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VOLUMES OF HYPERBOLIC THREE-MANIFOLDS

Walter D. Neumann and Don Zagier

l. INTRODUCTION

By "hyperbolic 3-manifold” we will mean an orientable complete hyper-
bolic 3-manifold M of finite volume. By Mostow rigidity the vol-
ume of M is a topological invariant, indeed a homotopy invar-
iant, of the manifold M. There is in fact a purely topological
definition of this invariant, due to Gromov. The set of all
possible volumes of hyperbolic 3-manifolds is known to be a well-
ordered subset of the real numbers and is of considerable in-
terest (for number theoretic aspects see, for instance, [2]),113})
but remarkably 1little is known about it: the smallest
element is not known even approximately, and it is not known
whether any element of this set is rational or whether any ele-
ment is irrational. For more details see Thurston's Notes [F].
In this paper we prove a result which, among other things, gives
some metric or analyticinformation about the set of hyperbolic volumes.

Given a hyporholic 3-manifold M with h cusps, one can

form the manifold

- M
< (Pqul)-ooiphlqh)

obtained by doing a (pi.qi)-nchn surgery on the i-th cusp,
where (Pi'qi) is a coprime pair of integers, or the symbol =
if the cusp is left unsurgered. This notation is well defined

only after choosing a basis .1'11 for the homology H, (T,),



where Ti is a torus cross section of the 1i~th cusp. Then
(pi.qi)-Dehn surgery means: cut off the 1i-th cusp and paste in
a solid torus to kill pini + qili'

Thurston [ 3§ ] showed that M has a hyperbolic structure for
all kK near @ = (w,.,,,®) and that

(1) lim Vol (M ) = Vol(M), vol({M ) < Vol(M) (x of =),
K-+ K K -

Moreover, he describes a result of Jgrgensen wl\kl\ shows that the only

accumulation points of the set
Vol = {(Vol(M) : M 4is a hyperbolic 3-manifold} C R

arigse in this way ( ﬂd'nely s given any constant C > 0 there
are finitely many hyperbolic 3-manifolds such that any hyper-
bolic 3-manifold with volume less than C is obtained from one
of them by Dehn surgery). Thus to know what Vol looks like, we
would like to know how the numbers Vol(nm) tend to their limit.
To express the answer, we introduce positive definite binary
quadratic forms 91""'Qt of determinant one as follows: the

torus T associated to the i-th cusp has a Euclidean structure

i
well-defined up to similarity and the pair (pi.qi) corresponds
to a closed geodesic p;®; + qili (ni'li ‘the chosen meridian

and longitude) on T, and we define

2
Qi(p.g) = (length of pai + qlf /{volume of Ti)'

THEOREM 1lA: With the above notations,

x
1 !
T+ o() L

2
Vol({M ) = Vol M -1 ———————
K 1=1 93 (Py09y Py+a;



A surprising aspect of this result is that the differcence of
volumes depends to a high order only on the geometry at the cusps
and not on the rest of M.

The right-hand side of Theorem 1A can also be expressed in
terms of the geometry of MKz Let Li be the length of the
short geodesic Yi on Hz which is the core of the so0lid torus
added at the i~-th cusp by the Dehn surgery (with I.i - 0 if
(pi'qi) = o). then, as we shall see (Proposition 4.3),

-1

(2) L, = 2wQ,(p,.q,) + 0 ()

and hence Theorem lA is equivalent to:

v 2
I L, +o(fi).

THEOREM 1B: vol(M ) = Vol(M) -
K i=1

(ME ]

As a consequence of Theorem lA, we can determine how fast the
limit in (1) is reached and thus determine the metric structure

of Vol near its limit points.

COROLLARY: Let {M,} be the set of all hyperbolic 3-manifolds

obtained from a given hyperbolic 3-manifold M by doing Dehn

surgery on a single cusp of M. Then

1/72

#{v : VOl(nv) < Vol(M) - 1/x} = 6mx + O(x )

as x +«, If the Riemann hypothesis is true, then the exponent

'1/2 can be replaced by 67/148 + € for any € > 0.

We remark that a similar formula holds trivially for volumes

of 2-dimensional hyperbolic orbifolds (= gquotients of hyperbolic



' 2-space by Fuchsian groups, possibly with torsion), with 671 re-
placed by 27m and an error term 0(1). Here Dehn svrgery is replaced
Ly the precess of Flﬂh’ acvsp by a cone point of varying angle,

The corollary follows from Theorem 1A simply by counting
the number of coprime pairs (p,q) with 0Q(p,q) < wzx + 0(l).
Without the coprimality condition, this would be just the number
of lattice points in an ellipse of area t3x + 0(1l) and hence

equal to 1r3x + 0(1(13/4°)+e) by a result of Wu [12]. (Estimating

this error for the quadratic form Q(p,q) = p2 + qz is the famqus
"circle problem” of analytic number theory; the exponent 1/2

is trivial and the best possible exponent is conjectured to be
1/4 + €¢.) Passing to the coprime éoints introduceg a factorx

1. 6/1:2 in the leading term and replaces the error term by

t(2)"
the one given in the corollary, since Moroz [§] showed that an
error O(xa) for the straight lattice point problem gives (on

(2-ub«5-4a)+e) for the

the Riemann hypothesis) an error O(x
coprime problem.

Actually, the HK correspond to a discrete subset of an h-:
complex-parametar family of deformations of the‘hyperbolic sf:uc-
ture on M, and Theorems lA and 1B remain true for this bigger
class if their right hand sides are suitably interpreted. More
precigely, Thurston showed that the deformations of the hyper-
bolic structure on M (no longer complete) can be holomorphicaly
parametrized by points u = (nl"‘°'“h) in a neighborhood 0 of
0 € ¢®. The Dehn surgery parameters correspond to a 2zero dimenvional
subset {-‘1|:} c ch, discrete except when some q’i’?{’ is oo,
such that HBK is isometric to the complement of the short geo-

desics created by Dehn surgery in HK. The coordinates

(u ""'“h) can be chosen so that the dependence

1



w

of Hr on K is as an odd function of «x of the form

1l
+

+ (higher orders)

for some ai'Bi € C, aiIBi € R. The higher order terms (at
least third order, since . is an odd function of «) depend
on all the (pj'q’).

The gquantity Vol(Mu) makes sense and is a real-analytic
interpolation of WVol(My). We will explain later how to define

a real-analytic function Li(g) interpolating the L in

i

Theorem 1lB. This theorem can then be rewritten

™
(3) Vol(M ) = vVol(M) - 3 ] L .(u) + e(u),

where ¢g(u) = O(lgl‘). The function €(u) is even in

each variable and has a
. a a, 8
1 h=-"1
Tayloxr series expansion Z cc'eu1 ceeuuy

main :esulé is that all terms in this expansion vanish except

---uh « Our second

those with all of the a's or all of the fB's equal to zero,

i.e.:

THEOREM 2. The function e€(u) defined by (3) is the imaginary

part of a holomorphic function £(u) which is even in each argument u; .

( £(u) is unique if we require it to vamish at u =10 .)

Thurston [9] points out that the Chern-Simons invariant of M (which by
Meyerhoff [S] can be defined even if M has cusps) can be considered as an
imaginary part for the volume. Precisely, ome can associate to a hyperbolic

Zyo1(M)
‘-manifold M an invariant I(M) € €* whose absolute value is éf



and whosce argument is the Chern-Simous invariant of M . Similarly a geodesic
¢ on a hyperbolic 3-manifold has a natural invariant n(y) (the ratio of the

cigenvalues of the associated element of PSL,¢C ) whose absolute value is

elength(v) and whose argument is the "torsion" of y . Thus Theorem 2 can be

reformulated as
2

-—7f(u )

h
(4) lzw) . T n(vj)l = J1me™ ™| .
j=1

CONJECTURE: Equation (4) remains true if the absolute value signs are removed.

