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Abstract

The pairs of Hamiltonians operators for (1 + 1) integrable systems
are constructed in explicit fonu. Only Olle assulnption of invariance
of equations of such systems with respect to discrete transformation
was used.

1 Introduction

Roughly speaking, the most characteristic propertics of (1 + 1) cornpletely
intcgrable systems can be described as follows. Every such system has infinite
number of involutive conservation laws, which can be written as

8In 8P~
o 1 0-8 +-a = .t x

(1.1)
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Each time component I ö can be considercd as a Hamiltonian elensity, gener­
ating with the help of the corresponding Poisson brackcts a completely inte­
grable equation. Tbe totality of these equations fornl a sO-called hierarchy of
integrable equations. To find the explicit form of a hierarchy it is necessary
to know all conserved quantities I ö. There are two main Inethods to find
conserved quantities. One of them based on thc inverse scattering method,
consists of concerning a recurrence relation allowing to get consequently all
conserved quantities, starting from a few initial ones. The other method
uses the fact that any completely intcgrable equation, can be written using
different Poisson brackets and different Hamiltonians. Thc different Poisson
brackets are constructed with the help of the corresponding Hamiltonian op­
erators. Knowing two Hamiltonian operators, forming a Hamiltonian pair
[1 ]'[2] we can find all conserved quantities, starting again from a few initial
ones.

These facts were known for a lang tiIne. However, there were no simple
constructive methods for finding integrals anel Hamiltonian pairs. Thc prob­
lem of finding of Hamiltonian operators changed radically after discovering
the fact that ,all thc Inost important propcrties of conlplctcly integrable sys­
teins, including their explicit solutions, are the direct consequence of their
discrete symmetry. It became deal' that the requirement of the invariance of
a Hamiltonian operator with respect to the discrete sYlnmetry is a powerful
method of constructing the corresponding hierarchy of Hamiltonian struc­
tures.

In papers [4] the invariance condition was used to formlI1ate a constructive
procedure to find coefficients of the expansion of a Hamiltonian operator over
powers of the total space derivative operator D. Thc starting point of the
calculations was there the fixation of thc InaxiInal positive degree of the
operator D. The proposed method allowed, in principlc, to find successfully
all tbe required coefficients. It was essential to know tbe behaviour of the
conserved quantities under thc discrete transfonnation.

The goal of present paper as a consequencc of analyzc of the results
of [4], to understand the general structure of Hamiltonian operators, their
connection with conserved quantities and obtain explicit expressions for them
in the case of (1 + 1) integrable systems.
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2 Discrete transformation of integrable sys­
tems

All integrable systelns under eonsideration are invariant with respect to dis­
crete loeal invertible transformation deseribing by the substitution

- _ ..f...( '1/ (T)) =..f...( )U-'PU,U,U,""U -'PU (2.1)

where u is s-dimensional veetor functioI1 , U"U'l , .. its derivatives of the eorre­
sponding order with respect to "space" coordinates.

Thc property of invertibility means that equality (2.1) ean be resolved
and "old" funetion u may be written loeally in tenns of new functions ü and
its derivatives.

Frechet derivative <jJ'(u) corresponding to substitution (2.1) is thc s x s
matrix operator defined as

(2.2)

where Dm is operator of ln-time differentiation with respcct to corresponding
ul/··/ space coordinates. The reader can find Inore detail infonnation about
this object in [1].

Let us consider the equation

(2.3)

which in some othcr different notations was considered firstly in [3]. where
Fn(u) is unknown s-component vector function, each component of whicb
depends on u and its derivatives up to n-ordcr.

The equation (2.3) possesses one obvious trivial solution Fn(u) = u' for
eaeh substitution. In order to prove this it is sufficient to differentiate tbe
equation (2.1) onee witb respect to SOIne of its space coordinate.

If the equation (2.2) possesses SQInc other solution (for a given <jJ(u))
exeept of thc trivial one, then we will eall such substitution as the integrable
substitution or mapping.

