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COMMUTING RATIONAL FUNCTIONS REVISITED

F. PAKOVICH

Abstract. Let B be a rational function of one complex variable, which is

neither a Lattès map nor conjugate to z�n or �Tn, and let CB be the set of

all rational functions commuting with B. We show that the quotient of CB by
a certain equivalence relation is a finite group GB . We describe generators of

GB in terms of the fundamental group of a special graph associated with B,

providing a method for describing CB , and calculate GB for several classes of
rational functions.

1. Introduction

In this paper we study commuting rational functions, that is rational solutions
of the functional equation

(1) B �X � X �B.

More precisely, we fix a function B P Cpzq of degree at least two and study the set
CB consisting of all X P Cpzq such that (1) holds.

Functional equation (1) was investigated already by Julia [3] and Fatou [4].
In particular, they showed that commuting rational functions X and B of de-
gree at least two have a common repelling periodic point and the same Julia set
J � JpXq � JpBq. Using Poincaré functions, Julia and Fatou proved that if com-
muting X and B have no iterate in common and J � CP1, then, up to a conjugacy,
X and B are either powers or Chebyshev polynomials. The assumption J � CP1

was removed by Ritt [14], who used a topological-algebraic method. Ritt proved
that solutions of (1) having no iterate in common reduce either to powers, or to
Chebyshev polynomials, or to Lattès maps. A proof of the Ritt theorem based on
modern dynamical methods was given by Eremenko [1].

All the above results assume that X and B have no iterate in common. However,
commuting rational functions X and B which do have a common iterate, that is
satisfy

(2) X�l � B�k

for some l, k ¥ 1 also exist. The simplest examples of such functions can be obtained
setting

X � R�l1 , B � R�l2 ,

where R is an arbitrary rational function and l1, l2 ¥ 0. More generally, we can set

(3) X � µ1 �R
�l1 , B � µ2 �R

�l2 ,

where µ1 and µ2 are Möbius transformations commuting with R and between them-
selves. However, it was shown already by Ritt ([14]) that commuting rational func-
tions satisfying (2) are not exhausted by functions of the form (3).
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2 F. PAKOVICH

Although Ritt’s method provides some insight on the structure of commuting
rational functions X and B satisfying (2), it does not permit to describe this class
of functions in an explicit way, and Ritt concluded his paper saying “we think that
the example given above makes it conceivable that no great order may reign in
this class”. Notice also that the Ritt method uses some chains of transformations
involving both functions X and B. By this reason, it provides an information rather
about pairs of commuting functions than about the set CB for a given function B.
In particular, if B is not special, that is if B is neither a Lattès map, nor conjugate
to z�n or �Tn, then essentially all the information about CB provided by the Ritt
method reduces to the fact that any element of CB has a common iterate with B.

Functional equation (1) is a particular case of the functional equation

(4) A �X � X �B,

where A and B are rational functions of degree at least two. In case if (4) is
satisfied for some rational function X of degree at least two, the function B is
called semiconjugate to the function A. Semiconjugate rational functions were
investigated in the recent papers [5], [7], [9], [10], [11]. In particular, it was shown
in [5] that solutions of (4) satisfying CpX,Bq � Cpzq, called primitive, can be
described in terms of group actions on CP1 or C, implying strong restrictions on a
possible form of A, B and X.

Any solution of (4) can be reduced to a primitive one by a simple iterative
process. Namely, by the Lüroth theorem, the field CpX,Bq is generated by some
rational function W . Thus, if a solution A,X,B of (4) is not primitive, then there
exists a rational function W of degree greater than one such that CpX,Bq � CpW q
and the equalities

(5) X � X 1 �W, B � B1 �W

hold for some rational functions X 1 and B1. Substituting these expressions in (4) we
see that the triple A,X 1,W �B1 is another solution of (4). This new solution is not
necessary primitive. Nevertheless, degX 1   degX. Therefore, after a finite number
of similar transformations we will arrive to a primitive solution. The considered
transformations

(6) X Ñ X 1, B ÑW �B1

are clear analogues of the “transformations of the first type” used by Ritt, which
transform commuting functions X and B satisfying (5) to commuting functions
W � X 1 and W � B1. However, transformations (6) have certain advantages since
they do not affect the function A, and the corresponding iterative process always
stops after a finite number of steps. Moreover, it was shown in [11] that for a fixed
non-special rational function B the number of required steps in order to reach a
primitive solution can be somehow “controlled”, implying some finiteness results
for solutions of equations (1) and (4).

Specifically, regarding to equation (1), it was shown in [11] that if B is not
special, then there exist finitely many rational functions X1, X2, . . . , Xn such that
X commutes with B if and only if

X � Xj �B
�k

for some j, 1 ¤ j ¤ r, and k ¥ 0. Moreover, r and the degrees of Xj , 1 ¤ j ¤ r,
can be bounded by numbers depending on degB only. This result immediately
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implies the Ritt theorem in its part concerning non-special functions. Indeed, if X
commutes with B, then any iterate X�l, l ¥ 1, does. Thus, by the Dirichlet box
principle, there exist distinct l1, l2 such that

X�l1 � Xj �B
�k1 , X�l2 � Xj �B

�k2

for the same j and some k1, k2 ¥ 0. Therefore, if, say, l2 ¡ l1, then

X�l2 � X�l1 �B�k2�k1 ,

implying that (2) holds for l � l2 � l1 and k � k2 � k1, since X and B commute.
The main results of this paper are following. First, for any non-special rational

function B we introduce the structure of a finite group on the quotient of CB by a
certain equivalence relation. Second, we describe generators of this group in terms
of the fundamental group of a special graph associated with B, providing a method
for describing CB . Finally, we calculate GB for several classes of rational functions.
Notice that our method of describing CB reduces the problem to the following two
easier problems: finding all functional decompositions F � U �V of a given rational
function F into a composition of rational functions U and V of degree at least two,
and finding all Möbius transformations commuting with F .

In more details, for a non-special rational function B we define an equivalence
relation �

B
on the set CB , setting A1 �

B
A2 if

A1 �B
�l1 � A2 �B

�l2

for some l1 ¥ 0, l2 ¥ 0, and show that the multiplication of classes induced by the
functional composition of their representatives provides CB{ �

B
with the structure

of a finite group GB . The existence of the group structure on CB{ �
B

offers a new

look at the problem of describing CB , and permits to describe properties of CB in
group theoretic terms. For example, the statement that the group GB is trivial is
equivalent to the statement that for a given rational function B any element of CB

is an iterate of B.
We describe generators of GB using a special finite graph ΓB defined as follows.