This conjecture is not only very natural in view of Theorem 2 but is also

supported by the following:

a) Meyerhoff's Thesis [5] implies (after resolving a discrepancy in the
normalization) that the function
h
u — I(M) . TT n(y,)
i=1
is continuous at u = 0 , even though the constituents I(H‘) and n(Yi)

are not.

b) The conjecture is compatible with the conjecture implicit at the bottom
of page 22 of Dupont and Sah [3] related to the extﬁfded Hilbert Problem No. 3.
et

u
1
e

Specifically, their conjecture implies that I(M) and I (Hx) TTn (Y:i )
J

differ by a root of unity for each «x.

The function £(u) of Theorem 2 is closely related with the way the struc-

ture of the cusps of M varies as we deform the hyperbolic structure. This is

our third main result. To describe it we must be more explicit about the coor—-
dinates Ugs coe sl (see section 4 for more details). For any closed curve
y on M the invariant n(y) described above (ratio of eigenvalues of the

holonomy) is well defined up to inversion. Let u; = tlog(n(ni)) vhere B,



is the chosen meridian at the i-th cusp. Since n(mi) = 1 for the complctv“
hyperbolic structurc on M , we may choosc the branch of logarithm so

(ui, voe ,uh) = 0 for this structure. Then small deformations of the hyper-
bolic structure on M are parametrized in a 2h:1 way by u in a neighbor-
hood of 0 € Ch'. Using the lgngitudes 1i instead of the merideans mi

gives different coordinates Vs ses sV with v, = tlog(n(li)) . There is a

h
natural choice oé signs so that the v, are analytic functions of the chosen
coordinates (u1, .o ’"h) (in fact a choice of sign for either u, or v,
corresponds to a choice of orientation for the line in hyperbolic 3-space fixed
by the holonomy of m and li ).

The ratio ti(g) = vi/ui is holomorphic in a neighborhood of 0 € th .
The hyperbolic structure. Hu is complete at the i-th end of M (i.e. this end
is still a true cusp) if a;; only if u, = 0; in thié case, ri(g) is the
modulus of the similarity class of euclidean structures on the marked torus
Ti associated with this cusp*. In particular, :the numbers rg - ti(O, eee 50)
(i=1, ... h) are the moduli of the cusps of the original hyperbolic manifold
M . We assume we have chosen m. and Ii as an oriented basis of homology at
the i-th cusp (the torus Ti inherits an orientation from M ); then Tg €H
(the upper half plane) for each i .

In terms of the variables u, and v, the length Li(g) introduced

above is given by

1 -
(6) Li(g) - - E;»Im(uivi)

tThat is, Ti is isomorphic to the quotient of € by the Z-lattice

2<1,ti(g)> » with 1 and ri(g) corresponding to B, and li respectively.



This is proved in section 4. The following theorem describes the final

ingredient f(u) of the volume formula also in terms of the u, and ve .

THEOREM 3. There exists a holomorphic function O(u,. cee ’“h) ina

neighborhood of 0 € l:h » even in each argument and vanishing at 0 , sat-

isfying:

1 8 .
(¢)) vi(g) - -2--3:'; (i=1, ... ,h) ,

1 h 8
(8) f(u) = *-8-2 (“5:6:‘ 2)e ,

.-1 i
2 h o 2
(9) The quadratic part of @ is Tus
i=1

Note that, since ®(0) = 0 , equations (7) determine ®(u) and hence

f(u) . However it is a nontrivial fact that the equations (7) have a solution

vy Svs
at all; this implies El'l - ?-1 or equivalently
uj uj
8. 8t
(10) uo‘aTl:' = uj‘&';i' (i’j = 1, ss e ,h) »

a statement which no longer involves volumes (though our proof of it does). It
may be interpreted as a symmetry statement about how deforming one cusp affects
a second one and vice versa, and is reminiscent of . symmetry results of S.
- Wolpert [!i} on the effect of twist deformations for hyperbolic surfaces.
If @ denotes the degree k part of ® (so ® =0 for k odd) them

k k
(8) can be rewritten

-8f(u) = E) (=2)0, .
Thus £(u) together with the moduli rg of the cusps determine @ and hence
the dependence of the v; om the u, .
For example, if there is just one cusp and v, is given by a power

series



¢R)! v = 3 cu”

in us= LT then
(12) ¢, = ° » €, = 0 for n even ,

and by (6), (7), and (8) the volume formula becomes

]
- -4 n~1_ .+l n~ = -n n-1_ .n+l
(13) Vol(HB) Vol(M) T n2-1 ('m-'_lcq“ + cuu v cuu - —os €5 ),

from which the various ingredients can clearly be recovered (see section 6 for

an example and more details in the one cusp case).

The proofs of our results are based on the combinatorics of ideal
triangulations of hyperbolic 3-manifolds, which we describe in §2. The
basic combinatorial fact, Proposition 2.2, is a general property of "triang-

ulations” with no O-simplices of open 3-manifolds.



2. COMBINATORICS OF IDEAL TRIANGULATIONS

The hyperbolic objects whose volumes are best underntood-
are ideal tetrahedra (geodesic tetrahedra with all v-crtice: at
infinity). To study the volume of oui nanifc;ld M, it would be
useful it we could decompose it into such tetrahedra, i.e.,
tetrahedra whose vertices are at the cusps of M. This is in
general not ppssible. However, Thurston (§ ] has shown that any
hyperbolic 3-manifold is obtainable from an ideaily triangu-.
lated one by Dehn surgeries on some of the cusps. We therefo:e
will assume that M is the result ot_ k-~h Dehn surgeries on a

manifold N with Xk cusps which is triangulated as

(1) u = slu °"Usnp

where each S, is a tetrahedron with its vertices deleted.

The trianguiation in (1) is going to be considered as a
purely topoioqical one, t.e., as a combinatorial triangulation
of an open 3-manifold N "homeomorphic to the interior of a
compact manifold with a boundary consisting of k- tori. .'nms N has k
"toral” ends. We are going to put the :tmctu:;'e' of an ideal hyper-
bolic tetrahedron on each sv' imposing the compatibility cozfdi-
tions rgquired to give N a ;nooth but not necessarily complete
hyperbolic structure. We will then impose further conditions, corre-
sponding to the Dehn surgeries at k-h of the ends of N, which say that
these ands can be completed by adding a cirxcle to' give a smooth
neighborhood of a closed geodesic. The remaining h ends of
N will initially Se complete, and thus have the structure of

true hyperbolic cusps; this corresponds to the initial manifold



“H

M of the introduction. The manifolds MK are obtained by
deforming the hyperbolic structures on the tetrahedra . Sv awvay
from this initial position. To describe the situation more
accurately we must introduce some notation.

A general reference for hyperbolic triangulations, compati-
bility conditions, etc., is Thurston [}, Chapter 4].

We remind the reader that an ideal tetrahedron S is des-
cribed completely (up to isometry) by a single complex number
Zz in the upper half plane such that the euclidean triangle cut
out of any vertex of S8 by a horosphere section is similar to
-the triangle in € with vertices 0, 1 and z2. Ve write S =
S$(z). The numbers 2z, 1 - % and i%; give the same tetrahedron;
to specify 2z uniguely, we must pick an edge of S (the dihedral

angle at this edge will be arg(z)). We make such a choice for

each S“ and write

Sv - S(zv) (V - 1,...,!1).

