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Moduli of Hyper-K&hlerian Algebraic Manifolds

Andrey N. Todorov

Introduction

It is a well known fact that if X is a compact complex

simply connected Kihler manifold with c1(X) = 0, then
X = nxjxnyi

where a) for each j dim Ho(xj,ﬁz) = 1 and if wj is a
non-zero holomorphic two form on Xj , and’ at each point
x:exj wj is a non-degenerate, i.e. if wle = Z(mj)aﬁ élzcﬁxdz'B

then det((wj)aB)EIF(U,Oﬁ). Such manifold we will call Hyper-

Kdhlerian.

b) for each i and@d 0KXp <dimmyi= n dim HO(YiIQp) =0
and dim Ho(yi,nn) = 1 and Ho(yi,ﬂn) is spanned by a holomorphic

n-form which has no-zeroes and no-poles.

This fact is due to Calabi and Bogomolov. See [ 3]. an
elegant proof based on Yau's solution of Calabi conjecture was

given by M.L. Michelson. See [/6].

The purpose of this article is to study the moduli space

of the so0 called marked algebraic Hyper-Kdhlerian manifolds.

Definition. A tripple (x,r1,...,yb ;L) will be called a
2

marked algebraic Hyper-Kdhlerian manifold if X is a Hyper-



Kihlexrian manifold, YqreeeeYy is a basis of HZ(X,Z)

2
and L 1s the imaginary part as a class of cohomology of

Hodge metric on X.

In this érticle we prove that the moduli space of
marked algebraic Hyper-Kihlerain manifolds exists. This is
proved in § 2. More over we have an universal family of
marked algebraic Hyper-Kihlerain manifolds

XL T My )

The construction of the moduli space follows Burns and

Rapoport. See [ 1.

We have the so called period map:

2
M — X,2) o T
B Ly gr e Tyy) P(H"(X,2) o L)

where

Plt) = (ooerf  w(2,00,...) e P(H%(X,X) o )
i

where wt(z,O) is the unique up to a constant holomorphic
two~-form on xt =.*”1(t). From Bogomolov's result, that there
are no oobstructions to deformations and local Torelli theorem

we get that the irreducible component is a

H(L?Y-‘l-'-eyb )

non-singular manifold and aim M ~§, where

R (L;Y1l---f')'b ’= b2
b, = dim H?(X,T). 2

From Griffith's theory of Variations of Hodge structure we
get that



. _ - 2
p.M(LiY1r--'rYb )y > SOO(Z,b2 3)/80(2) x SO(b2 3)~> 1P (H" (X,T))
2

is a local isomorphism.

In § 3 we prove Theorem 3. The period map

p:M(L;Y1’...’Yb ) — SOdZ,b2 - 3)/80(2)x SO(b2 - 3)

2
is an embedding.

Theorem 3 is a positive answer to the so called Torelli
problem, and is in some aspects a generalization of the
theorem of Piatezki-Shapiro and Shafarevich about the

K-3 surfaces. See [20].

In order to prove Theorem 3 we need to compactify partially

the family X;, —> M to a family

(L:Y1:---1Yb )

by addingzsingular Hyper—K&hlerian

X. —> M
XL (Liyqreeervy )
algebraic manifold %or which L 1is a very ample line bundle.

Next we prove that M is a Hausdorf space and

(Lr'Y-‘l--- r'sz)
p can be extended to a proper étale map

p:M(L;YT"_.'Yb ) — sq}2,b2—3)/so(2) xSO(b2~3)
2

But 800(2,b2~3)/80(2) XSO(b2~3) is a Siegel domain of
IV type so 500(2,b2~3)/80(2) XSO(b2~3) is a simply connected
manifold. From this fact and since p is a proper and
étale map we get that p is a one-to-one surjective map.
So we have proved both injectivity and surjectivity for

algebraic Hyper-Kdhlerian manifolds.



So the main step of the proof of Theorem 3 is the
partial compactification and this partial compactification
is based on the following theorem

Theorem 1. Suppose x*:x* — D* 1ig a family of non-singular

Hyper-Kdhlerian manifolds such that:

a) w*:X* - D has a trivial monodromy on Hz(xt,t)
b) x* ™Y x p*
+
D*
Then there exists a family w:y — D such that all its

fibres are non-singular Hyper-K#hlerian manifolds and

X* e X
+ +
D* &—> D

This theorem is proved in § 1 and the proof is based
on the existence of Calabi-Yau metric, i.e. Ricci flat
metrices on Hyper-~Kdhlerain manifolds. The.existence of
such metrics folléws from the Yau's solution of Calabi's
conjecture see [21]. More precisely the main point of the.
proof of Theorem 1 is based on the isometric deformations, which
is an application of the existence of Ricci-flat metric.
Theorem 1 gives an affirmative answer to a yroblem posed by
Griffiths. He called this problem "the filling in problem".
See [!l 1x[ /8] for counterexamples in case of surfaces of
general type. “heorem 1 is a generalization of some results
of Kulikov ([I51). See also [/9]. Our proof is entirely
different form that of Kulikov's since in my opinion the

method of Kulikov works only for K3 surfaces.



The first examples of Hyper—Kdhlerain manifolds of
dim 2 4 were constructed by Fujiki [I1]. These examples
were generalized by Beauville and Miyaoka. See [ 1 1.

It is not very difficult to prove by the method used
in the proof of Theorem.] the . surjectivity of the period map
for all Hyper-Kdhlerain manifold. This will be done in
another paper,

Recently O. Debarre constructed using the so called
elementary transformations -introduced by Mukai in
[I¥] two bimeromorphic but not biholomorphic
non algebraic Kd&hlerian manioflds. So the best we can hope
in case of Hyper-Kdhlerian non-algebraic manifolds is that
the Global Torelli theorem is true for bimeromorphic Hyper-—
Kdhlerian maniofalds, i.e. if X and X' have the same
periods, i.e., isometric Hodge structe on Hz(X,Z) and

HZ(X',I), then X and X' are bimeromorphic.

Part of this work was done during my stay in IAS in
Princeton and was supported by a NSF grant. It was finished
in Max-Planck~Institut in Bonn. The author expresses his
gratitude to both Institutes for the hospitality and

excellent conditions for work.



§0. SOME DEFINITIONS AND NOTATIONS

DEFINITION 0.1. Let X be a Kdhler compact manifold such that:

#

a) n1(x) 0, i.e. X 1is a simply connected manifold

2n

Lij

b) dim.X 7
c) aimgB°(x,0%) = 1 and let 0 # u,(2,0) €H°(X,2°) , then
wX(Z,O) is a non-degenerate holomorphic two form on X ,

which means that for each point x € X , there exists an open

neighborhood U of x and local coordinates z‘,...,zzn
such that:
2 ,
wx(Z,O) U Zwaﬁdz N
and detwas is a holomorpﬁic function in U without zeroes

and poles, i.e. det(wa | 3 ITU,OG) .

B
If a manifold X is & Kdhler one and fulfills a), b) and

c) then we will called it Hyper—K#hlerian manifold.

Examples of such manifolds are constructed in [/2] and
[11.

Some notations:

wx(k,O) will be a holomorphic k-form on X
Wy (0,kV = %;Ti,ﬁi + i.e. the autiholomorphick -forms on X
D - will be the unit disk, i.e. D = {te€|it] <1}

p* = pn{O} .

If v:Xx—>D 1isa family of manifolds, then X = v '(s) .



If g 1is a Riemannian metric on X by V we will denote
the Levi-Chevita connection on T*X , where TX 1is the
tangent bundle on X and T*X is the cotangent bundle.