We emphasize onee Inore that equation (2.2) contain two unknown fune­
tions <jJ(u) auel Fn(u) and only for nanow class of integrable substitutions it
possesses nontrivial solutions for Fn(u) function.
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It is possible to conneet the equation (system) of evolution type with each
nontrivial solution of (2.2)

Ut = Fn(u) (2.4)

whieh is 0 bviously invariant with respect to substitution 11, -> </J (u) . (It is
easy to see that equation Ut = U' is indeed invariant with respect to arbitrary
substitution. )

Let us now eornpare the equation (2.3) with definition of linear represen­
tation T(g) of some group (for clefiniteness Lee group)

(2.5)

where 9 is the group elernent,T(g) is the group operator for some represen­
tation, q,(x) the basis of the corresponding representation space.

Thc obvious correspondence takes place after cornparison (2.5) with (2.2)

<I>(x) -> Fn(u), T(g) -> </J'(u)

If this correspondence has a deep group thcoretical foundation then it is
possible to anticipatc that the different Sollltions of the cquation (2.2) are
connected by some linear transformation

(2.6)

Indeed all solutions ( with different n) of the equation (2.2) ( from this point
of view) are the basis vectors of some group representation with the group
operator </J'(u) and in the case of its irreducibility all possible hasics of this
representation are connected by linear transformation.

The exactly sarne situation takes place in the theory of (1 + 1) integrable
systems. Operators Hn,n' in this theory are known a.s Harniltonian operators
of different degree. vVe will show below how to constrllct these operators
using only discrete symmctry requirenlcnt.

3 General structure of Hamiltonian opera­
tors

The solutions of following two equations will be irnportant for further COll­

sideration

</J' (u )H (11, ) </J' (u)-1 = H (~ (u)), 1>' (u)J (7L ) 1>' (7L ) T = J (1>(u)) (3.1)
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where </J'(u)T = </J~ - D</J~ + D2</J~1I - ... , alld H(u), J(u) are unknown s x s
matrix operators, the matrix elements of which are polynolnial of some finite
order with respect to operator of differentiation 0 (of its positive and negative
degrees).

From (3.1) and (2.2) it follows immediately that if F71(u) is some solution
of main equation (2.2) then HP(u)F71(u) ( p is arbitrary natural number) will
be some other solution of the same equation.

The solution of the second equation (3.1) under additional condition of
its skew symmetry Inay be connected (interpreted ) as a Poisson structure
which is invariant with respect to transfonnatioll of discrcte symmetry. Skew
sylnmetrical operators J (u) are known as Haluiltonian ones. Two different
solutions of the second equation (3.1) ( if it is possible to find them), for in­
stance J1(u) and J2(u) in combination J1J:;1 satisfy the first equation (3.1).
Operator J1J:;1 J1(u) is again the solution of the second cquation (3.1) and
so on. This is the way how in the theory of integrable systelns usually Hamil­
tonian operators arise. It is necessary from independent assumption to find
two different Poisson structures and after this [ulfil describing above opera­
tion. In the problem of construction of Hamiltonian operators for integrable
systems the equations (3.1) was firstly used in (4].

According to [4] it is possible to expcct that ( sOlne partial) solutions of
equations (3.1) may be represented in thc fonn

J(u) = L aaD-1bß +L AiDi

a,ß i

where aCt,bß are some s-dimensional cohunn (line) vectors, Ai are some s x s
matrixes the components and matrixes elements of which are the functions
of u and its derivatives. A more detail information about the properties of
integro-differential operators of such kind reader can find in [6].

In order to understand this structure let U5 consider thc action of 1;'(u)
operator on solution of Inain equatioll (2.2) Fn(u). V".,Te obtain

From this consideration it follows immcdiately that if the operator J(u)
choosen in tbe form

J(u) = L Fn (u)D- 1Fn , (u) + L Ai(u)Di
71,711 i
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then for operator 1>'(u)J(u)1>'(U)T we obtain

1>'(U)J(U)q/(U)T = L Fn (1)(71))D- 1Fn,(f/J(u)) + L:Ai(u)Di
n,n l i

and the second equation (3.1) is equivalent to equality Äi(u) = Ai (1)(u)).
The above notice allows to obtain comparativcly siIllple explicit expres­

sions for operators Jo, J1 for construction of wbich as a rule it is necessary
to use except of trivial solutions u' of (2.2) sorne otber simplcst one u for
example.

