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*! Introduction

In 1984 M. Wodzicki found a trace on the algebra ¥4(M) of all classical pseudodifferential
operators on a closed compact manifold M; he called it the noncommutative residue. This
trace vanishes on the ideal ¥~°°(M) of smoothing operators; it even is the unique trace (up
to constant multiples) on ¥,(M)/¥~%°(M), provided M is connected and dim M > 1.

Although it first seems a rather exotic object, this trace has found a wide range of ap-
plications both in mathematics and in mathematical physics. In appreciation of Wodazicki’s
accomplishment the name Wodzicki residue has become generally accepted.

Also various extensions and analogs of the noncommutative residue have been established,
e.g. for certain algebras of Fourier integral operators (Guillemin [11]), manifolds with bound-
ary (Fedosov, Golse, Leichtnam, and Schrohe [7, 8]), manifolds with conical singularities
(Schrohe [26]), or cusp pseudodifferential operators (Melrose and Nistor [21]).

In these four lectures I shall first give a short review of Wodzicki’s residue and some of its
applications. Next I will explain the idea of B.-W. Schulze’s ‘cone algebra’, a pseudodiffer-
ential calculus for manifolds with conical singularities. For every conical singularity we shall
obtain a trace on this algebra. These traces vanish on operators supported in the interior and
are therefore different from Wodzicki's. On the other hand, there is a natural ideal in the
cone algebra having a trace which extends the classical noncommutative residue. All these
traces vanish on smoothing operators. They are moreover seen to be the unique continuous
traces with this property on a slightly extended version of the cone algebra. In view of the
fact that this ASI focuses on microlocal analysis and spectral theory, I shall finally sketch
Connes’ theorem linking Wodzicki’s residue to Dixmier’s trace. For one thing this makes the
noncommutative residue an important tool for explicit computations in noncommutative ge-
ometry, see Connes [3]; it also shows Weyl’s law on the asymptotics of the eigenvalues of the
Laplacian.
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Lecture 1: Wodzicki’s Noncommutative Residue for Pseudodifferential Operators

1.1 Definition. Let A be an algebra over C A linear map 7 : A — C is called a trace if it
va.mshes on commutators, i.e., if

7[P,Q] = 7(PQ — QP) = 0 for all P,Q € A.

Clearly, if 7 is a trace, then A7 is a trace for each A in C; moreover, the zero map is always a
trace. When we speak of a unique trace, we shall mean that it is non-zero and the only one
up to multiples.

1.2 Example. On M, (C), the algebra of r xr matrices over C, there is a unique trace, namely
the standard one, Tr : A = 377 A4;;. Indeed, let E; denote the matrix having a single 1 at
position j, k (and zeros else). Then the statement is immediate from the observation that
(Ejky Ex k] = Ejx for j # k and [Ejx, Ex 5] = Ejj — Egx.

In this lecture we shall be concerned with the following theorem, proven by M. Wodzicki
in 1984, as well as with several of its applications.

1.3 Theorem. Let M be closed, compact, connected, dim M > 1. Let A = ¥ y4(M)/T~°(M)
be the algebra of all classical pseudodlfferentxal operators on M modulo the ideal of the reg-

?ula.rlzmg elements. Then there is a unique trace on A, the so-called noncommutative residue
{1 or Wodzicki residue.

1.4 Applications. (a) As mentioned before, the noncommutative residue plays a crucial
role in Connes’ noncommutative geometry due to Connes observation that it coincides with
Dixmier’s trace on pseudodifferential operators of order —dim M, f. [2].

(b) As Wodzicki observed, it also is closely related to the residues of zeta functions of elliptic
pseudodifferential operators that were computed by Seeley [30] as well as to the coefficients
in heat kernel expansions.

(c) Wodzicki’s trace is the multi-dimensional analog of the residue Manin [19] and Adler [1]
had found in 1978/79 in connection w1th their work on algebraic aspects of Korteweg-de Vries
equations in dimension one.

(d) Guillemin [10] had discovered the noncommutative residue independently as an essential
ingredient in his ‘soft’ proof of Weyl’s formula on the asymptotic distribution of eigenvalues.
Under rather general axiomatic conditions linking ‘classical observables’, i.e. functions p on
a symplectic manifold, with their ‘quantum mechanical counterparts’, namely self-adjoint
operators on a suitable Hilbert space, he showed that the counting function Np(A) of the
eigenvalues of P satisfies the relation Np(A) ~ cvol{p < A} with a constant ¢ independent of
por P.

(e) The noncommutative residue has been used in conformal field theory in order to construct
central extensions of the algebra of pseudodifferential symbols on the circle, cf. Khesin and
Kravchenko [16)].

(f) Tt has been applied to derive the Einstein-Hilbert action in the theory of gravitation
(Kalau and Walze [13], Kastler [15]).

We shall now go more into the details. We first recall a few facts about pseudodifferential
operators: '

1.5 Classical pseudodifferential operators on manifolds. Let m € Z and let a be a
symbol in Hérmander’s class ™ = ST (R™ x R"). It defines the linear operator A : S(R") —
S(R") by

Au(s) = [ea(z, )2, ue S®).
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We say that A is a pseudodifferential operator of order m on R* and refer to a as its symbol; it
is uniquely determined by A, see [18]. We call a classical if it has an asymptotic expansion a ~
Y20 am—; with a; € 7 homogeneous of degree j in £ for large €], i.e., aj(z, A) = Ma;(z, &)
for A > 1 and [£] 2 R. The ~ indicates that upon subtracting the first N summands from a
we obtain an element in S™~V.

In the following we let M be a compact manifold of dimension n, E a vector bundle over
M.