By T*Xe€ , we will denote the complexified cotangent bundle.
v induces a covariant derivative on APT*X for any peEZ ,
this covariant derivative we will denote again by V

I (X,APT*) will Be the global sections of the bundle

APp*

If ¢@erT (X,Am(T*X o)), then locally:

= P q
® z- ®, .4z ©adz
p+g=m “p’ g
where Ap = (a1,...,ap) Bq = (81,...,Bq) are nmultiindexes
A o o B 8 B
dz P - dz"!A...AdZ P , dz Y - gz94...Ad2 q ' 21,“’2211 are

local wordinates.

If @€ I‘(X,APT*X) and dy = 0 , then by [p] we will denote

the class of cohomology that ¢ defines in 8P (X,R) .

§1. PROOF OF THEOREM 1.

*

Theorem 1. Let 7% : X*¥ —> D* be a family of non-singular

Hyper—Kidhlerian manifolds such that:
a) n* : X*¥ —> D* has a trivial monodromy on H, (X ,2) , i.e.

if T : Hz(xt,Z) — H2 (Xt,Z) is the monodromy operator, then

T = id .

b) x* o> PN

x D*

D*



Then there exists a family v :X -—> D such that:
a) w"1(0) is a non-singular Hyper-Kidhlerian manifold
(algebraic one)

b) x* &>

§1.1. Marked, polarized Hyper-Kihlerian manifolds and

their Hodge structures of weight two

DEFINITION 1.1.1. The tripple (X;Y1,...,Yb ;L) we will
2.
call a marked, polarized Hyper-Kéhlerain manifold if X |is

a Hyper—-Kihlerian manifold; Yt""’*b is a basis of
2

Hz(x,x) and L is the cohomology class of the imaginary

part of a Kihler metric on X , i.e. L = [g =] .

Remark. Notice that two marked polarized Hyper—-K#hlerian

manifolds (X;YT,;..,Y ;L) & (Y;u1,...,u ;LY)  are isomorphic

Py Py
iff there exists a bihomomorphic map ¢ : X —~> Y such that
a) @, (vy) = usie, ¢ Hy(X,X) —> H,(Y,X)

L;w* : HZ(Y,Z) —> HZ)X,I)

H

b) @*(L)

DEFINITION 1.1.2. Suppose that 7 : X —> 8§ is8 a family
of non-singular Hyper-K#hlerian manifolds and suppose that
the monodromy operator T induced by the action of w1(S)

on Hz(xt,x) is the identity operator. Now it is clear that



if we fix a basis Y.,,...,Y of H,(X, ,Z) , then since
1 b2 27t
the monodromy operator is the trivial one we get that for
every SE€S Y. ..o will be a basis in H,(X_,Z) . Now
1 b2 2'7s

we can define the period map:
2
p : 8 — P(H(X,T))
in the following manner:

p(s) = (....,fms(Z.O),....)
Yi
Now we want to see where the image of S 1lie in
P(HZ(X,E)) . So for that reason we will define a scalar
product in Hz(x,m) . where X is a marked polarized Hyper-

Kdhlerian manifold.

DEFINITION 1.1.3. The scalar product in ~H2(X,R) <,> is

defined as follows:
<wW,,W,> = [ W, AW AL™? | where ‘W.,,w, € H (X,R)
1772 x | 2 ! 1772 !
and L is the polarization class.

PROPOSITION 1.1.3.4. The scalar product < , > has signature

(3,b,-3) , where b, = dimRHZ(X,R)



-10~

Proof: HNote that
<L,L> = [,fn = yal{X) >0 , where vol (X} is the volume

of X. with respect to the metric (g %), where I[g ] = L.
af af

Next we will prove the following relations:

(1.1.4.) <wyg (2,0) ,wyg (2,0)>= 0
(1.1.5.) <wy (2,0) , 5y (2,01>> 0

(1.1.6) <wx(2,0),L> = Q

Notice that (1.1.4) and (1.1.6) follow from the definition of

<,> . In order to prove (1.1.5) we need the following lemma:

Lemma. If n is a primitive form of type’ (p,q}, then

(/=T)P~d (ptq) (ptg+1)

_ _ 2 2n-p~-qgq -
= G A

where * 1is the Hodge star operator. (For the proof see [ § 1)

From this lemma it follows that:

2
<wx(2,0),gx(2,0) = IX mx(Z,D)A *QK(Z,O) = || QX(Z,OHi >0
So (1.1.5.) is proved.

Let QX(Z,O) = Re ek(z,ﬂ) + 1 Im %K{Z,O), then from (1.1.4.)
and (1.1.5.) it follows that: <Re QKCZ,OD,Re Q‘(2,0)> = <Im ﬂk(z'ﬂ)'
1 2 =
Im o (2,0)> = Vil % (2,0))}j“>0 and <Re W (2,0)In wX~(2'0)> 0.50 we see

that L,Re qk(2,0), Im g{(z,ﬁ) are three orthonormal vectors in
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#2 (X,R) such that:
<L,L>> 0, <Re wX(Z,O),RemX(2,0)> = <Im wX(Z,O) ,Im wx(2,0)>>0

So we see that <,> has at least signature (3,b,-3). Now

since Hz(x R) = IR Re wx(z (0)+ RIm m (2,0) + RL + H1'1

(X, R}
where H| (X R) = {weH'" (X R) | <w,L>=0}, i.e. H (X R)
are the primitive (1.1) classes in Hz(X,]R) , we get that

<,> has signature (3 ,b -3) Indeed from the lemma used above
it follows that if w€ H (x R) 0 then <w,w> < 0. It is easy

to see that <wx(2,0),w > = 0 if wGH (x :IR)0

Q.E.D.

The scalar product (1.1.3) defines a nonsingular quadrics

Q in P(H2 (X,€)) in the following way:

(1.1.7.) Q def {ue P(HZ(X,E)) | <u,u>=0}
Let  be

def _
(1.1.8.) Q = {u€qQ | <u,u>>01}

Q is an open subset in Q. Let

(1.1.9.) QL) = {ue€ Q| <u,L>=0}

From (1.1.4.), {(1.1.5.) and {1.1.6.) and Griffith's

theory [ ] we obtain that if x + S 1is a family of marked
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polarized Hyper-K#hlerian manifolds, then p(S)c Q(L} ,

where p .is the period map.

Definition 1.1.10. R{L) we will call the period domain
of the polarized Hodge structure of weight two on Hyper-

Kdhlerian manifolds.
Remark 1.1.11. a) If L€ H%(X,%), then <,> is defined

over Z.

b) It is not difficult to see that:
Q{L) = Squ,b3~3)/0(1) x so(b2—3)

§ 1.2. Calabi-Yau metrics and isometric deformations of

Hyper~K&hlerian manifolds.

Definition 1.2.1. A Kdhler metric (gdﬁ) on a Hyper-Kihlerian

manifold will be called Calabi-Yau metric if
Ricci (g,g) = 39 log detl(g «B EO

The existence of Calabi-Yau metric follows from the
deep work of Yau [22]. Notice that in the polarization class of

L , there exists a unique Calabi-Yau metric 948 such that

(gaB—] = I,

Let us fix the Calabi-Yau metric 9B in L. This metric
induces covariant differenciation on Athf Xo ). We will
denote it by V .

