120(T13)C(T14) + QQOOTfQC(Tl?;)C(TM)-

To prove the statement for general p and n, set Ty = Tip11, k=1,2,...,n.
Let an operator A has the following form:

A = Z ai17i27',.7ianlT§2 . Tén
il,iz,...,inE]Fp
Rewrite the operator A in the following form for all r:

A= Z T Z Gy T 1< r<in

ir€Fp U yeenyiryennyin €Fp

where T, (resp. 4,) means that factor T, (resp, index ¢,) is absent in the
expression. The commutation relations ATy 1 = Tpp1 A for 1 < k < n
imply, as before, the following relations

T P2 T 19 7
T2 § : arvi27~~-7inT2 . 'Tnn - E &T7i27~'-vinT2 - 'Tnnv

12,...,in €Fp 12,...,in €Fp
T ) ) ) i1 i in __ ) ) . 3% aRas alk) in
13 E iy s, in L1 L2135 T = E iy rigyoin 11 L2157 T
i1,i2,3...,in EFp i1,12,i3...,in EFp
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In the general case of r, 1 < r < n we get

S . . . i1 3 in . . . i1 T in
T, E : all,mﬂ",lr+1,~~ﬂnTI T T = E a117~~,7"ﬂr+1,~~~,2nT1 RV PR S

i17-~-7ir7~--7ineF1) i1,~--7ir,---7in€Fp

The previous relations implies the analog of the relations (4.18) and (4.19):

Qpin,...sing = Origtr,...in V15 12 € Fpo @iy ria, o in = @iy rig4r,.in VT, 13 € I,

(4.20)
iy, ryivg1yesin — Qg rirg147,.in VT, iT+1 < FP' (4'21>

Using (4.20) and (4.21) we conclude that
Arig,in = Or.0,..00  Vi2, .. iy €y Qoriig,.in = Q000,00 Vi3, ..., 0p € ),

0,00,y 4 150erin. = 00,..,0,1,0,..,0 Virg1, - - -, ln € Fp

This implies that A has the following form:

A:Z ao,...,o,rT,:-FZ ao,...or0ln_1C(T,)+- - -+Z aro.. 0T7C(Ty) ...C(T,).
relF, reFp\{0} re€Fp\{0}

O

Remark 4.5. We have proved in the previous lemma that the von Neumann
algebra (2A1")" as the linear space is generated by the operators 5;;7’;:

@) = (o =13, [ ¢Tw) 12<s <nre B\ {0})
k=s+1

But the uniform limit lim, 6}7, is divergent, since

| H C(Tw)|| = H |IC(Tiw)|| =p"° — 00, when n — oo.
k=s+1 k=s+1

We use the fact that ||C(T)|| = p. Instead of the basis 4,7, we choose
the basis A7 of the algebra (") in Lemma 4.11 to be shur that the
limit lim, A}7 is correctly defined. Consider again the expression C(T) =
D ke, T*. Since C(T)T = TC(T) = C(T) we get C(T)*> = pC(T) so, C(T)

is “almost projector”, i.e., A2 = AA. The operator C'(T') has two eigenvalues,
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A =0 and \y = p. Indeed, if C(T)f = \f, then A f = pAf so, A(A—p) = 0.
Therefore, ||C(T)|| = max{0,p} = p.

Set ¢(T)=p*C(T). Wehave c*(T)=c(T) (4.22)

therefore, the eigenvalues of ¢(T") are 0 and 1 hence, ||¢(T)]| = 1 so, the
operator A[T = lim, A7 at least formally, is correctly defined since

s,n?

n

AN = lim |AG | =Tm T, [T emoll =175 IT @l = 1.

k=s+1 k=s+1

In Lemma 4.14 below we prove that the operator lim,, Al" is correctly defined

n
when g ~ fline-

Remark 4.6. The von Neuman algebra (A'") as an algebra is generated
by the following expressions:

n
1y _ (ALl
(an)l_<A8,n‘2§S§n>
Proor. It is sufficient to use Lemma 4.11 and the following relations:
Lr ALE _ AL+t Lri Alre Al
A Ag = AT, AJLAGS =A, for 3<s <sy<n.

Using the relation ¢?(T) = ¢(T) and Te¢(T) = ¢(T) we get ALTALL = ALr+l,
Indeed,

n n n
1r ALl _ l _ g+l 2 _ 1,7+1
Asn Asn - Tls H C(T1k>Tls H C<T1t) - Tls ¢ (le) - Asn :
k=s+1 t=s+1 k=s+1
Similarly, we prove the second relation AL AL = Al O

Another description of the commutant (A"")'. Any operator
A e L>*(Trs,...,T1,) has the following form by (4.13): A = f(T2,...,T1,).

Lemma 4.12. An operator A = f(Tia,...,Tin) € L>®(Ta,...,T1,) com-
mutes with Ty 1 for all2 < k <n —1 if and only if for all 2 <k <n —1
holds:

J(Ta, . T, Taggrs - Ton) = f(Thz, - TueTigesr, Tiggns - - Thn). (4.23)
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Proor. Consider first the space Hy; ® Hip.1 and the von Neumann subalge-
bra L>(T, Tix+1) in the algebra B(H1y®@H1x11) = B(H1,)QB(H1k41). Take
the function f(T1g, T1xy1) € L(Tig, Tixs1) of the following form f(Ty, Tixs1)
= 17,17, 11- We show that commutation relation [f, Tjx41] = 0 implies the
relation (4.23), i.e., f(Tik, Tikr1) = f(TuTire1, Tiks1). Indeed, using the
relations (4.14) 17, Ty = Tin 1117, for r € F, and 2 < k < m and commu-
tation relation f(le, T1k+1)Tkk+1 = Tkk+1f(T1k7 le-i-l) we get:

D1 f (Tiws Tirsr) = f(Tues D) Trwrr = D11 g1 Tk =
Tk T T = Tk f (DT T )-
Finally, we prove f(Tix, Tix+1) = f(T1xT1k+1, Tik+1) for the particalar case of
J(Tig, Thgsr) =17, 175, - For the general function f(Tiy, Thpt1) = Zr,seurp Ay 5 X

17, T3, the proof is the same. Similarly, we prove (4.23) for any function
€ LOO<T12, NN 7T1n):

U
Lemma 4.13. If for the function f € L>(T1,...,T1,) holds relation (4.23)
then .
f = fs(Tys) H c(Ty)  for some s, 2<s<mn, (4.24)
k=s+1

where fs(Tls) € LOO(Tls)

Proor. If for the function f(Tik, Tik+1) = 2, ser, @rs 131141 holds
(T, Tagr) = f(T1Tigsr, Tirgr) then we get

F(TTin, Tien) = D ans(TuTiner) Ty = Y an TRTTE =

r,s€Fp r,s€lfp
r t . T t
§ At L1 T = E At L1 T gy r -
rtef, rtelF,

Therefore, a,;—, = a, for all r,t € F), hence, a,; = a,;_, for all r,t,k € F),.
Since F,, is a field, we conclude that

ary =ayo forall rtefF,. (4.25)

42



Finally, if we set fi.(T1x) = Zrele ar o1y, we get f =
Z s T T = Z @r,OT{kakH:Zar,OT{k Z Tfk+1:p71fk<T1k)C(T1k+1)-
r,s€Fp r,s€lfp refp s€lfp

If for the function f(Tig, Tikr1, Tiks2) = zm’ter st 11 T Tip g0 holds
F(T, Tt Tiks2) = fF(DkTvk+1s Tiksr, Tiks2) = (T, D1 T2y Tigr2)

we conclude similarly, that a, s_,; = a, 51 = a, 5,5 for all r, s, ¢t € F,, hence,
arst = aroo forall r.stel,. (4.26)

Finally, we get

_ T S t _ r S t _ r
/= E st L1 L1 T = § ar,0,0T1kT1k+1T1k+2—§ 0,017y X

r,s,t€F, r,8,t€F, relf,

Z Tita Z Thro = fe(Tik)C(Tirs1)C(Tikr2) = 2 fe(Tar)e(Tipgr ) e(Ting),

s€lfp telF,
Where fk(le) = ZTGFP CLT,070T{]€. |:|

Lemma 4.14. When jiq ~ finy the commutant (A')" of the von Neumann
algebra A is generated as a linear space by the following expressions:

e iz
@) = (alz =tmaly =7, J] p'CTw) [2< s, r e F,\ {0})
k=s+1

(4.27)
When o, L pliny < SEH (1) = 0o the commutant (AY)' is trivial, i.e., (A) =
(M | X e C).

PROOF. Denote by L>®(Ty) = L>®(Ty | 2 < k) = (T1 | 2 < k)” the von
Neumann algebra generated by the commuting family of operators 77 :=
(Thx | 2 < k). By definition, we have

&) = (f € L=(Th) | [f, Thr+1] = 0, (4.28)

Using the spectral theorem for the family 7} = (T3 | 2
unitary operators Ti; we conclude that any element f
following form: f(T1) = [y f ) or

< k) of commuting
€ L*™(Ty) has the

FT) = ST | 2<) = | J0)aEW) (429
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where X' = [[72,(F,), f is essentially bounded function on X' and E is a
common resolution of the identity of the family of operators T defined on
cylidrycal sets Ay x - -+ x Ay as follows:

E(AQ X X Ak) = EQ(AQ) . Ek(Ak)

where Ej, is resolution of the identity of the operators Ti;. See details in [5].
Similarly to the proof of Lemma 4.12 we get

Lemma 4.15. An operator A = f(Tia,...,Thn,...) € L®(Ty | 2 < k)
defined by (4.29) commutes with Tyy1 for all 2 < k if and only if for all
2 < k holds:

f(T127 s 7T1k7T1k:+17 s 7T1n7 .- ) - f(T127 s 7T1kT1k+17T1k+17 SR 7T1n7 e )
(4.30)

Lemma 4.16. If for the function f = f(T1) € L*(Tia,...,Tipn,...) holds
relation (4.30) then

oo

f = fs(Ths) H c(T) for some s> 2, (4.31)

k=s+1

where fs(TIS) S LOO(TIS)

4.3. The commutant of the von Neumann algebra A™, case m > 1

Let us consider the restriction T7™" of the representation T%#em
BY(F,) — U(L*(X™, uy)) to the subgroup B(n,F,), m < n, of the group
Bl(F,) acting in the space H™" = @1<r<mrck<nl?(Fp, ta,, ) = L2(X™™, prom.n)
where Hamn = Q1<r<m,r<k<nMonyg and

1 x12 13 ... Tim ... Tin
0 1 x23 ... Xom ... Ton
Xmn — 00 1 ... =3m ... =x3n . (432)
0 0 o T lm o Tm_1in
0 0 1 e Tmn

Let us denote as before by (™™ and "™ the von-Neumann algebras generated
by the representation TH™" (respectively by TH#em)

o (T |1 e B(n,Fp)>", o = (T | 1 e B@“(F@)":( g mm”>

n>m
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Obviously, the commutant (A™")" contains the following operators:

"
(%m,n)/D<A§”Z::T;Hp Tkr )‘1</{}<m k—|—1<3<n>l
k=s+1

Since A™ = (U sma1 A™™)" 50, (A™) = [\,5met (A™")". Hence, the com-
mutant (2A™)" is not trivial if there exist a non trivial limit Ay, 1 <k <m

Ay = lim | | p 'C(Ty(k)) = lim A’;g
n—oo n—o0
r=k+1

The latter limit exists, if u? ~ u¥ < Sk (o) < 0o (see Lemma 4.6).

4.4. Commutant of the von Neumann algebra (A™)', case m = 2
Set
Ai::l = TO?Z2S H pilc(Tazk)v 3<s<n, Ailr = ;2 , Tre Fp.

k=s+1

Lemma 4.17. Let x15 € A*™, then the commutant (A*™) of the von Neu-
mann algebra A>™ as the linear space is generated by the following operators:

n "
@) = (Al =17, T p7'C(T) 1112, 3< s <n, 7 €FA{0})
r=s+1

(4.33)
The dimension of the von Neumann algebra (A*™)" equals to [(n—1)(p—1)+1]2.