We say that a linear operator A : C®(M, E) — C®(M, E) is classical pseudodifferential
operator and write A € ¥y(M} if, in each coordinate neighborhood, the action of A is given
by a pseudodifferential operator with a classical symbol, modulo an operator with smooth
integral kernel, a so-called smoothing operator. We denote those by ¥~°(M). Note that an
operator will be smoothing whenever its symbol is in §7° = ,, S™ and that ¥~°°(M) is

.an ideal in ¥ {M). In the following we let A = ¥ /¥,

Any smooth change of the symbol a; on {|¢| < R} modifies a; by an element in S™°.
Over each coordinate neighborhood U, the equivalence class of a pseudodifferential operator
of order m in A can be therefore be identified with a formal sum of homogeneous functions
(taking values in square matrices), 372 am-j{(z,£), with a;(z,£) € C®(U x (R" \ {0}))

- homogeneous in £ of degree j. There are well-known rules for the behavior of 3 a; under

changes of coordinates.
1.6 Definition and Lemma. On R"*, n > 2, define the (n — 1)-form

o(€) = SO (=1 de AL ADE AL A .

=1

The hat indicates that this differential is omitted. Let p be a smooth function on R” \ {0}
which is homogeneous of degree —n. Euler’s identity 3" {;0¢;p = —np implies that the form
po is closed:

d(pa)z(dp)/\a+pd0=—npdflA...dEn+pnd§1A...d§n=0.

The restriction of ¢ to the unit sphere S"~! is the surface measure.
We can now define the Wodzicki residue res A of an operator A:

1.7 Theorem. Let A € ¥4(M), z € M. Suppose that in a neighborhood U of z, the symbol
A has the asymptotic expansion Y a; with a; homogeneous of degree j for €| > 1. Denote
by Tr the trace on L{E) and define

res, A = ( 1 'I‘ra_u(m,f)cr({)) dzy A ... Adzy,.
Sn—
This is a density on M. It therefore makes sense to set

resA=f res; A. (1)
M

Then res only depends on the equivalence class of A in A. It is a trace: res[A, B] = 0 for all
A,B € A. If M is connected, then any other trace on A is a multiple of res.
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Note. The local density a_n(z,£)o(€) Adzy A -+ Adzy, can be patched to a global density
24 with resA = f5.,, Qa: Denoting by w the canonical symplectic form on 7*M and by p
the radial vector field one has

Apno Adzy A -+ Adz, = (—=1)Mn-1/2 %(a plw)o

where (... ) is the homogeneous component of degree 0 in an asymptotic expansion of a p | w"
into homogeneous forms (] stands for the contraction of forms with vector fields).

The proof relies on the following simple lemma. For a proof see e.g. [8].

1.8 Lemma. (a) Let the function p be a derivative of a smooth homogeneous function q of
degree —(n — 1) on R" \ {0}, say p = O¢,q. Then [gn1 po = 0.

(b) Let p be a homogeneous function on R*\ {0}. Each of the following conditions is sufficient
for p to be a sum of derivatives:

(i) degp# -n.
(i) degp= —n and fgpo =0.
1(ili) p = €28%q, where g is a homogeneous function and |8| > |a.
:; Proof of Theorem 1.7. Under a change of variables x the symbol a transforms to a symbol b

& w1

b(y, %' ()€) Z Ra(x(¥), &)pa(y, ), (1)

la|>0

where the ©valy, €) are polynomials in £ of degree < |a|/2 and @y = 1 (see Hérmander [12,
(18.1.30)]). Changing the variable in the integral, and applying first (1), then Lemma 1.8(b.iii)
we get :

[bnwmat) = 1detx' @)l [ boaly, Y@E(E) @
= et X W) X [ (0alx(w),€)Pa(y,6)-no )
|e|>0

= Jdot )] [ a-nlx(0),)7).

Hence res transforms like a density.

For the proof of the trace property we may employ the linearity of res to confine ourselves
to the case of two operators A, B, with symbols a and b supported in the same chart U. Also
we may assume that we are in the scalar case, since everything commutes under Tr. The
symbol of [4, B] is given by

5 E0 ea oy — agpoma). 3)

We may rewrite this expression as 337, 9¢; A; + 9y, B;, where A; and Bj are bilinear expres-
sions in ¢ and b and their derivatives; they vanish for z ¢ U. Thus, the integrals over S of
(9¢; Aj)—no are zero by Lemma 1.8(a). The same holds for the integrals of (9;; B;)_n over U,
since all B; have compact z-support in U.



5

To prove uniqueness, suppose 7 is another trace on A, and consider an operator A of
order m with symbol @ ~ 3 a; supported in U. Let Z; and {_, denote any symbols with z-
supports in U coinciding with z; and £; on the support of a. The symbols of the commutators
[A,0pZ;] and [4,0p EJ] then are —D¢;a and Dy, a, respectively. Since the trace 7 vanishes on
commutators, it vanishes on all symbols that are derivatives with respect to either z or £.

Define a(z) = Ell?;'fs a_n(z,&)o¢. Applying Lemma 1.8(b) to a; for all j # —n, there
exist n functions bg;(z,£), £ = 1,... ,n, homogeneous of degree j + 1 in £ such that-a; =
Soh=1 3&[)};]'. Let by(z, &) ~ stm,j¢_ﬂ bg;j. Then

afa, £) — ()] = Za&bsz + (aen(2,6) - a2l ™).

Clearly, [¢(a_n(z,€&)—a(z)|€|7")o(£) = 0. So Lemma 1.8(b.ii) shows that a_, (z, &) —a(z)[£| ™"

is a finite sum of derivatives with respect to . Hence 7(a) = 7(a{z)|£|™"}, so by T f~
7(f(z)|€]”") we can define a functional on C§°(U) which vanishes on derivatives. It is no
restriction to assume that U is diffeomorphic to an open ball. Then we easily deduce from
Schwartz [29, I11.4) that T'f = ¢ [ f(z)dz for a suitable constant ¢, and we get the assertion
. for U. A priori, the constant might depend on U, but on the intersection of two coordinate
; neighborhoods the constants must agree. If M is connected, then all are equal, and the proof
" is complete. <

Note that no continuity condition is required for the uniqueness of the noncommutative
residue.