Lemma 1.2.2. V wg(2,0) = V w,(0,2)=0
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Proof: The following formula is proved in [/4]:

Let ¢ be a form of type (p,q)

—

A B
® = 1/plgt L ¢, gdz P gz 4
p’' g

A = (311---1(1}?) ; B = (811---qu)

(1.1.2.1.) (El(p) = = - F g Vv ) —_
(a,,8) atg O a8 P B v

Y e, O

i=1 k=1 T,O ai:Bk m(a1I'-Olai_1lT1ai+1I-'OlapIB»ll"'IBk_‘]la

where o is the Laplace-Beltrami operator, REB'?O is the

curvature tensor, Rﬁv is the Ricci tensor and (gBa) = (95071.

In our case Rﬁv = 0 and wx(O,Z) is an anti-holomorphic

two-form, so we obtain:

= - Ba =
(1.2.2.2.) aw, (0,2) Bza Voguy (042) =0

On the other hand it is easy to see:

[
L}

Ba, = 5 _ ]
! igj B?qq VT 0y (0.2)) 45 (uy(0,2)) aet (g, D) 1/n1 =

¥ <$8wx(0,2),789x(0,2)>, where here <w,,w,> means,
)
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that <w1,m2> = fx w, A* w, (* is the Hodge star operator.)

SO we obtain that

) Hvs“k (0,2)”2 =0 - szx(o,z) 0.
B

Q.E.D.

Corollary 1.2.3. If mx(Z,O) = Re mx(Z,O) + i Imwx(z,c),

then

VRe wx(Z,O) £ Vim mx(Z,G): 0

(1.2.4) From the definition of a Kghler metric, it follows
that

Viilg g az®»az® ) = v(mm 9,3 = 0

Re wx(Z,O), Im thz,O) and Im(gagl define a three dimen-
sional subsapce Ex(L) in P(X,AzT*X). Notice that Ex(L)
congsists of two forms parallel with the respect to the connection
induced by the Calabi-~Yau metric (gug}. Since Re wy(2,0),

Im thz,O) are harmonic forms, we may consider Ex(L) as

a subspace in Hz(x,lu . We may suppose that <Remx(2,01,

Re mx(2,0)> = <Im mx(Z,O), Im gx(2,0)> = <Im gdﬁ’Im gd§> = 1.

On the other hand <Re qx(Z,O), Im “2(2'0)> = <Re gk(z,O),
Im(gu3)> = <Im wx(2,0),1m (gaF’> = 0. SO Re mx(Z,O), Im mx(Z,O)
and Im(gdg) is an orthonormal base in Ex(L) < P(X,AZT*)

with respect to the scalar product induced by 9B in A2T*.
Notice that this scalar product is the same as <,> defined

by (1.1.3).
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Let y = a Re wy(2,0) + b Im w(2,0) + ¢ Im (g 7),
2 2 2

where a,b,c€ R and a" + b" + ¢~ = 1. Since yEEx(L),
then
(*) Vy = 0

Locally Yy can be written in the following way

= B v
Y XYuv dx" A dx
If ) grvdXT o dx’ is the Riemannian Ricci flat
T,V

metric on X defined by the Calabi-Yau metric (g ) on X,

af
then we will define J(y) in the following manner

1.2.6. J{y) ET(X,T* ® T), where J(y)g =y gaTyTB
T

Clearly V(J(y)) = 0.

Lemma 1.2.7. a) J(y) defines a new integrable complex

structure on X

b) y is an imaginary part of a Calabi-Yau metric with
respect to the new complex struture J(y). The Calabi-Yau
metric defined by Yy and J(y) 1is equivalent as a Riemannian

metric to the Calabi-Yau metric gaF , that we started with.

Proof: Since VJI(y) = 0 if we prove that in one point =x€X
J(y) o J(y) = - id, then J(y) will define an almost complex
structure globally on X. Then we will need to show that this

complex struture is an integrable one.

So first we will prove that at one point x€X

J(y) ° J{y) = -id. First since uﬁéZ,O) is a parallel with



-16~-

respect to the connection induced by Calabi-Yau metric, it

follows that the holonomy group of the Calabi-Yau metric is
*

Sp(n). This means that globally we can find JE€T({X,T o T)

such that Vj = 0 and we have at each point x
1,0 n n,
'r*x:xan"sc + a4

This splitting is global. On the other hand the Calabi-Yau

1,0
xtir
metric on Tx,x

the standart scalar product on 7 , 8o from here it follows

= 5= R®+ ®"1i +R"§ + R°k is induced by

that we can find an orthonormal quaternionic base in

n

T*l:g=m“+ ¢y

h} = e: + .e1+nj, n = e

imaginary part of Calabi~Yau metric can be written in the

2+n n

Jreesht = @ 4 eznj. Then the

following way:

(*) Im(g-g)l 1011 e e
aB lpaly i=1
x,X
(**) and “’x(z'ml 1.0 " GJAeHn + e2/“252+n‘h”“‘u,\3211 -
T*
X.X
n
] etael®

Let us denote by I the original complex structure on
X. Notice that J(Im gdﬁ)‘ I. (See how we defined from Y
I{y)). Let us denote by J = J(Re wy (2,0)) and by
K= J(Im w,(2,0)). From (*) and (**) we see immediately that:
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(*hx) I“=3°=K=~-id, I3 + JI = IK + KI = JK+KJ=20

-

So remember that vy = a Re wX(Z,D) + bIm wx(z,O) + ¢l m(oag),

S0

I{y) = aJ + bK + cI , a2 + b2 + c2 = 1

So from (***) we get

2 2

'JoJa-bz

2

Ily) © I(y) =a KoK +.c2ToT = ~ (a2+b%#c?)id = -1d

So we have proved that I(y) defines an almost complex
structure on X. Next we must prove that the almost complex
structure J(y) is integrable. The proof is based on the

following fact:

Andreotti-Weil remark

Let w be a n-complex valued form in a neighborhood
U of a point x€X, where X is a n-dimensional real mani-

fold. Let w satisfies:

a) P(w) = 0 , where P are the Pliicker relation. This means
A = 1 ¥ i ¥*
that at each point =x€X mleX TA caeh zf’, z ETx,,X e @,

so0 w defines a subspace T;’Oc T; x @€ at each point XEV
L4

o _ 1 2n
b) WAW = f(x1,.,.,x2n) dx A..:\dx , where f(xw...,xén):» 0
1,0 1,0

+ T = T* X o @ in U.

in U. This means that T
X X,

c) dw = 0

Notice that a) and b) means that w defines an almost complex
struture in U. The condition ¢) means that this complex struture

is integrable.
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So in order to use Andreotti-Weil remark we need to
construct the form w , that satisfies a),b) and c). So
first we will constructa globally defined form. B (y) (2,0)
of type (2,0) with respect ot J(y) and then we will prove

that:

)(Zn,O) = )(2,0) Aeee )(2,0)

mJ(y A.J(y

L J
v

n—times

YTty

fulfills the conditions of Andreotti-Weil's remark.

Constructions of w;(.){2.0].

Let («,B,Y) be an orthonormal base of Ex(L)C:P(X,AzT*X)
with respect to the scalar product induced by Calabi-Yau metric
in P(X,AZT*X). We suppose that (a,B8,yY) define the same
orientation on E_(L) as (Re w (2,0),Im Qx(ZeO)s Imig x}).

def
(1.2.7.1) (2,0) = a + iB

“I(v)

Proposition (1.2.7.2.) }(2,0) = g+ iB is a form of

W
J(y
type  (2,0) with respect to the almost complex structure on

X defined by J(y).