PROOF. Since g, Tix, Tor € A*™ we conclude that To(2) = T,,, € A>"
(see Remark 6.5). Since the commutative family of operators with common
simple spectrum lies in A*" i.e., z12, Tix, T, € A>" for 3 < k < n we
conclude that

A2y C L ( Tais T) . (4.34)

agz " Tazn

Commutation relation [f,Ti2] = 0 for f € L™ (m %22 N %;"

f does not depend on z15. Fix n = 4 and p = 2, let f (Ta“ Tal‘*) S

O‘23 Ta24
L= (Ta“” Jou ) We use the following relations (see (2.8))

) means that

TD‘23 To‘24

T3, =T34(1)®T34(1), T3 T34(1) =T34(1) T3 Tevrss Tz T34(2) = T54(2) Ty Toas
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or [Tocmv T34(1)] :T34(1)T0413 (Ta14 - I)’ [Ta237 T34(2)] = T34(2)T023 (Toc24 - I)
(4.35)

To‘ld TO‘14

Any operator A € L™ < Ton: > has the form

TQ23

— Z1 12 iy 12 71 172
A= Z aj, JzTa13Ta14Ta23Ta24
11,12,J1,j2 €F2

We rewrite A as follows:

A»[%H+a%nu+%%¢fuﬁﬂmnu
+ Ta23[( + 00TO¢24) + Toc14 (alo + 01TO¢24)]
+ Taw[(aoo + aO Tam) + Ta24 (a01 + aO T&14)]
+ TOé13TOé23[(a10 + ai?Tazzx + ailTam + allTa14Ta24)]
= A1+ Ay + A3+ Ay

- Al _'_ a23a2 + Ta13a3 + TOllST

0523

where

aogl + o Togy + a3 Tosy + a1 Ty, T,
(a0 + 011 Ta,) + Tons (a2 + 11 Ty )],
(ago + anTaM) + T (agy + g1 Tons)],
(alo + an azs T alOTa14 + 11Ta14Ta24)]

=
[
[
[

Since T34(]_) —1= 13 X (Ta14 - I), T34(2) —I= 923 X (Ta24 — ]) (see (55)
and (6.8)) we get
[A1, T34(1)] = [A2, T34(1)] = [T34(2), Ar] = [T34(2), A3] = 0

hence,

[A, T34(1) @ T34(2)] = [A, T3a(1)] @ T34(2) + T34(1) @ [A, T34(2)]
=([As, Tsa(1)] + [As, Tsa(1)]) ® T3a(2)
+T34(1) ® ([A2, T3a(2)] + [As, T5a(2)])

=([Tors> Tsa(D)]as + [Tory, Tsa(1)] Tapya) @ Ts4(2)
+T34(1) ® ([ Tos, T34(2)]ag + 1oy 4 [Ta23,T34(2)]a4)
:(Tg,4(1)Toé13 (T, — Das + Tsa(1)To . Tons (Toy, — [)a4) ® T34(2)
+T34(1) ® (T54(2) Tagy (Tagy — I)as + Ty T3a(1) Ty Ty — I)ag) = 0.
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Therefore, we have
(Ta14 - I)a3 = (Ta14 - I)a4 = (Ta24 - I)a2 = (Ta24 - I)a4 =0
or

(Tons — I)[(a(l)g + a(l)(l)Tam) + T, (a(l)(l) + a(l)% o) =0,
(Tars = D@19 + 11Ty, + 1Ty, + 1170y, Tosy)]

(Tons — D(aly + a2 To,,) + Tayy(aly + af1Th,, )]
(Tony — I)[(a%g + a%(l)Tam + ai(l)TaM + aﬂTamTazzx)]

0
=0,

0

0

Hence, we get respectively

10 11 10 11 10 11 10 11
Qoo = Ao, Qo1 = Gg1,  A1g = Q19, G117 = Aqy,
00 __ 00 01 _ o1 10 _ 10 1 11
ayp = 11, Q19 = @11, Q9 = A1, Q9 = Aq1-

At last, using the latter equalities we get

A =[ad0] 4+ aggT oy, + 00Ty, + @01 Ty, T
AT [aS9 (1 + Ty, + 05Ty, (I + Toy,)]
+ T, [aso (T 4 Toy,) + ap T, (I + Ta,,)]
AT 13 Ty IO + Ty + Tovyy + Ty T

Finally, the basis in the algebra (%)’ can be obtained as a tensor product
of two von Neumann algebras

(A4 = L®(Tys, Tua) [ \(T3a)  and  (A**4) = L®(Toy, To,) [ |(T5a)'
due to the following relations:
" n
(24 = @AY @234 = (Tapy (I4Tuy), 1, Tars) ) @ (Tosg (1+Tag), 1, Tow) ) -
([l

Set for s > 3

Ao =10, [ vie@,), A =10, 1] »7'0(T0,), r e B\ {0},

k=s+1 k=s+1
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Lemma 4.18. Let w19 € A2, and p2 ~ p2,, or SH(p) < oo, Sk(n) < oo,
then the commutant (A%) of the von Neumann algebra A? as the linear space
is generated by the following operators:

"
(@) = (Al 112, 3<s, 1 eF,\ {0}) . (4.36)
When p2, L u2,, or SE (1) = S& (1) = oo and z15 € A%, the commutant (A?)’
18 trivial.

PROOF. Since 19, Tix, Tor € A? for k > 3 we conclude that Th(2) =
T, € A? (see Remark 6.5). Since the commutative family of operators with
common simple spectrum lies in A2, i.e., z12, Tik, Th,, € A2 for 3 < k we
conclude that

ey L= (g me ). (4.87)

agz " TD‘Qn

Set (T1,Ty) = (T, Tay, | 3 < k). Denote by L®(Ty, Ty) = L®(Th,,, Ta

a1k 2k |

3< k)= To, Ts, | 3 <Ek)" the von Neumann algebra generated by the

A1k
commuting family of operators (77,75). By definition, we have

@) = (f € LT T) | [ Taa] =0, 3<K). (438)

Using the spectral theorem for the family (77,7%) of commuting unitary
operators (Ty,,, Tu,, | 3 < k) we conclude that any element f € L*(T},T5)
has the following form:

FTLTs) = f(Tays Tay, |3< k) = | FOAL A)AE(A, As) (4.39)

A1k 5
XO

where X7 = [[r2(F, X Fp )i, [ is essentially bounded function on X§ and
E is common resolution of the identity of the family of operators (77, 7T3)
defined on cylindrycal sets Az X Agg X -+ X Ay, X Ay, as follows:

E(A13 X Agg X -+ X Ay, X Agy) = HElk(Alk)EQk(A%)

k=3

where E,, is resolution of the identity of the operators Ty, , for1 <r <2, 3 <
kie., T, = fsp(le) f(A\rk)dE(Ag). Similarly to the proof of Lemma 4.12
we get
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Lemma 4.19. An operator f(T1,1T3) € L*>®(T1,T3) defined by (4.39) com-
mute with Ty1 for all 2 < k if and only if for all 2 < k holds:

f (T‘113"“’Talk’T°‘1k+1"“’To‘ln""> — f (To‘13’“"TO‘1kTalk+1’Talk+1""’Ta1n"“> (4 4())

Tagg s Tagy Taggyq s Tagy - Tagg s Tagy Tag g Tagpq e Tagy

Lemma 4.20. If for the function f(11,Ty) € L>*(T},Ts) holds relation (4.40)
then for some (s1,52), 3 < s1, 3 < sg holds

o) [e.e]

f:f81,82(Ta1s17T11232) H C<Ta1k) H C(Tazk)v (4'41>

k=s1+1 k=so+1

where fs, s, (Tmsl»Tasz) € Loo(TmslvTazsz)'

O
5. The proof of the irreducibilty, case m =1
5.1. The irreducibilty, case m =1, p =2
Let us consider two operators 1y, := T,,, and Ty, in the space H =
H,,, ® H,,, = L*(X, u) where pt = fi0,, ® fla,, and X =F, xF,, 2 <k <n,

1 1, T1n
X:<01 0).
00 1

The basis in the space Hi; := H,,, := L*(Fp, fta,,) is (€2)ser,, where e2(r) =
(a14(1)) Y204, 5,7 € F,, hence, the basis in the space

1 .—— (63 (0%
Hopy ® Hoy,, 18 (65 1= €5 @€ )s,rele-

We fix the lexicographic order on the set (s,7)scr,. So, we have chosen the
following basis

€00, €o1, €10, €11-

In this basis the operators T3, and T}, act as follows if the measures p,,,
are invariant, recall that (11, f)(z1,) = f(z1, — 1) and (T f) (218, T10) =
J(@1g, T1n — 211)

Tln 1€ 7 €ij+1, Tkn 1€ = Cijti. (51)
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For an arbitrary measure p, operators 7y, and T}, act as follows:

aln(j) aln(j)

———€ijt1, Lkn:€ij = | ———Cijti- 5.2
aln(]+1) j+1 k J aln(]+l) J+ ( )

Tln C €
Using (5.1) we have the following transformation of indices of the basis e;;
under the action of 77, and T},,:

0 1
ij 0001 10 11
Ti, 01 00 11 10
Tin, 00 01 11 10

For the invariant measure and in the general case we have respectively

_ a1,(0)
where a,, = (D)

Recall that 21, = diag(0,1) = (§9) (see (2.12) for notations xy,). We
would like to approximate the operator xy, = -+ ® x1; ® ... (see Remark
2.3) on the space H' =®%° ,H,, by linear combinations of operators Tj,,.

Lemma 5.1. We have
el = (31 € (Tow — 1)1 |0 > k) & S (1) = oc.

PrOOF. In the space H,

A1k

® H,,, we have

000 0 -
Tin — 1 = <00—1a;1) :(8(1))@)(;3@_711) :x1k®(Ta1k_I)
00

an —1
SO,
Tow — 1 = 214, @ (T, — 1). (5.5)

Hence, we get ZnN:kkjll tn(Thn — I) — 215 Indeed, in the space ®72,  Hip
we get

N+k+1 N+k+1

Y tli—-D=13010..0I Y t (;j a_;11> ®1I...
n=k-+1 n=k+1
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N+k+1
:x1k®l®...®l®[ 3 tn(;j‘ff)] L. o2 @I® - @I... =1y,

n=k+1

by Lemma 4.1, where a, = 21”8 O

Since x1; = diag(0,1) € A' the proof of the irreducibility for m = 1 and
p = 2 follows from Remark 2.2.

5.2. The wrreducibilty, case m =1, p is arbitrary

Notation. For an arbitrary p let us denote by P,i;) the operators F,.,. =
diag(0, ...,0,1,0,...,0), acting on the spaces H,, , r € F,, 1 <k < n.
———

Let us suppose that we are able to approximate P1(£) by the operators of

the representation, i.e., that Pl(,:) € A, r € F, hence, an operator 1, acting
in Hy (see (2.12) and (2.13)) belongs to 2A:

xy, = diag(0,1,...,p—1) = Z rE,, = Z TPl(]:) c A

refy refy

In this case the proof follows from Remark 2.2.
In order to find an appropriate combinations to approximate the operators
P1(£)a r € F, we study first the case p = 3. Let us denote (see (3.10))

0 0 to2 0 to1 O (03] ] ..
T, = <t10 0 0), thenTiz <0 0 t12>, where ¢;; = "(), 1,j € F,.
0 ta1 O tao 0 O aln(z)

(5.6)
Let ex, == (eff ® e )prer, be the basis in the space H,,, ® H,,, (see (3.8)).
Using (5.1) we have the following transformation of indices of the basis e;;
under the action of 713, and T5,:

012 3 45 6 78
i 00 01 02 10 11 12 20 21 22
Ty, 01 02 00 11 12 10 21 22 20 | -
T, 00 01 02 11 12 10 22 20 21

So, the operators 77, and Ty, have the following forms in His ® Hi,:

0 0t 0 0 0 0 00 1000 0 0 0 0 0
tp0 0 0 0 0 0 0 0 O 0100 0 0 0 0 O
0ty 0 0 O O 0 0 O 0010 0 0 0 0 O
e 0 0 0 0 0t 0 0 O ot 888t0 8t%28 8 8
= 0 0 0toO O 0 0 O = 10
In 000 0ty 0000 |’ 2n 0000 ta; 0 0 0 0 |
0O 0 0 OO O O O to 000 0 O O O thnr O
00000 0toO O 0000 0 0 O O ti2
0 0 0O O O O O t1 O 000 O O O to O O
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5 > Tg 0 0
1, = (338) @ (0 6 %) = (52 8, Tzn:(w ) (5.7)
001 0 to1 O 0 0 Tu 0 0 T2
where o = «q,,. Note that
Ty, = diag(Tn, To, To), Ton = diag(l, Ty, T2). (5.8)

Since

Ty = diag(I, Th, T2), T2, = diag(I, T2, T,) so, C(Ty,) = diag(3, C(T.), C(TL).

) o)

Similarly, we get
TlnTQn = diag(Tom Tj, I), (TlnT2n)2 = dlag(Tfn Tom I),

C(T1,T,) = diag(C(Ty,),C(Ty), 3),
T3, Ton = diag(T3, 1, Tn), (T1,Ton)* = diag(Ta, I, T7),

n n

C (T} Ty,) = diag(C(T,),3,C(Ty)).

So, we can try to approximate

diag(0,1,1) = (PY+P2Y\®I = (I-P)®I by combinations of C(T,)—3,
diag(I,1,0) = (P9 +PY)oI = (I-P2)®I by combinations of C(T1,Ts,)—3,
diag(I,0,1) = (PO +P@I = (I-PY)®I by combinations of C(T2,Ts,)—3.

In the general case, we can try to approximate

(I — PI(Z%)) ® I by combinations of Z(TfnTkn)s —p=C(T],Tin) — p-

n
selfy,

Lemma 5.2. We have forr € F, and k > 1
(1 = P71 € ([T, ) = p[1 |0 > K)

n

if and only if Sk (12) = 00 € 1® L fiin,.
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PROOF. Since T, =diag(Ty,,, -, Tu,,), Ton = diag(1,T,,,, TC%l - 7T51n1)v
Ts = diag(I, T2 T2 ... T2%) s €T, we get

a1n’? Qln?

