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Abstract

The pairs of Hamiltonians operators for (1 1) integrable systems
are constructed in explicit form. Only one assumption of invariance
of equations of such systems with respect to discrete transformation

was used.

1 Introduction

Roughly speaking, the most characteristic properties of (1 + 1) completely
integrable systems can be described as follows. Every such system has infinite
number of involutive conservation laws, which can be written as

oIy oIy
o+ 5 =0 (1.1)
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Each time component I§ can be considered as a Hamiltonian density, gener-
ating with the help of the corresponding Poisson brackets a completely inte-
grable equation. The totality of these equations form a so-called hierarchy of
integrable equations. To find the explicit form of a hierarchy it is necessary
to know all conserved quantities I. There are two main methods to find
conserved quantities. One of them based on the inverse scattering method,
consists of concerning a recurrence relation allowing to get consequently all
conserved quantities, starting from a few initial ones. The other method
uses the fact that any completely integrable equation, can be written using
different Poisson brackets and different Hamiltonians. The different Poisson
brackets are constructed with the help of the corresponding Hamiltonian op-
erators. Knowing two Hamiltonian operators, forming a Hamiltonian pair
[1],[2] we can find all conserved quantities, starting again from a few initial
ones.

These facts were known for a long time. However, there were no simple
constructive methods for finding integrals and Hamiltonian pairs. The prob-
lem of finding of Hamiltonian operators changed radically after discovering
the fact that all the most important properties of completely integrable sys-
tems, including their explicit solutions, are the direct consequence of their
discrete symmetry. It became clear that the requirement of the invariance of
a Hamiltonian operator with respect to the discrete symmetry is a powerful
method of constructing the corresponding hierarchy of Hamiltonian struc-
tures.

In papers [4] the invariance condition was used to formulate a constructive
procedure to find coeflicients of the expansion of a Hamiltonian operator over
powers of the total space derivative operator D. The starting point of the
calculations was there the fixation of the maximal positive degree of the
operator D. The proposed method allowed, in principle, to find successfully
all the required coefficients. It was essential to know the behaviour of the
conserved quantities under the discrete transformation.

The goal of present paper as a consequence of analyze of the results
of [4], to understand the general structure of Hamiltonian operators, their
connection with conserved quantities and obtain explicit expressions for them
in the case of (1 + 1) integrable systems.



2 Discrete transformation of integrable sys-
tems

All integrable systems under consideration are invariant with respect to dis-
crete local invertible transformation describing by the substitution

i = ¢lu, ', v, ..., ulD) = d(u) (2.1)

where u is s-dimensional vector function, u’,u”,.. its derivatives of the corre-
sponding order with respect to "space” coordinates.

The property of invertibility means that equality (2.1) can be resolved
and ”old” function u may be written locally in terms of new functions % and
its derivatives.

Frechet derivative ¢'(u) corresponding to substitution (2.1) is the s x s
matrix operator defined as

¢'(u) = u + ¢uwD + ¢ D* + .. (2.2)

where D™ is operator of m-time differentiation with respect to corresponding
u™' space coordinates. The reader can find more detail information about
this object in [1].

Let us consider the equation

Fo(¢(u) = ¢'(w) Fu(u) (2.3)

which in some other different notations was considered firstly in [3]. where
F,(u) is unknown s-component vector function, each component of which
depends on u and its derivatives up to n-order.

The equation (2.3) possesses one obvious trivial solution Fy,(u) = o' for
each substitution. In order to prove this it is sufficient to differentiate the
equation (2.1) once with respect to some of its space coordinate.

If the equation (2.2) possesses some other solution (for a given ¢(u))
except of the trivial one, then we will call such substitution as the integrable
substitution or mapping.

We emphasize once more that equation (2.2) contain two unknown func-
tions ¢(u) and F,(u) and only for narrow class of integrable substitutions it
possesses nontrivial solutions for Fy,(u) function.



It is possible to connect the equation (system) of evolution type with each
nontrivial solution of (2.2)
u = Fy(u) (2.4)

which is obviously invariant with respect to substitution v — ¢(u). (It is
easy to see that equation u, = v’ is indeed invariant with respect to arbitrary
substitution.)