Proof: Since both wJ(Y)(z,O) and J{y} are paraller with
respect to the connection V induced by Calabi-Yau metric
(gag) . we need to check that mJ‘Y)(Z,O) is a form of type
(2,0) at one point x with respect to J(y). We will define
an action of Sp(1) on T*X. Remember that the holonomy group
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of the Calabi-Yau metric (gaﬁ) was Sp(n), so we

a gquaternionie structure, i.e.

can introduce on T*
X,X

n

T™* =@ + € = W (H is the quaternionic field)

(gd§ is induced in H" by the standart quaternionic

1

2n,
scalar product, i.e. let h = el 4 en+1j,,,,, hD = e ; e<l

J

. . s . . n .
is a quaternionic orthonormal basis in ¥ , then the restric-

tion of Calabi-Yau's metric on T; X is obtained from the
14
following gquaternionic product in =", Let u = Z hlui
n . i=1
and v= ) h'v, , where v. € H , then
b i i
i=1
<u,v> = ) w, v, .

Now we can identify Sp(1) = {A€H| M =1} . Then

Sp(1) acts on ®H"  in the following way:

Let A€Sp(1) and let u =] hu, , then

au =] hlu,a , where sSp(1) = (A em| IAIZ = 1)

Clearly Sp(1)c<Sp(n); i.e. this action of Sp(1) preser-

ves the gquaternionic scalar product <u,v> =.Zuiﬁi .

The following remark is an easy exercise.

Remark 1. Sp(1) induces an action on A2T;,X and EX(L) c

= P(X,AZT*X) is invariant under this imduced action of Sp(1).
More over Sp(1) induces the standart S0O(3) action on EK(L)
with respect to the Euclidean metric on EX(L) induced by the

orthonormal basis (Re wx(2,0),Im wx(Z,O), Im(gag)). From Remark
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it follows immediately that there exists A€ Sp(1) «Sp(n)

such that:
(**) A{Re wx(Z,O) = a, A(Im wx(Z,O)) = B8, A(Im(gdg))= Y.
So Alw x(2,())) = wJ(Y)(2,0).

On the other hand from the definition of J(y) we see

immediately that

(*¥*%) Jly) = AIAt (A means a matrix and At = E

gsince A€ Sp(1) c Spin) «50(4n))

So from (**) and (***) we get that o {2,0) is a form of

J(y)
type (2,0) with respect to the almost complex structure J(y}.

2,0

This is so since if A is the subspace of (2,0) vectors

in Az(T;'x o ©) with respect to I and if Jl(y) = atat ,
then A(A%*%) is the (2,0) subspace of Asz;’xom) with
respect to J(y) = A1At.

Q.E.D.

Now we need to show that

wJ(Y,(Zn,O) = wJ(Y)(Z,O)A ...A.wJ(Y)(Z,D)

L J
v

n-times

fulfills the conditions a) .,b) and c) of Andreotti-Weil remark.

Condition a} is fulfilled since (2n,0) is a (2n,0) type

“7(y)
of form with respect to the almost complex structure operator

J(y) acting on X and dim, X = 4n

R
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b) It is easy to see that wJ(Y)(Zn,O)A>wJ(Y)(2n,O) = vol(gag)

at each point x€ X.

¢} From the definition of wJ(Y)(Z,O) it follows that
de(Y)(Z'O) = 0

So de(Y)(Zn,O)E 0.

Q.E.D.

Proof of (1.7.3.b): If y= quvdxpz\dxv , then v defines a

scalar product in T; in the following way: Let u = zuadxa

X

r
- B -

and y = Zdex , then <u,v>Y = ZuayaBuB

So if we prove that for each u€ T§ we have:
r

X

<J(Y)lu'U>Y >0

then we will have that <y 4is an imaginary part of a Kdhler
metric on X with respect to J(y) since dy = 0. So we

may suppose that at x€ X (gaE) = adﬁ , then:

o = - = -
J(Y)B = Yup'Yop Yao and YagYap 6ap

Now if u = Xuadxa , then

= = ¥ - =
Ty upu> = Ty uv e = Iy =y, )Y, 8,

_ _ o2
- Eua( Sapllp = zua> 0

The last calculation show that <y is an imaginary part of
a Kihler metric on X with respect to the complex structure

J{y) and this new K&hler metric is equivalent as Riemann



metric to the Calabi~Yau metric we started with.
Q.E.D.

Remark 1.2.8. Lemma 1.2.8 shows that every oriented two

2

plane Ec:Ex(L)C:F(x,A T*X) defines a new complex structure

on X. So we obtain a family Xx - S2 , where
SZ

2 defines an

= {y€E (L) | <y,y>=1} . Every point tE€S
oriented two plane EtczEx(L) in the following manner:

E = {Re w, (2,0),Im wt(Z,O)} . Notice the conjugate complex
structure on X_ defines the same Etc:Ex(L)' but with
different orientation, since E;Tffﬁ) is the holomorphic two-

form with respect to the conjugate complex structure and

mtIZ,OS = Re mt(Z,O) - iIm mt(2,0).
See also [71.

§ 1.3. Hilbert scheme of Hyper-Kihlerian manifolds

Let X be a projective Hyper-Kihlerian manifold embedded
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N

in P . Fubbini-Schtudy metric on P in a natural

way defines a class of polarization L. on X. Let us

denote by I’ﬁX/;pN » the component of thé Hilbert scheme
that contains X. Let Hilbx/Pﬂ be a subscheme of I:I-;‘:ib,x/}#\]
such that Hilbx/PN parametrizes .all non-singular Hyper-
K&hlerian manifolds in the family 'i"-'mx,:@N . Grothendieck
proved in SGA, that HilbX /BN is a guasi-projective algebraic
space.

def
Definition 1.3.1. r = {y€Aut HZ(X,:Z) | <y(w),y(u)> =

L
¥ <u,u>,y(L) = L}. Now we can define the period map
p:Hilb,x/PN -> Q(L) /PL . From the general Baily-Borel compacti-

fication theory, it follows that Q(r) /Ty is a quasi-projective

manifold.

Lemma 1.3.2. There exists an open Zariski set Hilb'x/:,PN <

def -
. e .

c Hile/IPN such that p(Hilb X/IPN) = w is an open Zariski

subset in Q(L)/T; and every point of W corresponds to the

algebraic ﬁypervKﬁhlerian manifold.

Proof: From the famous Hironaka's"resolution of singularity"

M

theorem it follows that we can compactify Hllbx /N < Hilb x /BN

in such a way that:

A
1) Hile/IPN is a projective manifold obtained from projective

manifold by successive blows up on non-singular submanifolds.

A
2) Hilbx/PN ~ Hilby,pN = D is a divisor with normal crossings

Borel proved in [ 51 that the period map:
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P : Hilby,on — R(L)/Ty

can be prolonged to a map:

A A
P ¢ Hilby,ny — BEI/T,

where Q(L)?PL is the Baily-Borel compactification of
Q(L)/PL. From Baily~Borel theory it follows that R(L)/PL
is a Zariski open set in Q(L}/T, , and QiLi?PL is a

projective algebraic variety.

A A
Proposition 1.3.2.1. The map p : Bilhx/]ﬁ; — QiL}?FL is

- a surjective map.

Proof: First we will recall some facts about local deformation
theory of Hyper-Kiéhlerian manifolds due to Bogomolov: The
Kuranishi space of any Hyper—~Kidhlerian manifold is a non-

1,1

singular manifold of dimension h = dimmH1{ﬂ1). See [ 4 1.

For trivial reasons the local Torelli theorem is true
for the period map defined in § 1.1. Beauville proved in
(4] that piu) lies in the open set of the guadric @ defined
by (1.1.7.) and (1.1.8.). So we may suppose that U 1is an
open set in Q. Let Uy be defined as follows a point tE€U iff L
is a class of type (1.1) in the Hyper-K#hlerian manifold X,
that corresponds to the point t. So UL = UI}HL + Where HL

is the hyperplane in r(uztx,w)) defined by:
H = {ue 1’(32 (x,@¢))| <u,1> = 0} .