1.9 Examples and remarks. (a) Let A = (J — A)™™2. Then a_,(z,£) = [{|™" and
resA = [i; fonor €] "0 (E)dz = vol S™! . vol M. So the volume of M can be found as a
noncommutative residue.

(b) If A is a differential operator, then res A = 0.

(c) If the order of A is < —n, then res A = 0, so res is not an extension of the usual operator
trace. In fact, as we shall see in Lecture 4, Wodzicki’s residue coincides with Dixmier’s trace
on pseudodifferential operators of order —n and therefore vanishes on trace class operators.

1.10 Seeley’s results on complex powers. We additionally assume A to be invertible of
order m > 0. In particular, a is elliptic, but we impose a slightly stronger condition: There
exists a ray Ry = {z: z = re¥,r > 0} in C with no eigenvalue of of a,,(x,£) on Ry for ¢ # 0.
The spectrum of A is discrete. Shifting @ slightly, Ry will not intersect it. Moreover Seeley
[30] showed that:

(i) The norm of (A — X)~! is O(A~!), and there exists a family of complex powers {A® : s €
C}, defined by

A = L/,\’(A—,\)—ld,\, Res < 0;
27 Je
AStF = A°A*F Res<0,keN.

Here C is the path in C going from infinity along Ry to a small circle around 0, clockwise
about the circle, and back along Rg.

(ii) A* is a pseudodifferential operator of order m Re s; s —+ A? is analytic.

(iii) For Res < —n/m, A® is an integral operator with a continuous integral kernel k,(z, ).
For each z € M, s — ky(z,z) extends to a meromorphic map with at most simple poles



in 8; = jf‘n—", J = 0,1,.... There is no pole in s = 0; the residue in s; is given by an
explicit formula. If A is a differential operator, then also the residues at the positive
integers vanish.

1.11 The noncommutative residue and zeta functions. We use the notation of 1.10.
Since the spectrum {A;} of A is discrete and A” is trace class for Re s < —n/m we may define
the zeta function

Ca(s) =trace A™° = ZA;‘, Res > n/m.

This is a holomorphic function. It coincides with f,, k_,(z,z)dz hence has a meromorphic
extension to C with at most simple poles in the points s;. Wodzicki used Seeley’s explicit
formulas to show that

" Res,=—1(4 = (27)"res A/ord A; (1)
here ord A is the order of A. More generally,

Ress=s;(a = (2m)"res A™% Jord A. (2)

‘ We can use this relation to define res via zeta functions: Let P be an arbitrary pseudod-

. ifferential operator. Choose A satisfying the assumptions of 1.10 with ord A > ord P. Then

- also A+uP, u € R, will meet the requirements of 1.10, provided || is small, and (1) shows
that

d
resP = Eres (A + uP)|u=0 = (27)""ord A Ress=—1 (a+up-

1.12 Heat kernels. Starting from the assumptions in 1.10 we additionally ask that A is a
positive operator and that the eigenvalues of the principal symbol matrix a, lie in the right
half-plane. Then one can define

eth = / e A A — N)7ld),
c

t

where C is a suitable contour around the spectrum. The operator e~*4 is trace class, and

trace e~t4 = 3" e~ 4%, The identity
o0 o0
/ ' e Mdt = A 7° / (M)~ temMd(At) = A7°T(s)
0 0

shows that T'(s)Ca(s) = f° t* ltrace (e™*4)dt is the Mellin transform of tracee™*A. It is a
well-known property of the Mellin transform that the asymptotic behavior ~ =% In* ¢ near
t = 0 produces a pole in s; of order &£ + 1 and vice versa. From the above results for the zeta
function one immediately deduces the asymptotic expansion near zero:

o0 n o0
tracee™ ~ 3" oy (AT + Y Bi(A)t* Int
j=0 k=1

Note that there is no term °Int, since (4 is regular in 0 while the Gamma function has a
simple pole; for the same reason there are no terms t* Int¢ if A is differential.
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So we get res A = ord A - 81 (A). Moreover, we can define the noncommutative residue for
a general pseudodifferential operator by choosing an operator A with the above properties
and ord A > ord P, then letting

res P = —ord A%ﬁl (A + uP)|u=o0.

Classically, A is the Laplace-Beltrami operator A associated with a Riemannian metric
on M, so that one really deals with the heat equation. It is well-known that the coeflicients
a;j(A) carry geometric information, see e.g. Gilkey [9].

1.13 Notes and Remarks. The original reference for Wodzicki’s residue is [32]; a much
more elaborate presentation was given in [33]. Kassel’s paper (14] gives a good survey. The
proof of Theorem 1.7 here follows [8].

In Theorem 1.7 we asked for simplicity that n > 2. For n = 1 the cosphere bundle has
two components. A simpler version of the above arguments then shows that one gets two
linearly independent traces when restricting to orientation preserving changes of coordinates
otherwise one trace as before.

.

< Lecture 2: The Cone Algebra

" In this lecture we shall review the cone calculus for manifolds with conical singularities
introduced by B.-W. Schulze. In the next lecture we shall deal with noncommutative residues
for these objects.

Following the general idea of noncommutative geometry, the information about the un-
derlying space is encoded in a suitable algebra of linear operators. From the analysis of the
classical case presented in Section 1, we know that Wodzicki’s residue recovers the geometric
invariants detected by the heat kernel expansion methods. One might therefore hope that a
similar statement holds for the singular case.

In this context the choice of the operator algebra is rather important. Consider for example
a manifold M with boundary. One possible operator algebra is, of course, the algebra of
classical pseudodifferential operators on the open interior. Yet it is not difficult to see from
the proof of Theorem 1.7 that there is no trace on this algebra.