Then to each edge of sv is associated one of the three numbers

1 1
(2) z. , l - —, and - ’
v zv 1l z,

the modulus of the edge, opposite edges of Sv having the sanme
modulus (see Fig. 1l). The necessary and sufficient condition
that (1) gives a (not necassarily complete) hyperbolic manifold
is that at each edge @ of N the tetrahedra sv abutting e
"close up"” a§ one goes around e (Pig. 2) and thus that the

271

product of the corresponding moduli of the Sv at e is e

(here the. product is to be taken in the universal covering &+



Figure 1
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s NOT

FPigure 2

of C*, that is, the sum of the arguments should be exactly

27). PFrom (2) we see that these moduli have the form

r
v

gluing condition at edge e gives (computing now only in c*)

te (1-zv)" with (r',x") € {(1,0),(~1,1),(0,-1)}, so the

n x' r*
TT :vv(l-zv) Vo oa 21
V=l

for some integers r;, r; depending on e (notice that rG

and :;- are not necessarily still <1 in absolute value since
more than one edge of sv may coincide with edge e of N).
The fact that N has Buler characteristic zero (N .is the
interior of a compact 3-manifold with boundary a union of tori)
implies by a simple calculation that the number of edges is
segual to the.nunbor‘ n of tetrahedra. We number the edges by

an index 3j and write the edge relations as



%

: n ! rh
(3) T = Va-z) ¥ - a1 (3 = 1,...,0).
Vel v v

Once ve have chosen the numbers z, (;atisfyinq the compati-
bility éonditions),t N aétquires a smooth h&pc:bolic structure, in
§eng:§1 1n¢o-p1et..l We need additional conditions to ensure ﬁhat
' ghe,conpletion of _N is M. The toru; T ;ssqciatad to any
one of the k ends of N has a similarity sﬁructure givcn‘by
“its triangulation into the {0,1,2z) triangles cut off by horo-
cycles at the vertices of thg sv. To each vertex of each
triangle ofjthis triangulation is associated a nugber 1, thei
modulus of the corresponding edge. If Yy is an orienﬁed closed
simplicial path, we define u(y) to be (-1)17' times the prod-
uct of these moduli for the triangle vertices touching. Y on

number of 1-simplices
- the right, where |y| is the of y (see Pig. 3).

'riqure 3

LEMMA 2.1. The number u(y) € ¢* depends only gg the homotopy

class of y and defines a homomorphism w (T = B (T) + e*.

Proof. In fact, the linilarity st:uptn:b on T defines a holo-

nomy homomorphism wl(r) *'siiunz) w AL£(C) and u(y) 4is just



IS

the derivative of the holonomy of the element of nl(T) repre-
sented by Y (see Th. [F, §4]), from which the lemma follows.
However, there is a direct combinatorial proof: any deforma-
tion of Y within its homotopy class can be obtained by suc-

cessive elementary steps of the type illustrated in Pig. 4,

Figure 4

and since the product of moduli around a vertex is +1 (the
consistency condition at an edge) and the product of moduli of

the vertices of a triangle is -1 (cf. (2)), the len;ma follows. B

Notice that u is actually obtained from a ﬁonomorphisn
H: nl(!) + C*%, obpained by considering the moduli in c* and
replacing (-l)lY! by ,'ﬂilYl. The condition that the end
of N corresponding to the torus T is complete, i.e., a
true hfperbolic cusp, is that {I be trivial, since this exactly
siyc that the similarity structure on T 1g esuclidean. On the
other hand, at the Xx-h Dehn su:gorod'ends, one primitive ele-
ment [y) € H,;(T) has been killed by Dehn surgery and the § of
this <y must be .tzwi. In particular u(y) = 1, and since
uly) 4is a product of edge moduli, each of which is one of the

numbers (2), this relation takes the form



n ' z”
T o=,V ) ¥ = 1.
val

Since this relation has exactly the same form as the consis-
tency relations at edges (3), we use the same letter 3§ to
index surgered ends as we used for edges (with 3 now ranging
from n+l to n +k -h) and write the complete set of neces-

sary conditions in the uniform form

n ! z%
(4) T 2,3V -2 3V = = (3 = 1,...,0%k=h).
V=] :

We note that these are only necessary conditions and not suf-
ficient, since we are considering them in ¢€* rathexr than €*.
However, if we start at the value _z_° b (z:,...,z:) correspond-
ing to the hyperbolic structure on M and deform 2z = (zl....,zn)
p;esérving conditions (4), then, of course, the eo:‘respondiz&.g
€* conditions are preserved, so we do get a deformation of the
hyperbolic structure on M.

We write N(z) for N with the hyperbolic structure de-
termined by z = (zl,...,zv) satisfying the conpat_ibil.i.t:y condi?
tions. Thus M is the completion of R(_z_o) and the M and

M~ of.the Introduction are completions of suitable N(z).

The. h unsurgered cusps of lﬁ_z_o). corresponding to the cusps
of M, will be indexed by the letter i, 1< 4i < h. Corras-

ponding to the basis 1 =, of H (:I.'i) fixed in section 1,

i’ i
we have for this manifold additional relations u(il):- 1,
u(ni) =1, (i{i=1,...,h) as explained above, and again these
can be written in the form

n

L4 z'
(5a) T3 Y-’ = 1 (4 = 1,...,h)
vl
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n m’ nt
(Sb) T % *V1-2% 2V e 131 (1 = 1,....h)
ve1 VY v

for .some integers L;.v' l;\,, 'iv' n;v (which are well defined,
however, only after choosing closed simplicial curves on the '1‘1
representing the homology classes li"'i) .

We write L', L", M', M", R', R" for the integer
matrices (Liv) ' (L;v) rosay (r:i\’) ’ (t;v) ., and combine them into a

single (n+k+h) X 2n matrix U as follows

1<v<n lsv=n
ey, P s
L' L" }1 41 =nh
(6) u = | M M" }1=s4i=n
R’ R" "}1 = § = n+k-h

where for convenience we recall our notational conventions:

V % tetrahedra; 'z, e "1l - 2z2,,(15VEn)
i * unsurgered cusps (1 =i =h)
4 @ edges (1=3=n) and surgered cusps (n <4 =n+k-h).
We also write L for the h X2n matrix (L',L") and similarly

L
M= (M',M"), R = (R',R"), so U -(u) .
R

For any natural number m, denote by .12" the symplec-

tic matrix

2n
n
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The fundamental fact about the combinatorics of our triangula-

tion is the following result

PROPOSITION 2.2. Let U € M +h+k,2n'®) be the matrix defined in

(6). Then’

2h o } 2n

2
(7) vy, U =

0 . 0 } n+x~h.

The proof, which is rather long, is postponed to §3.
For any matrix A with 2n columns we shall denote by
fa) C mzn the row-space of A, that is, the subspace of mzn

generated by the rows of A. On ]Rzn we have the symplectic

form

Let C denote the matrix C = -(:), 80 U = (g). The content

of Proposition 2.2 is that [U] is orthogonal {w.r.t, (,>) to [R] and Ehat
the rows of C form a symplectic basis of [C]; in particular

C has maximal rank, namely rank C = 2h.

PROPOSITION 2.3. Rank R = n-~h and rank U = n+h. Moreover,

if 1 denotes orthogonal complement with respect to <,> then
tult = [Rr].

Proof. The representation (U] = [C] + [(R] is an orthogonal
sum, so d4im(U] = dim(C] + dim([R] = 2h + dim{R]. On the other

hand, since (R] C (U], we have aim[R] < aim(U]' = 2n - dim([U)
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= 2n -~ 2h - dim[R], 80 dim([R] € n-h and eguality holds if
and only 1if ([R] = [011. Thus it suffices to show dimiR] 2
n-h.