Let us now compare the equation (2.3) with definition of linear represen-
tation T'(g) of some group (for definiteness Lee group)

®(gz) = T(9)®(x) (2.5)

where g is the group element,T'(g) is the group operator for some represen-
tation, ®(z) the basis of the corresponding representation space.
The obvious correspondence takes place after comparison (2.5) with (2.2)

O(z) = Fu(u), T(g) — ¢'(v)

If this correspondence has a deep group theoretical foundation then it is
possible to anticipate that the different solutions of the equation (2.2) are
connected by some linear transformation

F(u) = H"" Fy (u) (2.6)

Indeed all solutions ( with different n) of the equation (2.2) ( from this point
of view) are the basis vectors of some group representation with the group
operator ¢'(u) and in the case of its irreducibility all possible basics of this
representation are connected by linear transformation.

The exactly same situation takes place in the theory of (14 1) integrable
systems. Operators H™" in this theory are known as Hamiltonian operators
of different degree. We will show below how to construct these operators
using only discrete symmetry requirement.

3 General structure of Hamiltonian opera-
tors

The solutions of following two equations will be important for further con-
sideration

¢ () H(u)¢'(u)™ = H($(w)), ¢'(w)J(w)d' ()" = J($(u)) (3.1)
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where ¢'(u)T = ¢L — D¢L, + D?¢T, — ..., and H(u), J(u) are unknown s x s
matrix operators, the matrix elements of which are polynomial of some finite
order with respect to operator of differentiation D (of its positive and negative
degrees).

From (3.1) and (2.2} it follows immediately that if F},(u) is some solution
of main equation (2.2) then H?(u)F,(u) ( p is arbitrary natural number) will
be some other solution of the same equation.

The solution of the second equation (3.1) under additional condition of
its skew symmetry may be connected (interpreted ) as a Poisson structure
which is invariant with respect to transformation of discrete symmetry. Skew
symmetrical operators J(u) are known as Hamiltonian ones. Two different
solutions of the second equation (3.1) ( if it is possible to find them), for in-
stance Ji(u) and Jo(u) in combination J,.J;™" satisfy the first equation (3.1).
Operator JyJ; ' J;(u) is again the solution of the second equation (3.1) and
so on. This is the way how in the theory of integrable systems usually Hamil-
tonian operators arise. It is necessary from independent assumption to find
two different Poisson structures and after this fulfil describing above opera-
tion. In the problem of construction of Hamiltonian operators for integrable
systems the equations (3.1) was firstly used in [4].

According to [4] it is possible to expect that ( some partial) solutions of
equations (3.1) may be represented in the form

Ju) = a. D7+ > A D
a,d 1

where aq,bg are some s-dimensional column (line) vectors, A; are some s X s
matrixes the components and matrixes elements of which are the functions
of u and its derivatives. A more detail information about the properties of
integro-differential operators of such kind reader can find in [6].

In order to understand this structure let us consider the action of ¢'(u)
operator on solution of main equation (2.2) F,(u). We obtain

¢ (W) Fn(u) = (¢'(w)Fa(u)) + e1D + e2D* + .. = Fa($(w)) + 1D + e D* + .

From this consideration it follows immediately that if the operator J(u)
choosen in the form

J(w) =3 Fu(u)D7 ' Fu(uw) + > Ai(u) D

n,n’ i



then for operator ¢'(u)J (u)gb’(u)T we obtain

¢ (w)J ()¢ ()" = ¥ Fald(w) D™ Fu ($(w)) + 3 Aiw)D

n,n!

and the second equation (3.1) is equivalent to equality A;(u) = Ay (¢(w)).

The above notice allows to obtain comparatively simple explicit expres-
sions for operators Jp, J; for construction of which as a rule it is necessary
to use except of trivial solutions u’ of (2.2) some other simplest one u for
example.