On a manifold with boundary, it seems more natural to consider boundary value problems.
The canonical analog of the algebra of pseudodifferential operators then is Boutet de Monvel’s
algebra. As it turns out we then get the desired result 7, 8]:

2.1 Theorem. There is a trace on the algebra B (M) of classical elements in Boutet de
Monvel’s calculus on M. It extends Wodzicki’s residue, vanishes on the ideal B~°(M) of
smoothing elements, and is the unique trace on the quotient algebra By(M)/B~*°(M), pro-
vided M is connected and dim M > 1.

We now introduce the basic elements of Schulze’s cone calculus.

2.2 Manifolds with conical singularities. A manifold with conical singularities, B, is a
second countable Hausdorff space which is, outside a finite number of points v € B, a smooth
manifold.

In a neighborhood of each of the so-called singularities or singular points v, the manifold
is diffeomorphic to a cone X x [0,00)/X x {0}, whose cross-section, X, is a closed compact
manifold.



In the following we shall confine ourselves to the case of one singularity v. We blow up at
v and obtain a manifold with boundary; a neighborhood of the boundary can be identified
with the collar X x [0,1). We denote the resulting object by B, while X” is the cylinder
X=X xRy.

2.3 Idea of the calculus. Apart from technical complications the basic concept is the
following : '

— On the smooth part of B use the pseudodifferential calculus in its standard form.

— Near the singularities use Mellin calculus on X x Ry working with smooth families of
meromorphic Mellin symbols taking values in the algebra of pseudodifferential operators
on X.

From now on we shall only deal with classical pseudodifferential operators. In order to keep
the notation short we shall no longer write the subscript ¢l.

2.4 Mellin transform. For u € C§°(R.) we define the Mellin transform Mu by
oo
(Mu)(z2) = f #-ly(t)dt, ze€C.
0

- This furnishes an entire function which is rapidly decreasing along each line I'g = {z €
C : Rez = }. Plancherel’s theorem for the Fourier transform shows that M extends to

“an isomorphism L?(R;) — L*(T'yjp). The identity (Mu)lr, , . (2) = M. (t7"u)(z + 7)
motivates the following definition of the weighted Mellin transform:

Mou(z) = Mt Tu)(z + 7).
The inverse of M,, is given by

1
MITR) () = — =z .
( ¥ t')( ) 2ﬂ'i P1/2_7 t h(Z)dz

For v = —t8u one has Mv(z) = zMu(z2), in particular ~t0u = M~'zMu.

2.5 Cut-off functions. Whenever we speak of a cut-off function or use the notation w, @, wy,ws, ...
without further specification we mean a function w € C§°(R,) with w(t) = 1 near ¢t = 0.

We will also speak of cut-off functions on B, asking that they vanish on the part of B not
identified with the collar.

2.6 Mellin Sobolev spaces. For s € N,y € R, the Mellin Sobolev space H*7(X") is the
set of all u € D'(X") for which t*/2-7(td,)* Du(z,t) € L*(X") whenever k < s and D is a
differential operator of order < s — k on X. Interpolation and duality furnish H*7(X?") for
all 5,7 € R Note that duality is with respect to the pairing

1
(u,v) = 37 (Mu(z), Mv(2))2(x)dz
i gt

and that HO™/2(X") = L3(X").
These spaces make sense on B, too: We pick a cut-off function w on B and let H*7(B) =
{u:wu e H¥(XN),(1 —w)u € HE (int B)}.
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2.7 Mellin Symbols and Mellin Operators. Let p € Z,7 € R By L#(X;R) denote the
space of parameter-dependent pseudodifferential operators of order : on X with parameter
space R. L¥(X;Ty/,_,) is the corresponding space with Ty /2-~ identified with R. Recall that
we only use classical symbols!

Given f € C®(Ry, L#(X;T/5_,)) define the Mellin operator with (Mellin) symbol f and
weight v by

1
T flut) = — tf(t
Pk Nult) = 5z [ A M)

for u € CP(X") = C§°(Ry,C®(X)). It is easy to see that opj,f : C(X") = C®(X") is
continuous. Moreover,

wl[Op"{{f]wz : Hs,7+n/2(XA) - :Hs—,u,'7+n/2(XA)

is bounded for all s.
We shall now turn to the analysis of asymptotics.

2.8 Example. Let w be a cut-off function.

(a) M(w) = 27! M(—tdw)(z). Since t8w € C{(R, ), we obtain a meromorphic function
with a single simple pole in z = 0; it is rapidly decreasing along each I'g, uniformly for g
in compact intervals, including 8 = 0, provided we remove a neighborhood of z = 0 (by
multiplication with a function which vanishes there and is 1 near infinity).

(b) Let Rep < 1/2,k € N. Then M(t~PIn* tw(t))(2) = L (Mw)(z — p). This again is a
meromorphic function with a single pole in z = p of order k£ + 1, it also is rapidly decreasing
along each I'g, uniformly for f in compact intervals provided we remove a neighborhood of
the pole itself.

2.9 Asymptotic types and Mellin Sobolev spaces with asymptotics. Fixye R A
weight datum g is a triple g = (v + n/2, v + n/2, (—1,0]) consisting of two reals and an
interval.
(a) An asymptotic type associated with g is a finite set P = {(p;,m;,C;) : j = 1,...,J}
with J € N (possibly J = 0, then P is the empty set), p; € C with —1/2 —y < Rep; <
1/2 =+, m; € N, and Cj finite-dimensional subspaces of C*°(X). We denote by mcP the set
{pj :j= 1,... ,J}.
{(b) A Mellin asymptotic type is a sequence P = {(pj,mj, L;) : j € Z} with p; € C,Rep; —
Foo as § = *oo, m; € N, and L; finite dimensional subspaces of finite rank operators in
L™%°(X). As before we write ncP = {p;}.
(c) Given an asymptotic type P and s,7 € R, we let ’H;;ﬂ'"/ %(B) be the space of all u €
HTE/2(B) for which there exist c;x € Cj,7 = 1,...,J,k = 0,... ,m;, such that, for all
€ >0,
J mj
u — w(t) Z Z cjxt P In* t € yoTHn/2tl=e (B).

j=1k=0

2.10 Meromorphic Mellin symbols. (a) M;(X) is the space of all entire functions
h:C — L*(X) such that hlp, € L#(X;Ts) uniformly for £ in compact intervals.