Since dim[R] = n~-h, at most n-h of the consistency
relations (4) are independent, sé these relations determine a
subvariety Vv C c” of dimension at least h. We claim VvV has
dimension exactly h at the point P (z;....,z:). {This
re-proves a result of Thurston [}, §5 1.) To show this, it
suffices to show that the subvariety W of v dffined by the

h additional relations

n L e
T 2, %a-2) Y = n (1 =1,...,h)
val

o

(abtained by replacing =z by =z in 5Sa) has dimension O

A v

at 5?. These h relations specify that the holonomies of the

longitudes 11 are parabolic. Since the holonomies of li
ana .1 commute, .i then also has parabolic holénony for each
i, so the parameter z € W corresponds to the complete hyper-
bolic structure éh M, which is unique by nostQQ rigidity.
Thus, %f W had positive dimension, the ideal triangulation of
M could be deformed. But this is impossible, since there are
only count;hly many ideal triangulations of M ( since there
are only countably many éeod.lics in M which are asymptotic
to either a cusp or a closed geodesic in each direction).

o

Since V has dimension h at 2 , we can pick a nearby

point z = (zl....,z ) wvhere V has dimension h and is non-

" f«f,amd..ll Beee in §4, 2=X°Is such point),
singulary, We rewrite the relations defining V as




n
21 (t:"v log z, + r;v loq(l-zv)) = const. (= log(tl))
Vs =

(j = lpl.o'n+k-h)o

The Jacobian of this system of equations at z is RzZ, ~ where

;1... . . . o
1
0. i
Z = :n
-1 Y ) Y o
1-:1
.« . e ' §
0 l-2

Thus ' rank(RZ) = n-h, so0o rank R 2 il-h, as desired.

The following corollary will be the fundamental tool for

proving the volume formulas.

COROLLARY 2.4. Suppose x,y € nz" satisfy xxt - ny't = 0.

t 1 t t ‘-

Then xazny - zxc thCy .

Aol &

] t
Proof. Since 0 = Rx = RJ, Y. the voctoz. xJ, 1is
in (R]Y, so by Proposition 2.3 we have :.72‘ € [u]l, that is,
J
n+k+h <t 2h

2Ty, = g7 - for some sz €I « Also 03,,C = 2( 5) by

2 .t

t Jan
Proposition 2.2, s0 xXC = -xJ, C = -2g( 0 ).

2n Thus

e .ue



A

J

1 _.t t _ _.. 2n t 2 . (Cot o .Gyt t t
3 xC thCy - =z o )JthY = z(o)y z(R)y - gy = xJ, ¥ .

as desired.

We close this section with a digression, namely to describe
how the k relations between the rows of R, which must exist
by Proposition 2.3, can be described explicitely in terms of the
combinatorics. 1In fact these k relations occur among the first
n rows of R, that is, the rows which correspond to edges of
the triangulation. We denote the submatrix consisting of these

rows by Ro. We define a matrix X = (x where,

13) 1=1=x,i<4=n’
for the purpose of this discussion, the index i indexes al

ends of X rather than only the unsurgered ones, by letting

Xy € {0,1,2)} be the number of ends of the 3-th {-simplex

which terminate at the i-th end of N.

PROPOSITION 2.5. XRO = 0 and X has (maximal) rank k.

Proof. To see that xno = 0 we must show

n n
(8) jZ1 ‘ijriv - jzl xijrjv .- o

for each torus ri and tetrahedron Sv. Each nonzero product

x, .z in (8) corresponds to an edge of sv which ends at

i 3v
the 4i-th cusp. Hence (8) is trivially true if none of the

four vertices of S, is at this cusp. If S does have a
vertex at the i-th cusp, then there will be three edgas
jl' jz, 53 contributing to (8) (see Pig. S). They will

sach contribute 1 ¢to xij -



Figure 5

and will contribute (1,0), (-2,1), (0,-1), respectively, to
(rjyr T3y) by (2). Since (1,0) + (-1,1) + (0,-1) = (0,0),
(8) follows.

To show that X has maximal rank, we show that xx* is
positive definite, i.e., that the quadratic form

) S k n

(9 = (€1000~o£n) lag 121 1-).:.1 3=1 31581.:‘5151.

is positive for £ ¥ 0. Since each edge has two ends, we have

for each j either

03 7 Fpy T Y 2y o= 0 for 4 & {1,(9,4,()

with 1,(j) # i,(3
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or

2, x = 0 for i ¢ il(j).

X
1,033 13

In the second case we write iz(j) - 11(3). Then the right hand

side of (9) equals

Y (¢ + £ )2
R IED 1,03)

since 4 and i' range over {iltj),iz(j)}. This can bms zero
only if Ei has opposite sign at the two ends of every edge,
and looking at any 2~simplex of the triangulation we see that

this implies E, = 0 for all i. =
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3. PROOF OF PROPOSITION 2.2

The matrix U has four kinds of rows; the L-rows, the
M-rows, the R-rows indexed by j > n, and the R-rows indexed
by j < n. 1f a 1is a row of one of the first three kinds,

then

)

. " ’
a = ((av 1<v=n’ (‘v 1=<V=n

L} » -
where av and av are the exponents of zv and 1 zv in
the uy-invariant of a closed oriented simplicial curve a in
“the tornss T associated to some end of N (namely a representa-

tive of | or m or the class killed by Dehn ;uégery at the

i i

be;a.cusp for some 3 > n). Let b denote another such row,
associated to a simplicial curve 8. Then the Proposition fol-

lows from the three formulae

n
(1a) I (x} Jr? - x7 .r

Nt PR PR P ) o= 0, 33433 % leeeen

3,V

n -
(1b) ) (z}
V=l -

MR 3= deeeeen

n
(1c) I (ajps - asps) = 2(al-(B1,
v=1 -

where in the last formula the intersection number Ia]-[B] is
zero if @ and B are at different ends of N.
We start with the proof of (la). Let A be the space z2

with the skaw symmetric pairing
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(:"r') A (.l'sﬂ) - rosn - r's'.

In A we have vectors

pl - (1'0)' 92 - (‘1'1)' p3 - (0,-1)
with
0 3 = 5
+1 j =4i+1l1l (mod 3).

Moreover, (rsv,rgv) is the sum of (at most six) contributions,

each equal to one of pl, p or §p corrésponding to the

2 3’

edges of Sv which coincide with the j-th l-simplex ej of

N. Hence the left-hand side of (la ) counts the number of

1l 2
adjacent edges of sv which get identified with 1l-simplices

triples (v.El,Bz) wvhere 1 = v < n and E and E are

and in N, the triple being counted positively or

le sz

negatively according to the relative orientations of Bl and

22 on sv (see Pig. 6). These contributions

positive negative

rigure 6
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cancel in pairs, because each triple determines a 2-simplex of

N (the face of sv containing E and zz) and this 2-

1l
simplex has a 3-simplex on each side of it with opposite rela-
tive orientations.

Before we prove (lb) and (lc) we give a heuristic reason
why they should be valid. Note that changing the paths G and
B within their homology classes changes a and b by linear
combinations of rows of R (cf. the proof of 2.1 and the remark
following equ. (Sb) in Section 2). Therefore (la) implies that
the left side of equ. (1b) depends only on [al, and (la) and
(1b) imply the left side of (lc) depends oni} on ;[al and
[(B]. If there are sufficiently many simplices in our triangu-
lation of the torus T containing a, then we can move a
within its homology class to iie "far” from edge ej (since
4 meets T in at most 2 points and o can be deformed to
avoid the star of these points); then every term of (1lb) will
be zero. A similar heuristic would indicate that the left
side of ( 1lc) should egqual some multiple ofh Tal-[{B8); the exact
coefficient could be determined from one example. However, it
appears hard to tf&nslate this arguneﬁt into a precise proof,
8o we shall need to 100k in more detail at the possible geome-
tric cdnfignration;. In view of these remarks it is, however,
sufficient to prove (1lb) and (lc) in the case tgat a and B
are simple closed curves. w; therefore assume this in the fol-
lowing.