So dimyU = n'? o1 = dim QL) /T, - On the other hand we

L
have a family [} . Now LtEtB1'1(xt,z) is a fix class so
L



-25-

from here we obtain a line bundle L on Xy, Now suppose

that le = Lt is a very ample line bundle, i.e. if
t

0 . ,
@greee1®y € H (Xt,Lt) and (cpo,...,npN) is a basis of

Ho (Xt,Lt) ; then wo, e ,cpN define an embedding

N
Xt P

By continuity argument we will get (that may be after shrink-

ing UL):

From the universal properties of Hilb-X/IPN it follows that

ULCHilb-X/]PN + so from here we get that

A A
dlmm p(Hlle/IPN) = dlmEQlLS/I‘L-

A A

Now since p 1is a projective morphism and so p is proper
A A

we get that p(Hilbx/PN) = mm/rL

QhEQD.

A A
Now since the map : p Hilb}(/}pN -» Q(L)/L is a proper
A A A
surjective map, then g(D) = p(Hilby L,y NHilby ,pN) = V is

a proper analytic subset in Q(L)/I‘L. Let
vin ((V n (@(L) /T~ (Q{L)/F)) and let W' = Q(L)/I‘L\ V. Clearly W

is a Zariski open subset in Q(L)./I‘L . Now let

Hilb! def

A1 .
11 have
x /N Hilbx./mu ~. -(Hilbx/mmﬂ p (V}) then we wi

p(Hilb'x/rn) = W
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so Bilb' is what we need.

x/®N
Q.E.D.

It was proved byBogomolov that Hilbx/lPN is a

non-singular manifold. [ 4]

§ 1.4. Proof of theorem 1
Since the monodromy operatoré
T:HZ (X, ,Z) — B (X, %)
. tl tl

is the identity operator, from theorem 9%.5. in [/3] it follows

that the period map:

p¥*:D* — Q(L) —> QL) /T

can be prolonged to a map

p:D — QL) —> Q(L)/T

Let p(0) = x EQ(L)/I‘L (0ED). Prom § 1.2. we know that

0

: A A

there exists a proper map p:ailbx /1PN — ﬂ(L)?l“L , where
A

Q(Li?i‘L is the Baily-Borel compactification and Hilb}‘I /PN

is obtained from the component of the Hilbert scheme Hilb, N

that econtains X by successive blows up along non-singu-
P N
iar submanifolds contained in Hilbx/yu \,Hilbx/mu.(ﬂilbx/n,n

is a non~singular manifold). So from Hironaka theorem it follows

that we can find in this way Hilbx/l,g such that:

A
a) Hilbx/n,u \Hilbﬂ'}m ii a div:sor with normal crossings
b) There exists a family x ~-» Hilbx/w and it is defined
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AN .
in the following way, let “~Hllbx/;[pN — Hllbx/IPN be
A A
the natural map obtained by blowing down, then ¥ —> Hilby /BN

A ™~ ,A i M . . .
is w* X-Hilb N - where X+ Hlle/IPN is the universal family.

X/

For each t€ p(D*) clearly p'-1

(t) consist of the
orbit of X, under the natural action of PGL(N) on
Hilbx /PN ¢ where icti corresponds to the Hyper-Kihlerian
manifoid Xti Gy g: and ti are all points in D* such

that p(ti) = te€p(D¥*) < Q(L)/I‘L . Suppose that

A
Hllbi

/YN > ®F

P

and D is a disk in p(D*) ¢ Q(L) such that Dy (the closure of

1
D,) contains x,, i.e. xOEI_)_;. From Hglbg/_pN s> pH =
there exists a plane P2 = P* such that it intersects the
orbits of the Hyper-Kdhlerian manifolds corresponding to. the
points in D, in Hilbx/le under the action of PGL(N)

transversally and I’2 intersects H:’leX /1PN c P* transver-
sally in a point g,€ I’I“1 (xG) . It is a standart fact that

2

A
such P exists. Let now DC:P2 n Hile/;pN , where g0€ D and

* ‘ . .
D\(JOTD CHile/PN . From the way we define D it follows
that

p:D & Q(L)/I‘L .

So from now on instead of the family

A
P xHilby pN
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we will consider the family obtained from =w:yx -+ D by
the pull back of the natural map D-+D induced from the
map Q(L)-*ﬂ(L)/FL. We will denote this new family again
by m:x + D. So we will suppose from now on that the

family w:X =+ D has the following properties:

*
1) x* -5 D* has trivial mondormy and it is a family
of marked non-singular Hyper-K#hlerian manifolds with a polari-

zatzion class L

2) x* S x &> PNxD

+ ¥
D*¥ %> D

3) p:D & (L) , i.e. p 1s an embedding:

From now on instead of the map p:Hilbk/nﬂq - Q) /ry

~S
we will consider the map p:Hilb& pN —> Q(L) , where

/

[t

Hilb%/PN is the universal convering of--Hilbk/nﬁ; . Since
vt

w1(Hilb§/nﬁq) = 0 then if we mark one fibre in the universal

family

il
x —> BHilby, N (For definition of Hilby ppN S€€ 1.3.2.)

then all the fibres will be marked and so the map

P

]
P‘Hilbx/PN -»  Q(L)
is correctly defined.

Let T R(L) - Q(L)/FL be the natural map and ,

V = Q(L)/T;N pHilby oN)  then v“1(v) will be an union

of countable irreducible analytic closed subspaces Ve
i = 0]1;.0.1“,... in L) (see ' 1.3). Now we
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may suppose that ;>D(0)€ 1—1(V), where P was the map

D
X* .

i : : . t that

obtain from the period map: ppy g*,/)*Q(L) Notice tha

if PD(O) ¢'T‘1(V), then theorem 1 follows immediately.

Let p, . (0)€EvV,, where V., is one of the components of
.D 0 0

-1 0

T (V). Let U
0

be an open polycilinder in Q(L) such that

0

U° intersects T~1(V) only on Vo and U > D¥*, Let

U = UO\(UOIIVO). So from the definition of U we get
that

D*¥ <« U, dimQU = dimmﬂ(L)

Lemma 1.4.1. There exists a family Xy > U of marked

polarized Hyper-Kihlerian manifolds over U (defined as

X* T X'U
above) and 4 . U is defined as above,.
D* &» U

Proof:1.4.1.Follows immediately from the existence of universal
family X, - M of marked polarized algebraic Hyper~-K&hlerian
manifolds and the fact that piM, —> QL) is an étale map,
i.e. p 1is a local isomorphism. The existence of Xy > ML

is proved in § 2. From these two facts and the construction

* Clop
X —> D* it follows that g L .
¥ Cp M
L

Now let {U;} Dbe a covering of U by polycilinders and
suppose that UiliD** # is a dis¥ in D¥*, It is easy to see
that such a covering exists (may be after we shrink} U). Now
from the fact that piM - (L) is a local isomorphism

and p(ML) = Q(L)\T'1(V) (this is proved in § 2) we obtain

families of marked polarized Hyper-Kihlerian manifolds:
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Xy —> Ui . Now clearly we can glue together these families

along D* and along Ui n Uj . S0 we will obtain the family

L
X v

-U > U'

QnE-D-

Now for every point t€ U we consider the isometric
deformation of X, = Tr"(; {t) with respect to the Calabi-
Yau metric corresponding tq the polarization class L. Let
us denote this family of isometric deformations by:

P(X) — P! (L) = 52
t t

Now let us consider all isometric deformations with
respect to Calabi-Yau metrics (ga-g(t)) corresponding in
X, for every t€U to ‘the fixed polarization class L. So

we will get a new family and we will denote it by:

P(XU) —» P (U}

Since as C“’-—family the family of isometric deformations is
Cw-diffeomorphic to P:—_ (L) x X for each tE€U, we see

that the family:
P(xU) -  P(U)

is a marked family and so the period map:

p:IP{(U) - Q

is a well defined map. For the definition of 1 see 1.1.8.
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Lemma 1.4.2. a) p:P(U) —> Q@ is an embedding, i.e.