Let B be a rational function. A rational function pB is called an elementary trans-
formation of B if there exist rational functions U and V such that B � V � U

and pB � U � V . We will say that rational functions B and A are equivalent and
write A � B if there exists a chain of elementary transformations between B and
A (this equivalence relation should not be confused with the previous one where
the subscript B is used). Since for any Möbius transformation µ the equality

B � pB � µ�1q � µ

holds, the equivalence class rBs of a rational function B is a union of conjugacy
classes. Moreover, by the result of [7], the equivalence class rBs consists of finitely
many conjugacy classes, unless B is a flexible Lattès map. The graph ΓB is defined
as a multigraph whose vertices are in a one-to-one correspondence with some fixed
representatives Bi of conjugacy classes in rBs, and whose multiple edges connecting
the vertices corresponding to Bi to Bj are in a one-to-one correspondence with
solutions of the system

Bi � V � U, Bj � U � V
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in rational functions. In these terms, the main result of the paper about the group
GB is a construction of a group epimorphism from the fundamental group of the
graph ΓB to the group GB .

The paper is organized as follows. In the second section we describe the set CB

in terms of elementary transformations. In the third section we define the group
GB . In the fourth and the fifth sections we define the graph ΓB and construct a
group epimorphism from π1pΓBq to ΓB . We also show that if A � B, then the
groups GA and GB are isomorphic.

In the sixth section we calculate the group GB for certain classes of rational
functions, and consider some examples. Specifically, we show that for a wide class
of rational functions which we call generically decomposable the group GB is iso-
morphic to the group of Möbius transformations commuting with B, implying that
X P CB if and only if X � µ � B�l, where µ is such a transformation and l ¥ 0.
We also show that for a polynomial B the group GB is metacyclic. Finally, we
discuss in details the example of commuting rational functions B and X satisfying
condition (2) from the paper of Ritt [14]. In particular, we calculate the group GB

which turns out to be a cyclic group of order three. We also provide a different
example of this kind.

2. The set CB and elementary transformations

Let B be a rational function of degree at least two. Denote by CB the set of all
rational functions commuting with B.

Lemma 2.1. The set CB is closed with respect to the operation of composition,
that is A1, A2 P CB implies A1 �A2 P CB. Furthermore, if A�U P CB and U P CB ,
then A P CB.

Proof. Indeed, if A1, A2 P CB , then

A1 �A2 �B � A1 �B �A2 � B �A1 �A2.

On the other hand, if

B � pA � Uq � pA � Uq �B

and U P CB , then

B �A � U � A � U �B � A �B � U,

implying that

B �A � A �B. l

Stress out that we allow to elements of CB to have degree one, that is to be
Möbius transformations. All Möbius transformations commuting with B obviously
form a group denoted by AutpBq and called the symmetry group of B. Since any
µ P AutpBq maps periodic points of B of order l ¥ 1 to themselves, and any Möbius
transformation is defined by its values at any three points, the symmetry group of
any rational function is finite. In particular, AutpBq is one of the five well known
finite rotation groups of the sphere: A4, S4, A5, Cn, D2n. Notice that the property
of µ P AutpBq to map periodic points of B to periodic points can be used for a
practical description of AutpBq.

For any decomposition B � V � U, where U and V are rational functions, the

rational function pB � U � V is called an elementary transformation of B. Ratio-
nal functions B and A are called equivalent if there exists a chain of elementary
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transformations between B and A. Since for any Möbius transformation µ the
equality

B � pB � µ�1q � µ

holds, the equivalence class rBs of a rational function B is a union of conjugacy
classes. Thus, the relation � can be considered as a weaker form of the classical
conjugacy relation. An equivalence class rBs contains infinitely many conjugacy
classes if and only if B is a flexible Lattès map (see [7]).

The following lemma is obtained by a direct calculation (see [10], Lemma 3.1).

Lemma 2.2. Let

(7) L : B Ñ B1 Ñ B2 Ñ � � � Ñ Bs

be a sequence of elementary transformations, and Ui, Vi, 1 ¤ i ¤ s, rational func-
tions such that

B � V1 � U1, Bi � Ui � Vi, 1 ¤ i ¤ s,

and

Ui � Vi � Vi�1 � Ui�1, 1 ¤ i ¤ s� 1.

Then the functions

(8) U � Us � Us�1 � � � � � U1, V � V1 � � � � � Vs�1 � Vs

make the diagram

CP1 B
ÝÝÝÝÑ CP1

U

���
���U

CP1 BsÝÝÝÝÑ CP1

V

���
���V

CP1 B
ÝÝÝÝÑ CP1,

commutative and satisfy the equalities

V � U � B�s, U � V � B�s
s . l

It follows from Lemma 2.2, that any sequence of elementary transformation (7)
such that Bs � B gives rise to a rational function U commuting with B, and the
main result of this section states that for non-special B any element of CB can be
obtained in this way.

We will need a technical result concerning solutions of the functional equation

(9) A � C � D �B

in rational functions. Say that a solution A,C,D,B of (9) is good if the algebraic
curve

Apxq �Dpyq � 0

is irreducible and the functions B and C satisfy the condition

CpB,Cq � Cpzq.
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If degA � degB, then any one of the above conditions implies the other one (see
[5], Lemma 2.1). Therefore, a solution A,X,B of (4) is primitive if and only if the
corresponding solution A,X,X,B of (9) is good.

The following result (see [11], Theorem 2.17, and [12], Theorem 2.10) states that
“gluing together” two commutative diagrams corresponding to good solutions of
(9) we obtain again a good solution of (9) (see the diagram below).

CP1 B
ÝÝÝÝÑ CP1 W

ÝÝÝÝÑ CP1

���C

���D

��� V

CP1 A
ÝÝÝÝÑ CP1 U

ÝÝÝÝÑ CP1 .

Theorem 2.3. Assume that A,C,D,B and U,D, V,W are good solutions of (9).
Then U �A, C, V, W �B is also a good solution of (9). �

Theorem 2.3 obviously implies the following corollary.

Corollary 2.4. Let A,X,B be a primitive solution of (4). Then for any l ¥ 1 the
triple A�l, X,B�l is also a primitive solution of (4). �

The following theorem provides a description of the set CB in terms of elementary
transformations.

Theorem 2.5. Let B be a non-special rational function of degree at least two.
Then a rational function X belongs to CB if and only if there exists a sequence of
elementary transformation (7) such that Bs � B and X � Us � Us�1 � � � � � U1.

Proof. The sufficiency follows from Lemma 2.2. In the other direction, assume that
X P CB . If X is a Möbius transformation, then the chain

B � pB � µ�1q � µÑ µ � pB � µ�1q � B

is as required. Assume now that degX ¥ 2. Considering the quadruple B,X,X,B
as a solution of equation (9), and using the iterative process described in the intro-
duction, we can construct a sequence (7) and a commutative diagram

CP1 B
ÝÝÝÝÑ CP1

U

���
���U

CP1 BsÝÝÝÝÑ CP1

X0

���
���X0

CP1 B
ÝÝÝÝÑ CP1,

such that U is defined by (8), the equality

X � X0 � U

holds, and the triple B,X0, Bs is a primitive solution of (4). In order to prove the
theorem we only must show that degX0 � 1. Indeed, in this case changing Us to
X0 � Us and Bs to X�1

0 � Bs �X0, without loss of generality we may assume that
X0 � z, so that Bs � B and (7) is the sequence required.