In tbe next section we shall represent the list of integrable substitutions
with corresponding expressions for Frechet derivatives, explicit form of oper­
ators Jo, J1 which as was explained before is sufficient to construct the whole
bierarchy of equations which are all invariant with respect to transformation
of given discrete symmetry. In other words it is possible to say that from the
point of view of theory of integrable substitution this is the recurrent method
for construction new solutions of equation 2.2) frolll some initial one.

4 The list of discrete substitutions and Hamil­
tonian operators corresponding to them

Here we give a list of integrable substitutions [5J together with the cor­
responding Hamiltonian operators JOl J1 • It is possible to reconstruct the
whole hierarchy of equations with the same cliscrete symrlletry with tbe help
of them. We rcpresent also the explicit form of Frechet operator by help
of which aB results can be checked without any clifficulties. All exarnples
below are connected with two component vector function u where for first
component we conserve notation u anel the scconel one will be denoted by v.
The simplest system of hierarchy will be represcntecl in the beginning of the
corresponding subsection.

It is very interesting that aB known examples of integrable substitutions
in the case of rational spectral parameter (in tenninology of inverse scattering
rnethod) are connected with equations of Tocla chains (infinite) 01' some its
generalizations. Is it possible to obtain this result and how from conclition
of resolving of equation (2.2)7
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4.1 Nonlinear Schrödinger substitutions.

4.1.1 Nonlinear Schrödinger hierarchy without the derivative

U + ul/ - 2u(uv) = 0 - 1; + 'v" - 2v(uv) = 0

The direct and inverse substitution in this case have the form

_ 1
u= -,

v
v= v[vu - (1nv)lI]

(4.1)

1
v = -=-, u = u[uv - (1n u)"]

u
Ir it rewrite substitution (4.1) we will 0 btain the infinite ehain of equations
for unknown funetion X n = In V n

This is exact infinite Toda chain in its original form.
Freehet matrix of substitution is the following

(
0 _...!... )

j ) = v? 2(uv - rv ~ 2~' D - D 2

Keeping in mind the results of the last section one ean eonvinced by direct
calculations that the following two operators Jo, J1

( 0 1) (2uD- 1u D - 2UD-Iv)
Jo(u,v)= -1 0 JI(u,v)= D-2vD-·u 2vD- 1v

satisfy the seeond equation (3.1).
Fo = (u, -v) is the simplest nontrivial solution cf equation (2.2). All

other equations of this hierarchy may be obtained by multi-time application
of operator H = JIJÜ

I to this solution.

4.1.2 Modified nonlinear Schrödinger hierarchy

it + u" + 2u'(uv) = 0 - 1; + v" - 2v'(uv) = 0
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The direct and inverse substitution in this case have the form

_ 1
u--- 1

V

v'
V = v[vu - (ln - )']

v

(4.2)

1 Ü'
v = -=, u = u[üv + (In -=-)']

u u

Having written substitution (4.2) as a result of multi-time application of
discrete transformation to a some initial solution we obtain the infinite chain
of equations for unknown function X n = In V n

The reader can find in [5] the cxplicit solution of this chain under appropriate
boundary conditions.

Frechet matrix of substitution is the following

rP'(u) = (~2 1 )- v2

2(uv) - v" + (1 + 11" V D - ..!!... D 2
v' 1)2 v'

Keeping in mind the results of the last sectioll oue can convinccd by direct
calculations that the following two operators Jo, II

~)

D - uv + UD-lV' - ul D-1V)
-vD-Iv' - v'D-1v

satisfy the second equation (3.1).
Fa = (u, -v) is the simplest nontrivial solution of equation (2.2). All

other equations of this hierarchy or, and this is thc same, other solutions
of equation (3.1) may be obtained by Inulti-tiIne application of operator
H = lila l to this solution.
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4.1.3 Nonlinear Schrödinger hierarchy with derivative

Ü + u" - 2(u(uv))' = 0 - 'U + Vif + 2(v(uv))' = 0

The direct and inverse substitution in this case have the form

U= v, _ (1),v = u- -
v

(4.3)

_ (1),
v = U, U = v + -=-

u

Having written substitution (4.3) as a result of Inulti-tiIne application of
discrete transformation to a same initial solution we obtain the infinite chain
<;>f equations für unknown function X n = V n

Thc reader can find in [5] the explicit solution of this chain Under appropriate
boundary conditions.