The proof of (1lb) is similar to the proof of (la) but the

comhina:oricl will involve counting oriented edges (with both
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orientations of any edge allowed). We shall denote oriented

edges of simplices by F,F .Pz,etc. The vector (as,as) is

1

the sum of contributions, each equal to pl, p, or p coming

3’
from oriented edges F of Sv which begin at a vertex of T
.on the path a and such that the simplex sv interéects T
in a triangle to the right of a at this vertex. Thg left~
hand side of (1b) is thus the sum of contributions zl1 from
triples (v,E,F) where E and F are adjacent edges of sv,

B is identified with in N, and P 1is oriented and

3
begins at a vertex of a with sv on the right of o as
above. These contributions cancel in pairs{'we w;ite the two
menbers of a cancellin§ pair as (v,EB,F), (v',E',F') and
tabulate them in FPig. 7 according to the answers to the follow-

ing two questions (in each case the answers are the same for

(v,B2,F) and -(V"E',r')):

(i) Are E and F adjacent at the beginning point of F?
(ii) Does the 2~gsimplex determined by E and F meet T

in an edge of a?

In the top left case of Pig. 7 S and S, need not be

v
distinct; we havc.just drawn the typical case. The notation
B = E'. means that the edge E of S, 1is identified in W
with the edge E' of sv.; similarly for F = F'.

Finally, for (lc) a similar arguyent to those for (la) and
(1b) shows that the left-hand side is the sum of contributions
tl coming from triples -(v,ra;ré) where F_ and FB are

ldjaccnto.ihntéd.eggan of _s“r ra.bpgins at a vertex of the

path ¢«
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i) yes ii) yes . i) yes ii) no

i) no : ii) yes i) no "11) no

' Pigure 7
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with sv on the right of o at this vertex, and similarly for
rB and B. We shall see that most of these contributions can-
cel and the remaining ones sum to 2[al°[B). We must again

distinguish several cases.

Cage 1: F, and FB do not begin at the same vertex. We
subdivide this case according to whether the 2-gimplex A
determined by Pa and PB meets a or 8 4in an edge of ¢
or B.

Case 1.1: A does not meet a or B8 in an edge of a

or B. 1In this case there is a cancelling pair '((v.ra,r )

8

(v',r&.ré)} with F, = F, and g H Pé as in Pig. 8a,

Pig. 8a with @ and f exchanged, or Fig. 8b.
Case 1.2: A meets a or 8 in an edge of a or 8.
Assume A meets o in an edge of a. Thus two edges of A

meat a and P may or may not be the third edge of A.

8

cCase 1.2.1:

PB is the third edge. Then there is a can-
celling pair {(v,ra,ra), (v,r&,rs)} as in Pig. %9a or Pig.

9b.

Sy and S,), on the
7] two sides of A.




Sy and S,,, on the
P two sides of A.

L

Figure 8b

FPigure 9a

svvbihnvA.

FPigure 9b
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Case 1.2.2: Fg 1s not the third edge of A. 1In this
case there is a cancelling pair .{(V'PG'PB)' (v',r&,ré)} with
- 1]
Fg = ¥g B
10b. In the case of Fig. 10b there are also analogous pictures

as in Fig. 10a or with F

(P& reversed) as in Fig.

with the directions of a0 or B reversed. Note also that
Cases 1.2.1 and 1.2.2 can occur simultaneously, as for example

in Fig. 11; this does not affect the argument.

Figure 1l0a
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Pigure 10b

Pigure 11
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Case 2: F, and rB begin at the same vertex. 1In this
case G and 8 must be on the game torus T and ra and
PB correspond to vertices of a and B which are connected

by a 1l-gimplex e C A N T of the triangulation of T.

case 2.1: This 1l-simplex e is not part of a or 8.

Then there is a cancelling pair '{(v,Pa,FB), (V',F&,Pé)} with

ra = r&, PB = P}, and s, and S,+ the two 3-simplices on

each side of A.

f both a and 8.

Case 2.2: The 1l-simplex e is

F
H
ot

Then {(v.ra,ra), (V,FB,PG)} is a cancelling'pai;.

Case 2.3: The 1-simplex e is part of a or of B8 but

not both. 1In this case we get a contribution of $1 to the

left-hand side of (l¢) as in Fig. 1l2. At a vertex where a
and B cross there will be two such contributions, both |

or both -1, whilé if o and B8 Jjust merge there will only

be one contribution at the vertex.Q~££ife contributions clearly

.sum to 2[al-[B] as desired, cémpleting the proof.

if Huy merqe wibth J:rea.l'a;ous Pmllcl and 2ere or fwo
combribubions Cw.-.., % 0 or £2) .‘{ tley weme’ witl
dicesbiony oppesed, Albegetler,
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FPigure 12
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4. GOOD PARAMETERS FOR DEFORMATION

We have described how the hyperbolic structure on M
cah be varied in dependence on the parameter z = (zl,...,:n).
This parameter is somewhat arbitrary in that it depended on a
choice of ideal triangulation; moreover, it contains redun-
dant information: 2z is constrained by the "consistency re-
lations” (equations (4) of 52{ of which precisely n-h are
independent (Proposition 2.3). 1In this section we shall de-
scribe a more natural and intrinsic parametrization of the
deformations, due to Thurston {7, §5.8], and discuss the re-
lation between the parameters used and the g;oﬁetr; of the
cusps.

The parametrization to be described is an easy consequence
of the fact, which we proved in section 2, that the deformation
space has dimeﬂsion precisely h, Thurston's hyperbolic Dehn
surgery theorem also follows easily. Thus our analysis gives
a proof of these facts using only Mostow rigidity plus as much
of the combinatorics of ideal triangulatiohs as is expressed by
Proposition 2.2. This seems worth noting.

In §2 we introduced the number
- 1V, -iv
(1) TT =, -z )7

-associated to the chosen *"meridian® Ii in the torus Ti
cotr.:pénding to the i-th uhsu:gered end of N. Up to a con-
stant 1 this number is the derivative of the holonomy of

'.1 in the affine structure on - Ti’ This constant *1 1is the
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value of formula (1) at gz = _5_0 - (zg,...,z:). Thus

AE™ED™

is the exact derivative of the holonomy. We denote its loga-

rithm by u; so

+ ";i log -~

a :
(2) u = ) ( ‘s log
i ver\\ Vi

ol
- e
s b
ol
v

is an analytic function of 3z which vanishes at 20. Similarly

n zv 1-zv

- N — * ———

(3) vy vzl vy log - + 1v1 log -
v v

is the logarithm of the holonomy for the "longitude" lic 'ri.
The promised parameters are’ Ugreoory. Denote by Do
the variety of 2 €.c® which satisfy the consistency relations.

Then - = (uy,...,u,) maps a neighborhood of 3_0 € .ﬂo

biholomorphically onto a neighborhoocd P of O € c,h. The
bijcctiv.ity is notﬂobviou: at first sight; it would l;c plausib1§
for u to be a branched covering, with the icve:al inverse .
images of a given point corresponding to sovcril :I.dealv triangu-
laﬁioas of the same Dehn surgered version of N. We sh';ll.
prove the bijectivity ofi u later.