Assume in contrary that degX0 ¡ 1. By Corollary 2.4, for any l ¥ 1 the triple
B�l, X0, B

�l
s is a good solution of (4). On the other hand, by the Ritt theorem,
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there exist k and l such that X�k � B�l. Thus,

B�l � X�k � X0 � pU �X�k�1q,

implying that the curve

pU �X�k�1qpxq � y � 0

is a component of the curve

B�lpxq �X0pyq � 0.

Moreover, this component is proper because degX0 ¡ 1. Since this contradicts to
the fact that B�l, X0, B

�l
s is a good solution of (4), we conclude that degX0 � 1. �

3. The group GB

Define an equivalence relation �
B

on the set CB , setting A1 �
B
A2 if

(10) A1 �B
�l1 � A2 �B

�l2

for some l1 ¥ 0, l2 ¥ 0 (in order to distinguish this relation with the relation �
introduced in the previous section we use the subscript B). It is easy to see that
�
B

is really an equivalence relation. Indeed, �
B

is clearly reflexive and symmetric.

Furthermore, if equalities (10) and

A2 �B
�n1 � A3 �B

�n2

hold, and n1 ¥ l2, then

A1 �B
�pl1�n1�l2q � A2 �B

�n1 � A3 �B
�n2 ,

implying that A1 �
B
A3. Similarly, if l2 ¥ n1, then

A3 �B
�pn2�l2�n1q � A2 �B

�l2 � A1 �B
�n1 .

Lemma 3.1. Let A be an equivalence class of �
B

. For any n ¥ 1 the class A

contains at most one rational function of degree n. Furthermore, if A0 P A is a
function of minimal possible degree, then any A P A has the form A � A0 � B

�l,
l ¥ 1. Alternatively, the function A0 can be described as a unique function in A
which is not a rational function in B.

Proof. If degA1 � degA2 in (10), then l1 � l2, implying that A1 � A2. Further-
more, if

(11) A �B�l1 � A0 �B
�l2

and l1 ¡ l2, then

A0 � A �B�pl1�l2q,

implying that degA   degA0 in contradiction with the assumption. Therefore,
l1 ¤ l2 and

A � A0 �B
�pl2�l1q.

Finally, A0 is not a rational function in B, since if A0 � A1�B, then A1 commutes
with B by Lemma 2.1, implying that A1 �

B
A0 with degA1   degA0. On the other

hand, if two functions A and A0 in the class A are not a rational functions in B,
then (11) implies that l1 � l2 and A � A0. �
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For a rational function B denote by GB the set of equivalence classes of �
B
.

Define a binary operation on the set GB as follows. If A1 and A2 are equivalence
classes of �

B
, and A1 P A1 and A2 P A2 are their representatives, then A1 � A2

is defined as the equivalence class containing A1 � A2. It is easy to see that this
operation is well-defined. Indeed, assume that A1 �

B
A1

1 and A2 �
B
A1

2. Then

A1 �B
�l1 � A1

1 �B
�l11

and

A2 �B
�l2 � A1

2 �B
�l12 ,

implying that

(12) A1 �B
�l1 �A2 �B

�l2 � A1
1 �B

�l11 �A1
2 �B

�l12 .

In turn, since A1, A2 P CB , equality (12) implies that

A1 �A2 �B
�pl1�l2q � A1

1 �A
1
2 �B

�pl11�l12q,

and hence

A1 �A2 �
B
A1

1 �A
1
2.

Theorem 3.2. The set GB equipped with the operation � is a finite group.

Proof. By definition, if Ai P Ai, 1 ¤ i ¤ 3, then pA1 �A2q �A3 and A1 � pA2 �A3q are
classes containing the functions pA1 �A2q �A3 and A1 � pA2 �A3q correspondingly.
On the other hand,

pA1 �A2q �A3 � A1 � pA2 �A3q,

since � is an associative operation on the set of rational functions. Therefore, the
classes pA1 �A2q �A3 and A1 � pA2 �A3q coincide, and hence the operation � satisfies
the associative axiom.

Further, the class E containing the function z and consisting of all iterates of B
obviously serves as the unit element. Moreover, for any class X there exists a class
X�1 such that

(13) X �X�1 � X�1 �X � E.

Indeed, by Theorem 2.5, for any X P X there exists a sequence of elementary
transformation (7) such that

X � Us � Us�1 � � � � � U1,

and, by Lemma 2.2, the functions X and

Y � Vs � Vs�1 � � � � � V1

satisfy

(14) X � Y � Y �X � B�s.

Since (14) implies by Lemma 2.1 that Y P CB , we see that defining X�1 as the
class containing the rational function Y we satisfy (13).

Finally, by the result of the paper [11] cited in the introduction, there exist at
most finitely many rational functions A P CB which are not rational functions in
B, implying by Lemma 3.1 that the group GB is finite. �



COMMUTING RATIONAL FUNCTIONS REVISITED 9

Notice that the above proof provides a method for actual finding X�1. On the
other hand, merely the existence of the inverse element follows from the Ritt theo-
rem. Indeed, since for any X P X there exist n ¥ 1 and m ¥ 1 such that

X�n � B�m,

for any class X there exists n such that Xn � e, implying that (13) holds for
X�1 � Xn�1. Notice also that the Ritt theorem by itself does not imply that the
group GB is finite, although implies that any its element has finite order.

For X P CB we will denote by X the element of GB corresponding to the
equivalence class of �

B
containing X.

Lemma 3.3. The map µ Ñ µ is a group monomorphism from the group AutpBq
to the group GB .

Proof. Since functions from AutpBq have degree one, it follows from Lemma 3.1
that µ1 � µ2 if and only if µ1 � µ2. Therefore, the map τ : µ Ñ µ is injective,
and it is easy to see that τ is a homomorphism of groups. �

We will denote the image of AutpBq under the group monomorphism µÑ µ by
AutGpBq.

Lemma 3.4. The following conditions are equivalent.

1) Any X P CB has the form X � µ �B�l for some µ P AutpBq and l ¥ 0.
2) Any X P CB of degree at least two is a rational function in B.
3) The group GB coincides with AutGpBq.