Frechet matrix of substitution under consideration is the following

1>' (u) = (~ _2 v/ 1+ I D)
~ ~

Keeping in mind the results of the last section one can convince by direct
calculations that the following two operators Jo, J1

Jj(u,v) = (~ ~)

.fJ = (-2UD- 1
1L 2uD-

1
v + 1)

2vD-1u - 1 -2vD-I V

satisfy the second equation (3.1).
Fa = (u, -v) is the simplest nontrivial solution of equation (2.2 ). All

other equations of this hierarchy or, anel this is the same, other solutions
of equation (3.1) may be obtained by Illulti-time application of operator
H = J1JÖ

1 to this solution.
We rcpresent also the expression for .]2 Halniltonian operator in illustra­

tive purposes

2 ( -2u2D - 2u'u + 2u'D-1u' D2 - 2uvD - 2u'v + 2U'D-1V')
J = -D2 _ 2uvD - 2v'u + 2v'D- 1u' -2v2D - 2vv' + 2v'D-I V'
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(4.5)

(4.6)

4.1.4 Nonlinear Schrödinger hierareh with derivative and nonlin­
earity of the third degree

The system of Ablovitz-Kaup

-u + 11," - 2u2(v' + 11,v2
) = 0 V + Vif + 2'v'2(u' - 'V11?) = 0 = 0

and Lund-Pohlmeyer-Regge equations

u' - 411, - 2it(uv) = 0 v' - 4v + 2v(uv) = 0

possesses the same discrete transformation and so belong to the single hier­
archy.

The direct anel inverse discrete substitution in this case are the following

( , 2)2_ 1 _ ( , 2)' V + 11,v
u - v = - v + uv +----

- v' + 11,v2 ' V

(4.4)
1 (-' -(-)2)2

( _' -(-)2)' + 11, - v 11,v=- 11,=-11,-V1t _-, -(-)2 'u-V11, 7t

Thc discrete transformation in thc form of infinite chain in this case coincides
with infinite Lotky-Volterra system

Nj = N i (Nj +1 - Nj-d

h N V2i N (v;i_l+uZi-lt1~i_l)
W ere . = -- . = -----=..::---=----....=.::.....--=-

21 (tSi-l +UZi-l vt_l) 1 21-1 V2i

It is not difficult to check that after introelllction of the ncw unknown
pair of functions q = 11" r = v' + 11,v2 or q = u' - vu2 , r = v in both cases q, r
satisfy the usual nonlinear Schrödinger equation from thc first subsection.
This fact allows to construct the corresponding HaIniltonian operators using
the results of first subsection.

For inverse Frechet operator we obtain immecliately

(1)') -1 = (-~ - iv - D) ( 1__ 0)o v2 D - 2uv _(Ü)2

Anel after this we obtain for Hamiltonian operators

(
0 (D - 2UV)-1 )

J-1 = (D + 2UV)-1 0

(
-211,D-1U +1 + 2uD-1v )

Ja = -1 + 2vD- 1u -2vD-Lv
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SI - iS2V=---
1+ 83

4.2 XYZ-hierarchy in classical region.

The system of equations describing thc Hcisenbcrg unhomogeneous ferromag­
netic in c1assical region, the equation of Landau-Lifshitz (L-L), is the single
known ( at least to authors ) example of intcgrable systems ,vith elliptic
spectral parameter. Wc will pay some Inore attention to this case.

In vector notations L-L system has thc farIn

(8) = § x s" + 8 x (.7S)

8 = (SI, 82,83), (8)2 = 1, J = cliag(J11 .72, J3 )

Under thc steriographic projection

81 + iS2
U=---

1 + S3
and exchanging -it --+ t it became a system of eql1ations:

. " (U')2 + R(u) 1 8 (2)
-U=U -2v +--R(u)_u =0

1 + uv 28u

(4.7)

v = Vif _ 2u (V')2 + R(v) + ~~R(v) - V(2) = 0
1 + uv 28v

,vhere R(x) = ax4 + ,x2 + a 8R = 4ax3 + 2,x = 2 R+a(x
4
-1} a =

8x x
h"4 J1 ,=~ - J3 The system (4.7) is invariant ullder transformation
u --+ U, v --+ V:

_ 1
U=­

v

1 1 vV"-('IJ')Z+a(v4 -1)
-- = --~:----:-=---=--_....:....