In the next section we shall represent the list of integrable substitutions
with corresponding expressions for Frechet derivatives, explicit form of oper-
ators Jy, J; which as was explained before is sufficient to construct the whole
hierarchy of equations which are all invariant with respect to transformation
of given discrete symmetry. In other words it is possible to say that from the
point of view of theory of integrable substitution this is the recurrent method
for construction new solutions of equation 2.2) from some initial one.

4 The list of discrete substitutions and Hamil-
tonian operators corresponding to them

Here we give a list of integrable substitutions [5] together with the cor-
responding Hamiltonian operators Jy, J;. It is possible to reconstruct the
whole hierarchy of equations with the same discrete symmetry with the help
of them. We represent also the explicit form of Frechet operator by help
of which all results can be checked without any difficulties. All examples
below are connected with two component vector function u where for first
component we conserve notation u and the second one will be denoted by v.
The simplest system of hierarchy will be represented in the beginning of the
corresponding subsection.

It is very interesting that all known examples of integrable substitutions
in the case of rational spectral parameter (in terminology of inverse scattering
method) are connected with equations of Toda chains (infinite) or some its
generalizations. Is it possible to obtain this result and how from condition
of resolving of equation (2.2)7



4.1 Nonlinear Schrodinger substitutions.
4.1.1 Nonlinear Schrdédinger hierarchy without the derivative
t+u’ - 2u(uww) =0 —0+v" - 2u(uw)=0

The direct and inverse substitution in this case have the form

= %, 7 = vjvu — (Inv)"]
(4.1)

1 ooy i

V= uw = 4[a0 — (Ina)"]

If it rewrite substitution (4.1) we will obtain the infinite chain of equations
for unknown function z,, = Inwv,

:IJ:: = exp(mn - xn—l) - ex[)(xrﬂ-l - a;n)

This is exact infinite Toda chain in its original form.
Frechet matrix of substitution is the following

’ _ 0 _v%
Plu) = (v2 2(uv) — L’—’v-')z-i- -ZDL'D-D2)

Keeping in mind the results of the last section one can convinced by direct
calculations that the following two operators Jy, J;

0 1 2uD D - 2uD
Jo(u,v) = (_1 0) Ji(y,v) = (D_ D 'u 20D~y )

satisfy the second equation (3.1).

Fy = (u,—v) is the simplest nontrivial solution of equation (2.2 ). All
other equations of this hierarchy may be obtained by multi-time application
of operator H = J1J;! to this solution.

4.1.2 Modified nonlinear Schrodinger hierarchy
t+u” + 20 (uww) =0 —9v4+v" — 20 (uv) =0



The direct and inverse substitution in this case have the form

1 v’
U = — U= — (In =Y
= 7= vlvu (nv)]
(4.2)
1 @
=z — @[5 + (In =)'
v= s, u u[uv—‘r(nﬂ)]

Having written substitution (4.2) as a result of multi-time application of
discrete transformation to a some initial solution we obtain the infinite chain
of equations for unknown function z, = Inwv,

) = ;,(exp(Tn — Tn1) — eXP(Tny1 — Tn))

The reader can find in [5] the explicit solution of this chain under appropriate
boundary conditions.
Frechet matrix of substitution is the following

0 -1
U) = " "
¢'(u) (v2 2(uv)—‘1’7+(1+"v—2”D—§D2)
Keeping in mind the results of the last section one can convinced by direct
calculations that the following two operators Jy, J;

o= ()

uD™ ' + ' D7y D—uwv+uD™ —u'D
Ji(u,v) = _ —1,, 1 =1 _op=l.s =1
D+w—vD ' +9 D7 vD ™ —v'D7
satisfy the second equation (3.1).
Fy = (u,—v) is the simplest nontrivial solution of equation (2.2 ). All
other equations of this hierarchy or, and this is the same, other solutions

of equation (3.1) may be obtained by multi-time application of operator
H = J,J;! to this solution.