(TT TQn) |:d1ag(T1na Tl?’m T1n7 ey Tln)diag(la T1n7 T2

Ins ">

] =

[dlag(Tr Tt T 7T{:p_1):| ’ = [dlag(TTS T(T‘H)S T2 T(’"+P—1)8):| ‘

In>+1n >+ 1n > 1n> In > » Hln
Therefore,
r rs (r+1)s r+p—1)s
E(TT%):(E T ST LS T )
selFy seF, seFy s€F,

_ (p(Tln), C(Th),....p, . ,O(Tln).>

-

p—r

At last, we get - (17, T2n)" —p =

(C(Tm) _ p) (I,1,...,1,0,1,....1)=(I - P& & (C(Tm) _ p).

p—r

Finally, we get when N — oo

k+N
3t [C " Th) — }-([-Pf?”)@]:
n=k+1

k+N

n=k+1

The proof of the latter statement is similar to the proof of Lemma 5.1. [
Finally, we can approximate Pl(,:) therefore, 1), = Zrer TPl(]:) = ZreF,, rE,, €
2. Using the Remark 2.2 we conclude that the representation is irreducible.
6. Irreducibility, case m = 2

Let us consider three operators T1i,, 15, and T}, on the space H =
L2(X7 II"L) Ha12 ® Haln ® Ha2n Where /"L = /"LOL12 ® /’Laln ® MCXQ’VL and

1 z12 z1p
X: (0 1 xzn) .

00 1
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The basis in the space Hy = Hq,, = L*(Fp, fta,,) is (€5)rer, (see (3.8)) hence,
the basis in the space Hy,,, ® H,,, ® Ha,, is (exrs = €7 @ € @ €5 )1, ser,. We
fix the lexicographic order on the set (¢,7, )k scr,- S0, we have chosen the
following basis

€000, €001, €010, €011, €100, €101, €110, €111-

In this basis the operators 71, and T5, act as follows if the measures p,,, are
invariant (Ty, acts on the space Hyy @ Hy, ® Hop @ Hay,):

Tin e = €ijy1ts Ton @ €iji = €ijpint1, Thn  €ijir = €ijpilrl (6.1)

and as follows if the measure is not invariant:

aln(j) aln(j)QQn(l)
Tip i €iji = | —F—"=<€ij+11, Lon:€iji — — €ijtiltls
(6.2)
Q1n (j>042n (T)
Tn:ei-r% - - €iitilrtl- 6.3
k at Oéln(j + Z)agn(T + l) CARC ( )

Using (6.1) we have the following transformation of indices of the basis e;j;
under the action of Ty, and T5,:

7

0 1 2 3 4 5 6 .
i1 000 001 010 011 100 101 110 111 . %Jl0123457’g7
Ty, 010 011 000 001 110 111 100 101 |» 1€ Tlnfggégﬁsi
Ty, 001 000 011 010 111 110 101 100 2n
So, the operators T, and T5, have the following forms:
00a=* 0 00 0 O
00 0 ac100 0 O
10 0 ap?! 10 80 8 8 88 8 8
N a — a
Tln_(01)®<an3>®(01)_ 00 0 0 00a! O )
00 0 0 00 0 a!
000 0 a0 O O
00 0 0 O0a O O
0b10 0 0 o0 0 0
Lo o b 000 0 0 O 0
00 0b10 0 0 0
T, = (910 0 )00 00b0 0 0 0 0
2n — \ 00 0 a b, 0O —]1o0o000 0 O 0 alp7t |
00an O 0000 0O O a o0
0000 O0a~1 0 0
0000 a 0 O 0
where
al”(o) 062,1(0)
a=a,= b=b, = 22 (6.4)
Oéln(l) CYQn(l)



To calculate T7, and T5, we use the following formulas

%) (65)

Remark 6.1. The latter formulas are particular case of the formulas below.
For A = (a;j);; € Mat(n,k) and B = (b,s),s € Mat(m, k) we have in the
basis e; ® f

A® B = (aijbre) (i) (rs) € End(k" @ k™).

Indeed, we get

n

Aej = Zaijei, st - ibrsfra
r=1

=1

therefore, we have

(A®B)e; @ fo = Ae; @ Bfe =Y > aijbrat; @ f.

i=1 r=1

6.1. Irreducibility m =2, p =2

We write a, ~ b, if Cia, < b, < Csa,. Recall (see Notations before
Lemma 4.1) that cg, = 21/agn(0)as, (1) and SE (p,) are defined as follows
(see (3.14) and (3.15))

o0 o0
L
511 Mo :E 1 Cln ) 12 Ma E 042n 1 Cln ) 22 Ma E 1 C2n .

Theorem 6.1. Representation TTH2 is irreducible if and only if
1) (MQ)LHEH L po = SlLQ(,Ua) = 00,
2) it L iy Si(pa) = 00
Let p = 2. To approximate x; and x9, we use the following expressions (see
(2.9))
Tien = trn(2) = Tin(1) @ (Tjn(2) = trn(2)) + (Tin(1) = I) @ trn(2)  (6.6)
= Tin(1) ® T5,(2) + Tion (1) @ tn (2),
Tion = ten(1) = (Tin(1) = thn(1)) @ Tien(2) + thn(1) @ (Thn(2) = 1) (6.7)
= T (1) @ Tien(2) + tgn(1) @ Tkn( ),
Ten(1) =1 =21, @ (Toy, — 1), Tpn(2) =1 =291, @ (T, — I), (6.8)
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where T, = Thn(1) @ Tin(2) (see (6.16)) and we set

tin(r) = (Tin(r)1,1),  TE.(r) = Tin(r) — ten(r),  Tin(r) = Tin(r) — 1.
(6.9)
Notation. Recall that we denote by xy, the operator xy, = (§9) = E1; on
the space Hy, = L*(Fy, it ), see Remark 2.2.
We find the conditions of the approximation of the operators x5 (respec-
tively x1; and xgx, k > 2) by the following linear combinations

Ztn(TQn_tzn(2)) (respectively by Ztn(Tkn—tkn@)) and Ztn(Tlm—tkn(l))).

We need the following lemma.

Lemma 6.2. For fized A\, ¢, p € R™ and the matriz D,,(\,c) defined as

follows:
1+M+cE 1+ce ... 1+cey
DA c) = l4+ce 1+X+ca .. 1+ e, (6.10)
1+ cper 1+ cpnco 1+ Ay + 2,
we have
DR = TR Ty Ty O
DY Y~ MR ey » v N
L A T B D S
where

Jm = <\5_§_k>:1’ Im = <\/L)\_k>km1’ fom = (\/c_’;\_])m ' (6.13)

PrRoOOF. We have for m = 2

o 1—}-)\1—}-0% 1—1—0102
DZ()\ac)—( 1+ cyeq 1—|—>\2—|—C% )

Fy(\, ) := det Dy(, ¢) = 14+ M+ otciHca (A +E) (Mo +c3)—(142¢1c0+ 3 c3)
1 1 & & (cp—c)?

2
o (L 2 T 2 O TNy 1 T (ga) + D) + T(gs,
M T Ay ) AT $ L) 4T ),
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where e 1 B ‘o
w=(rmvm) == ()

In the general case, we show that

7
Fn.(\ ¢):=det D, (A ¢) = H)\k<1 )\i Z )\—k Z M)

A
1<k<n<m
(6.14)

ﬂ\

We prove (6.14) first for m = 3:

14—)\1—1—0% 1+0102 1+C103
Fg(/\,C) = 1+C2Cl 1+)\2—|—C% 1+C2€3 =
1+ ¢3¢ l+czea 1+X3+c3

3
ka(uzlyh 3 M) — Mdos £ Ao (1 4+ E)+
= k=1

/\1)\3(1 + C%) + )\1)\2<1 + C%) -+ )\3(61 — 62)2 -+ )\2(61 — 63)2 + )\1(02 — 63)2.

To prove the latter equality we show that the appropriate derivatives for the
both sides of the relation coincide. Indeed, they are equal respectively:

OF, (A,
% Ix=0= (¢; — cx)?,

82F3(/\,c) 2 83F3(/\,c)

=1 oEAe) g
AN, heo=1+ 6 o heo= 1

where 14, j, k is the cyclic permutations of the indices 1,2,3. In the general
case, we have for both sides of the equation (6.14)

O™ 2F,, (A, c) M LE, (A, ¢)

™ E (X, €)
_ o 2 m\/\
N - A2 h=o=(em—1=em)”s 3

=14t MV
h=o=1em, EN A==

AU W

and the corresponding cyclic permutations of the indices. This proves (6.14).
Further, for m = 2 we have

1 L+ X+ —(1+4cie) -1 _
()\ C) FZ()\ C) ( _(1+0201) 1+A1 —f—C% and (D2 ()‘70)#7#) -

(Fa(0,0) ™ [(L4 Do + )t = 21 + cxca)pmpin + (14 A + )i
= (Fy(\ )7t [(m — pi2)® + (copn — cap2)® + Aapf + Alﬂg} =
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(u1—p2)? (cop1—c1p2)?
Mo (4 5+ el g lemsnie®) ) 4 T )
Ah (154 + L+ 8+ & 4 sty 1+ T(g) + k) + oz, ho)

By analogy, we get (6.12) for the genaral m. OJ

Lemma 6.3. We have z1;1 € ([Tkn — tin(2)] 1 | n > k) & ¥4, — 00 where

U(fm) + T(fons 9m) + T (i, m)

Yim = (D, (A , 6.15
i = Do O ) = Gy Tl + T )27
the vectors fu, gm,hm are defined by (6.13) and
2(1 B C%n +1- C%n +1- C%ncgn) \/5(1 + CQ”)(]‘ _ Cln)
/\n: 2 y Cn="Cln, HUn=— .
(1 — an) (1 - 627"0)

Proor. We have Ty, = Tyn(1) ® Tk, (2) where an operator Ty, (1) acts on
Hiy ® Hyp, Tn(2) acts on Ho, @ Ho, and they are defined by

100 O 0
W= (o bt ) Tin@= (30 6 ) o[ 20 b= /2200
00 0 0

an (1) 7"\ g,
Using (6.6) we get

Tien — tin(2) = Ten(1) @ (Ten(2) — tin(2)) + (Ten(1) — I) @ tn(2).
Set

a" = (T,

n Qrn

— D1, r=1,2 and b= (b,), by = txn(2)Mall.

Take t = (t,,), such that (t,0) = > tten(2 )Mag) = 1. Set

g = [(Tkn( ) = 1) @t (2)] 1= [215 @ (Toy,, — 1) @ tn(2)]1,
qs [gn — 21, ® MalV ® t;m(Q)} 1= [xlk ® (Taln — cln) ® t;m(Q)} 1.

We use the relation

(

n=[Tin(1) @ (Tin(2) — tin(2))]1,
)
(

T, —1—=MaV) =T, —1—(c1n—1)="Ta,, — cin. (6.17)
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Using (6.6-6.8) we have (Tk, — txn(2))1 = f,, + g, therefore, we get

Zt Tlm tksn xlk 1”2 — ”Zt fn+gn x1k®zt tkn aq(le)1||2

= || ZtnTkn(l) R (Thn(2) = ten(2)1 + 211 ® Ztntkn@)(Tam — c1n) 1|

_||Zt (fo+ 9| = Ztt (P, By Ztt (nm = (At 1),

where

- fn + gch A= (anm)n,ma Anm = (hm hm)
We use the following estimation for a positively definite operator A acting
on a space H and a vector b € H (see [19)):

min ((At,t) | (£,) = 1) = (A7)

teH

The minimum is reached for = A1 ((A~'b, b))~

We calculate a,,,, = (hy, hy,) and we show that b, = —H%(l — ¢1,,) and
—1—((14e20)/2)* (142)/2, (6.18)
pm = (14 c1nC1m) (1= o) (1—Ca1) /8. (6.19)

Since (fn, g) = 0 we get [|fu + gpl* = [Ifull® + g7 ]]*. Indeed,
(fn:97) = ([Tin(1) ® (Tin(2) = tin)IL, 21 ® (Tay, — C1n) ® tin(2)1)

= ten(2)(Tin (1) 21 @ (Tas, — €10) 1, 1)((Tin (2) — tan(2))1,1) = 0.
We have
= || full* + 19512 = 1 (Trn (2) = trn (2)) 1P+, (2) |21 1] (T, — c10) 1.

(6.20)
For general f,g € L*(X, u) N L*(X, 1) we use the following relation:

(f = Mf,g— Mg) = (f.g) — MfMg where Mf = /X f(@)du(a).
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In what follows we use the fact that cx, = 2v/n(0)ag,(1) € (0, 1]. We
assume that a,x(s) =1/2, r =1,2, s € Fo. Obviously,

Ma'" = con—1, tin(r) = a(0)+cmonr(l) = 27 (14em), r=1,2, k> 2.
(6.21)
Indeed, we get for r =1

V)= B0 = (34§ 2) 1.0 2010, (111,17
1(0) a1 (0) Ears (0)aurn (1) + %alk<1)aln(o>+ Z:—E(galk(l)aln(l)
:Oélk(O) + Clna1k<1).

Further, we have
(Ton2) — tin@UP =1 - ,2) =1 = (~522)
1(Ton(2) = t2n(2)1])* = 1 = 3,
]2 =[] (§9) (1) 17 =110, D]I* = awx(1) = 1/2, (6.22)
|(Tay, —c1a)1|)? =1—¢3,. (6.23)
Using (6.20) we get (6.18):
amm=1—13(2) + 13, (2)a(1)(1—c3 )=1— tiﬂ)%: (6.24)

1= (14 e20)/2)" (1463,) /2.
Since (f, g5,) = (95, fm) = (95, 97) = 0, for n # m, we get
Anm = (fu+ s fn +95) = (s fn) + (frs ) + (s frn) + (95 Gm) = (fas fin)-
Indeed,

(frs g) = (T

(1> (Tkn( ) tk‘n(2)>1’xlk ® (Talm clm) ®tkm(2)1)
= trm(2
(2

)(Tkn( )1 L1k ® (Ta1m - clm) 1)((Tkn( ) - tlm( ))1, 1)
bk (2)tkm( )Hxlkl“ (( Q1n Cln)la(Talm Clm)l) 0>

= C1((Tkn(2) — tin
(9 )
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where ()}, are some constants. Finally, we get

6.25
= (Tin (1)1, Tina (1) 1) [(T30(2)1, Tion(2)1) — 10 (2)tkm (2)].