1 + VU 1 + uv (v')2 + R(v)
(4.8)

which is the discrete substitution for this SystCIll. The inverse substitution
to (4.7) is the following

1
v=-:;

u

1

1 +vu

1 üü" - (11')2 + a(ü4 - 1)
--=
1 + üv (ü')2 + R(u)

(4.9)

In the form of infinite chain substitution (4.8) Inay be rewritten in two equiv­
alent forms

1 1 vnv~ - (V~)2 + a(v~ - 1)
1 + Vn±l 1 +~ (v~)2 + R(vn )

Un Vn-l
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ol'

1 + 1 _ v:: + RlIn ( Vn )

Vn+l + Vn Vn + Vn-l (v:J2 + R(vn )

Reader can find the corresponding solution in [7}, [8].

4.2.1 Nondegenerate case

In thc case of arbitrary Q" the main equation (2.3) does not possesses the
solution Fa the components of which have dependence only upon on 11" v but
not of their derivatives, as solution Fa = (u, -v) of the previous subsections.
Due tothis reason the second equation (3.1) in thc case of XYZ hierarchy
possesses the solutions Jn only of thc even order but in thc elegenerated cases
solution of this kind takes place. Anel as corollary in thc degenerate cases
there take place the Hamiltonian operators of odd and even degree.

We have

JO=(l+UV)2(~1 ~)

The matrix elements of Hamiltonians operators in what follows will be suf­
ficicntly complicated 1.0 writc them in thc single lnatrix form. So we will
introduce notations

J, = (~b; ~:)
anel represent the explicit expressions for as , bs , ds in all other cases.

So we obtain
a2 = 2U(2) n-1u' + 2u'D-1u(2)

where notations U(2), V(2) are introduced in (4.7) anel explicit form of which
is the following

U(2) = u" _ 2v(U')2 + 2av + ,vu2 - ,u - 2o:u~~

1 +uv

(2) ,,2u(v')2 + 20:u + ,uv2
- ,V - 2o:v3

V = -v + -~~----------
1 + '/LV

Next
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2 ' 2(tlv'+O(U2 +V4) 'YUV}where p = .....!!!!.... the impulse and H=- haIniltonian of L-L
l+uv (i+uv)2

equation. And at last

In vector notations the explicit expression for J2 Hamiltonian operator
was obtained firstly in [9].

4.2.2 Degenerate cases

In the partial cases a = 0" = ±2a thc symlnetry of L-L eqllation is changed
by the jllInp ( it becalne more widc). Thc Inain eqllation (2.3) possesses
solutions which do not depend on derivatives on u, v and as a consequence
it is possible to find solution of the eqllation (3.1) also for odd n.

In the case , = 20: for components of J1 Hamiltonian operator we obtain

al = 2u'D- 1u' + 2o{u? + 1)D-1
(n

2+ 1)

b1 = (1 + uv)2D + 2uv'(1 + uv) + 2u1D- 1
V

I + 20'(u2+ 1)D-1 (1 + v2)

d1 = 2dD- 1v' + 2o{u2 + 1)D- 1 (v 2 + 1)

Ii is not difficult to check that independent on derivatives solution of (2.3)
has the form Fo = (u2 + 1, v2 + 1).

In the case , = -2a the corresponcling values are the follows

al = 2u'D-1u' + 2a(u2 - 1)D-1
(U

2
- 1)

b1 = (1 + uv)2D + 2uv'(1 + uv) + 2u1D- 1v' - 2a(u2
- 1)D-1

(V
2 -1)

dl = 2v'D- 1vl + 20:(v2
- 1)D-1 (v 2

- 1)

Fo = (u2
- 1, -v2 + 1).