(b) Let P be a Mellin type. Mp(X) is the space of all holomorphic h : C\ n¢P — L*(X)
with the following properties:
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(i)  In a neighborhood of p; we have h(z) = £y vjk(z — pj) ¥~ + ho(2) with vy € L;
and hy analytic near p;; ‘
(ii)  for each interval [ci,cz] we find elements v in L; such that

mj ’
MB+in = S Y viM (@) Ik (8 +ir) € (X R,)
{i:Repj€le1,¢c2]} k=0

uniformly for 8 € [c1, o). We set Mp®(X) =N, Mp(X) .
2.11 Theorem. M4(X)= M5H(X) + M;*°(X) as a non-direct sum of Fréchet spaces.
With these notions at hand we are ready to define the full algebra. Fix y, v and the weight
datum g = (v + n/2,v + n/2,(-1,0]).

2.12 The residual elements: Green operators. Cg(B,g) is the space of all operators
G : C§°(int B) — D'(int B) with continuous extensions

G HSTB) o HFTTA(B) and
G::.H.s,—'y—n/Q(B) - Htgg,—‘y—nﬂ(B)

for suitable asymptotic types Q1,Q2 and all s. Here, G* is the adjoint with respect to the
pairing H*Y, H™*™7,

Note: ’H°Q°l’7+"/ 2 <y HNH+/2(B) is compact for each N, hence Cg(B, g) consists of compact
operators.

2.13 An ideal: The algebra Cpri+a(B, g). Cum+c(B,g) is the space of all operators
R : C§°(int B) — D'(int B) that can be written

R = wifop }hlws + G, (1)

where

(i)  ho € Mp>*(X) for some Mellin asymptotic type Py,

(i) wchN Pl/g_,, =0,

(ili} wi,ws2 cut-off functions, and

(iv) G e Ca(B,g)

Note: These operators form an algebra called the algebra of smoothing Mellin operators.

It turns out to be an ideal in the final algebra, while the Green operators form an ideal in
Crm+c(B,g). A change in the cut-off functions in (1) results in a Green operator.

2.14 The full algebra. C#(B, g) is the space of all operators
Apm + A‘b + R,

where Ay = wifop ] hlwe, with b € C®(Ry, M5(X)), is a Mellin operator supported close
to the singularity, Ay is a pseudodifferential operator of order i supported in the interior,
and R € Cy4c(B, g).

Note: C*(B, g) is a Fréchet space with the natural topology. We let C(B, g) = U,C*(B, g).
The intersection N,C*(B, g} coincides with Cpr1c(B, g).
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2.15 Theorem. The composition of operators yields a continuous map

CH(B,g) x C¥ (B,g) — C**¥ (B, g).

We have the ideal structure:

OG(]B; S) < CM+G(Ba g) d C”(Bi g)

2.16 Mellin quantization. For h € C®(R;, M4(X)) there is a p € C®(Ry, L#(X;R))
such that

opp =op };h mod L™®(X").

‘Here C®(R,., [*(X;R)) denotes the space of totally characteristic symbols (also Fuchs type

symbols), i.e. the elements of C®(Ry, L*(X;R)) that can be written p(t,7) = q(t,¢r) for
some g € C®(R,., L*(X;R)). The symbol p has the asymptotic expansion

=1 , T(t, ¢
p(t:T) ~ Z FaﬁDf{h(t}_iT(tat’)"') (t; )}lt'zt
k=0""

* with T(,t') = .= Note that T(t,#) = t.

2.17 Symbols. To an operator in the cone algebra we can therefore associate two important
symbols, namely

(i)  the interior pseudodifferential symbol which is in fact defined up to the boundary with
a totally characteristic degeneracy, and

(i) the operator family {h(0,z2) + ho(z) : H*(X) — H*"#(X): z € 'y/3_4}, the so-called
conormal symbol .

The conormal symbol plays a central role in the Fredholm theory on manifolds with conical
singularities. The Fredholm property for an operator is equivalent to the invertibility of the
interior principal symbol and the invertibility of the conormal symbol on I'y/;_,.

2.18 Notes and Remarks. This is a simplified and comprehensive version of the cone
calculus. T used the material in the joint work [23, 24]. Other good sources are Egorov and
Schulze [6] and Schulze [28].

Lecture 3: Noncommutative Residues on Manifolds with Conical Singularities

We start with a negative result:

3.1 Example. Wodzicki’s residue does not extend to cone algebra. In order to see this re-
call first that B is (n + 1)-dimensional. Suppose h € C*(R4, M5""!(X)), and h vanishes for

t > 1. For v = 1/2 we consider the operator op}é?h. According to 2.16 we can find a pseudod-

ifferential symbol: op }v/fzh = opp mod L™®°(X*) with p_p_1(z,t,&,7) = h(t)—n-1(z, &, ~itT).
In order to distinguish it from the densities we shall analyze below, we now write W-res for
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the Wodzicki density introduced in Theorem 1.7. We then have
Wores(p nopp

(j; p‘“—l(m’t’f’f)a(ﬁ,r)) dz dt
B (/ h(t)-n-1(2,&, —itr)o (€, 7 )) dz dt

_ U_ / R(t)—_n_ 1:c§,—zt'r)d1‘cr(£))dzdt
) ¢ ( / n f_ ) h(t)_n_l(m,f,—is)dsa(ﬁ)) dz dt;

here o(¢,7) is the n-form corresponding to the n — 1-form o used in Section 1. For the third
equality we have used that the integrand is a closed form, hence we can shift the contour.