Proof. It is easy to see that 1) and 3) are equivalent, and that 1) implies 2). Assume
now that 2) holds, and let X P CB be a function of degree at least two. By the
assumption, X � R1�B for some R P Cpzq. Since R1 P CB by Lemma 2.1, using this
assumption again we conclude that either R1 P AutpBq, or there exists R2 P Cpzq
such that R1 � R2 �B and R2 P CB . It is clear that continuing this process we will
eventually obtain a representation X � µ �Bl for some µ P AutpBq and l ¥ 0. �

4. The graph ΓB

Let B be a rational function of degree at least two. Define ΓB as a multigraph
whose vertices are in a one-to-one correspondence with some fixed representatives of
conjugacy classes in rBs, and whose multiple edges connecting vertices correspond-
ing to representatives Bi to Bj are in a one-to-one correspondence with solutions
of the system

(15) Bi � V � U, Bj � U � V

in rational functions. Stress out that ΓB may have loops. They correspond to
solutions of the equations

Bi � U � V � V � U.

Lemma 4.1. The graph ΓB does not depend on a choice of representatives of
conjugacy classes in rBs.
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Proof. Indeed, for any Möbius transformations α and β, to any solution U, V of
system (15) corresponds a solution U 1, V 1 of the system

(16) α �Bi � α
�1 � V 1 � U 1, β �Bj � β

�1 � U 1 � V 1,

defined by the formulas

(17) U 1 � β � U � α�1, V 1 � α � V � β�1.

Furthermore, it is easy to see that formulas (17) provide a one-to-one correspon-
dence between solutions of (15) and (16). �

Theorem 4.2. Let B a rational function of degree at least two. Then the graph
ΓB is finite, unless B is a flexible Lattès map.

Proof. By the main result of the paper [7], the class rBs contains infinitely many
conjugacy classes if and only if B is a flexible Lattès map. Therefore, if B is not
such a map, the graph ΓB contains only finitely many vertices. Let us show now
that the number of edges connecting two vertices is finite.

Recall that two decompositions

(18) B � V � U, B � V 1 � U 1

of a rational function B into compositions of rational functions are called equivalent
if there exists a Möbius transformation µ such that

(19) V 1 � V � µ�1, U 1 � µ � U.

It is well known that equivalence classes of decompositions of B are in one-to-one
correspondence with imprimitivity systems of the monodromy group MonpBq of
B. In particular, there exists at most finitely many such classes. This implies that
in order to prove the finiteness of the number of edges adjacent to the vertices
corresponding to Bi and Bj it is enough to show that for any fixed solution U, V of
(15) there exist only finitely many solutions U 1, V 1 of (15) such that decompositions
(18) are equivalent. Since equalities (19) combined with the equality

U � V � U 1 � V 1

imply the equality
U � V � µ � U � V � µ�1,

the last statement follows from the finiteness of the group AutpU � V q. �
Since in this paper we consider non-special rational functions B, the correspond-

ing graphs ΓB are always finite by Theorem 4.2. Notice that the results of [11]
imply that the number of vertices of ΓB can be bounded by a number depending
on B only (see Remark 5.2 in [11]). Nevertheless, there exists no absolute bound
for a number of vertices of ΓB , and it is easy to construct rational functions B of
degree n for which the graph ΓB contains � log2 n vertices (see [5], p. 1241).

We always will assume that the representative of the conjugacy class of the
function B in ΓB is the function B itself. Abusing notation, below we will call the
functions Bj simply “vertices” of ΓB . Notice that for each vertex Bj of ΓB there
exists at least one loop starting and ending at B which corresponds to the solution

(20) B � B � z � z �B

of (15). More generally, the solutions

(21) B � pµ�1 �Bq � µ � µ � pµ�1 �Bq, µ P AutpBq,

give rise to |AutpBq| loops.
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Example 1. Assume that B is an indecomposable rational function, that is such a
function that the equality B � V � U implies that at least one of the functions U
and V has degree one. In this case the equivalence class rBs obviously consists of
a unique conjugacy class. Thus, ΓB has a unique vertex, and all edges of ΓB are
loops corresponding to solutions

(22) B � U � V � V � U.

Moreover, since B is indecomposable, for any solution U , V of (22) one of the
functions U , V has degree one. Assuming without loss of generality that degU � 1,
we see that

U�1 �B � V � B � U�1,

implying that U P AutpBq. Therefore, ΓB has the form shown on Fig. 1 with the

B

Figure 1

number of loops equal |AutpBq|.

Example 2. Assume now that a rational function B has, up to equivalency (19),
a unique decomposition B � V � U into a composition of rational functions of
degree at least two, and that the same is true for the function B1 � U � V . In
this case graph ΓB may have two distinct forms. Namely, if B1 and B are not
conjugate, then ΓB has the form shown on Fig. 2, where all loops correspond to

B
1B

Figure 2

some automorphisms. Notice that under considered conditions the groups AutpBq
and AutpB1q are isomorphic (see Lemma 6.3 below), implying that the number of
loops attached to B and B1 is the same.

On the other hand, if B1 is conjugate to B, that is if

U � V � α�1 � V � U � α,

then the graph ΓB has only one vertex, and considering instead of the functions U
and V the functions U � α and V � α�1 � V , we can assume that

B � V � U � U � V.

By the assumption, the decompositions B � V � U and B � U � V are equivalent,
that is

(23) U � V � µ, V � µ�1 � U,

where µ is a Möbius transformation, implying that

(24) V � µ�1 � U � µ�1 � V � µ.
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Since (24) implies that µ P AutpV q, it follows now from (23) that

(25) B � µ � V �2, µ P AutpV q.

Notice that (25) implies that µ P AutpBq. Thus, ΓB has |AutpBq| loops correspond-
ing to decompositions (21) and one additional loop corresponding to the decompo-
sition

B � V � pV � µq � pV � µq � V.

Example 3. Set

B � �
2z2

z4 � 1
� �

2

z2 � 1
z2

.

The function B is an invariant for the finite automorphism group of CP1 generated
by the transformations

z Ñ
1

z
, z Ñ �z,

and its monodromy group MonpBq is the Klein four group Z{2Z � Z{2Z having
three proper imprimitivity systems. Corresponding decompositions of B are:

B � �
2

z2 � 2
�
z2 � 1

z
, B � �

2

z2 � 2
�
z2 � 1

z
,

and

(26) B �
z2 � 1

z2 � 1
�
z2 � 1

z2 � 1
.