And at last in the case 0: = 0

b1 = (1 + uv)2D + 2uv' (1 + uv) + 2'u I D- 1v' - 2,'/LD~lV

d1 = 2v'D- 1v' + 2,vD-1v

Fo = (u, -v).
In vector notations this result was obtained in paper [?].
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5 Matrix hierarchies

In order to complete our previous results,we are going to present here the gen­
eralization for the case of noncommutative unkllown functions. We represent
our results in brief form for the hierarchies of Nonlinear matrix Schrödinger
equation alld Nonlinear Schrödinger one with derivative. In spite of our
generalization für the structure of invariant Hamiltonian operators,we were
to use the primary scheme (3) in order to find thc correct exprcssions in
noncommutative case. Though it is possible to guess such operators.

5.1 Nonlinear matrix Schrödinger hierarchy

ü = -Uxx + 2(uvu) - 1) = -Vxx + 2(vuv)

We consider variables u and v as nonsingular square Inatriccs of N2 elements.
The generalization üf the corresponding direct and inverse substitutions takes
thc form

(5.1)

--- - - --l-
U = UV1t - U xx + U x 1t U x

If we rewrite substitution (5.1) we will übtain the infinite Inatrix Toda
chain of equations for unknown function Wn = v

Frechet derivative have thc following fOrIn

/ _ (CY ß)
cp - 'Y °

Ci,ß,O'f are the matrix operators with thc following cmnponents

14



Each of the indexes k,l,iJ runs frolll 1 to N.
The Hamiltonian operators for this hierarchy are the following

JO = (0 T)
-T 0

Jl = (_~T ~)

kl n-1 + n-1 bkl r r n r n-1 r n- 1aij = Ukj Uil Uil Ukj ij = UkjUil - UilUks Vsj - UkjUsl Vis

dkl n-l n-1
ij = Vkj Vil + Vii Vkj

k,l,iJ=l ...N
üne may easily convince by direct calculations that thc operators JO ,J1

satisfy the second equation (3.1)

5.2 Nonlinear matrix Schrödinger hierarchy with deriva­
tive

it = -Uxx + 2(uvu)x iJ = Vxx + 2(vuv)x

The generalization of the corresponding direct anel inverse substitution
(4.3) is the following

U=V
- -1-1
V = U + V vxv

(5.2)

- - --1- --I
V = U U = V - U Uxu

If we rewrite thc substitution (5.2) we obtain thc infinite Toda chain of
equations for unknown function W n = V

15



Frechet derivative takes the following forn1

~' = (~ ~)

o;fJ = 0 ßt1 = OkiOjl /~l = OkiOjl

rkl ( -1) (-1 -1) (-1 ~1) (-I) + ( -1) ( -I) DVij = - V ki V VxV jl - V VxV ki V jl V ki V jl x

Each of the indexes k,l,ij runs froin 1 to N
Hamiltonian operators Ja and JI for this hierarchy are the following

kl D-1 D-1 bk1.r.r .r D-1 + r D-1aij = -Ukj Uil - Uil Ukj ij = VkjVil + VilUks Vsj VkJ'Usl Vis

dkl D-I D-1
ij = -Vkj Vii - Vii Vkj

k,l,ij=l. ..N

1 (0 T)J = T 0 D x

Ti)l = dkjdil k , l, i , j = 1. ..N

One may easHy verify that the operators Ja aud Jl satisfy the second
equation (3.1)

We see in both cases that the limit lV = 1 gives us 2 in corresponding
operators.

6 Conclusion

The main result of the present paper consists of explicit fonnulae for Hamil­
tonian operators which allow ta reconstruct all equatians far most often used
hierarchies of integrable systems in physical applications. We have not in­
cluded in this list results concerning main chiral field probleIn. The reason of
that is the fact of nonlocality of corresponding substitution and some specific
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difference of this case in compare with the exalnples considered in this paper.
We hope to return to this problem in recent future.

Methods of construction of Hamitonian operators,which were used in this
paper, are typical for group representation theory. The equations (7) from
group theoretical point of view are the equatiolls on SOIne invariant kerneis.
The main equation (2.2) (with given integrable substitution cp(u) ) is the
determination of some linear representation of the group of integrable map­
piIngs as was mentioned above. So independent investigation and construc­
tion of the reprcsentation theory of this object is equivalent to thc theory of
integrable systems of the given hierarchy. That is thc second and may be
more important conclusion which follows froIn the results of this paper.
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