The. parameter u is still not completely natural, in that
it depends on the choice of a primitive element =, in the

- homology of each cusp. w.' couléd, for instance, egually well
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have chosen v = (vl,...,vh) as the parameter. We will,
however, stick to our choice and thus consider the vi as de-
pendent variables. We next discuss this dependence and draw

some elementary consegquences.

LEMMA 4.1: In a neighborhood of the origin

-u, ri(ul,...,uh) ., i =1,...,h for analytic funec-

Vi
tions T.(u) which satisfy:

a) ri(o....,O) is in the upper half plane and is the

modulus of the euclidean structure on the torus ii associated

to the i-th cusp of M (with respect to B, 11).

b) Ti(ul,...,uh) is an even function of each of its

arguments.

fart a) is implicit in Thurston {7,8§5.8]1, but we sketch
the atqununt_sincc we need the gaometry. Consider .i and
Ii as elements of ni(n) after suitable choice of basepoint
and let B(ni) and a(li) be their respective holonomies.

We use the upper half space model

B = {(z,r) €ECc xR | r> 0}

SO an éienenf of 'Ison+ (:B3) corresponds to a Mobius trans-
formation z _:_z;_}g_ of (€ x {0}) U(=} with"(: g) €SL(2,€).
The elements n('i) and n(li) are commuting parabolic

cleients, s0 by a conjugation we may assume they are the

following translations in the C-plane:

(4) K(li): gz +1, n(li)z zhz+T.
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Then T 4is the modulus of the suclidean structure on 1‘1 and
with our orientation conventions T € H (upper half-plane).
We now deform the hyperbolic structure slightly to a
parameter value u = (ul.....uh) and denote the deformed
holonomy by ng. Since ng(.i) and nu(li) commute, they
have the same fixed points on the sphere € U { =} at infinity.
If they are parabolic then the cusp of M has remained a cusp
and u; = v, = 0. Otherwise, Bg(li) and 33(11) have two

fixed points, which we can put at (0,0) and (0,=) so

(5) Hy(m

n 1): z 1 az , 32(11)3 z'w bz”

for some a, b € €*. By definition, u;=loga and vy= log b.
Moreover, since u is small, & fundamental domain for (4) must

be almost similar to a fundamental domain for (5) (see Pig. 13).

L]

Fundamental domain for (4) : Fundamental domain for (5)

0 1

Pigure 13

Thes, noting.bhat ¢ and b are close to 1, we have
vy, = -lf.og b = L-l___;nv: <(a-1) =~ t;oga = TYg

where ~ means first order eguality. 1In particular, for u
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near 0 it follows that v vanishes if and only if u,

i
does, so v /u; is analytic an'd", ‘noreovef:, the value of v,/u
at u=0 is T. Thus part a) of the Lemma i{s proven. Before
proving part b) we need to recall some geometry.

By Lemma 4.1 a), if u is small and u, ¥ 0 then vy
is not a real multiple of u;. Hence there is a unigque solu-

tion (pi’qi) sz U{«} ¢to

(6) piui+ q;v; = 2ni

(we take (pi,qi) = o if u, = 0). This (pi.qif is called

the generalized Dehn surgery coefficient by Thurston. It's

geometric significance is as follows. Let Mu be the comple-

ticnwof M with the hyperbolic metric given by parameter
value u. Thus Mu differs topologically from M by the ad-
dition of a set Y: of limit points at the i-8h cusp
for each 1. 1If. (pi,qi) = o then Yy =¢ and HE still
has a cusp here. If (pi,qi) is a coprime pair of integers
then T is a circle and at the i-th cusp M; is the result
of hyperbolie (g;,qi)-Dehn surgery on M. In :il other cases
Hu is éither.metrically singular or not even a manifold
(Yi a circle or a point respectively) depeqding on whether or
not Py and q are rationally dependent. |

Denote by 'n  the map which assigns to a parameter value
R nesar O the correspon&ing ggneralized Dehn surgery invariant
((91';q,1-);.f-.(ph.qh)) € m?U{=})". Then x maps a
nciéhborhood of 0 € ch homeomorphically to a neighborhood of

- € daz U {-})h (to see this observe that if
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1 1
P (PysDy)reeceripyrq,) '2“1( tevoy )
( 17 B h) Py*agTy Q) Pptayty (Q)

then ¢ o K has Jacobian equal to the identity at 0). This
is rhnrlyon's hyperbolic Dehn surgery theorem and is how he
proved it.

Now suppose (pi{qi) is a coprime integer pair, so at
the i-th cusp Hu his resulted by true hypi:bolic Dehn surgery
from M. We want to compute the length and torsion of the

new geodesic T added at this cusp.

LEMMA 4.2: Choose integers rye8; Such that #ct(Ei 3£) = 1.

Then

lcngth(ri) + i.to:sion(?i) = -(ziui + 'ivi) (mod 2wi).

Proof. On T the classes p.m, + qili and . +s 1

i i71
form a basis for homology. Since Pi‘i + qili is the class

killed by Dehn surgery, ri.i +* 3111 represents the new geodesic

Yy in M, - Thus the holonomy of L#] (wvhich is well defined

up to conjugation[zil given by

) ri"i A
BH(y,) = H(rm, +s,1,) = (zr» a’'b" z)

in the .motation of equation (5), and therefore

-

:v
lcngth(ti) + i.tozsion(fi) = 2log(a ib

]
i,

= 2(rju, + s;v.),
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wvhete the sién must be chosen to give a positive real part.

To verify this sigﬂ we rewrite the equations

Pyuy *+ qyvy- = 2nmd

(7

u, + s vi - e(iength(vi) + i.torsion(ri))

T4 i

with e= *1 as

pi q \/Relu;) Im(ug ):) (: :)
e(vi) Im(v ) .1ength£Yi) €. torszon(Yi)

Then taking determinants gives

(2) Im{u;v,) = 2m€.length(y,)

But v, - 'ri(_g_)ui with 71(2) in the upper half plane
(Lemma 4.1 a), so In(ui;;) is negative, Hence € = -1 ,

We can now finally prove part b) of Lemma 4.1. Choose
R near the origin in ch such that nu is obtained by true
hypcrﬁolic Dehn surgery at every cusp, N .Lc. }eack
pair (p;,qy) is either a coprime integer pair or .
Assume (pl.ql) # - and replace (pl'ql) by (-pl)fql)
leaving the other (pi.qi)'s unchanged. Let u' be the
) correspon&ing parameter value._‘rhen Hu and Hn‘ are the
sSame tppologibally. 80 by Mostow rigidity they ;;e isometric.
In particular the right hand sides of equat?ons (7) are un-
changed. We can thus solve (7) for the new uy and vy to

see that u1 and vl have besen replaced by -ul and -vl

vhile the remaining uy and v, are unchanged. Thus for each
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i’ the ratio vy/ug = titg) is an even function of 4y
and similarly of uz,....un. at least at paramster values u
corresponding to true hyperbolic Dehn surgery. But any
analytic set-containing these parameter values has a dense set
of tangent directions at the origin and thus includes a
neighborhood of 0 € c”. Thus 'Ti(g) is an even function of
its argquments on all of D.