Using for example the “Maple” system, one can check that the function

B1 �
z2 � 1

z
� �

2

z2 � 2
� �

1

2

z4 � 4 z2 � 8

z2 � 2

has three critical values in CP1, and the corresponding permutations in MonpB1q
are p12qp34q, p1243q, and p14q. On the other hand, the function

B2 �
z2 � 1

z
� �

2

z2 � 2
�

1

2

z2
�
z2 � 4

�
z2 � 2

has four critical values, and the corresponding permutations in MonpB2q are the
permutations p12qp34q, p23q, p12qp34q, p14q. Since B1 and B2 have a different num-
ber of critical values, they are not conjugate. Furthermore, it is easy to see that the
both groups MonpB1q and MonpB2q have a unique proper imprimitivity system
t1, 4u, t2, 3u, implying in particular that B is not conjugate to B1 or B2. Finally,
one can check by a direct calculations, solving the system

az � b

cz � d
�B � B �

az � b

cz � d

in a, b, c, d, that the functions B, B1, B2 have no automorphisms. Summing up, we
conclude that the graph ΓB has the form shown on Fig. 3.
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B
1

B
2

B

Figure 3

5. The epimorphism π1pΓBq Ñ GB

The graph ΓB was defined above as a purely combinatorial object. We can
however consider it as a one-dimensional CW complex in R3. In this case we can
provide each edge of ΓB , including loops, with two opposite orientations. With
each oriented edge e of ΓB we associate a rational function Fpeq as follows. Assume
first that e corresponds to solution (15) with different Bi and Bj . Then we set
Fpeq � U , if the initial point of e is Bi and the final point is Bj , and Fpeq � V , if
the orientation is opposite. In case if e is a loop, we simply chose and fix, once of
all, Fpeq equal U for one of the two corresponding oriented edges, and Fpeq equal
V for the opposite oriented edge. For each oriented path

l � enen�1 . . . e1

set

Fplq � Fpenq � Fpen�1q � � � � � Fpe1q.

Clearly, this definition implies that if

l � l2l1

is a path obtained by a concatenation of the paths l1 and l2, then

(27) Fplq � Fpl2q � Fpl1q.

Us usual, we will denote by l�1 the path l traversed in the opposite direction.

Lemma 5.1. Let l be an oriented path in ΓB from a vertex Bi1 to a vertex Bi2

consisting of k oriented edges. Then

(28) Bi2 � Fplq � Fplq �Bi1 ,

and

(29) Fpl�1q � Fplq � B�k
i1 , Fplq � Fpl�1q � B�k

i2 .

Proof. Since any oriented path l corresponds to a sequence of elementary transfor-
mations, the lemma follows from Lemma 2.2. �

If l is a closed path in ΓB starting and ending at B, then (28) implies that the
function Fplq commutes with B, while equalities (29) reduce to the equalities

(30) Fpl�1q � Fplq � Fplq � Fpl�1q � B�k.

Thus, we obtain a map ϕB : l Ñ Fplq from the set of closed paths starting and
ending at B to the set CB .
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Theorem 5.2. The map ϕB : l Ñ Fplq descends to an epimorphism of groups
ΦB : π1pΓB , Bq Ñ GB .

Proof. Recall that an oriented path l in a graph Γ is called reduced if no two
successive oriented edges in l are opposite orientations of the same edge. Paths of
the form e�1e, where e is an oriented edge are called spurs. Paths l and l1 are called
equivalent if l1 is obtained from l by a finite number of insertions and removals of
spurs between successive oriented edges or at the endpoints. In these terms the
fundamental group of a graph Γ can be defined as the set of equivalence classes
of paths which begin and end at some vertex of Γ, equipped with the product of
classes defined in an obvious way (see e.g. Section 2.1.6 of [15]).

In order to show that the map ϕB descends to a map from π1pΓB , Bq to CB{ �
B
,

we must show that whenever closed paths l and l1 in ΓB which start and end at
B are equivalent, the rational functions Fplq and Fpl1q are in the same equivalence
class of CB . Since any path is equivalent to its reduced form, it is enough to show
that if l1 is obtained from l by an insertion of a spur, then Fplq �

B
Fpl1q. Assume

that
l1 � l2e

�1el1,

where l1 is a path from B to Bi, and l2 is a path from Bi to B (one of the paths
l1 and l2 can be empty in which case Bi � B). Then

Fpl1q � Fpl2q �B
�2
i � Fpl1q,

by (27) and (30). It follows now from (28) that

Fpl1q � Fpl2q � Fpl1q �B
�2 � Fplq �B�2,

implying that Fplq �
B
Fpl1q.

The above shows that the map ϕB descends to a map ΦB : π1pΓB , Bq Ñ GB ,
and (27) implies that ΦB is a homomorphism of groups. Finally, it follows from
Theorem 2.5 that ΦB is an epimorphism. Indeed, by Theorem 2.5 any X P CB

can be obtained from a chain of elementary transformations (7). Moreover, we
can change if necessary each of Bi, 1 ¤ i ¤ s, to any desired representative of its
conjugacy class, consecutively changing Ui to αi � Ui, 1 ¤ i ¤ s, for a convenient
Möbius transformation αi. Since elementary transformations Bi1 Ñ Bi2 correspond
to edges of GB adjacent to Bi1 and Bi2 , this implies that for any X P CB there
exists a closed path l starting and ending at B such that Fplq � X. �

Theorem 5.3. Let A and B be equivalent rational functions. Then GB � GA.

Proof. Assuming that A and B are vertices of ΓB , take a path s from A to B in ΓB .
Since the map ψ : l Ñ s�1ls, from the set of closed paths starting and ending at
B to the set of closed paths starting and ending at A, descends to an isomorphism
of the fundamental groups

Ψ : π1pΓB , Bq Ñ π1pΓB , Aq,

it follows from Theorem 5.2 that we only must prove the equality

(31) ΨpKer ΦAq � Ker ΦB .

Let l0 be a path starting and ending at B such that Fpl0q � B�k, k ¥ 1, and let
k0 � ψpl0q. Then

Fpk0q � Fps�1q � Fpl0q � Fpsq � Fps�1q �B�k � Fpsq,
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implying by (28) and (29) that

Fpk0q � Fps�1q � Fpsq �A�k � A�l �A�k � A�k�l

for some k, l ¥ 1. This implies that

ΨpKer ΦAq � Ker ΦB .

Similarly, considering the isomorphism inverse to Ψ we obtain that

Ψ�1pKer ΦBq � Ker ΦA.

This proves equality (31). �

6. Examples of groups GB

6.1. Functions with GB � AutGpBq. The simplest application of Theorem 5.2 is
the following result.

Theorem 6.1. Let B be an indecomposable non-special rational function of degree
at least two. Then GB � AutGpBq. Equivalently, X P CB if and only if X � µ �Bl

for some µ P AutpBq and l ¥ 1.

Proof. Since ΓB has a unique vertex and |AutpBq| loops corresponding to automor-
phisms of B (see Example 1 in Section 4), it follows from Theorem 5.2 that GB is
generated by µ, where µ P AutpBq. This proves that GB � AutpBq. The second
statement follows from Lemma 3.4. �

Notice that since a “random” rational function B is indecomposable and has
no automorphisms, Theorem 6.1 shows that for such a function the group GB is
trivial.