Using (6.8) we get

(Tin (D)1, Ty (1)1) = ([ + 214 @ (T, — D1, [ + 214 @ (T, — )]1) = 1+
(1, 215@(Thy,, — 1)+ (@15@2(Tay, — 1)1, 1)+ (21, (T, — 1)1, 215(Thy,, —1)1)
= 1+ ay(1)[(cim = 1)+ (c1n = 1) + (c1m — D) (c1n — 1)] = 1+ a1x(1) (¢1nCim — 1)

= a13(0) + ap(1)cincim = (1 + cinCim)/2
for a1x(0) = (1) = 1/2. Finally, we get

1+ cincim (1 + ConCom 1+ cCopn 1+ 02m> 1+ cipcim
Anm = - =

2 2 2 2 g =) (I=Com).

This proves (6.19). In addition we have
by = tin(2)Mal) = —(1 4 c20)(1 — 1) /2, 1 (2) = (1 + c20)/2.

We shall estimate (A~'b,b) for an operator A = (@ )n.m defined as follows:

1+ con\21+ ¢,
2 ) I = (1Cincim) (1—can) (1 —cam) /8.

2 2
We have A = DD,, (A, ¢)D where

ann:1—<

D = diag(d,)r,, d,=(1-— CQH)(2\/§)’1, c=(Ca)ny Cn = Cin-
Finally, we get
(A710,b) = (D' D3 (7, )D~"b,b) = (D1 (A, €)D'b, D) = (DA (A, ), 1)

where = D™'b. Lemma 6.2 finish the proof. Since 1+, +¢} = % we get

c? c? —can)?
o = (L c)ds 1 (M) i G
! d2 (1_0271)2
" 8
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= 8 — (L4 )1+ can)® + (1 = c20)?]

(1= c2n)?
(1 — c9n)? (1 — c9n)? '
We have
Y Ley L)
n—2 )\n n 2<1 - C%n +1- C%n +1- c%ncgn) '
Since
(1 + CQn)(l - Cln) bn \/5(1 + an)(l - Cln)
bn = - 5 t n— 5 — —
2 WEBEE A = (1= con)
therefore,

i Mo _ Z (1+ can)?(1 — c1n)?
=\ 20— +1—c3,+1—c2,c3,)

n 2n

Lemma 6.4. We have x121 € ([Ta, — con) 1 | n > k) if X9 = 00 where

(e 9]

Yig = Z ( o) S - (6.26)

—(1- Cin)c3, +1—co

PRrOOF. Using (6.8) we get Ta, = 15, (1) ® T5,(2) so,
Top —con = (I +x12(T10 — 1)) @ T, — con = 12(T1 — 1) @ Ty, + Tas, — Con

If we chose t = (t,)7"_, such that )" ., ME, =1 we get

m
1Y talTon—canyans 1] = Hm12<Zt (T1n—T)@ Ty — >1+Zt (Tags—c2n)1||?

n=3 n=3
1D ta[ia(6n — M&) +m]|I* = Z tnti(hn, hi) = Z n(hns i),
n=3 n,k=3
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since (hy,hx) = 0 for n # k, where h,, = x15(&, — M&,) + n,. Indeed, we
show that

(B, hi) =0, for n#k, (hn, hn)~2(1—c1,)cs,—~(1—c1n)?c5,+1—c3,. (6.27)
We have
(hna hn) = <x12(€n - an) + 77n7$12(€n - Mgn) + nn) =

(2121, 1) |60 — ME* + [[mall® + 2(2121, 1) (& — MEyy ) =
ar2(1)[2(1 = c1n) = (1 = ¢1p)*c3,] + 1 = 63, + 2a12(1) (c1n — 1)(1 — 63,) =
2009(1)(1 — ¢c1p)c3, + 1 — 3, — arp(1)(1 — c1,)%c3,
since

(En=M&nymn) = ( [(Taln_]')TaQn —(c1n— 1)0271} 1, (Top, —c20)1) = ((T0y,—1)1,1)

X(Toy, 1, (T, — c2n)1) = (c1n — 1)con((Thy, — c2n)1,1) = (c1n — 1)(1 — an)
Finally, we get

m m > 2

We use the following equivalence

Nzlg = Q.

|M€n|2 (1— Cln)QC%n

2012(1)(1 = c1n) 3, + 1 = 3, — ar2(1)(1 — c1n)?c3,

Mg

n:3 ’ n=3

> (1 —c10)%c2,
~ Z (1— 1 zr 12 =S
n:3 Cln CQ”

0

To find the conditions of the approximation of x, it is sufficient to inter-
change ¢y, and ¢y, in Lemma 6.3. Namely, by analogy we have the following
lemma.
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Lemma 6.5. We have xo;1 € ([Ti, — tin(1)] 1 | n > k) < 3y, — 00 where

P(fw)) + T g) + D i)

Som = (D (A, ), 1) = ., (6.28)
L+ T(gn)) +T (i) +T (g, b))
the vectors f,gf), gy(n), h? are defined by (6.13) and
2(1 — cln +1— C2n +1-— C%nc%n) \/5(1 + cln)(l — 0271)
An = 2 y Cn = Cop, [p = — .
(]- - Cln) (1 - Cl”)

Finally, to approximate x1y or xgy it is sufficient to have respectively ¥X1,, — oo
or Yo, — 00 where

s _ Yfm) + T(fms 9m) + T (fins hun)
1im — ~

1+ T(gm) + L(hm) + T (gm, hin)

1+ Zizl D(zk) + Zl§k<r§3 Dz, zr) + T(21, 22, 73)
1+ D(z2) + T'(x3) + I'(22, 23)

(where 21 = fin, T2 = gm, 23 = hm)

det[I + v(gm, hun)] det[I +~(G™, H")]

1 (1- C2n) %
Dg) =Y + = A
(9) Z An ; 2(1 - Cln +1- CQn +1- Clnczn) ; An

Z T _ Z (1 + can)? (1 —cin)”
1 - Cln +1- C2n +1- Clncgn),

and ) )

T(f5) +T(f5 . 99) +T(fs b))

1+T(g%)) + D(hY) + T(gl) h2)

1+ 22:1 (k) + X 1<her<s D@, @) + D21, 22, 23)
14 T(z2) + I'(xs) + (2, 3)

(where z1 = fv(nQ), To = 97(7%)7 xr3 = h%))

EQm =

_ det[T+ (£, g8 )] det[T + (G, F™, HYY)]
det[T + (g2, i) det[l +~y(F™, H5")]
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1 (1 —c1p)?
Z )\ Zn: 2 1- Cln+1 62n+1 Clnc2n) Z

n
:Zﬂn_z (14 c10)*(1 = c20)?
— An 20—, +1—-¢a3,+1—c,e3,)

ClnCQn

Since 1 < 1+ ¢, < 2 finally, we get
_rEm)+rEm,Gm

) + I i)
by , 6.29
tm = 1+F(Gm) +T(H™) +T(G™, H) (6:29)
Gm™ Fm rG™, H
1+F(Fm) ( 5') + (™, Hy)
where we denote
1- n 1-— n
b= a 5 Gn: @ s
(1 —cin+1—cop+1-— ClnCQn)1/2 (1 —Cin+1l—cop+1— ClnCZn)1/2

F = (F)n, G=(Gn)n, H = (HY)n, Hs= (H2)n, H. = Gncin, H2 = Fycan,
F™ = (Fo)iy, G™=(Gn)iy, H"=(Hy))ny, HY = (HJ)r, (6.32)

n=2 n=2» n=2

Lemma 6.6. If SE (11a) + Sk (pa) = oo then
L(f)+D(g) =00, T(f)+T(¢?) =00 and T(F)+T(G) = oo. (6.33)

PROOF. Since cg, = 24/ g (0)ag, (1) € (0,1] we conclude that

T(f) ~T(g?) => (1= cin)” (6.34)

1 — C1p, + 1 — Cop + 1— ClnCZn)

n:3

1 _Cln+ 1 — Cop, + 1 _Clnc2n)

i 1 — Cln)z(l -+ an)Q
n:S

1 - 2n 2
T(g) ~T(f?) ~ T(Q) = = i - C; l ———" (6.35)

n=3

Z 1 + Cln)2(1 — C2n)2

1 — Cip + 1 — Cop + 1 _ClnCZn)

IfT(f) +T(g9) <ocor L(f 2)) +T(g®) < 0o we get T'(F) + I'(G) < oo and

(1 D21 = e > (1—c1,)?(1 )2
Z + ( Cg + Z Cc1 ( + ¢ ) < oo
n— _Cln+1 Con + 1— Clnc2n 1 Cln+1 02n+1 ClnCQn)

n=3
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therefore, > < oo where

= i [(1 + Cln)(l — CQn) + (1 — Cln)(l + CQn)]2 _

n—=3 4(1 — Cip + 1— Con + 1— ClnCZn)

Z (1 - ClnCQn)
n—3 (1 — Cin + 1-— Con + 1— ClnCZn) ‘

Finally, I'(F') + I'(G) + ¥ < oo hence,

(1—cin+1—con+1—crncn)’
> = 1_ n 1_ ” 1_ nCon
>~ ; (1_Cln+1_C2n+1—Cln62n> Z< Cint Cop + CinC2 )

n

> Sfl(ﬂ@é) + SZLQ(:“a) = 00.
This contradiction proves (6.33). O
Remark 6.2. We have proved the convergence Zgi Ny tnl Tk —thn (1)) = T
for r = 1,2 only on the vector f = 1.The same argument holds for the total
set of vectors of the form f = ®7_, f, ®1® 1--- in the space L*(X?, u?) =

Hyy @724 (Hlk ® Hgk). Hence, x,;, € A2. In what follows we will use the same
arguments.

It is useful to use the analogy with the case of the field k = R.

Remark 6.3. In the case of the field k = R the generators A, and A,, of
the corresponding one-parameter groups has the following form [19]:

Apn = 215 D1y, + 2ok, Doy, Agp = £12D1y, + Doy,

If we are able to approximate the variable x,, but not the xy,. It is reason-
able to use the following expressions

Apn, — T2 Aoy = (lﬂlk - 3312$2k)D1n (6-36)

in order to approximate first the expression xq; — x1229; by linear combina-
tions Y tn (@1, — T12%9;) D3,. Further, we can approximate the variable x5
by > ti(z1x — x1229k). After we can approximate the variable xy; (see also
the details in [17]).
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Let xqp, = diag(0,1) € A% We try to guess an analogue of the expression
App — Top Az, The analogue of Ay, is Ty, — I = C(Ty,) — p, by Remark 4.3.
So, the analogue of Ay, — xorAgy, is T — I — 9, @ (1o, — I). We shall use
the following combinations:

For k < n set
Ten = (To,, — I). (6.38)

Using (5.5) we get
Tin = (I + 21x71n) (L + 2ok Ton) = I 4+ T1kTin + TopTon + T16T2kT1nTon,

Ty = (I + z19T10) (L + T2n) = I + 212710 + Ton + T12T10T2n,

therefore, we get
Tien—1 =203, @ (Ton —I) = (1, — T12T2k) Ti + (T10T2k — T12T2k ) TinTon- (6.39)
Lemma 6.7. We have
(21 — T1220k) 1 € ([T, — I — o (Top, — I)] 1 | n > k)
if and only if A(f!,g.,) — oo where

r oy L) A T 90)

and f! . g. € R™2 are defined as follows:

fo=(V1=c)ils, g = (V1= cin(l = con))ils. (6.41)
PROOF. Set b, = M<Ta1n — I)]. =Mn,1=cy, — 1,

fn = [(x1k — 2122T2) Tin + (T16%2k — T12%T2k) TinTon) 1,

fﬁ = [(xuc - $12$2k)(7'1n - MTlnl) + (I1kl’2k - $12$2k)7'1n7'2n]1
= [(x1x — T12%2k) (T, — €1n) — (T18Z2k — T12%2k) @ (T, — 1) ® (Ta, — 1)]1.
Take t = (t,)_; such that S-N . t,b, = 1, then we get

N N N
1Y " tafo = @i — zoea) 1 = D tafil? =D tatw(f5. f) = (At 1),
n=3 n=3 n=3
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where

A= (anm)fxm:?,a Anm = ( 727 frcn>7]:[,m:3
As before, we use the following estimation for a positively definite operator
A acting in a space H and a vector b € H:

min ((At,t) | (t,b) = 1) — (A7, b)7,

teH

We show that
ann = (2 —ca0)(1 = ¢2)/2+ (1 — c1,) (1 — cap), (6.42)

Upm = Ay, n#m, where d, = (1 —c1,)(1— cap)/2. (6.43)

Set
h = (901k - $12x2k), g = ($C1k$2k - 1312132k),

fn = (Taln - Cln)17 77774 - (Taln - ]) ® (TQQn - I)l

We can suppose that jia,, = fta,, are invariant measures for fixed k. This
does not change the equivalence class of the measure p hence, the equivalence
class of the representation. Then using (6.22) we get

ann = (£ ) = IRPIENZ + 1112 1mall® + 2(g, B) (&ns 1),

HhHZ = [z — 351233%)1”2 = ((ﬁk — 201X 1ok + x%ngk)L 1) =1/2,
1917 = [[(z1p22k — Tr0w2p) 1]|* = (23,25, — 2w10m12%, + 2T575,)1,1) = 1/4,
(9.h) = ((x1x — T1272) 1, (L1 T2k — T12721)1)
= ((2TpT2k — T12T14Top — T12T1KT3), + T1525;,)1, 1) = 1/4,
1€all? =1=ctps Mmall? =40 —c1n) (1 =), (&) = (1= ¢1,) (1= c2n).