4.1.3 Nonlinear Schrddinger hierarchy with derivative

w+u" = 2u(u)) =0 -0+ +2(v(uv)) =0

The direct and inverse substitution in this case have the form

(4.3)
—_— —_— 1 !
v =1u, u=v-+ (5)
Having written substitution (4.3) as a result of multi-time application of
discrete transformation to a some initial solution we obtain the infinite chain
of equations for unknown function z, = v,

T, = Ta(Tnt1 — Tomt)
The reader can find in [5] the explicit solution of this chain Under appropriate
boundary conditions.

Frechet matrix of substitution under consideration is the following

vy {0 1
"5(“)‘(1 —25;4_”-‘,9)

Keeping in mind the results of the last section one can convince by direct
calculations that the following two operators Jy, J;
0 D
']1 (U,'U) - (D 0 )
70 = ( —2uD"'u  2uD"'v+ 1)
T \2vD -1 —2uD
satisfy the second equation (3.1).

Fy = (u,—v) is the simplest nontrivial solution of equation (2.2 ). All
other equations of this hierarchy or, and this is the same, other solutions
of equation (3.1) may be obtained by multi-time application of operator
H = J1J;! to this solution.

We represent also the expression for .J2 Hamiltonian operator in illustra-
tive purposes

J? = ( —2u?D — 2u'u + 2u' D~/ D? — 2uuvD — 2u'v + 2u'D“v’>
T \=D? - 2uvD - 2v'u+ 2D~ =2v:D — 2uv' + 20D~



4.1.4 Nonlinear Schrodinger hierarch with derivative and nonlin-
earity of the third degree

The system of Ablovitz-Kaup
—i 4’ — 20t +uw?) =0 v+ "+ 205 ) =0=0
and Lund-Pohlmeyer-Regge equations
o —du — 20(uv) =0 ¥ —4v+ 20(uv) =0
possesses the same discrete transformation and so belong to the single hier-
archy.
The direct and inverse discrete substitution in this case are the following
. 1 . v+ uv?)?
= ————s, ¥=—(+u?)+ WA w)
v+ uy? v
(4.4)
1 ~f ~f NI ({‘;"r — 6(ﬂ)2)2
V= ———g, u=-—Uu -vu ‘+—
e (@ - (1)) .
The discrete transformation in the form of infinite chain in this case coincides
with infinite Lotky-Volterra system

Nj = Ni(Nj1 — Nj1)

1

/ 2
= vy - _(”2i—1+“2"—1"2i—1)
where Nyp; = el Ny = i

It is not difficult to check that after introduction of the new unknown
pair of functions ¢ = u,r = v’ + uv? or ¢ = v’ — vu®,7 = v in both cases ¢,
satisfy the usual nonlinear Schrédinger equation from the first subsection.
This fact allows to construct the corresponding Hamiltonian operators using
the results of first subsection.

For inverse Frechet operator we obtain immediately

g (@ ~E-DY( 1 o
(¢') 1:( (O) v? )(D—Z'&f) _(ﬂ)2)

And after this we obtain for Hamiltonian operators

_ 0 (D - Qu'u) 1
Jo1= ( (D + 2uv)™! ) (4.5)
—2uD" 'y 41+ ZuD ~ly
Jo = ( —1+2vD 'y —2uD7! ) (4.6)
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4.2 XYZ-hierarchy in classical region.

The system of equations describing the Heisenberg unhomogeneous ferromag-
netic in classical region, the equation of Landau-Lifshitz (L-L), is the single
known ( at least to authors ) example of integrable systems with elliptic
spectral parameter. We will pay some more attention to this case.

In vector notations L-L system has the form

F—

(S) =8 x 8"+ 5 x(JS)

§=(5,5,8), (5)2=1, J=diag(J,Jz,Js)
Under the steriographic projection
u=Sl+ng UZSI—ng
1+ S3 1+ S3
and exchanging —it — t it became a system of equations:
n2
—u=u" - 2v% %%R(u) =u? =0
(4.7)
(W2 +Rw) 18

-2 = (2)
1+ uv +26vR(U)_U 0

where R(z) = az! +v22 + a %8 = doz® + 29z = 2}“'—“(?;11 a =
f=di oy = Dk 3 The system (4.7) is invariant under transformation

u—Uv—>V:

=" —2u

1 1 1 v — (') + (vt — 1)
YU = - — — =
v l+92 l+4+wuv (v')?2 + R(v)

(4.8)

which is the discrete substitution for this system. The inverse substitution
to (4.7) is the following
1 1 1 aw" - (@) + a(@! — 1)

YS3 0 1tou 1+an (@)? + R(a)

(4.9)

In the form of infinite chain substitution (4.8) may be rewritten in two equiv-
alent forms

1 1 vl = () +avi —1)
142l ]y B (v1)? + R(v,)
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or
1 1 _ vy, 4+ Ry, (Un)

+ =
Un41 +VUn  VUnp+ Un—g ('U:;)z + R(UH)

Reader can find the corresponding solution in [7],[8].

4.2.1 Nondegenerate case

In the case of arbitrary a,~ the main equation (2.3) does not possesses the
solution Fy the components of which have dependence only upon on u, v but
not of their derivatives, as solution Fy = (u, —v)} of the previous subsections.
Due to this reason the second equation (3.1) in the case of XY Z hierarchy
possesses the solutions J, only of the even order but in the degenerated cases
solution of this kind takes place. And as corollary in the degenerate cases
there take place the Hamiltonian operators of odd and even degree.
We have

of 0 1
Jo = (1 4+ uv)? (_1 0)

The matrix elements of Hamiltonians operators in what follows will be suf-
ficiently complicated to write them in the single matrix form. So we will

I ( a‘S LS)
_bs d&

and represent the explicit expressions for a,, b, d; in all other cases.
So we obtain
ag = 20Dy + 20 D™ 1l?)

where notations u®,v® are introduced in (4.7) and explicit form of which
is the following

20(v')? + 2av + yvu? — yu — 200®

u(2) = —
1+uv
(2) " 2u(v')? + 2cu + yuv? - yv — 2003
v = —y
14 uv

Next

by = (14+uv)2D?+4uv' (14uv) D+(p'+p* +2H) (1 +uv) 2 4+2u?@ D~y +2u' D19
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where p = fj:z; the impulse and H = 2(wr+((tl(iit)v:)""’“”) hamiltonian of L-L

equation. And at last

dy = 209 D71y + 2’ D™ 1p(?)

In vector notations the explicit expression for J, Hamiltonian operator
was obtained firstly in [9].

4.2.2 Degenerate cases

In the partial cases @ = 0,y = X2c the symmetry of L-L equation is changed
by the jump ( it became more wide}). The main equation (2.3) possesses
solutions which do not depend on derivatives on u,v and as a consequence
it is possible to find solution of the equation (3.1} also for odd n.
In the case v = 2« for components of J; Hamiltonian operator we obtain
ay = 2u' D7 + 20(u* + 1)D7 (W + 1)
by = (1 4 ww)?D + 2uv'(1 4+ wv) + 2u' D' + 2a(u® + 1) D71 (1 + v?)
dy = 20D~ + 2c(v? + 1) D7 (o? + 1)

Ii is not difficult to check that independent on derivatives solution of (2.3)
has the form Fy = (u? + 1,22 +1).
In the case v = -2 the corresponding values are the follows

a; = 2u' D7 + 2a(u?® — 1) D7 (u? = 1)
by = (1 +uv)2D + 2uv'(1 + wv) + 20/ D~ - 2a(u? - 1)DH(v? — 1)
dy = 20'D™ + 2a(v? — 1) D (v — 1)

Fy = ('.'..r.2 —1,—v*+1).
And at last in the case o« =0

a, = 2u'D7 ' + 2yuD " lu
by = (1 +uww)?D + 2uv'(1 + uv) + 2u'D™ - 2yuD 1y
dy=20'D"' + 2yvD
Fy = (u,—v).

In vector notations this result was obtained in paper (7.
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5 Matrix hierarchies

In order to complete our previous results,we are going to present here the gen-
eralization for the case of noncommutative unknown functions. We represent
our results in brief form for the hierarchies of Nonlinear matrix Schrodinger
equation and Nonlinear Schrodinger one with derivative. In spite of our
generalization for the structure of invariant Hamiltonian operators,we were
to use the primary scheme (3) in order to find the correct expressions in
noncommutative case. Though it is possible to guess such operators.