Theorem 6.1 can be extended to a wide class of decomposable rational functions.
Recall that a functional decomposition

(32) B � Ur � Ur�1 � � � � � U1

of a rational function is called maximal if all U1, U2, . . . , Ur are indecomposable
and of degree greater than one. The number r is called the length of the maximal
decomposition (32). Two decompositions (maximal or not) having an equal number
of terms

F � Fr � Fr�1 � � � � � F1 and F � Gr �Gr�1 � � � � �G1

are called equivalent if either r � 1 and F1 � G1, or r ¥ 2 and there exist rational
functions µi, 1 ¤ i ¤ r � 1, of degree 1 such that

Fr � Gr � µr�1, Fi � µ�1
i �Gi � µi�1, 1   i   r, and F1 � µ�1

1 �G1.

We say that a rational function B having a maximal decomposition (32) is gener-
ically decomposable if the following conditions are satisfied:

 Each of the functions

Bi � pUi � � � � � U2 � U1q � pUr � Ur�1 � � � � � Ui�1q, 0 ¤ i ¤ r � 1,

has a unique equivalence class of maximal decompositions,
 The functions Bi, 0 ¤ k ¤ r � 1, are pairwise not conjugate.



16 F. PAKOVICH

B
1

B
2

B

Figure 4

For a graph ΓB define Γ0
B as a graph obtained from ΓB by removing all loops which

correspond to automorphisms. For example, for the graph ΓB from Example 3 the
graph Γ0

B is shown on Fig. 4. Recall that a complete graph is a graph in which
every pair of distinct vertices is connected by a unique edge. The complete graph
on n vertices is denoted by Kn.

Lemma 6.2. Assume that a non-special rational function B having a maximal
decomposition of length r is generically decomposable. Then Γ0

B is the complete
graph Kr.

Proof. Let (32) be a maximal decomposition of B. Since all the functions Bi,
0 ¤ i ¤ r � 1, are equivalent and pairwise not conjugate, the graph ΓB contains
at least r vertices. Observe now that any decomposition B � V � U of B into a
composition of two rational functions of degree at least two has the form

(33) V � pUr�Ur�1�� � ��Ui�1q�µ, U � µ�1�pUi�� � ��U2�U1q, 0 ¤ i ¤ r�1,

where µ is a Möbius transformation. Indeed, concatenating arbitrary maximal
decompositions of U and V we must obtain a maximal decomposition equivalent to
(32), implying that (33) holds. Therefore, any edge in ΓB adjacent to B0 � B and
not corresponding to an automorphism of B is adjacent to one of the vertices Bi,
1 ¤ k ¤ r�1, and there exists exactly one edge connecting B0 and Bi, 1 ¤ k ¤ r�1.
Since the same argument holds for any Bi, 0 ¤ k ¤ r � 1, we conclude that Γ0

B is
the complete graph Kr. �

Lemma 6.3. Assume that a non-special rational function B is generically decom-
posable, and let l be an oriented path from a vertex Bi1 to a vertex Bi2 in ΓB. Then
for any µ P AutpBi1q there exists αpµq P AutpBi2q such that

(34) Fplq � µ � αpµq � Fplq.

Furthermore, the map

(35) µÑ αpµq

is an isomorphism of the groups AutpBi1q and AutpBi2q. In particular, to each
vertex of ΓB is attached the same number of loops.

Proof. In view of formula (27) it is enough to prove the lemma for the case where
l is an oriented edge. If l is a loop, then by Lemma 6.2 it corresponds to a solution
of (15) of the form

Bi1 � pµ�1
0 �Bi1q � µ0 � µ0 � pµ

�1
0 �Bi1q, µ0 P AutpBi1q.
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Thus, either Fplq � µ0 or Fplq � µ�1
0 �Bi1 , and it is easy to see that in these cases

equalities (34) and (35) hold for the automorphisms

µÑ µ0 � µ � µ
�1
0 , µÑ µ�1

0 � µ � µ0,

correspondingly.
Assume now that l is an oriented edge from a vertex Bi1 � V � U to a different

vertex Bi2 � U � V. Clearly, for any µ P AutpBi1q the equality

(36) Bi1 � pµ�1 � V q � pU � µq

holds. Moreover, the decompositions Bi1 � V �U and (36) are equivalent, since for
arbitrary maximal decompositions of U and V the induced maximal decompositions
of Bi1 are equivalent. Therefore, for any µ P AutpBi1q there exists a Möbius
transformation α � αpµq such that

µ�1 � V � V � αpµq�1, U � µ � αpµq � U.

Furthermore, it is easy to see that (35) is a group homomorphism from AutpBi1q
to AutpBi2q.

Finally, if
ν Ñ βpνq

is a homomorphism from AutpBi2q to AutpBi1q, defined by the conditions

ν�1 � U � U � βpνq�1, V � ν � βpνq � V,

then
V � U � µ � V � αpµq � U � βpαpµqq � V � U.

Since
V � U � µ � µ � V � U,

this implies that β � α is the identical mapping of AutpBi1q, and hence (35) is an
isomorphism. �

Theorem 6.4. Let B be a non-special generically decomposable rational function.
Then GB � AutGpBq. Equivalently, X P CB if and only if X � µ � Bl for some
µ P AutpBq and l ¥ 1.

Proof. Let (32) be a maximal decomposition of B. For convenience, define rational
functions Ui for i ¥ r setting Ui � Ui1 , where i � i1 mod r. Since any decomposition
B � V � U , where U and V are functions of degree at least two, has the form (33)
and a similar statement holds for all Bi, 0 ¤ i ¤ r, for the oriented edge e from Bi1

to Bi2 the equality
Fpeq � Ui2 � � � � � Ui1�2 � Ui1�1

holds, implying by (27) that for an arbitrary path l from Bi1 to Bi2 the equality

Fplq � Ui2 � � � � � Ui1�2 � Ui1�1 �B
�k
i1

holds for some k ¥ 1. In particular, if l is a closed path starting and ending at
B and containing no loops, then Fplq � B�k, k ¥ 1, implying that the image of l
under the homomorphism ΦB from Theorem 5.2 is the unit element. Further, if l
contains a loop, then either

Fplq � Ukr � � � � � Ui�1 � ν � Ui � � � � � U1,

or
Fplq � Ukr � � � � � Ui�1 � pν

�1 �Biq � Ui � � � � � U1
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for some ν P AutpBiq and k, i ¥ 1, implying by Lemma 6.3 and Lemma 5.1 that
either

Fplq � µ �B�k,

or
Fplq � µ �B�k�1

for some µ P AutpBq. Finally, if l contains several loops, then repeatedly using
Lemma 6.3 and Lemma 28 we conclude that

Fplq � µ �B�l

for some µ P AutpBq and l ¥ 1. Thus, GB � AutGpBq. �

Corollary 6.5. Let B be a non-special rational function of degree at least two such
that GB is strictly bigger than AutGpBq. Then there exists A � B such that either
A can be represented as composition of two commuting functions of degree at least
two, or A has more than one class of maximal decompositions.