Finally, we get (6.42). Indeed, we have
A = (1 — C%n)/Q + (1= c1n)(1 = c2) + (1 — C%n)(l — Can)/2
= (2= con)(1 = ¢1,) /24 (1 = 1) (1 = can).
We show that (&,,1,) = —(1 —¢2,)(1 — ca,). Indeed, we get

(&ns ) = (Tar, —c10) 1, (Toy, = 1)@ (Tay, —1]1) = (Toy,, — 1)1, (1o, —1)1) X
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(T, = D1,1) = [[(Tor,, — 1) 1P ((Tag, = 1)1,1) = —(1 = ¢1,) (L — c20).
Further, since (§,,&m) = (&n, Mm) = 0 for n # m we get
Apm = ( nca fﬁq) = (hgn + gnmhgm +977m) = (gag)(nmnm) = dndm/4>

where d,, = M This proves (6.43). We use the fact that (g,g) =
1/4 and

(s M) = ((Tor, = 1) @ (T, — 1)1, (Tay,, — 1) @ (Tary,,, — 1)1)
= ((Taln - I) ® (Tazn - 1)17 1)(Ta1m - I)<Ta2m - I)la 1)

= (1 —c10)(1 = con)(1 — 1) (1 — o).

Since @y, is a product a,, = d,d,/4 we can use the particular case of
Lemma 6.2 for ¢ = 0. to calculate (A~'b,b). We have A = DD,,(\)D where
D = diag(D,,)" , and D,,()\) is defined by (6.10). Finally, we get if we set
Db =u

©.11) D(fm) + C(foms gm) _
1+ T(gm)

(A_lbv b) = (D;Ll()\,c)/% :U') A(fmagm)7

where f, = (/v Gm = (1/\/_)2":1 (see (6.13)). To calculate

A(fm, gm) we have A, = 4 — 1 = =255 % and p1, = bo = — o therefore,

(2—can)(1 = c1,)/24+ (1 —c1n) (L — can) — (1 — c10) (1 — €20)?/4
(1 —c10)2(1 — 2,)%/4
22— o) (L4 c1n) +4(1 — can) — (1 = c10) (1 — 25)?
(1 — 1) (1 — o)
2(14 c10)(2 — con) + (1 — con)[4 — (1 — 1) (1 — ¢25)]
(1 — Cln)(l - an)Q .
Finally, we get I'(g) = > 7, /\— and I'(f) =", % or

An =

o0

1 — Cln an)Q Cln
: =4
Z xn,yn) Z < f(@n, yn)’

n=

where f(xm yn) = 2(2 + xn)(l + yn) + yn(4 - mnyn) and Ln = 1- Cin,
Yn = 1 — cop.

69



Since 4 < f(xy,y,) < 16 we conclude that I'(f) ~ I'(f") and I'(g) ~ I'(¢’)
where f" and ¢’ are defined as follows (see (6.41))

ff=(Wl—-cu)ils, ¢ =W1—cn(l—cnm))ils

Hence, T(f') = 3 (1 e1a) = Sh(1) = 00, T(g) = S (1~ c1a) (1~ 20)2

L(f)+I(f.q)
1+T(g)

Finally, we get  lm A(fpn, gm) ~ llmA(fm Gon) =
]

The schema of the proof of irreducibility for m = 2. Recall some
notations (see (6.29)—(6.32))

o - (]' B Cl”>203n 1 _ . .
E12 - ; (1 — C1n)C%n +1— CQn, dn =1 Cip + 1 Cop + 1 C1nCon,
" (1= e1,)? - - (1 = c9p)?
r(em) = [ =30 Sk pem = jomir =y B
n=3 n n=3 n
(1= egn)?e2, . . (1= e1p)?e2,
() = [Hy P = Z% (g = g = Y
n=3 n n=3 n
S T TP, G) 4 T )
BTN (D (H )+ L(G™, H")’
( ")+ D(G™ FT) + T(G™, Hy?)
S TR T(Fm) + D(Hg) + L(F 1)’
_T(H+If9) _ _
A(fa g) - 1_'_ F(g) ) f - (fn)n€N> g= (gn)n€N>
P(f) =Y (1 =cm), T(g)=> (1=cin)(1—can),
n=3 n=3
St =) (1= cm), Sp()= (1= can), Zazn (1 = cin).
n=2 n=3

To prove the irreducibility, consider different cases.
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Case 1. Let ¥;5 = 0o then by Lemma 6.4 we conclude that x5 € 2.
By (2.9)) and (5.5) we get

T2n:T2n(]-)®T2n(2)a T2n(1)21+$12®(Ta1n_I)7 Tln :Ta1n7 T2n(2):Ta2n7
(6.44)
Tkn:Tkn(1>®Tkn<2)a Tkn<1):[+x1k®(Ta1ﬂ_I)7 Tkn(Q):I—FIBQk@(TaQn—I)
(6.45)

Remark 6.4. We note that

(a) if x15 € A* then T,,, € A* for n > 3;

(b) if 21, € A? then a9, € A? for k > 3;

(c) if m19, Top, € A for n > 3 then xy, € A* for k > 3.

To prove (a) it is sufficient to use (6.44) and Ty, = T,,, € A% Since
T1, Ty, € A% then Ty, (1) = Ty, (1) € A? therefore, T, = Ty,(2) =
Ty (1) Ty, € A%,

(b) Since Tig, Tin € A2, Ty, = T,,,,, using (6.3) we conclude that Ty, (1)~ =
Thn(1) € A% therefore, Ty, (1) Thn = Tin(2) € A? and finally, z9, € A% by
Lemma 6.8 that is an analogue of Lemma 5.1. For an arbitrary p we can use
the relation Tj, (1)™! = T, (1)P71 € A2

(c) By (a) we get T,,,, € A%. Since z9;, € A? we conclute that T}, (2) € A?
therefore, Ty, (1) € A hence, z1, € A* by Lemma 5.1.

Lemma 6.8. We have xo,1 € ((Tin(2)—1)1 | n>k) if and only if Sk (u) = oo.

Remark 6.5. Since 19, Tip, Toni1 € A%, n > 2 we conclude by Remark 6.4
(a) that T,,, € A%, n > 2. Finally, we get 212, Tw,,, T, € A for all n > 3.
This family of operators is commuting and has common simple spectrum [5]
therefore, the von Neumann algebra
L®(219, Th, Tp) 1= L™ (m i III) > f (‘“2 e iﬁﬁ) :

generated by this family is maximal abelian subalgebra in 2* and consists
of all L* functions, i.e., bounded operator-valued functions depending on
the variables (212, Th,, , Tay,, 1 > 3). Therefore, (A?) C L>®(z19,T1,To) =
L>®(x19, Ty, Tz) hence, any operator f = f(z12, Tw,, , Toy,, 1 > 3) from (A?)
belongs to L>®(xy2,T1,Ty). Since T € A* the relation [f, Tiz] = 0 implies
that the operator f does not depend on x15. Finally, any operator from (2?)’

is a function f in commuting family (7,,, , Ta,,,n > 3).
@) c L= (Fe e ). (6.46)
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The commutation [f, Tyx41] = 0 for all £ > 1 implies by Lemma 4.14 and its
analogue that f depends only on the following expressions:

Abr=1r T[] p'C(Ta,). A2 =15, [] p'C(Tuy), r € F\{0}, s > 3.

k=s+1 k=s+1

But the latter expressions are well defined if and only if S5 (u) < oo and
SL (1) < oo by Lemma 4.5 and its analogue.
Case 2. Let X1 < 0o and I'(G) < oo then I'(F') = co. This conditions

are incompatible. Indeed, since d,, =1 —cy, +1—co, + 1 — C1502, < 3 We get
L (1—cm)? 1

oo >I(G) = - (1 —con)”. 6.47

B D s PN o4

Therefore, lim,, ¢z, = 1 hence, co > %15 ~ || F||* = oo, contradiction. Indeed,
for an arbitrary € > 0 we have for sufficiently big N

> (1 —c1p)%c3 2 > (1—c1p)?
> Yy = & -
o0 12 2 (1—cpn)c3, +1— 02n - ) nz 1—c)cd, +1—cop

G-y Lo ypp o

:N1—61n+1—02n

Case 3. Let X152 < 00 and I'(F') < co. Then I'(H;) < oo and I'(G) = oo
by Lemma 6.6. Therefore, ¥5,, — 0o hence, xq;, € A% for k¥ > 3. Further,
using notations 7y, = T,,,, — I and o, = T,,,, — I (see (6.38)) we get

Tin — I — 2ok (Ton — I) = (v11 — T12%2k) Tin + (T16T2k — T12T2k) TinT2n (6.48)
(see (6.39)). By Lemma 6.7 we conclude that x1, — x10w9, € A* if A(f) . g.)

— o0 where , )

Al gm) = =17 NCARE (6.49)
F(f,:n) = Z(l - Cln)? F(g;n> = Z(l - Cln)(l - ch)z' (650)

The case (3) splits into two cases (30), when A(f/ ,gl,) — 0o and case (31),
when || f" —t¢'|| < oo for some t € R\ {0}.

72



In the case 30, by Lemma 6.7, we conclude that
Ty — TaTor € A if A(f,4)) — oo
We use Lemmas 6.9 and 6.10 proved in [22]:

Lemma 6.9. Let f = (fx)ren and g = (gr)ken be two real vectors such that
| fII> = oo where ||f||* = Y, f7. Denote by fin), gy € R™ their projections
to the subspace R", i.e., fo) = (fe)iet, 9m) = (gk)k:1 and set

L(fi) + T(fin)> 9m))
then  lim A ) =00 (6.51
T(g(m) + 1 Tim A(fn), gm) (6.51)

A(fn), 9m)) =

in the following cases:

(a) gl < oo,
Il
llgemll ’

() IISI*=1lgll* = IIf + sgll* = 00, forall s €R\{0}.

PROOF. Obviously lim, o A(fm), 9m)) = oo if conditions (a) or (b) hold.
The implication (¢) = (6.51) is based on the following lemma. O

(b) lg]|> = 00, and lim, .

Lemma 6.10. Let f = (fx)ren and g = (gr)ren be two real vectors such that
17112 = Nlgll> = [|C1f + Cag* = 00, for all (Cy1,Ca) € R*\ {0}, (6.52)

L'(fn): 9 . T(fm), 9(n

6.53
n—o0 F(g(n)) n—o0 F(f(n)) ( )

Obviously, I'(f) = || f'||I> = SE (1) = oo. Consider the following cases:
case (a), when I'(¢') < oo then A(f),, g.,) — oo,
case (b), when I'(¢') = oo and T'(f!)/T'(g.,) — oo then A(f/.,g.,) — o0,
case (c), when T'(f/)/T(g.) < C and ||Cif" + Cod'||*> = oo for all
(C1,Cy) € R?\ {0} then A(f/ . g.) — oo by Lemma 6.10.

Remark 6.6. We can apgrommate 212 by linear combination of x1 — 1229y
due to Lemma 6.17 if 012 (1u) = oo (see (6.65)). The divergence ag) (n) =
oo follows from the inequality ag,(0)ax,(1) < 1/4 based on the relation
(1 —2)z < 1/4 for z € [0,1] and the divergence o12(p) = > 2 5 a3,(1) = 00
which follows from Lemma 6.11. The convergence Y (1—¢y,)?* < oo follows
from the fact that ['(F') < oo (see (6.47)).
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Lemma 6.11. Let Sh(pu)=o00 and Y, (1—c1,)? <00 then oia(p) :=
2 03, (1) =00.

PRrooF. Using Cauchy-Schwarz inequality | (z,y) |< ||z - ||y|| for =,y € R™
we get

(Z%n(l)(l — c1n)>2 < (Zagn(1)> (Z(l — cln)2>, forall méeN
Therefore,
(iain(lﬁ > (i(l — cln)2> _1(5_02 o (1)(1 — cln)>2 — 0.

Finally, in the cases (a), (b) or (¢) we can approximate xy; — x1229,. Then,
by Remark 6.6 we can approximate x15. Therefore, we can approximate all
the variables x1,, x9,11, m > 2 and the proof is completed.