In order to compute the noncommutative residue we would have to integrate the density
over the collar X x [0,1). This, however, is not possible in general; it is possible if A(t)_n-1
vanishes for ¢ = Q.

H

f We shall now define a different density:

3.2 Definition. Let A be as in 2.14. Near z € X let A(0)(z,&,i7) be the local symbol of
h(0,i7). The subscript —n — 1 in the notation h(0)—_p—1(z,§,i7), below, indicates the term
of homogeneity —n — 1 with respect to (£, 7). Define

res; A = (/u_l f—:Trh(O)_n_l(z,E,i'r)dT a(f)) dri A ... ANdz,.

Since the operators may have values in a vector bundle E, we also took the trace Tr on L(E)
in the integral above. For n = 1, the sphere S®~! consists of two points, and we replace
integration over it by taking A{0)_2(z, 1,47) + h(0)—2(z, —1,i7).

3.3 Remark.
(a} The decomposition k + hg i not unique, but kg is of order —co and therefore gives no
contribution.

(b) resgA = (fga Trh(0)_pn_1(z,& d7)a(€, 7)) dx1 A ... A dzy in view of the fact that
h(0)—p—1(z,&,17)o (€, 7) is a closed form.

3.4 Lemma. res;A defines a density on X.

Proof. We fixed ¢ as a global coordinate. So changes of coordinates are of the form (z,t) —
(x(z),t). Hence the lemma follows as in the standard case. <

3.5 Definition. For A € C#(B, g) let

resA:[ reszAsz / Trh(0)—p-1(x, €, i7)dT 0(€)dz) A ... Adzy.
X X Jgn-1J o0

We may write
o0
resA = W-resf h0)—y—1 (-, 37)dT

with Wodzicki’s residue of the (—n)-homogeneous [°3_ h(0)_n—1d7.
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3.6 Example. Let A be the Laplace-Beltrami operator for a two-dimensional manifold
with a geometrical conical singularity. Close to the singularity a computation shows that
t2A = 292+ (t8:)?, so it has the Mellin symbol g(z,t,&, z) = —c?|¢|? +z2. Here c is a suitable
constant depending on the opening angle of the cone. A parametrix A to t?A therefore has
the Mellin symbol (—c?|£|2 + 22)~! modulo lower order terms. This is the desired component
of order -2, ‘integration’ over the two points of StS! gives 2(—c? + 2%)~!. Thus

00
resA = —2[ / (2 +72)"Vdrdz = —4n?/c.
Sl J—oo

We shall now produce an extension of Wodzicki's residue. On the collar we consider the
algebra of all Mellin operators with vanishing Mellin symbol in ¢ = 0.

3.7 Operators on the collar. Consider the operators in the cone algebra that can be
written in the form
A= wl[opLh]wz + R
with
(1) ke C®(Ry, MG(X)), h(0) € M5™(X),
(ii)  wy,we cut-off functions with wywe = wy,

F (i) R € Cu+c(B,g).

What is important is that we may choose h(0) € M5*°(X) and that wiw; = wy.. The latter
condition normalizes the representation in a certain sense.

The conormal symbol of the composition of two operators is the product of the conormal
symbols. Hence the operators of this type form an algebra.

For (z,t) € X x (0,1} define

tes A= ([ [ @) nes (0,631 0(©)) doy A A A S

3.8 Lemma.

t
resg'tA = o Trwi ()h(t) —p_1(z, & iT)o (€, T)dzy A .. dTy A d?
£,
It is a density on X x Ry.

Proof. The identity follows from the fact that A(t)_,-1(z,&,i7)o (£, 7) is closed. That it is a
density can then be proven as before. <

3.9 Theorem. For A as above let

1
resOA:/ / resg,tA.
0 JXx

0

This makes sense, since h(0)_,—1 = 0. Moreover, res’ is a trace on operators of this form.

Proof. This can be shown just like in Theorem 1.7. <



14

3.10 Lemma. Let p be the totally characteristic pseudodifferential symbol associated with
A mod L=®°(X"), cf. 2.16,

p(t,7) ~ r(t) Y 8 DA T (e )T )/ Yo
k=0"

with T'(t,t') = (t — t')/(Int — Int'). Then
res® A = W-resp.

Proof. The terms in the asymptotic expansion may be rewritten in the form DXh(t, —it7)pi(t, 7),
where ¢, is a polynomial in 7 of degree < k/2 and ¢y = 1.

Trp(t)—n-1(z, €, 7)dz A dt

“n

Sar
= f . Tr(g%aﬁp,’f{h@)(m,g,—iT(t,t’)f)T(t,t')/t'}lm)
T = —n-1
= Trh(t)—n-1(z, &, —itr)o(€, 7)dz A dt.
: St A

. We deduce that

1
W-resp = f/ Trh(t)_n—1{z,&, ~itT)o(€, 7)dz A dt
0 ( JSP
£

- folfxf?_l /_O:O'I‘rh(t);n_l(m,f,—z‘tr)dfa(f)d:cAdt
04

= TIes

provided we choose compatible orientations on $*~! and S™. <

3.11 The extended cone algebra. On B fix a smooth function ¢ which coincides with
the geodesic distance to the boundary near the boundary of B and which is strictly positive
in the interior. Let C'(B,g)™ be the space of finite sums of operators of the form t™ B with
Rem > 0 and B € C(B, g). Similarly define Cjs..c(B, g)*. We obtain the subspaces

C(B,g)f = span{t™B:B e C(B,g),Rem >0} and
Cum+c(B,g)f = span{t"B: B € Cpyic(B,g),Rem > 0}.