Proof. Let (32) be a maximal decomposition of B. Clearly, we only must show
that the conditions of the corollary imply the second condition defining generically
decomposable rational functions. Assume in contrary that say B0 is conjugate to
Br. This means that there exists a Möbius transformation µ such that

pUr � � � � � Ui�1q � pUi � � � � � U1q � µ � pUi � � � � � U1q � pUr � � � � � Ui�1q � µ
�1.

However, in this case for the functions

L � µ � pUi � � � � � U1q, M � pUr � � � � � Ui�1q � µ
�1

the equality

(37) B �M �N � N �M

holds, in contradiction with the assumption. �

Notice that whenever B is a composition of two commuting functions of degree
at least two, the group GB is strictly bigger than AutGpBq. Indeed, equality (37)
implies that the functions N and M belong to CB . Moreover, their images in GB

are not trivial, since degM   degB and degN   degB. On the other hand, these
images do not belong to AutGpBq, since 1   degM and 1   degN . In particular,
if B � T �s, where s ¡ 1, the group GB contains a cyclic group of order s whose
intersection with AutpBq is trivial.

Notice also that the group GB can be strictly bigger than AutGpBq even if B is
not a composition of commuting functions, and that the relation A � B does not
imply in general the equality AutGpAq � AutGpBq (see Subsection 6.3).

6.2. The group GB for polynomial B. Before stating the theorem describing
groups GB for polynomial B let us recall several results. First, for a non-special
polynomial B of degree at least two, the set CB consists of polynomials. Indeed,
(1) yields that

(38) B�1pX�1t8uq � X�1t8u,

implying easily that either X�1t8u � t8u, or X�1t8u � t8, au, a P C. In the
first case X is a polynomial. On the other hand, in the second case, considering
instead of B and X the commuting functions

X Ñ µ �X � µ�1, B Ñ µ�1 �B � µ,
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where µ � z � a, one can assume that X�1t8u � t8, 0u. However, this implies by
(38) that B is conjugate to zn, in contradiction with the assumption that B is not
special.

Second, the symmetry group AutpBq of a polynomial B of degree at least two
is cyclic. Indeed, for any µ P AutpBq the condition µ�1t8u � t8u still holds,
implying that µ � az�b. By conjugation, we always can assume that the coefficient
of zdegB�1 is zero, and it easy to see that µ � az � b may commute with such B
only if b � 0. Therefore, AutpBq is a cyclic rotation group. Furthermore, it is easy
to see that AutpBq is generated by the rotation

α : z Ñ εz,

where ε is a primitive nth root of unity, if and only if

B � zRpznq

for some polynomial R which is not a polynomial in zl for l ¥ 2.
Third, a polynomial B is a special function if and only if B is conjugate to zn

or �Tn, since it is well known that a polynomial B cannot be a Lattès map.
Finally, we will need the following result (see [8], Theorem 1.3).

Theorem 6.6. Let A and B be fixed non-special polynomials of degree at least two,
and let EpA,Bq be the set of all polynomials X such that A � X � X � B. Then,
either EpA,Bq is empty, or there exists X0 P EpA,Bq such that a polynomial X

belongs to EpA,Bq if and only if X � pA � X0 for some polynomial pA commuting
with A. �

Recall that a group G is called metacyclic if it has a normal cyclic subgroup H
such that G{H is a cyclic group.

Theorem 6.7. Let B be a polynomial of degree at least two not conjugate to zn or
�Tn, n ¥ 2. Then the group GB is a metacyclic.

Proof. Applying Theorem 6.6 for A � B and arguing as in Lemma 3.4, we conclude
that any rational function which belongs to CB � EpB,Bq has the form X � µ�X�l

0 ,
where µ P AutpBq and l ¥ 1.

Let µ P AutpBq. Since the function X l
0 � µ, l ¥ 1, belongs to CB , the equality

µ1 �X l
0 � X l

0 � µ, l ¥ 1,

holds for some µ1 P AutpBq, implying that

AutGB �X l
0 �X

l
0 �AutGB, l ¥ 1.

Thus, AutGpBq is a normal subgroup in GB . Furthermore, it is clear that GB is
generated by AutGpBq and X0. Thus, any coset of AutGpBq in G has the form

X l
0AutGpBq, l ¥ 1,

and hence the group GB{AutGpBq is cyclic. Since AutpBq is also a cyclic group,
this proves that GB is a metacyclic. �

Notice that Theorem 6.7 can be deduced from the Ritt theorem ([14], [13]) saying
that any commuting non-special polynomials X and B can be represented in the
form (3). Nevertheless, the Ritt theorem does not implies Theorem 6.7 immediately,
since R in (3) depends on X, and the further analysis is needed.
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6.3. The group GB for the Ritt example. Let B be a rational function of degree

at least two. Denote by yAutpBq the group consisting of Möbius transformations µ
such that

B � µ � ν �B

for some Möbius transformations ν. Like the group AutpBq, the group yAutpBq is a
finite rotation group of the sphere (see [11], Section 4). More generally, denote by
pCB the set of rational functions X such that

B �X � Y �B

for some rational function Y. Clearly, AutpBq is a subgroup yAutpBq, and CB � pCB .
Let

V �
z2 � 2

z � 1
, U �

z2 � 4

z � 1
, µ � εz,

where ε3 � 1. In the paper [14], Ritt showed that the rational functions

B � V � U, X � V � µ � U

commute but no one of them is a rational function of the other. In particular, this
implies that there is no R such that

(39) B � µ1 �R
�l1 , X � µ2 �R

�l2

for some Möbius transformations µ1, µ2 and l1, l2 ¥ 1. Ritt also observed that start-
ing from this example one can construct infinitely many similar examples taking
instead of B and X the functions

B1 � V � C � U, X 1 � V � C � µ � U,

where C is any function of the form C � zRpz3q, R P Cpzq.

The Ritt statement follows from the following more general observation.

Lemma 6.8. Let W P CU�V but W R pCV . Then the functions V �U and V �W �U
commute but the latter is not a rational function of the former. Furthermore, the
same conclusion holds for the functions V � C � U and V �W � C � U, where C is
any function commuting with W .

Proof. Indeed, we have:

pV � C � Uq � pV �W � C � Uq � V � C � pU � V �W q � C � U �

� pV � C �W � Uq � pV � C � Uq � pV �W � C � Uq � pV � C � Uq.