31. In the opposite case (@) N (b) N (¢), i.e., in the case T'(f*)/T(g.,) < C
and

1= tgII =D (1 = cin) [l = (1 = e1)]* < 00 (6.54)

n

for some t € R\ {0} consider again the expressions Ty, — I — xop(T2, — I)
see (6.39)

Tin — I — o (Top, — I) = (T1 — T12%ok ) T1n + (T1kTok — T12T2k ) TinTon. (6.55)

Lemma 6.12. We can approzimate by " o t,[Thn — I — oy (Ton — I)] the
following expression.:

(X1 — T12%ok) + B(T18Tok — T12%ok) = T1k — (1 — $)T12Tok — ST1xT2 (6.56)

where s := —f € [0, 1] and B is defined as follows:

l—c (1—c — Con)
Cimg® g® — _( 1“) w1 =) g 57
B=lmpR, B ZHCM ; HCM (6.57)
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m

PROOF. First, we show that > " . ¢, 7y, — I for an appropriate t = (t,)I" 5.
Second, we show that lim,, 2?23 tnTinTon = [. Indeed, set b, := M1,1

and b%g) = M1,72,1 then we get

by=M(Tyn—1)1=(c1,—1), b =M (T —I)(Thy, —1)1=(1—c1n)(1—can).

(6.58
By Lemma 5.1 we conclude that > .t,7, — [ if and only if S&(p) =
S (1 — c1,) = o0o. Indeed, if we set t = (t,)" 5, b= (b,)" 5 we get

n=2
o, — [ < mi < 21— cip tb—Q
2271 t£$2§: c1n)” | (&)

m b2 m . n2 m e\~ [e's)
(G- =S soe Suan=w

n=2

b (= b2\ 1 1 N
n = Tn n)1 2:1 i ) tn:_n< ) = ( n) .
an=[(Tin—c1n)1]] in a 23: a 1+ ¢y, n§3: 1+ec,

(6.59)
Further, we get

|| [ZtnTlnTQn - 57(3)] ]-H2 [Zt TinTon — Z t Cln CQTL)] 1”2 -
n=3

Hztn[TlnTQn_(l_cln)( _CQn 1H2 Zt H TinTon — _Cln)<1_02n)]1“2

m

= ti[Q(l — Cln)2(]— — an) — (1 — Cln) an Z t2 Cln an),
n=3

since we have 3 <4 — (1 —z)(1 —y) <4 for z,y € (O, 1] and
1710 7an = (1=c1n) (1=con) [P = [[(T1in—1)(Tas, = D)1]* = (1=c1n)*(1—c20)* =

2(1—c1)2(1—con)—(1—c1n)*(1—can)? = (1—c1) (1—con) [4—(1—c1, ) (1—c22)].
We show that > | t2(1 — ¢1,,)(1 — ¢a,) — 0. Indeed, we have

m

= = 1- Cin 1 - Cln 1 - CQn)
£2(1 - e1)(1 — :( ) <
Dot — el =) = (3 P T

n=3
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4(53(1—(;1”))_222 (1—cin) _4(§: 1—01n> 0.

Obviously, the sequence ﬁg) defined by (6.57) is bounded Bm [—1, 0] for
all m € N therefore, there exists a subsequence having the limit § € [—1, 0].
O

We have to study two cases: (310), when s # 1 and (311), when s = 1.
310. When s # 1 the proof of the irreducibility is finished. Indeed, we

conclude by Lemma 6.14 (we shall prove this lemma below) that x5 € A2 if

o8 (1) = co. The divergence o\3)(11) = oo follows from S, (1) = oo and

the estimation
ke (0)ap(1) < 1/4,  ag(0) + (1 — s)2ag(1) < 1.

The divergence Ypa, (1) = oo follows from I'(F) = ,(1 — ¢1,)? < oo and
Lemma 6.11.

Further, xop € 2% hence, we get using (6.56) x1x — sTiw = T1(1 —
sTor) = 1k @ (§1%,) € A% Finally, we conclude that zy;, € 22 since

(L —swa) ™ = (5:2) 7 = (pao1) = (L —2) + (1 —5) "oy € A%,

Now we get 1y, Topy1 € A% for k > 2, this finish the proof in the case s # 1.
We prove Lemma 6.14 to finish the case s # 1 before passing to the case
s = 1. To approximate x12, we correct a little bit the expression x1; —sx1x2os.

Lemma 6.13. For s € R we have

min__||(z1x — ST1kTok + 11 + t21’2k)1||2 = |[(z1x — Mz11)(1 — sxgk)1||2
(t1,t2)€ER?

= a(0)any(1) [z (0) + (1 — 5)*agi(1)].

We see that (21 — Mx151)(1 — sxor) = 1 — ST1xTor — M1+ s(Maz11) 2oy
hence, minimum we have for t; = —Muz1;1, to = s(Mxq,1).

PROOF. We note that the distance d(f,+1;(f1,..., fn)) of the vector f, i1
in a Hilbert space H from the hyperplane (fi,..., f,) generated by vectors
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fi, .-, fn may be calculated in terms of the Gram determinants U( f1, fa, ..., fx)
corresponding to the set of vectors fi, fa, ..., fr (see [7]):

U(f1s fos s fur1)
C(f1, fas ooy fn)
(6.60)
where the Gram determinant is defined by T'(f1, fa, ..., fn) = det Y(f1, f2, -, [n)
and v(f1, fo, ..., fn) is the Gram matriz

(fi,f1) (fifo) o (Fisfo)
V1, forois f) = (f2s 1) (fo, fo) oo (f2, f)

Garft) s f2) oo (i fo)
Let us denote fo = x1(1 — sxox)1, f1 =1, fo = x9x1. We have

d2(fn+1; (fio o fn) = t:(fg;i)fean | frt1 + ZtkkaQ =
k=1

<f07 f17 f2)
t t 2 T )
@ rtmrelRZHfo-i- 1fi +tafell” = T(f1, fo)
Since we have for operators 1 and o (acting on the spaces Hyy and Hyy, re-
spectively) the same expressions: (39) and 1—szo, = (§9) = (99) = (§:%)
(to be more precise we write)

= (89) ® (49), 1-szm= (§9) ® (5:2%)

we get
(fo, fo) = w1 IP[[(1 — smar)1[|* = s (1) (26 (0) + (1 — 5)%azp (1)),
(fo, f1) = (x1x(1=sz2x)1, 1) = (2111, 1) ((1—sz2x)1, 1) = @15 (1) (or (0 H{1—s) 1% (1)),
(fo, f2) = (w1 (1—=sw2%) 1, w2 1) = (21x1, 1) ((1—572%) 1, w2% 1) = a1x(1)(1—5)azx(1),
(fi,f1)=1, (fi,fo) = (L) = aok(1),  (f2, f2) = (w2, 2k 1) = g (1).

Finally, we conclude that

(fo, fo) (fo, f1) (fo, f2)
F(anfl?fQ) - (fhfe) (flafl) (f17f2)
(fas fo) (fo, f1) (fas [2)
o1 (1) (ke (0) 4+ (1—s) %ok (1)) a1s(1) (ke (0 ) (1—s5)aar(1)) orp(1)(1—s)aok(1)
a1x(1)(a2k(0) + (1 — s)aak(1)) k(1)
a1 (1)(1 — s)aak(1) azkz(l) (1)
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a9 (0)+(1—5)2ag(1) aok(0) + (1 — s)agr(1) (1 —s)
:alk(l)agk(l) Oélk;( )(Oégk(()) (1 — S)agk(l)) 1 1
a1k (1)(1 — s)ag(1) (1) 1
a9r(0) + (1 — 8)?a1(0)agr(1)  a9i(0) 0
= alk(l)a%(l) Oélk(l)OéQk(O) OéQk(O) 0
agr(1)(1 — s)ag(0) ag(1) 1
_ aop,(0) + (1 — 5)?a1x(0) k(1) a2k (0)
= aa(Doa(l) a1e(1)az(0) 021 (0)
= ayx(1)agk (1) a9k (0) (an(O) + (1 — 5)%a1(0) e (1) — Oélk<1>062k(0))
= Oélk(O)Oélk(l)Oégk(O)Oégk(l) (Oézk(O) + (1 — 8) Oégk(l))

For T'(f1, f2) we have

(s f) (fis f2) 1 age(1)
F(fth)_‘ (f2, [1) (f2, f2) k(1) age(1)

hence, T'(fo, f1, 2)(T(f1, f2)) ™" = 01 (0) a1 (1) (2k(0) + (1 — )%, (1)) and

(re — M) (1 — swa)1]]” = || (21 — M) 21— szz)1]?

= au0an()

= alk(O)alk(l) (agk(O) + (1 — s)2a2k(1)) . O
By Lemma 6.13 we have for optimal ¢; and %

X1k —ST1pTop— (1—8)T12Top+t1+Htaxer = (T1p—Max1 1) (1—s298) —(1—8) T 1222y
Lemma 6.14. For s # 1 we have

—(1=s)z12l € ([(x1p—Mz1£1)(1 — swo) — (1 — S)x1029k] 1 | k£ > 3) & ag)(u) 0,

where % (1) = (1)
h iz (1) g ap(0) vz (1) + a1 (0) v (1) (r (0) + (1 — 8)22i (1))

PrROOF. We can procced as before. Let us denote
& =xol, np = (v — Ma1p1)(1 — szor)l, then ME = ag(1),
166 —=ME[* = o (0)ak(1),  [17i]1” = a1r(0)arr(1) (@2 (0) + (1 — 5)%az (1)) -
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If we take (tx); such that Zi\:f’ tx ME&, = 1 we obtain

N+3
H ( Z tk [(xlk — M:clkl)(l — :c%) — (1 — S)$12l’2k] + (1 — 5)1312>1”2 =
k=3
N+3 N+-2

I3t = (1 = (e = MENI =3 bl = (1 = )l — W&

N+3
= >t (Il + 11 = 9z (& — ME) -
k=3
Hence,
N+3 N+3
2 2
min (2 AU + 10— st 6 = M1?) | 3 e = 1)

k=3

8 e )
= (1= s)?[zd|2[]& — ME|* + [l

g (1) >’1
(1 — s)2a12(1)agr(0)aor (1) + a1 (0) g (1) (aor (0) 4 (1 — 5)20x(1))

~

ifs # 1.

agk(0) vz (1) + a1r(0)ank (1) (2k(0) + (1 — 8)204%(1))) ’

311. When s = 1 we get from (6.56) x5 — Z1,29,. The condition (6.54)

I/ =tg' | = (1—c1)[1—t(1—ca,)]” < 00, for some t € R\{0}, (6.61)

n

splits into two cases (3110), when ¢ # 1 and (3111), when ¢t = 1. We show
that in the first and the second case we get respectively:

Z(l — C1n)C3, = 00 and Z(l — c1p)a3, (1) = oo, (6.62)

n n
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To approximate x1,, under the above conditions we use the following expres-
sion (see (6.39)) in the first case

Tin — I — 2o (T, — I) — (11 — T1or) (Thn, — I) = (X1 — T12%2k) Tin+

(T16Tak — T12Tok) TinTon — (T1k — T1pTor)Tin = (T1aTor — T12Tok)Tin (L + Ton).
(6.63)
In the second case, if we multiply the latter expression by Ts, = (I +

T19T1n) (I + T2,) we get (see (6.66))

(T1pTor—212%2k) Tin (L +T2n) (L +212T10) ([ +T2n) = (T12T2k—T12%2k (2215 —1) ) Tip.
(6.64)
Consider the case 3110, when t # 1.

Lemma 6.15. Let f,g & ly where f = (fu)nen, 9 = (gn)nen. If for some
t€R holdstf + (1 —t)g € ly then such at is unique.

PROOF. Set H(t) =tf + (1 —t)g, t € R. Suppose that H(t1), H(t2) € ls
for two different ¢; and ¢;.Then we get the contradiction, since for some
s € R holds f = sH(t1) + (1 — s)H(t2) and by assumption we get [ Z f =
sH(t1) + (1 — s)H(ty) € lo. We note that s = (1 — to)(t; — to) L. O

Remark 6.7. The condition (6.61) for ¢ # 1 implies the first condition of
(6.62). Indeed, by Lemma 6.15 we get ||/ — ¢'[|* = >, (1 — ¢1,,) 3, = oo for
t=1

Lemma 6.16. We have
(T1pTor — T1202k)1 € ((T1xTok — T12T2k ) Tin (I + T2n)1 | 0 > k)

iof and only if 2512) =3 (1—c1,)c3, = .
-1)T

PROOF. It is sufficient to show that Y t,[(Th,, han] — 1if and
only if Z 2 = 00. Set &, = [(Tay, — 1) ® Th,, |1 and & = &, — ME,, then

M&, = (cin = Dean, &l =2(1 —cwn),  N&I° = 16l = | M&a [

Indeed, we have
||§n|!2— II[( ain )®Ta2n}1ll2

Qln

(T

ain

80



Take (t,), such that Zﬁ;z t,ME, =1 then
N+2 N+2 N+2

I > [T, =)o) - )12 = PICICRSIECMEDD taME, )1

N+-2 N+-2

—ZtZH oy = 1) @ Ty, — ME1|* = ZtQHﬁcH2

Finally, we get

N+2 N+2

mln (Zt2||§c I Zt Mg, = 1) (2 12)N)_1 where
N2 N2
Py &P & lGlP- T ME P2
n=2 ||£7L||2 n=2 2(1 - Cln) 2 n=2 n/ma

0

Now we get x1,Tar — T12Tok, Tik — T1pToe € A% hence, x1; — T1970; € A
Using Lemma 6.14 for s = 0 we get

Lemma 6.17. We have x151 € ((z1x — z12291)1 | n > k) if and only if
Ug) (1) = oo where

OV ag, (1)
2 () = Zk: o (0)ae(1) + arr(0)ans(1) (6.65)

We use the following obvious implications:
['(F) < o0 4D Z(l —c1n)? < 0 bemng 6-11 Za%n(l) =00 = Ug)(u) = 00.