Why is this an algebra? Multiplication of a Green operator by t™ from the left or from the
right yields a Green operator, since Rem > 0. Similarly there is no problem for pseudodiffer-
ential operators in the interior. For the Mellin operators we use the following computation.
Note that we may assume t = ¢, since we are close to the boundary.

ool = = [ [Taptyne e ue) G
1/2—7

tm o dt’

= — £/t~ MRt 2u(t)—dz
ol A A R CEVOr
tm dt’

2

= 2 f / St ¢ - myu(t')) .
Iij2—4+m Y0 ¢
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If h is holomorphic we may shift the contour and immediately obtain that the last expres-
sion equals t™[op },T~™h]u(t). In case h has poles between [yj2—y and T'yjg_ypm, say at
pj, then Cauchy’s theorem says that we pick up the residues. Those result in terms of
the form c(u}t™? Inft with 1/2 — v < Rep; < 1/2 — v + m. Hence wifop J hjtMwe =
t™w; [op },T~™h]w; + G for a Green operator G. There is a minor difficulty if A is smoothing
and T7™h has a singularity on T'y/5_,. Then we write

t"opih =t"oplgh 4+ G

with 7y — Rem < 49 < v and a Green operator G'; in fact we shall adopt this slightly revised
interpretation of elements in Cpry(B, g) (which is standard in the cone calculus).

We can now state the theorem on uniqueness. A full proof is given in [26].

3.12 Theorem.

(a)  The dimension of the space of continuous traces on the quotient C(B, g)* /Crric(B,g)*
equals the number of conical points.

(b) On C(B,g)§ /Crm+c(B,g)T there is a unique continuous trace, namely the extension
of Wodzicki’s residue.

Of course, every point of B may be considered a (fictitious) conical point. We understand (a)

“ in the sense that we only count those points where C(B,g) has the cone algebra structure

described in Section 2. The continuity requirement is that convergence of the Mellin symbols
implies convergence of the traces of the associated operators.

Lecture 4: The Noncommutative Residue and Dixmier’s Trace

Dixmier’s paper [4] settled a longstanding question: Is every completely additive trace pro-
portional to the standard operator trace on the set where it is finite? Dixmier showed that the
answer is ‘no’ by explicitly constructing counter-examples. We start this section by reviewing
his result, following Connes [3] in presentation and terminology.

4.1 The spaces L£{1°)(H) and L((]l’oo)(H). Let H be an (infinite-dimensional) Hilbert
space, T € K(H), and |T| = (T*T)"/2. Let po(T) > p1(T) > ... be the sequence of eigenval-
ues of |T'|, repeated according to their multiplicity. It is well-known that

1 (T) = inf{||T — F|| : rank F = j} = min{||T}g.|| : dim E = j}. (1)

We define on(T) = TN o u;(T) and let L) (H) = {T € K(H) : on(T) = O(lu N)},
endowed with the norm
an(T)

InN °

IT)l1,00 = sup
N>2

We have a natural subspace £((,1’°°)(H) ={T € K(H) : on(T) = o(In N)}.

4.2 Lemma. Let oy be as in 4.1, and let T, T}, and Ty be compact.

(a) on(T) = max{||TPg|: : dim E = N}, with the L'-norm || - ||; and Pg denoting the
projection on F.

(b) on(T) = max{trace(T'Pg) :dimE = N} for T > 0.

(c) on(Th +T2) < on(Th) +on(Th).
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(d)  on(Th) + on(T2) S oan(T1 + To) if T1, T2 2 0.

(e} Eél’m), L) are two-sided ideals in L(H).

Proof. For (a) use 4.1(1); the maximum is attained by choosing F the eigenspace with respect
to the first N eigenvalues of |T'|. (a) implies (b); the maximum is attained for the same E.

(c} is immediate from (a). Since the dimension is subadditive one gets (d) from (b). Finally
(e} is a consequence of the estimate ;;(TA) < pu;(T)| Al valid for bounded A. g

4.3 Cesaro Mean. We define the Cesaro mean M f for f € L*(1,00) by

M0 = [ 192

The function M f is continuous and bounded; M : L*™(1,00) — Cy(1,00) is continuous.
Moreover, M1 = 1 and M(f(X-)) — Mf € Cyq)(1,00). Here, A > 0, and the subscript (0)
indicates that the function vanishes at infinity.

, 4.4 The ‘limit’ lim,,. Let T1,T;, € £{L%) be positive and

2]
O'N (Tl)

"

_on(T2) _on(Th +Th)
T A InN

» Br
Then {an}, {Bn}, and {'yN} are bounded séquences. By 4.2 we have

v~ L ay + v < (In2N/InN) yan, (1)

but in general no convergence. We embed £ into L*(1,00) in the canonical way by associ-
ating to the sequence {ax} the function f(,,} which has the value a; on the interval [j, i+ 1],
7 =1,2,.... Next we choose a linear form w on Cy(1,00) with (i) w > 0, (ii) w(1) = 1, and
(iii) w(f) = 0 for f € Cy(py. Then we define lim,{an} = w(M f(,)) with the help of Cesaro’s
mean.

Note that lim,, coincides with the usual limit on convergent sequences by (ii) and (iii).
Furthermore, limy, asy = lim,, ap.

4.5 Dixmiers trace. For a positive operator T € £{1%) let

Tro(T) = lim lnN Z“"

As Proposition 4.6(a) shows, Tr,, is additive. We can therefore extend it uniquely to a linear
map on L) also denoted Tr,,.

4.8 Proposition. Let T,T), Ty € LI%)(H), S € L(H).

(a) Try,(N +T3) = Tr,(Th) + Tr,(T) for positive Ty, Ts.

(b) Tr,(T)>0ifT>0.

(¢) IfS is invertible, then Tr,(STS™!) = Tr,(T). In particular, T¥,, is independent of the
inner product in H.

(d) Tro(ST) = Tr, (TS).

(e) Tr,=0o0n E((]l‘w), so it vanishes on trace class operators.
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Proof. (a) follows from 4.4(1) together with the last remark in 4.4. We only have to check
(c) for positive T. Then use 4.2(a)/(b). Finally (c) implies {d) first for invertible S, then for
arbitrary S by adding a large multiple of the identity and using linearity. <

4.7 Example. Consider the operator (1 — A)™/2 : L*(T") — L2(T"), where A is the
Laplacian. The eigenvalues of A are known to be the lengths [k|? as k varies over Z", so the
eigenvalues of (1 — A)~"/2 are (1 — |k|2)~"/2.