On the other hand, if

V �W � C � U � R � V � C � U

for some rational function R, then

V �W � R � V,

in contradiction with the assumption that W R pCV . �

The Ritt statement is obtained from Lemma 6.8 for W � µ. Really,

U � V �
z
�
z3 � 8

�
pz3 � 1q

,
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implying that µ P AutpU � V q. On the other hand, the assumption that

(40) V � µ � ν � V

for some Möbius transformation ν leads to a contradiction. Indeed, (40) implies
that νp8q � 8. Therefore, ν � az � b, a, b P C, and hence if (40) holds, then the
functions V and

V � µ �
ε2z2 � 2

εz � 1
have the same set of poles. However, this is not true.

Let us calculate the group GB . Using again a computer assistance one can check
that the function

B � V � U �
z4 � 6 z2 � 4 z � 18

pz2 � z � 5q pz � 1q

has four critical values and the corresponding permutations in MonpBq are p13q,
p12qp34q, p13q, p12qp34q, while the function

A � U � V �
z
�
z3 � 8

�
pz3 � 1q

has three critical values and the corresponding permutations inMonpAq are p12qp34q,
p13qp24q, p14qp23q. In particular, A and B are not conjugate since they have a dif-
ferent number of critical values. Moreover, one can check that the group AutpBq is
trivial while AutpB1q � Z{3Z.

It is easy to see that MonpBq has a unique imprimitivity system t1, 3u, t2, 4u,
corresponding to the decomposition B � V � U while MonpAq has three imprimi-
tivity systems

t1, 3u, t2, 4u, t1, 2u, t3, 4u, t1, 4u, t2, 3u.

corresponding to to the decompositions

B1 � U � V, B1 � pµ�1 � Uq � pV � µq, B1 � pµ�2 � Uq � pV � µ2q.

Summing up, we see that the graph ΓB has the form shown on Fig. 5, where the

B
1B

Figure 5

edges connecting B and B1 correspond to the solutions

B � pV � µi�1q � pµ�pi�1q � Uq, B1 � pµ�pi�1q � Uq � pV � µi�1q, 1 ¤ i ¤ 3,

of system (15), the loops attached to B1 correspond to the solutions

B1 � pµ�pi�1q �B1q � µ
i�1 � µi�1 � pµ�pi�1q �B1q, 1 ¤ i ¤ 3,

and the loop attached to B corresponds to the solution (20).
The fundamental group of ΓB can be easily calculated by the well known method

using the spanning tree (see e. g. [15], Section 4.1.2). Namely, choosing a fixed
orientation on each of edges of ΓB as it is shown on Fig. 6, and considering the
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B
1B

l
1

l
2

l
3

e
1

e
2

e
3c

Figure 6

edge l1 together with vertices B and B1 as the spanning tree, we see that π1pΓB , Bq
is a free group of rank 6 generated by the paths

c, l1l
�1
i , 2 ¤ i ¤ 3, l1ej l

�1
1 , 1 ¤ j ¤ 3,

implying that the group GB is generated by images of these paths under the map
ΦB . Assuming that

Fpcq � z, Fpeiq � µi�1, 1 ¤ i ¤ 3,

we obtain

Fpl1l
�1
i q � V � µi�1 � U, 2 ¤ i ¤ 3, Fpl1ej l

�1
1 q � V � µj�1 � U, 1 ¤ j ¤ 3,

implying that the images of the functions

(41) g0 � z, g1 � V � µ � U, g2 � V � µ2 � U

under the map ΦB generate the group GB . Since

(42) deg g1 � deg g2 � degB,

and

g1 � B, g2 � B, g1 � g2,

it follows from Lemma 3.1 that g1, g2, g3 represent different classes in CB{ �
B

, so

that GB has at least three elements. On the other hand, since

g�21 � g2 �B, g�31 � B�3,

the group GB contains at most three elements. Therefore, GB � Z{3Z.
In turn, the set CB can be described as follows: X P CB if and only if either

X � B�j , j ¥ 0,

or

X � V � µ � U �B�j , j ¥ 0,

or

X � V � µ2 � U �B�j , j ¥ 0.

Indeed, by Lemma 3.1, it is enough to check that functions (41) are not rational
functions in B. Assume say that g1 � R �B. Then it follows from (42) that R is a
Möbius transformation, implying by Lemma 2.1 that R P AutpBq. However, since
AutpBq is trivial and g1 � B, this is impossible.

Notice that since GB � GB1
by Theorem 5.3, and AutGpB1q is a cyclic group of

order three,

GB1
� AutGpB1q � Z{3Z.

Notice also that since GB � GB1
, the equality AutpB1q � Z{3Z by itself already

implies that the group GB is non-trivial, even though B has no automorphisms.
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6.4. Group GB for B � �2z2{pz4 � 1q. Since equality (26) implies that the
function

(43) W �
z2 � 1

z2 � 1

commutes with B, the group GB clearly contains a cyclic group of order two gener-
ated by W . Moreover, it is easy to see that in fact GB � Z{2Z. Indeed, providing
edges of the graph ΓB with orientations shown on Fig. 7, we see that π1pΓB , Bq is

B
1

B
2

B

l
1

l
2

c t

e
1

e
2

Figure 7

a free group of rank 4 with generators

c, t, l�1
i eili, i � 1, 2.

Assuming now that

Fpcq � Fpe1q � Fpe2q � z, Fptq �W,

we see that GB is generated by the W .
Notice that switching from the function B to the function B1 (or B2) we can

observe the same phenomena as in the Ritt example. Namely, since GB � GB1 ,
the group GB1

is also a cyclic group of order two, and using the graph ΓB1
one can

show that GB1
is generated by the ΦB-image of the function

X � Fpl1tl
�1
1 q �

z2 � 1

z
�
z2 � 1

z2 � 1
� �

2

z2 � 2
�

16
�
z2 � 2

�2
pz4 � 4 z2 � 8q z2 pz2 � 4q

(notice that the inclusion X P CB also follows from Lemma 6.8 for

V �
z2 � 1

z
, U � �

2

z2 � 2
,

and W defined by (43)).
On the other hand, the function X is not a rational function in B, implying

that B and X cannot be represented in the form (39). Indeed, by Lemma 6.8, it is
enough to show that there exists no rational function R such that

(44)
z2 � 1

z
�
z2 � 1

z2 � 1
� R �

z2 � 1

z
.

Assume the inverse and let S be the rational function defined by any of the sides
of equality (44). Then substituting z by 1

z in the right side of (44) we obtain that

S � 1
z � S. However, substituting z by 1

z in the left side we obtain

S �
1

z
�
z2 � 1

z
� �

z2 � 1

z2 � 1
� �S.
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The contradiction obtained shows that (44) is impossible.

Acknowledgments. The author is grateful to the Max-Planck-Institut fuer Math-
ematik for the hospitality and the support.

References

1. A. Eremenko, Some functional equations connected with the iteration of rational functions,

Leningrad Math. J. 1 (1990), 905-919.
2. A. Eremenko, Invariant curves and semiconjugacies of rational functions, Fundamenta Math.,

219, 3 (2012) 263-270.
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