By Lemma 6.17 we conclude that x5 € A% hence, x5, Ty € A2 for all
k > 2. This finish the proof in this case.

Consider the case 3111, when ¢ = 1. Since p = 2 we get (I + 7o,)? =
T3,(2) =TZ, =1 and 77, = —27y,,. Indeed, we get
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Hence, we have
(T1pTor—T12%2k ) T1n (L +T2n) (L +212T10 ) ({472 ) = (T15T 2k —T12%0k ) T1p (L +212T10)

= [X1kTok — T12T2k — 2212(T 1k Lok — T12%0k )| Tin = [T16Zok — T12%2k (2215 — I )] Tin.
(6.66)
The condition Sy (u) = oo implies > | t, 71, — I therefore,

T1kTok — 3712372]@(2371]9 — [) € 212.

Since w1y — T1xTox, € A? we conclude finally, that z1j, — r19w9, (221, — ) € A2

Remark 6.8. The condition (6.61) for ¢ = 1 means that >_ (1 — ¢1,)c3, <
oo. This implies that Y. (1 — ¢1,)03,(1) = oo. Indeed, otherwise, if we
suppose that

>, (1=¢1,)a3, (1) < oo we obtain the contradiction with the condition Sf(u) =
>, (1= c1p)az,(1) = co. In fact, since ¢3,, = 4, (0)az,(1), we get

00 > Z —C1n)Cy = 42 (1 — 1) (a2, (1) — a3, (1)).

By Lemma 6.18 below we conclude that x5 € A%, Since xq, € A% we
conclude, by Remark 6.4 (c), that x1, € 2* hence, T1x, Topr1 € A? for k > 2
and the proof is finished.

Lemma 6.18. We have x121 € ([x1x — x122ok (221 — I)]1 | k > 2) if and
only if Y., (1 — c1n)a3, (1) = co.

PROOF. Set n, = x1;1 and & = o, (221, — I)1 then
Mny, = ai(1), M&, = ag(1)(—a1x(0) + aix(1)),

el = oni (1), [1€6l1* = (1) (12 (0) + g (1)) = (1),

since
20, — 1= (89)— (49 =(7'1).
Set h, = M — M, — x12(&E — ME;) then

an = ||hall?> = Inx — Mnge — 212(& — M&)||*
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We have .
| Ztn[(ﬂflk — Mzy) — 212&]1 — 2121|]* =

n=1

||Zt (210 — Mayg) — 210(& — MEYL|? = Zﬁan

n=1

To calculate a,, we get
= [[hnl® = [[[(me — M) — 212(& — ME)L|® = |lme — Mni|*+
|@12(& — ME)L|]* — (121, 1) (s, — Mg, & — M&;,) =

1
lowd]*~ | Mzl |? +§[I|€k||2— | M& ) = (e — Moy, & — M&) =

ax(1) —a?k(1)+%[azk(1) — g (1) (=0 (0) + o (1))*] = (e — Mk, & — M&g)-

Since
(o= My, Eg—MER) = (Mg, &) — M M &g, = (2151, g (221, —1)1) — My ME;,

= (l’gkl,l‘lkl) — Mnkak = Oélk(l)Oégk(l) — a1k<1)042k(1)(—061k(0) -+ Oélk(l))
= Oélk(l)agk(l)(l + Oélk(O) - Oélk(l)) = 2a1k(0)a1k(1)a2k(1),

we conclude that

ax :alk(l)_a%k(lﬂ_% [ator (1) =0z (1) (1 (0) — g (1)) %] — 214 (0) g (1) vz (1)

1 c? 1
~ CL;f = alk(O)alk(l) + éagk(l)[l — 4@1k<0)a1k(1)] = % + §a2k(1)[1 — C%k:]
Finally, we get
2 _ _ n
min (;tnan | ;tnbn = 1) = (; a) where b, = =M¢&, and
YL LA SRS 1 U RITL)
= dn el CL% 1 alk(O)alk(l) + a2k<1)[1 - 4a1k(0)a1k(1)]
= 13 )1-d) 1S *
P = 23 D g ()1 =) ~ > ag (1)1 = ew),
1+ sao(1)(1 = cf)) k=1 k=1



since 1 <1+c <2, i <1and ag(1)[1 —cf] < 1. We use the following
relation for x = aq,(1):

(—a(0) +ap(1)?=01-22)2=1—4o(l—2)=1—¢2,.
0

Case 4. Let X135 < 0o and I'(F) = I'(G) = co. Condition X5 < oo implies
['(Hy) < oo hence, Yo, ~ A(G,p, F). We have two cases:
(4I), when A(Gp, Fy) — o0;

(411), when I'(G,,)/T(F,,) < C and ||G—tF||* < oo for some t € R\{0}.

In the first case (41), we can approximate 9, and we are reduced to the case
(3) but some particular cases should be considered in addition.
In the second case (41I), we show that by linear combinations of the
expressions
Tien — I = X1, T1n + TokTon + T16T26T1nTon

we can approximate xyy + 59)1‘% — ﬂ?)xlkx% or ﬁél)xlk + Top — 653)x1kx2k,
see Lemma 6.76.

Case 4I. We follow step by step the case (3) with the same notations,
just replacing 3 by 4. We know that A(G,, F,,) — oo in two cases, due to
Lemmas 6.9 and 6.10:

case (b), when I'(G,,) /T (F,) — o0,

case (c), when T'(G,,,) /T (F,,) < C for all m > 3 and ||C1F + C1,G||* = oo
for all (Cy,Cy) € R?\ {0}.

Consider the following expression (see (6.55))

Thn — 1 — 9€2k(T2n - I) = (331k - x12x2k)7_1n + (1’1k$2k - $12$2k)71nT2n-

The case (41) splits into two cases (40), when A(f! g/ ) — oo and (41),
when

C(fr)/T(g) <C and |If' —tg/ [P =Y (1 = cia)[l = (1 = e1)] < o0

n

for some t € R\ {0} (see (6.54)), as in the case (31).
In the case 40, by Lemma 6.7, we conclude that xy;, — Z1o%9, € A?
since A(f! . g..) — oo. The case (40) splits into two cases: (400), when

m?
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o12(p) =Y, @3,(1) = oo and the case (401), when o12(p) = >~ a3, (1) < oo.
In the case (400) we can approximate x5 and the proof is finished.
In the case 401, the condition o12() = >, a3,(1) < oo implies lim,, ¢a, =
0 indeed,
1i7£nc§n = 1171511404271( )(1 — agn(1)) = 0.
1) <

Since Y (1 — cin)a3,(1) < >, a3, ( oo we conclude that Y (1 —
C1n)C3, = 00. Indeed, use the fact that Sy (u) = >, (1 —c1n)ae,(1) = oo and
consider the equality

Y (=), =4 (1—c)(am(l) = a3,(1)).

n

Example 6.1. Let 1 — ¢y, = ni,g, Con = ,%a where o, 3 > 0. We show that

the conditiosn of the divergence of the following series, which gives us the
case (401),

Y (—ew)=) (=) =) (I—cm)az(2)=)_(1-ci)e3, = |F|*= |G| =00

n n n n

are as follows:
D={(a,B) €R?|2a+B<1, 2a+28>1, 4a > 1}. (6.67)

Indeed, we have

Sh =30 e =3 =0 for fe(0 1]

1
Sya(1) = Z(l — o) = Z(l — ﬁ) =oo0 for a>0.

To find x = aw,(1) we use the identity c3, = 4a2n( ) ( ) =4(1 — z)x (see

notation ¢y, before Lemma 4.1). We have 2% — x + ”. The roots are as
follows:

-1
o= (1—,/1 - cgn)/2:c§n<2(1+,/1—cgn)) = (1+ 1—c§n>/2.

(6.68)

Only the first root is suitable since as,(1) — 0. We have g, (1) ~ 3, /4.

Therefore,

1
SIL2(,u):Z(1—cm)oz2n(1) ~ 2(1—cln)c§n = Z —arE = 0 for 245 <1,

n n n
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o0

(1 — e1p)%c2 5 9 1
. Z (1- Cln)cgn +1—cop zn:( ~C1n)"Cn zn: n2a+28 oo for 2425

n=2

1
o12(p) = Zagn(l) ~ chn = Z e <X for 4o >1,

that proves (6.67). Further, we get

" 1—C1)2 o " 1 m1_25
FmQN ( = ~ 1— n2: 55 ™ -
£l ;1—c1n+1—c2n ;( Ctn) ;“2 1—23 %

m 1—C2)2 m m 1
Gmll? ~ ( " ~ 1 — o) = 1——)Y2~m— 0.
(Gl ~ 3 o e ~ el = D= )

Therefore,
A(Gm, F) — 00 since  [|Gpll?/||Eml* ~ (1 = 28)m* — occ.

In addition we get for f/ = (/1 —c1,)"; and g, = (/1 — c1n(1 — 1)),

1l llgnal® = D (1= €1)/ D (1 = e1a)(1 = €20)* = (1 = ¢3) 7 = 1.

n=1 n=1

For all t € R we have [|g/, — tf/ > = .7 (1 — cin)(1 — cop — 1)? — o0

n=1

Indeed, for t = 1 we get ||g/, — f217 = D7, (1 — c1n)c3, — oo hence,

n=1

g, — tfL]|> = oo for all t € R. Therefore, A(f/,g.,) — oo by Lemma 6.10
and we are in the case (401).

Lemma 6.19. We have
z121 € ([Ton, 15 — T12Ta,) T2, 1 | 0 > 3) (6.69)
if and only if ©13) = > 01 (1) s, (0) = oco.
PROOF. Recall (see (6.4)), that
an = V1u(0)/arn(1) by = /24(0) /s (1).
We show that
(Toy, X1y, — T12%2y) = 2212 ((8 “gl) ®(no)—(28)® (8 b}_ﬁl)) ,  (6.70)
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therefore,
-1
[Ton, Z1n — T12%9n) Ton = 2212 (o, §) @ (8 b ). (6.71)

Indeed, since

mn=(89), Tu=(2%'), Taw=(2%").
we get

-1 —1

[Tcnnu xln] = <—(¢1n aB ) ) [Ta2n7x2n] = <7%n bT(L) > .
Using the (2.8) and (5.5) we get

Ton = Ton(1) @ Ton(2) = (219(Tay,, — 1) + 1) @ Ty,
that implies (6.70). Indeed, we have

[Ton, 210 — 212220) = [(212(Tar,, — 1) + 1) @ Toy,, X1 — T12220] =

Z12 ([Talna xln]Tagn - Taln [Toczna x2n]> =

e (05 ) @ (2%) - (29)) @ (5.%))

0 0 0 aptbyt 0 0 0 aplv;t
T1 0 0 _ antbn, 0 _ 0 0 —antby, 0 _
0 —anby 0 0 0 anby 0 0
—anbn 0 0 0 —anbn O 0 0

0 0 0 0
0 an bn 0

2 0 n On
T2 o et 0 o0
0

0 0 0

Now we show that Y " ¢, (4

Zn Oéln(].)OéQn(O) = OQ.
Indeed, set

N® (8b,(:)1) — I if and only if

We get

(D = = 1) UE = 11 bl = MEDI? = D 216 = M&|12 > 0
n=3 n=3 n=3
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under the condition Y " ,t,M¢, = 1 if and only if ) % ~ 2% = .
Indeed, we have

b2 cln02n/16 a1 (0)ain(1)azn(0)aon(l) — (2)
Z Qn Z Olln NZ :El -

— O@n ClnCQn/16 - aln(O)QZn(l)

where

by =My, ay = |16, — ME|? = ||l — |MEL?,
b= M& = ((2H11) (%) 1.1) = cunean/4,

l€all® = 11 (a2 §) LI (%) 1P = a1n(0)aza(1).

The condition 2522) =, @1p(1)ag,(0) =00 follows from two facts:
(a) lim, as,(0)=1 since lim,, ¢o, = 0 and
(b) limy, a1, (1) = 1/2 since limy ¢, = 1 (see (6.68)), that follows from

g ~ Z(l —c1n)’cs, < oo and SH ~ Z(l —c1p)c5, =00, (6.72)

n

The first equivalence follows from lim,,[(1 —c1,,)c3, +1—ca,] = 1. Indeed, the
condition 1 — ¢, > & > 0 contradicts (6.72) therefore, for some subsequence
(ng)r we have limg ¢y, = 1 hence, 2522) ~ Y aga(l) > D0, oy, (1) = 0.

In the case 41, when || f'—tg'||*> < oo, by Lemma 6.12, we can approximate
the following expression:

T1p — (1 — 8)T19Tok — ST1Tok.

We have two cases: (410), when s # 1 and (411), when s = 1. The case
(410) splits into two cases (4100), when >, a3,(1) = co and (4101), when
> 03 (1) < o0

In the case 4100 we can approximate x5 and the proof is finished.

In the case 4101 the condition Y, a3,(1) < oo implies that lim, ¢, =0
and we are reduced to the case (401).

In the case 411, when s = 1, we get 21, — 21,72, € A% and we can consider
the expression (x1;xor — T19Tok ) T1n (I + Ton), see (6.63). The case (411) splits
into two cases: (4110), corresponding to the cases ¢t # 1 and ¢t = 1 in (6.61),
when > (1 — ¢1,,)c3, = oo and (4111), when > (1 — ¢1,)c3, < oo hence,
>, (1 —ci)a3,(1) = oo (see cases (3110), (3111) and (6.62)).
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In the case 4110 we can approximate Ti,Tor — T12%2;, by Lemma 6.16.
Since 1 — T1xTor € A? we get x1; — r1279, € A? hence, we can approximate
T12, by Lemma 6.17, when Y, a3,(1) = co. This finish the proof.