Let us show that (1 — A)™™2 € £ and Tr,(1 — A)~"/2 = Q,,/n, independent of w
with Q, = vol S»~!: We let Ny denote the number of lattice points in Bg, the ball of radius
R. Clearly, Ng ~ vol Bg, hence In Ng ~ nln R. Moreover,

R
S AR~ 9y [l
k<R ¢

R
~ Qn/ rldr = Q. InR.
1

We conclude that
Q. InR _ Oy

-1 nf2 _ —
(nNp)™ 3 (14 2 Snln e Do

|k|<R

Recall that for (1 — A)~™/2: L3(T") — L?(T") we had computed in 1.9 that

res (1 — A)™? = vol "~ vol T* = 1, (2r)".

In one special case we therefore have proven the following result:

4.8 Theorem (Connes 1988). Let M be closed, compact, n-dimensional, E a vector bundle
over M, and P : L*(M, E) - L*(M, E) a pseudodifferential operator of order —n. Then

(a) P e L) (L2(M,E)).

(b) resP = (2m)"nTr, P, independent of w.

Proof. We start with the observation that both res and Tr, are local: If {¢y,... ,ps} is a
partition of unity on M and if {#),... ,%,} are smooth functions with ¢;¥; = @;, then

/

resP =Y resg;Pp; and Tr,P = ) Tr,o;Pi;,

since res {g; P(1 —;)) = res ((1 — ¥;)p; P) = 0, similarly for Tr,,. Thus we may assume that
M =T".

Part (a) now follows from writing P = (P(1 — A)*/2)(1 — A)="/2: The first factor on the
right hand side is bounded, (1 — A)~™/2 € £{1:*) and £} ig an ideal.

In order to see (b) we first note that we proved it for (1 — A)™™/2, see 4.7. By linearity
it is enough to consider T' = P + A(1 — A}~™/2 for P > 0 and large positive A. In that case,
T : L?(M,E) — H"(M, E) is invertible, and T = A~! with a pseudodifferential operator A
of order n satisfying the assumptions of Seeley’s theorem. By Wodzicki’s formula 1.11(2),

resT res A~} >
n2m)" ~ (r)"ordA Ress=104 = —Resy=—10r = Resy=1 3 _ A},

i=0
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where Mg > A\ > ... are the eigenvalues of T', s0 the 7! are the eigenvalues of A.
Let Adg 2 ... 2 Ago—1 = 1 > Mgy 2 Agp+1, denote by 6 the characteristic function of Ry,
and define pu(z) = Y 5o 0(z + In Ag1g,). This is a positive measure. Its Laplace transform is

oo o0 ko—1

[ e Tdu(z) = S M =Cals)~ 3 A
¢ : k=ko - k=0

According to Seeley’s result, this function is analytic for Re s > 1 and extends to {Res < 1-¢}

with a simple pole in s = 1. We can therefore apply lkehara’s Tauberian theorem (see e.g. [5,

Section 47]) and conclude that Res;=1¢4(s) = lime™*u(z) =: c.

Now 14(2) = Lofkzo-tndisng) | = Lofkiem2<rupn} L 50 that pu(z) = 7 iff Aggyjn <e™ <
Ako+j- From this we derive that jAk+j+1 < (z)e™™ < jAgy4j, hence Mgy ~ /5 with above
c. We conclude that T € £%) and Tr,(T) = limyoo on/In N = ¢. Note that the limit
exists and therefore is independent of w. <

4.9 Corollary: Weyl’s theorem. Let M be closed, compact, n-dimensional, let A be the
Laplace-Beltrami operator on M with respect to some Riemannian metric. For the eigenvalues
"2 Aj of —A we then get the asymptotics

2/n : 2/n
e (N
Aj ~ dm (9) (volM) '

Proof. We deduce this from the last part of the proof of the previous theorem rather than from
the assertion. Consider (1 — A)~™/2, Its inverse A satisfies the assumptions of Seeley; (4 is
analytic on {Res > 1} and extends to a larger half-plane with a simple pole. We know from
1.9 that res (I — A)™™?2 = Q,vol M, hence Tr,(I — A)~™? = (2r)"res (I — A)~"2/n =
(2m)~"Q, vol M /n =: ¢,. An application of Tkehara’s Tauberian theorem as above implies
that the eigenvalues p; of (I — A)~™/2 satisfy u; ~ ¢,/j. The identity A; = pJ—_?/ " then proves
the result. <

4.10 Notes and Remarks. The idea of the proof of Theorem 4.8 was adapted from Varilly
and Gracia-Bondia [31]. Corollary 4.9 follows already from Seeley’s results and was stated in
[30] more generally for positive definite pseudodifferential operators. The Laplacian is a nice
example in that we have the explicit form of the constants.

In the article [2], Connes used the coincidence of the noncommutative residue and Dixmier’s
trace in the following way:

For an algebra A, a p-summable Fredholm module (¥, F)) over A, and a finite projective
module £ over A with an A-valued inner product, one can introduce the notion of connections
V and curvature 8.

He then considers the case of a 4-dimensional smooth compact Riemannian Spin® manifold.
The Fredholm module (H, F') consists of the Hilbert space H of L2-spinors, and F = D|D|™!,
where D is the Dirac operator. Under a compatibility assumption he can show that the
(abstractly defined) curvature 8 is an element of £(2°°) so that the value of the Dixmier trace
Tr,,(62) = I(0) defines a positive functional independent of w.

Moreover, given a classical connection A, the classical Yang-Mills action Y M (A) of A can
be recovered by

YM(A) = 167%inf I(0)
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with the infimum taken over a suitable class of connections related to A.
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