P(U) = 0 .

b) dimmP(U) =dimmf2

Proof: The proof of lemma 1.4.2. is base on the following

two propositions:

1.4.3. There exists one to one map ¢ between the point

of  and all two dimensional oriented vector subspaces
Ec:HZ(X,IU such that <,>» (defined by 1.1.3.) when restric-
ted to E is positive, i.e. <u,u>>0 for W€ E.(The map ¢

is constructed in the following way; let x EQCZ?(Hz(X,Z) e @),
then x defines a line 2x c H2(X,Z) & €, let We be a non
zero vector in lx and let Wy, = Re w, + iIm w, then

pi{x) = Ex . Where Ex is the two plane in Hz(X,IU spanned

(Re @ o Im gx) and the orientation is defined by {Re wy,Im wy} )

Remark: From the definition of 2 it follows that if =x€¢ @ ,
then

<x,x> =0 <x,x>> 0

So from here we get that x#+ X and so if wXE;zx , then

Re wx4=0 and Im Wy # 0 , so ¢ 1is correctly defined. Indeed

from <wy,wyx> =0 & <wx,5i>>0 wo get that <Re wy,Re wy>=

=  <Im mx,Im mx>> 0 and <Re wx,Im Wy> = 0 and so <,>}

is strictly positive.

By

For the proof of 1.4.3. see [2{].
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X
Corollary 1.4.3.1. The period map p: }/,Q can be
]

defined in the following manner

plt) = {Re ©,(2,0),Im v (2,00} = E_= ¢  (p(t))

1.4.4., Proposition. Let E be a three dimensional subspace

on which <,> is strictly positive, then P(Ee £)NQ will

be a non-singular curve of degree two and moreover

P(Eo@)NQ =P(Ee € NQ , where Q= {u€ P(HZ(X,R)O x) | <u,u> =0}

and @ = {u€ Q| <u,u>>0} . For the proof of 1.4.4. see [2l] or [23]

£ plim .

Remark a) fromnowon P(Es C)NQ = P (Ee T)NQ de
If E = EX(L) we will denote by P):(L) = P(Ea C)NQ =
=P(EX(L) a C)nQ = PEaT)NQ .

1
t

with respect to the Calabi-Yau metric defined by L. We need

b) Let X-> ¥, (L) be the isometric deformation of Xt
to compute the image of the isometric deformation under the
period map. From the definition of the isometric deformation

we have the following facts:
2
a) Et(L) = {Re wt(Z,O),Im mt(Z,O),Im gaB—(t)} T (X,A7T*)
b) Et(L) is spanned by harmonic forms and so E, (L)< HZ(X,ZR)

c) Notice that <«,> > 0

|E, (1

We know that there is one to one map between the oriented
two planes in Et(L) and the complex structures in the
family of isometric deformation X —- :Pl(L) . S0 from here
and remark 1.4.3. it follows that there is one to one map ¢

between the oriented two planes in E, (L) c n? (X, R) and the points of
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P(E (L) o €) N Q = P(E (L) o C) N Q = PZ(L) < @ ., The fact that
p{®(U)) lies on Q@ follows from the fact that for each

t€U the scalar product <,> as in 1.1.3. on
*

ZTX ) coinside with the scalar product defined
£

by the Calabi-Yau metric on P(X,AZT*Xt) , Since

E, (L) P(xt,

n—2

*y = WAL and so <w1,w2>=fxw1A *w,

(see [ 1.)
Ontthe other hand * 1is defined by the Riemannian metrics

coming from Calabi~Yau metric and so since all the complex
structures are compatible with this fixed Riemannian metric

we get that p(P(U)) < Q.

Now from local Torelli theorem and the fact that
p:U > (L) and the definition of isometric deformation

we get immediately that:

p:P (U) & Q.

Proof of 1.4.2, b): This follows immediately from local

Torelli and the definition of isometric deformation.

Q.E.D.

The main lemma First we need some remarks.

Let p(0) = x€ Q(L),(0€ED). Since =x€Q(L), from 1.4.3.
it follows that x corresponds to a two dimensional subspace

EXC:HZ(X,Z) such that <,> > 0. From XE€ Q{(L)= <EX,L> = 0

|E
b3
and since <L,L >> 0 it follows that the 3-dim space EX(L) =

HZ(X,EU spanned by Ex & L. has the following property:
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<'>‘EX(L) > 0

From 1.4.4. we obtain that (P(EX(L) e T A QR = I_’; (L)

is a complex projective non-singular curve of degree two

in IP(EX(L) o @).

1.4.6. Main Lemma. Let x* — D* is the family with the
¥
properties that )D¥®s @(L) and 2) x* —> D* has a trivial

monodromy , let p:D -—> (L) be the extended period map

this extension exists by Griffith's theorem (see [/3])) , ]et
p(0) = X €Q(L}, then there exists a point Zg € U such that

1 1
P, (L) NP, (L) + 0

0 0

% o5 X
where U is defined as on p.2.4.41.4.1)} U

+
X D* S U S  Q(L)

where +U is a family of polarized marked Hyper-K&hlerian
U
manifolds and dimmU = dime(L).

Proof: The proof consists of two steps:

Step 1): If gOEP;
0

there exists a plane quadric P; (w) =Q such that:
0

(L) and ¥Xj# g4 + X, then we will prove that

a) P; (w)n U+¢ b) :l?1 (w) = ]?; (w) , remember that

0 99 0

Q CIP(Hz(x,Z) @ @), so the conjugation operator u — u is a

well defined operator.

1
The plane guadric I’g (#) 1is defined in the following way:
: 0
Let Eg be the two dimensional plane that corresponds to 95
o

given by 1.4.3. Let w € nz,(x,m) such that <w,w>>0
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and <w,Eg > =0 and let E_(w} be the three dimensional

0 90
subspace in HZ(X,:R) spanned by Eg and w ,then
0
2 () % pE (0 emna.
90 90

Step 2. Let ]P; (w)n U = zyU EO , then we will prove that

1 1 0 1
JPXO (L) n IPZ (L) # 9 , here again IP

0 _ZO(L) = 1P (EZQ(L) e €)N Q.

Proof of Step 1: First we will need some definitions. Let
9o € %2 (L) and 90 ¢ Q(L). From 1.4.3. follows that to
0
do there corresponds an oriented two dimensional plane
Eg < H2 (X, R) on which we have:
0
<,,>t > 0

E
90

H1'1(]R) dgf {ue HZ(X,IR) | <u,Eg > =0 }
0

90

Clearly dim‘;'1 (R) = b2 - 2 and <,»> has signature
0

(1,b2 - 3) on H1’1(:R) . Let

- go

def 1,1
V. (R) = {u€H '"(R) | <u,u>> 0}
90 90

Clearly since <,> on H;'1 (R) has a signature (1,}32 - 3},

0
then Vg (R) will be an open cone in H;’1 (R) and
0 0
+ —
v R) =V UV_ . Let
go( ) 9 90

def
By (w) = {three dim supspace in HZ(X,]R)!
0

spanned by E and w€ V_ (R} .
9o 9,
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From the definition of Eg (w) it follows that

0
<,> e >0
99 (w)
1.4.6.1. Let K (R) 9¢% (union of a1l ®' (u) in @ |
where u€ Vg (IR)}, then KgO(IR) is a real analytic subspace
0

in Q. This follows from the definition of Kg(]R) and the
0

interpretation of  as Grassmannian,.