Replacing one coordinate of u by its negative gives

isometric nu and uu' (this is 80 also for parameter va;ues
which do not—eorrespond to hyperbolic Dehn surgéries by the
continuation argument just used; think in terms of the holonomy
homomorphisnm "1(-‘") -> PSL(2,C)) . This involution will not,

in general, have a simple expression in terms of 2z = (zl.....zn).
In fact, from Thurston's description of hyperbolic Dehn surgery
it is clear that what is happening geometrically is that we

have two ideal triangulations of nu distinguished by the
direction in which edges of thevtri:;qulation spiral }u towards
the geodesic Yyi and thftc may well hav; very different g
values. Note tha£ outside a tubular neighborhood of the Ty

the combinatorics of the tr{gngulation of nu are the same as
for M, while inside a tubular noighbo:h;od-;f Yy the

only choice is the direction of spiral, which corresponds teo

a choics of sign forx uy. Thus the parameter u dJdetermines

both un and its ideal triangulation, so the change of para-~
meters ;;on 2 to u is bijective, as mentioned esarlier.

Again, we use the above continuation argument to deduce this

for general z and u from the hyperbolic Dehn surqery case.



To end this section we give two more formulae for the
length Ly of the geodaesic Yy created by Dehn surgery.
Though slementary, they are important ingredients of the
volume computation. The second one is equation {2) of the
introduction which proves the equivalence of Theorems 1A

and 1B.

PROPOSITION 4.3:

1 —
(9) L, = -3¢ ﬁ(.uiyi)

h
2 1
i Q; Py edy)  yuy p‘j'+q;

where Q, is as described in the introduction. 1In parti-

cular Lcngth(yi) is the restriction of the analytic function

In(ui;i) defined in a whole neighborhood of

1
Lyl@) = —3%

0 € ch/ (rather than just at the Dehn surgery pointsg).

Proof, (9) is just a restatement of (8). To see (10)

note first that

v, = -;-i(o)-ui + (higher\order)..

By equation (6) («fth apologies for the double use of 1)

a - 2wi
i pi-!-'ti(o)qi

'+ (higher order) .

Hence



a

1-‘11(.0)
Ipi'&‘ri(O)qi[Z'

—3% I'(ui;i) = 2% '+ (higher order)

Vol (T4)
Length(p ®,+q il i)

- 2 + (higher order) .

2

The higher order tarms must starxt at fourth order, since they

are even in each (pi,qi).



5. VOLUME COMPUTATIONS

Let S Dbe an ideal tetrahedron and a, B, ¥ its di-
hedral angles (each of which occurs at two opposite edges),
with a + B + vy = ®t, These are the angles of the euclidean
triangle cut off T by a horocycle section at a vertex. If
z € € is the parameter of T then (after possible reordering)

a = arg(z), B = arg(l-%), Yy = arg (i%;)'

In Chapter 7 of Thurston's Notes (7] Milnor proves the

formula, essentially due to Lobachevsky’

(1) vol(s(z)) = () + JA(B) + A(y),
where
1 © sin 2n6
NA(0) = 3 2 —ETL -
n=1 n ’

ie

The function J(8) equals 1 Im Liziez

5 ), where Li is

2

the diloqarithn‘fupction

I 2]
Li_(z) = —_— (lz] = 1).
2 n=1 n2 .

The function fLiz(z) can be holomorphically extended to the cut
plane ¢\[l,»]). Its real part cannot be expressed in terms of
functions of a single variable, but a formula due to Kummer and
quoted in Lewin's book on ﬁhc dilogarithm function ([43, P.

121, eq. (5.5)) says that
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Im Liz(z) = Nlaxg z) + Nlarg ifil + Silarg T%;l - loglzla:g (1-2)

for =z 4in the upper half-plane. Thus (1) can be rewritten

(2) Vol(s(z)) = D(=)

where
(3) D(z) = Im Li,(z) + log|z|arg(l-z)

The function D(z) is single-valued, continuous, real analytic

except at 0 and 1, and satisfies
D(z) = D(1-3) = D(==2—) D(z) = =D(l-z) = -D(z)
' 2 1-z° "' *

It has occurred in several places ;n the litq:aiur.. in partic-
ular in the vofk of Spencer Blocg?(whosc notiti;n D(z) we
have adopted) on K-theory and in work of Wigner [10], The fact
that Vol(s(z)) equals D{z) was also oﬁlcrvcd by Dupont and
sah [3]. |

The level c;ryc- of _D(:i are shown in Pig. 137 the func- -

tion reaches its maximum value 1.0149... at the point li%!i ’

corresponding to the regular ideal tetrahedron.

ﬁcturninq to our hyperbolic manifold, wve have from (2) the.

formula

n
(4) - vol M!... - v-z-z Dizy)
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VOLUME OF TETRAHEDRA
IN HYPERBOLIC 3-SPACE
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where u = (ul, ,uh) is the y-parameter value corresponding to z-
(z1, cee ,zn) (® Ve shall analyze (4) by differentiating it , since the deriv-

atives of D(z) are elementary functiont:-‘

(5) _:_l_: - %(logl;-z! . loglzl) %J' - __%_( logli-zl + loglzl)

=2 » z 1~z .

Assume therefore that the parameter value u (and hence also z ) is varying

in dependence on a single variable { . Then by (4) and (5),

.
(6) S—Vol(nu) - -;-21[(——3-L—-"—“-Ll° :: + —dﬁlllo )-‘-iﬂt - (___g_L_z“llo !1\: +* —-S-I—llll'
- V=

ORIz )gm]
dg -z, 'dE 1-%, ‘4t
If we write

1 d 1 d
x- = ((z—‘; f’ 1svsn * © = d_?) 1$v$n)

y = ((loglzvl) 1SvSa ’ (log| '-zvl) 15\:5::)
then (6) can be rewritten

%) %E Vol(M) = ~Im(xJ, %) .

We can apply Corollary 2.4 to this, since the necessary relations Rx® = 0
and Ryt = 0 are the derivative and the real part respectively of the logarithm

of the compatibility relations (4) of section 2. This gives
(8) : 'dT;V“Q‘g) 5 Im(xC"J,, cy") .

On the other hand, by equations (2) and (3) of section 4,

t dv duj
ex' = (@GP gm0 GO isisn

t

80
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d -1 i’ dvip duj
-—Vol(ug) = == Im (d e(u;) - 3 Re(vi)]

- 14 hIm(uv)-t-‘-Eh::Im(ggiv -Q-iu)
% SO R T S T
h h .
nd 1 Z! du; dv;
(9 " TR M@ g ZIalgrv; ~agy)  (Proe. 4.3).

Rewriting this as an equation of total differentials,

h h
(10)  4(ol()) = -ZA(L'L (W) + gIn2 (vidu; - wdv) ,

i=1 -

. h
shows that the holomorphic differential Z (vid“i - “idvi) has exact imaginary
i=1
part and is hence exact. It follows that the integral

1
(11) £w) = 7 (v;du, = u dv,)

Py

e
)
-

Ot |
Me

is independent of the p_ath of integration (in a simply conmnected neighborhood
of 0 ) and defines a holomofphic function of u ; integrating equation (10)
now gives
1|' h

(12) Vol(HE) - Vol(M) = -3 :{." L;(w) + Im £(w
{with no constant of integration since both sides vanish at 0 ) .

By the discussion,.in section l;, Theorems 1A, 1B, aﬂd 2 will be proved if
we show that £(u) vanishes to 4~th order at u = 0 . This is a consequence
of Theorem 3, which we prove below, but it can be seen more quickly by observing

that the equation v, m W, implies that

v.du. = u.dv, = u
i1 i i

which is of third order.

We now prove Theorem 3. Since
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h
1
% S-: (vidui uidvi)
is an exact differential, so is

(13) d(4f+2uv) - zz:vau .
i=1 ims1

This motivates the definition

h
(14) o(u) := 4f(g) + g?,“ivi .

The resulting equation
h
@@ = 22 v.du,
i=1

is equation (7) of Theorem 3; equation (9) is a consequence of (7); while
equation (8) of the Theorem follows by substituting v, = % -5-32 back into the

above defining equation (14).