5.1 Nonlinear matrix Schrodinger hierarchy
U= —Upe + 2(uvu)  — 9 = —Vpe + 2(vuv)

We consider variables u and v as nonsingular square matrices of N? elements.
The generalization of the corresponding direct and inverse substitutions takes
the form

a=v"1 U= vuv — vgy + vov " g

(5.1)

v=70""  u=a00 - fgy + U0 iy

If we rewrite substitution (5.1) we will obtain the infinite matrix Toda
chain of equations for unknown function w,, = v

(Wpaw; e = wuwyty — waw]?
Frechet derivative have the following form
r ¥ ﬂ
v (’Y 8 )
o, [,0,7 are the matrix operators with the following components

aff =0 B =—( (o™ ¥ = vk
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(53 = (Sk,' (uv)ﬂ—!—(vu)k,ﬁj; — (Ux?)_l)k,'(v_lT)x)jz+[6k,' (’U_I’Um)jl+ (va_l)kg5j¢]Dz—5ki6ngi

Each of the indexes k,l,i,j runs from 1 to N.
The Hamiltonian operators for this hierarchy are the following

0 OT)
J —(~T 0

TH = 6k;0u k14,5 =1.N

1 a b
7=(Sr a)
kl

-1 -1 kL -1 -1
ay; = ’U.ij wy + uyD Ug; bij = (5;;j(5ﬂD — S D Usj — (5kju31D Vis
kl -1 -1
dij = 'Ukj.D Vit + ’UilD Vkj

k,Lij=1...N
One may easily convince by direct calculations that the operators J?J!
satisfy the second equation (3.1)

5.2 Nonlinear matrix Schrodinger hierarchy with deriva-
tive
U= —Ugy + 2(uvu); U= vpy + 2(vuv),

The generalization of the corresponding direct and inverse substitution
(4.3) is the following

=v D=u-+v lugu!

(5.2)

v=14 u=7—4 ‘i

If we rewrite the substitution (5.2) we obtain the infinite Toda chain of
equations for unknown function w, = v

15



Wne = 7Un(wn+l - ’wn—l)’wn

Frechet derivative takes the following form

I B
V= (”r 5)
af; =0 fj’ =8l YE = 6uidy
85 = —(0 k(v v = (v e (v )+ (0T Dki(v )3 Ds

Each of the indexes k,1,i,j runs from 1 to N
Hamiltonian operators J° and J! for this hierarchy arc the following

o _{ a b
r=(r 4)

ki -1 -1 ki -1 -1
a; = —uij uy — uglD Ukj bij = (5;;]'5“ + Syt D Usj + 5kju5,D Vig
ki -1 -1
dij = —'Uij Uiy — ’Ui[D Uiy
klij=1.N

1_OT)
J_(T o) P

TH =660 k4,5 =1.N

One may easily verify that the operators J® and J' satisfy the second
equation (3.1)
We see in both cases that the limit N = 1 gives us 2 in corresponding
operators.

6 Conclusion

The main result of the present paper consists of explicit formulae for Hamil-
tonian operators which allow to reconstruct all equations for most often used
hierarchies of integrable systems in physical applications. We have not in-
cluded in this list results concerning main chiral field problem. The reason of
that is the fact of nonlocality of corresponding substitution and some specific
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difference of this case in compare with the examples considered in this paper.
We hope to return to this problem in recent future.

Methods of construction of Hamitonian operators,which were used in this
paper, are typical for group representation theory. The equations (7) from
group theoretical point of view are the equations on some invariant kernels.
The main equation (2.2) (with given integrable substitution @(u) } is the
determination of some linear representation of the group of integrable map-
pimgs as was mentioned above. So independent investigation and construc-
tion of the representation theory of this object is equivalent to the theory of
integrable systems of the given hierarchy. That is the second and may be
more important conclusion which follows from the results of this paper.
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