When Y, a2,(1) < co we conclude that lim, ¢z, = 0 and we are in the
case (401).

In the case 4111, as in the case (3111), we can use the expression 1, —
21222k (221, — 1) (see (6.66)). By Lemma 6.18 we can approximate x5 since in
this case > (1 —c1,)a3,(1) = oo (see Remark 6.8)). Since x1a, 2, € A%, by
Remark 6.4 (c), we conclude that zy;, € 2. Finally, we have z1y, Tor11 € A2
for all £ > 2.

Case 411. Let for some t € R\{0} holds |G—tF||*> < co and I'(G,,) /T (F}y,)
< C'. This means that

(1 =) —t(1—c) 2 71— e,)%/d,
G —tF|? = | ( 2 : 7%73 <C
I | nz_; d S (1= e1n)2/d,

where d, =1—cy, +1—co, +1—cC1p00p. Set x, =1 — 1, Yo = 1 — 9y, and
di(z,y) =22+ 2y —xy, do(z,y)=x+y, xy€l0,1]
Lemma 6.20. We have for x,y € [0, 1]
da(z,y) < di(z,y) < 2dz(z, y). (6.73)

PROOF. Indeed, since 2 +y —zy=1— (1 —z)(1 —y) € [0, 1] we get (6.73)
x4y <2x+42y—zy <2x+y). O

Using the relations
dn - 1_Cln+1_c2n+1_cln02n - dl(xna yn)7 1_c2n+1_cln62n - d?(xna yn)

and Lemma 6.20 we conclude that the following equivalences hold:

2

22 (1 —y,)? x
S D S [ L) g (6.74)

n(l - yn)2 + UYn n Tn + yn7
[EERS N TER TEIN ol (il (6.75)
— Ty + Y — Tnt Yo '

We have to consider only the following three possibilities:
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(a) the case when 1 > x,, > ¢ > 0 for all n € N, the set of all limit points
is [e, 1];

(b) the case when lim, z, = 0, the set of limit points is one point 0;

(c) the intermediate case, when the set of all limit points is the segment
[0, 1], in this case we have Ny and N; two infinite subsets of N such that

r,>C>0 VneNy and hII{]lIn:O.
nelNp

Consider the expression Ty, — I = 1371 + TorTon + T1kTokTinTon-

Lemma 6.21. We can approzimate by linear combinations - s t, (T —1)
the following expressions:

Tik + B§2)$2k — %3)9011#%, or 5él)$1k; + Top — 5§S)I1k9€2k (6.76)
where
m  l—cop, m  (1—cip)(1—can)
B —lim ST g0 g e © (g
m ZTL 3 1+cin m Zn:3 1+cin
mol—ciy m(I=cin)(1=czn)
440  fi 22270 St Y =lim e . (6.78)
m Zn =3 1+con m Zn=3 1+con

PROOF. Indeed, to obtain the first expression or the second one in (6.76) we
use the fact that " . t,7,, — [ or > " st,70, — I (see Remark 4.1 and
Lemma 4.1) where t,, are defined respectively by the following formulas (see
(6.59)):

1 21— e\ L 1 21— g\ L
fo— (Z Cl) R (Z 02) .
1+Cln n:31+cln 1+C2n n:31+02n

Further, we should proceed exactly as in the proof of Lemma 6.12. O

Example 6.2. Let z, = C € (0, 1) for all n € N, then ;5 < oo if and only
if > (1—yn)* =3, ¢, < oo. Indeed, we have

cosmy=y o) amom)? Zl‘y" ~ S (1
- xn(l_yn)2+yn - Tp + Yn C"’yn - ne
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We show that ||F||*> = ||G||* = oo and |G — tF||* < oo for some t # 0.
Indeed, we have

2

RN DI SN DRacne i €IV DI TN Brecme s
—~ Tnty, —~C+1 ’ —~ Tyt Yy C+1 ’

—t — tC|?
|G — tF|[? ~ Z' ol Z'y” o for t0=1.

Ty, + Yn C+1

Since 1 — y,, = 2, we conclude that > c2 < oo therefore, lim,, ¢y, = 0 and
finally, we conclude by Lemma 6.21 (see (6.77)) Toeplitz theorem 6.22 and

Lemma 6.23 that ﬁf) = % > 1 and 69 =1. Set §:= % > 1 then we get
L1 + Brog — T1pTor = T1k(1 — Tog) + Baay, € A

A regular matriz summability method is a matrix transformation of a conver-
gent sequence which preserves the limit.

Theorem 6.22 (Otto Toeplitz [25]). An infinite matriz (a; ;)i jen with com-
plez-valued entries defines a reqular summability method, i.e.,

lim ¢, = lim s,, where t, := Zaknsn (6.79)

n—o0 n—o0

if and only if it satisfies all of the following properties:

(I) lim; ,a; ;=0 j €N (every column sequence converges to 0),
(II)  limje ) gai; =1  (the row sums converge to 1),
(LI1)  sup; 3 2 laijl < oo (the absolute row sums are bounded).

Lemma 6.23 (A particular case of the Toeplitz theorem). Let us have
three sequences of real numbers (a,), (by) and (o) with (ay) >0, > 0 =
oo, S b | (S ar) !t < C,om €N, for some C > 0 and lim, oy, =
a#0. Set

B = ibk(iak)_l, Bla] = iakbk<iak>_l, (6.80)
Bmla) = ibk(i Oékak) _1, Bm(a) = iakbk<iakak> _1.



If the limit exists lim,, B,, = B € R, then the following limits also exist and
we have

liranﬁm(a] = af, liglnﬁm[a) =a718, linrlnﬁm(a) = f. (6.81)

To prove that [ —zq; € A* we calculate [Ty, x1]. The operators x1y, and T,,,,
have the following form in Hyy, = L*(F, ey, ) (see (3.9), (2.12) and (6.4)):

v = (09), Ty = (a‘i 0) where a, = \/ar(0)/ams(L).
We show that
[Thg, v1k)? = =1, [T, v16(I — 221)]> = — (I — 29). (6.82)

Indeed, we get

[Tk, w1x) = Thgway, — 2Ty = (_?zn “gl> -
This implies (6.82) since [Thy, z1x]*> = (3 ), and 23, = @
Finally, we get xo; € A2 therefore, x1, — 21,29, € A% and we can use the
following expression (see (6.66))

(T —I—xo,(Ton—1)—(x1—21822%) (T1n—1)Ton = [T16%ok—T12T2% (2015 —1) | T1p-

Since Y (1 — ¢1,)c3, <>, 3, <oo we conclude by Remark 6.8 that
. (1—c1p)a3,(1) = co. By Lemma 6.18 we get 1o € A2, Since 12, o, €
202, by Remark 6.4 (c), we conclude that z1, € 2A*. Finally, we have
T, Topp1 € A% for all & > 2 and the proof of the irreducibility of the
example is finished.

Consider now the general case (a). Since 0 < e < x, =1—¢;, < 1 for all
n € N we conclude that for some subsequence we get limy (1 — ¢y, ) = C) €
e, 1]. As in Example 6.2 we conclude that 315 ~ > (1 —y,,)? < co. We can
repeat then step by step the proof of the irreducibility as it was done in the
Example 6.2.

The case (c) is similar to the case (a). In this case we conclude that

00>Tip=y - mal =) 5w =) ey (o)’ 5y g2

_ 2
neNo (1 yn) + Yn




Therefore, 3y, (1 — Yn)? < 00. Set NI' = Ny ()[1, m] and define B{gz) and

553) as follows:

D 1—con $ (1—cin)(1—can)
(2) lim nENO 1+cin 5(3) — lim neNg 1+cin (6 83)
T e TR Ty e G
TLENO 14+cin TLGNB” 1+cin

Since lim,, e, c2, = 0 we conclude that

B = (lmz,)"' =C' e[, 07 and Y =1
nelNg
We repeat step by step the proof done in the Example 6.2 to the case (a).
We show that the case (b) can not be realized. Indeed, let lim,, z,, = 0.
Since for some t € R\ {0} holds

n tn
|G — tF||? ~ Z'y P s
T+ Y

n_t n 2 1 1 . . 1 .
0= liyrln% Elern | Yo —tx, |*= §(ll7rlnyn—th£nxn)2 = 5(117£nyn)2.

Therefore, lim,, y, = 0. This contradicts with two conditions:

2

S < oo and ||F\|2~Zx:f:y = 0.

Indeed, fix some € > 0. For sufficiently big N € N we get

2]-_712 2
oo>212>ZM2(1—5)2Z T |2 =

S Tn Tt Yn

We give another proof of the irreducibility in the case 1.

The case X192 = 00, in fact, is included in the cases (2), (3) and (4), we
shall denote them respectively by (2*), (3%) and (4*). Since Y15 = oo we
have 215 € 2.

Case (2*). Let I'(G) < 0o. Then I'(H;) < oo therefore, 3, — oo hence,
x1, € A% for k > 3. In addition 21, € A2, Since x1y, T, € A? we conclude,
by Remark 6.4(b), that xo, € A2, k > 3. Finally, 215, Top1 € A% for k > 2.

Case (3*). Let I'(F) < co. Then I'(Hz) < oo therefore, ¥, — oo hence,
To € A% for k > 3. As in the case (30) (a), (b) or (c) we get x1), — T12To €
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A2, Since w19, Top, € A% for k > 3 we conclude that 1y, wop 1 € A* for
k > 2. The proof is finished.

In the opposite case, i.e., (@) N (b) N (¢), by Lemma 6.12, we can approx-
imate the following expression: x1; — (1 — 8)z12@9r — ST1,Ter. In the case
s # 1 since T3, Top, € A* we conclude that vy — sT1w2, = T1x(1 —sT01) € A
hence, Ty, € A? (see the case (310)). The proof is finished.

If s =1 we get x1; — x1px2; € A% Since x5 € A? we conclude that

T, € A? for k > 3, by Remark 6.4 (a) therefore, (see (6.82))

Qg
[To,s 1k — T10Tok)” = (=214 Ty, T21))* = —T 14 (6.84)

At last, we have x5, Top1 € A% for k > 2 and the proof is finished.

Case (4*). Let Xjy = I'(F) = I'(G) = oo, then z15 € A? and T,,, € A
for n > 3. Using Lemma 6.21, we can approximate by linear combinations
Yo atn(Tin — I) the following expressions:

Tk + 5%2%21@ - 5%3)%1&21@, or Bél)hk + o — ﬁ§3)$1kx2k

since one of two sequence

i(l—cln)<§:(1—@n)>l or il—czn (i 1—C1n>

should be bounded.
Because of the symmetry between the first and the second rows, i.e.,
between variables (x1x), and (29 ), it is sufficient to consider the case when

T1k —{—Bf)x% — B§3)x1k332k € A? where 0 < ﬁig) < B%Q) < 00. By (6.82) we get

[Ty 21 (1 = B 201) + B 202 = —(1 = B 2),

therefore, x9;, € A? for k > 3 when ﬁf’) > 0. By Remark 6.4 (c), we get that
x1, € 2A? for k > 3 and the proof is finished.
Let 5?) > ﬁf’) = 0, then xy; + B%Q)x% € 2A%. We prove the following

Lemma 6.24. The von Neumann algebra C,, generated by operatorsT,,,, Ta,,
and x1, + Bxa, is irreducible in the space H, = L*(Fa, o, ) @ L*(Fa, fla,, )

for 5 € (0, 1].
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ProoFr. Using (6.5), (5.4), (2.12) and Remark 2.3 we get

0 0 apt O bl 0 0 02

_ -1 [ 0 0 o0 (o
Loy, = a(i 8 8 R To,,= 0 0 0 ot | o xln‘f‘ﬁxzn—(oo
0an 0 0 0 0 by O 00

where a,,, b, are defined by (6.4). Indeed, we have

0 0
-1
T ®1= (2% ) @(39) = < :

b

00 (10

01 1

000 09 0 0
0io ] T8 0o 10 |-

001 00 0 148

In the case 8 € (0, 1) the commutant (x1, + fx2,) consists of all diagonal
operators D(\) = diag(A1, . .., Ay) since eigenvalues of 1,455, are distinct.
The commutation relation [D,T,, ® I| =0 implies A\; = A3, A2 = \y. The
commutation relation [D,I ® Ty, ,I ® T,, ] = 0 implies A\; = Ao, A3 = A4
Finally, we get D(A) = Al. In the case § = 1 the commutant (xy,+ Bxa,)’
consists of all operators of the form

[elelele)]

The commutation relation [D, T,,, ®I] = 0 impliesb =c =0, A\; = A3, Ay =
As. The commutation relation [D,I ® T,, ,I ® Ty, ] = 0 implies A\, =
A2, A3 = A\4. Hence, in this case we get D = AI. O

The irreducibility of the representation in the case %2) > B%g) = 0 follows
from the fact that von Neumann algebra 2 = (T2, 12)" ®5° ;C,, is irreducible
since the commutant 2’ is trivial by Lemma 6.24. Indeed, we have 2 =
(Th2, w12)’ @p2g C1.

When 652) = Bfg) = 0 we get z1, € A%, By Remark 6.4 (b), we conclude
that g, € A2 for k > 3 and the proof is finished.
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