1.4.6.2. Let: V_ (€) def {uEH;J(:R) o T |<u,T>> 0},
0 0
(dimmvgo(m) = dimmﬂ) Kgo(m) = {the union of all P;O(u) =
= :P(Eg )} N Q in Q , where Eg (u) is a three dimensional
0 0
subspace in H2(X,IR) ® I, spanned by Eg and u¢€ Vg ()} .
0 0
|E_ (V) >0 (if uE€ Vg0 {@)), it follows that
P (Eg {v)) nQO= P(Eg (v)) ngQ . is a projective plane
0 0
curve of degree 2.

Since «<,>

1.4.6.3. Proposition. Kg (C) N Q(L) contains an open set
0
WcQ(L).. such that UcW in Q(L). (U is defined on p. 24).

Proof: HL will be the hyperplane in IP(Hz(X,IR) a T)

defined in the following manner:

H = {ue® (B (X,R) e @) | <u,L> = 0}

Clearly H; N 2=Q(L). On the other hand since dimng (€) =
0
= dim B’ (X,0) - 2 = b, - 2 = dim @ = dimH' ' (X,0) we get

immediately that dimmK (€) = dim Q. Ff vEV, (R), then
99 T -0
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P; (v) = B! (v) in P(H(X,R) & )

0 90

1

and since H NP _ (V)3z; # § (remember that H_ is a hyper-

99 L
plane in I>(H2 (X,R) » ©) and ]P‘; (vl is a curve of degree
0
two on the plane P2 = P (Eg (v) o €) «cIP( H2 {(X,R) & @)}, so
0
we have that H_ N ]P1 (v) = #).
L go

1

Now let t € P(; (v) NH from the fact that 19g1 {(v) = P_ (V)

0 - 0 90
T(O) = Q(L) (since L€ H(X,R)PtUte 1>g1 (v) NH_ (£+ ). So we get
0
that if vE€ Vg (R) , then IP1g (v) intersects Q(L) transver-
0 0
. 1 _ 1 _ T = -
sally, since deg ]?go(v) =2 and HN ]PgG(v) = Q(L)n JPgG (%) ZOU %0

and zy# '&0 . Kg (R) intersects Q(L) transversally and since
0

transversality is an open condition, dimng((E) = dim Q@ and

KgO(R} CKgo (C) so we can find an open subset W< Q(L) such that
z5 € 33 (Mn QL) € teWek_ (T)n Q(L).
90 90

Q.E.D

dgf

1.4.5.4. Grass (3 ,b2 : R) {all oriented 3-dimensional sub-

spaces Ec:HZ(x,]R) on which < >1 > 0} .
E

1.4.6.5. Grass (3,b2;m) = {all oriented 3-dimensional sub~—

spaces Ec H? (X, R) ® @ such that if u€E, then <u,u>>0}.

1.4.6.6. Let T(E) =& , if EcH?(X,R) e €. Clearly T acts on

Grass (B,bz;(!:) and Grass (3,b2;m)" = Grass (3,b2;R) .

1.4.6.7. Let M = {all plane projective quadrics P;(u) , that
are contained in Q}. It is obvious that there exists an one-to-

one map between M and Grass (3,b2;¢).
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Suppose that 1.4.6. is not true, this means that

(1.4.6.10.) Kg (R) N Q(L) eV

0 0

Remember that V is a proper complex analytic closed

0
subspace in Q(L), (For the definition of V, see p. 24 ),

i.e. dlmmv

0< dlmGQ(L). Let

def 1
P(Vo) = {}Pg (u)c Kg

1
. 0((:) | rg (w)n vy ¢}

0

It is a standart fact that P(VO) is a proper closed

complex analytic subset in Grass (3,b2;m). (Use theory of

i

elimination and I’(VO) {all three dimensional subspaces

E in H2 {(X,R) &, such that ENnZ+ ¢, where Z 1is the cone
over VOCP(HZ(X,R) @ T} in HZ(X,E)). The same arguments show

that

def {(EcH2 (X, R) | B '1g spanned by E

PV (R)) dq

90

and v , where V€ Vg (R) }
0

is a real analytic proper subspace in M= Grass (3,b2;¢) .

Indeed P(VgO(IR)) = {(E€u?(X,R) e €)|E = E and E contains
the fixed two dimensional subspace Ego}. So from this de-
finition it is clear that IP(VgO(]R)) is a proper real analytic

subspace in Grass (3,h2;¢) .

Clearly that

(1.4.6.11) a) ®P(V_ (R)) = P (V_ (€))" , where
90 90

P(V, () = (EcH?(x,0)| dim_E =3,
99
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> 0 & E>E 1}
90

g
b) From the definition of IP(Vg {€))} it follows
0
that II?(Vg (€ )) is a complex analytic proper subspace in
0
Grass (3,b2;m), since .TP(Vg (€) ) ={ all three dimensional
0

subspaces in Hz(X,Z!R) ® C) |E> Eg }.
0

Now we will show that (1.4.6.11) contradicts (1.4.6.10).
From the definition of P(Vo} we get that ]P(Vo) is a proper

complex analytic subspace in IP(Vg (€)) . From (1.4.6.10.) it
0
follows that we have:

T = P(V_ (€
P(vgo(m)) IP(VgO(ZR)CIP(VO) cP( gO( }

Since P(Vo) is a complex analytic subspace {proper one) in

a complex analytic space P(Vg (C)) « Grass (3,b2;ﬂ:) we get
0
that localy P(Vo) is defined by

1

£.zY,...,2% = ... = fK(Z1,...,ZN) =0

1
where - f1,. ..,fN are complex analytic function in Grass (3,b2;ﬁ:) .

From P({(V_(R))cP (VO) cIP (V. (€)) and since
90 9

L]

(V. (R)) = B(V_ (€))"
99 0

g
we obtain that

1

Ht
o

£, (Re z',...,Re 2Y) = ... = f (Re 2',... ke 2)
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= T L. = = C .
on IP(VgO(ﬂI)), so f, f2 £, 50 on P(qu())

But this is a contradiction since ]P(Vc) is a proper sub-

space in y(vgo(m)) , L.e. dimmP(Vo) <dim¢]P(Vg (€)) . So

0
Step 1 is proved.

Q.E.D.

Proof of Step 2.

From step 1 = 3 V € Vg (IR) such that
0

Ig; (v n Q(L)c U (where U is defined on p.24)
0

Indeed we have proved, that Kg (IR) NnQ(L) is a real analytic
0
subspace and Ky(JR) na(L) not contained in Vo. Since

0

K_(IR) nQ(L)€ gy <U" open polycilinder in (L)) we get that

99

Kg (IR) NU # g , where U was UO\VO (see p. 24). So let
0

1 ~ o —
ngO(v) na(L) = zOU Zgr 20420 and zOGU .