6. EXAMPLES

We shall illustrate our results on the example of the figure eight
knot complement. We first describe more explicitely what our results say
in the case of one cusp.

As described in §1 , if the expansion of vev, as a power series in

u=u, is
= n

1 v §1 c u (cn 0 for n even) ,
then the volume formula is
2) Vol(M ) = Vol(M) + ZIm(u¥) + Im(£(w))

= Vol(M) - 7 2 '. Im(cnunu) - ZZ‘ Im(%;—,cnnnﬂ) .

n=1 n=2

We can also invert series (1):

. = n =

r u= Z a v (an 0 for n even) ,
n=1
1 c 3c?d ¢©

WL T TToh o STy e

3 cf > 75 c17 cy

12¢33  8cac c
3y "(—cﬁU’_c'}?s"::'s) JELY

and write the volume as

' -.1. = n. . n-1 n+1
(%) Vol(l‘lg) = Vol(M) 7 nz-ﬂ Im(anv v+t ) .

On the other hand the Dehn surgery coefficients (p,q) are determined by
(5) . pu + qv = 2wi .

By (1) we can write this as



wig:h
(6) A = p+ cq

and applying the inversion formula (c.f. equation (3)) to solve for u

gives
(7 u=Ei_. (2—”£) + (3¢,2 ﬂ; - e 3y @y’
A A A SA A

2wi, 7
- (12c333 8eqe 532 + (—-)
Inserting into (5) and solving for v gives

2ri 2wi, 3 _ 2 - 2ni, 9
O o st Y ols o

2
+ (12c33Px°3- e P-)(z“) b

It is now a simple matter to express the ingredients of the volume formula

(2) in terms of the Dehn surgery coefficients. Since, by (5), we have

Zn.v " a 2'n.v

Im(uv) = Im(~—— -;vV) = Tm(

) , we obtain from (8) :

@ a) = ez + dale, @D ¢ (e,78-e0 @D’

2
39 3
+ (12c, iz 8cyegat c7)( ) + ... ] )
A similar calculation yields
A

(10)  £w =+ 3"‘:’ + 33c,28 - ¢ 3% 2n)6

+T(12c332 8c,c 5A+ c.,)( ) ]

vhere the term of degree 2n is always :ﬁ:t times the corresponding term



O,

in (9). Thus the volume formula becomes

(1) Vol(e) = Vol(W) - InCe )1 +lx[‘ A0, Y328 oy @n®
oty = Yo M VTal? 275320 301 me) T

1 33; - q 2n,.8
+ z-(!ZC3 A 8c3c5A+ c7)(-A—-) + ... ]

To illustrate this for the figure eight knot complement (shown in Pig. 14

in white on black) we shall use the ideal triangulation described by Thurston

Figure 14

[7]. This triangulation uses two 1-simplices, four 2-simplices, and two

3-simplices, identified as in Fig. 15.

Figure 15
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Let z and w denote the parameters of these tetrahedra with respect to
the labelled edges and for any x C* denote x' = I--:? and x" = (x')' .

By inspection of the same identifications on the truncated tetrahedra (Fig. 16)

"

Figure 16

one sees the triangulation of the torus at infinity. It is shown in Fig. 17;

the pictured fundamental domain is bounded by our choice of basis m,1 (this is

P

!ig\itt 17



the knot~theoretic meridian and longitude). One can read off the consistency
relations

zzz'wzw' = 1 . z'(z")zw'(w")2 -1

which simplify to

zw(z=1) (w-1) = 1

(12) - o _
2 - w-n"t -,

so the matrix R of §2 is

(1 11 1)
Ro= 1oy =1 -1 = )

The holonomy of 1 and M can also be read off; they simplify to

PO -

1: zz(l-z)2
(13)
m: w(1-2) R

so the matrix C of §2 is
(L (2 02 0)
C = -
A M 0110 .
The matrix X of Proposition 2.5 is X = (2,2) , and the various lemmas of

§2 are easily verified.

Now by (13) and by equations (2) and (3) of §4 we have

(14) u = log(w(i~z))

(15) v = 21log(z(1-2)) = -2log(w(i-w))

vwhere the branches are chosen so u = v = 0 near the initial value

P
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z=wse . Because of relation (12) there is only one degree of freedo

1+i/3

2
(corresponding to the one cusp of our manifold).. Computations are easier in
this case if we take v as our local parameter and expand u as a power
series in v ,

“u=u(v) = Zanvn .

n=1

Thus to compute the volume of Hu as a power series in v (Equ. (4)) we

must know the coefficients a -

From (15) we get

z2(1=z) = ev/2 » W(l-w) = e .

or, solving the quadratic equatioms,

1+ ficaev/2 e floaev/2
LLE L. Dkt k. b

where in each case the branch of the square root is chosen which is +i /3

at v=0 . Hence from (14)

do 1 d(=z) | ldw
dv 1=z dv w dv
evlz ‘-vlz

- . +

S0’ 2 (1-d1-4e" 1% Jimte 21+ dite 1%
C whed? | fiee 2

1.71-4eV72 671-4.,“'75
} 1 . 1

4 i-4e” P rp=

This is an even function of v , as desired. Aiso



v/2 -1/2

-1))

71(1 +
1-4eV/2 (e

0 m
Z (-;) (?nm) (ev/ 2_1)“' (binomial theorem)

S 2 (-)T (2m)! (m) (v/2)
=3 m;o 30 m! Z: 3

(m)

where the S are the Stirling numbers of the second kind, defined by

(e*~1)"/m! -ZS(W) x"/n! or by x" = 2 S(m)x(x-l) .(x~m+1) (the latter
(m)

expression makes it clear that s(m)‘ Z ; in fact Sn is the number of

partitions of {1, coe ,n} into m non-empty subsets). Hencé

du 1 = " E DT Cm)! L (m)
dv 2§73 0 znn!Z m m! sn

3
n even

and

(2m)' (m)
[l ) 3 (n odd)
2 nzl q o1

0 (n even) .

Numerically, this gives

o N 2 22 23
v iv 37 v 67 ,v
(16) u —Fg(z f+§-r2-+-1-§6('1—2') +—(360ﬁ) + ... ).

We could  also have proceeded by solving (12) and (14) to get z and w as
algebraic functions of e" , substituting into .(15), and differentiating.

The computation, similar to the one above but.somewhat longer, gives:

& ., 1-2e-2¢ "
du _fe-z-“_i-? U _2ela2e U4
23 5 8% 7
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which is the inverse expansion of (16) and gives the coefficients Cn of

equations (1) to (11). In particular, equation (2) gives

ot oof | 23® | 23
Vol(M,) = Vel®d) - LG * 775 * 775 * %73 * TE0 *
8 =8
. 9890 LBE

and equation (11) becomes:

+

2 4 4
VOI(H(p.q)) = Vol(M) - 2—"5-%- + 311.[!:3(* +l"2(2ﬂ

Ial 3al®
R (agu’-x’)(zw)“ . 233t (21)6) .
3t 270/a} 12
. ( -8 -3q2(Am;_%w)(21r)8 . -46q(A9-K;)(21r)8 N
3]al 45]A)’
. asF:'s(As»,xa)(za)s) . ]
1'6 L
2160 [A]

2 4 2.2 4, &4 .
- VOI(H)--Z%E—'—T + "’5( =72 +144q )w * s

p +12q 3(p“+12q°) *

&coqmtation of this expansion up to 2-nd order first led us to conjecture
Theorem 1A, while it wvas an experimental compuiation of the above expansiom in

terms of u up to .6-th order which first suggested Theorem 2 to us.}
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