Let g def {four dimensional subspace in 2 (X,IR) spanned

by E_ (L) and v}. Since E_ < E it follows that E, 1is
*0 90 0
contained in E. From the facts that

a) <,>! >0 , <,>

E (L)

2, IEXO(L) >0 and b) E, (L)NE, (L) =

“o 0
= Et < E it follows that
0

i) dimmEto = 2 since dimmExo(L) = EZO(L) = 3 and
E, (L) and E, (L) are contained in E; dim_ E =4
X ZO (5

ii) < >| > 0

0

Eg
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Now from 1.4.3. it follows that Et corresponds to
0

same point tO € 2. From the fact that there is one-
1w

0
and the oriented two planes in E (L) we get that

to-one correspondence between the points of P

E corresponds to a point . t,€ Ip! (L).
t0 0 X

Q.E.D,

1.4.7. Lemma. Let x.* — D¥* be a family of marked
polarized Hyper-Kihlerian manifolds and this family
fulfills the conditions 1),2) and 3) on p. 23, then

a) y* as ¢” manifold is diffeomorphic to

X x D', where X is a Hyper-Kdhlerian manifold

b) if ¥x* > X xD, then 1lim wt(Z,O) = w0(2,0} exists
: 0
and w0(2,0) is a complex non-degenerate form on X.

Proof: First we see that since «<,>» > 0, then S0G({3)

|Ey (L)
acts on Ex (L), From 1.4.6. it followsothat there exists

0
2, € U (as on p. 24) such that Ez (L) N E (L) = E. , where
0 4] X n

Q
dim Et = 2, or which is equivalent by 1.4.3., to the fact that
0 _ :
P (L) n ®! =t U T.. Now let A € sCc(3) such that A(E_ ) =
to X, )] 0 X

Next for each tED* we will define on Xt a new complex

structure xﬁ in the following way:

Let E (L) = {Re u (2,0),Im u (2,0),In (g z(t))} < T (X, A%T*),
where gag(t) was the Calabi-Yau metric that corresponds to L.
From § 1.2. we know that ({Re wt(Z,O),Im mt(2,0),Im(ga§(t)3}

is an orthonormal bais of Et(L). So an action of S0O{3) is

defined on Et(L). From § 1.2. we know that
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AE, def (2 Re w,(2,0) ,Aln w_(2,0)} € 50(3)

defines a new complex structure on Xt which we will

denote by Xf: ; Where

wP(2,0) = ARe w,(2,0) + iAIm w_(2,0)
S0 we get a new family:

A
* *
X — DA

From the definition of X* —» D* 1t follows that we have

XI*A (SN 1P0¢U) (For definition of I!P(XU) —» IP(U)
¥ + see p. )

*
DA <> (U}

Now since (U} <, JPL(L) c P(U) (for each t € D*, since
1 1

D*< U) and since I (L) NIP = t , where z,€ U, we get
zZ, X4 0 ]
. A
(*) lim mt(2;0) = Wy (2,0)
t-+0 0

Where w, (2,0} corresponds to some complex structure on
0

zt  isometric to Calabi~Yau metric on zo carresponding to
0

L. (Here 2, is the marked polarized Hyper-Kihlerian mani-

fold corresponding to the point zOEUc:ML)). So we proved that

the family

wh W
— DA
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can -be embedded in a family ;‘{A —> Dy where all the

fibres are non-singular hyper-Kihlerian manifolds. So

;ZA —> D, as ¢” manifold is diffeomorphic to Dx X,X

a Hyper—~Kidhlerian manifold. From here we obtain,that
X2 D¥x X

since x*A —> Di is the same C family as ¥* — D%,

This follows from the definition of isometric deformation.
Q'Eva

Proof of 1.4.7. b): From 1.4.6. it follows that there exists

a point t,€ IP; (L) such that t, = IP:{ (L) n-zp1z (L) where
0

0 0

zy, €Uy and so 2 is the image under the period map of a

0
marked Hyper-Kdhlerian manifold Zg with a polarized class L.

U
(Remember that we have the following: a family g’} -is map by

p:U < Q(L) dimmU = dimmﬂ(L)) . Let

- 1
Sy, = {te IPXO

two plane that corresponds tec t according to 1.4.3.1}.

(L) | E, contains L ,E_ is the oriented

Clearly as C~ manifold s, = {tea| [t] = 1} . On the other

hand from ). (L) N IPzz o
0 0

arguments in 1,4.6. it follows that there exists an open

(L) = tgu ty-= t ESL. From the

set W H to ’c0 in SL such that for every ¢t ewt
0 0
t€ IP}E (L)n ‘1912 (L) where z €U. {U 1is defined on-'p. 24)

0 .
Now let t,,t; and t, are three points in 33%1{ (L) such that;

0
tyrty and t, &€ W. From the way we defined W, it follows that
0
th,t, and t., are respectively in B (L), ®_, (L) and
0" y) 2 z,



.

Xg

! € 6 (See p. 24 ). From here and

Pzz(L), where ZO,Z1,22
from the definition of isometric deformation it follows
that to,t1,t2 corresponds to the marked Hyper-K#hlerian
manifold TO,T1,T2 and To,Tl,T2 are in the isometric
families with respect to the Calabi~Yau's metrics on

ZO.Z1,Z2 that corresponds to L. It is clear that we can
1

choose 1:,0‘,1:.1 and t2 in W‘toc SL c I xo (L) such that
Wy (2,0),wt (2,0) and we (2,0) are three linearly inde-
0 1 2

pendent classes of cohomology in uz(x,nu e C. Since 8S0(3)

> 0) so there exist

acts on EXO(L) (Remember <a>lEX (L)

0

A,B and C such that AEXO = Eto, BExo = 1:‘.1_‘1 and C.Exo = Etz.
Now we can define as in the proof of 1.4.7. a) the new
. *A PR B * e *C *
families ni : X — D;, ng. Yol D*B and LFED —— Dc.
x A ) x P o i) € o B xr)
Since we have ¢ ¥ ,y ¥ ¥ and + +
Di <> 1P (U) Dg S IP(U) DE.C.:» p{U)

are in P(U) c Rc P (H2(X,L)) we get that:

A B
lim{w, (2,0)] = [w_ (2,0)]) , limlw,_ (2,0}] = [w,_ (2,0)]
t+0 ¢ to t+0 °© t

(2,0)]

and lim (wg(z,O)] = [w,
2

£+0 t

So from here we obtain that on the level of Cm férmd we

have : 1im wt(z,o) = w, (2,0), lim wE(Z,O) = W, (2,0) and
C( t-+0 0 t-»0 1 :

lim w (2,0) = w, (2,0). Since w, (2,0) = w w, (2,0) =

50 t 2" ty ' 2" Tt

= W, (2,0 and Wy (2,0) = w, (2,0) are three linearly

1 2 2
independent forms in Et (L} @ GC:P(X,Ath*x)EY) we get that
0
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wﬁ(z,O),mﬁ(z,O), wS(Z,O) are linearly

independent in each Et(L) ® EC:F(X,AZ(T*X ® T)) tE€D*,

So from here we have:

wo (2,0) = a w’é(z,c)) + b w5(2,0) f o wi(2,0), a,b,c€ C.

Xe

lim w, (2,0) = a lim wi‘(z,m + b lim wi(Z,O)fe‘dim w€{2,0}=
£+0 £+0 £+0

= aw, (2,0) + bw, (2,0) + Cuw

(2,0) = w,{2,0) exists
ZO 21 22 X

as C° form and d Wy (2,0) =0,

0

since det wl(2,0) adet uw}(2,0) = det w,_(2,0) A det u (0,2),

1im wh(2,0) = o, (2,00 and det w_ (2,0) Adet w, (0,2)

£+0 0 0 0

= det w, (2,0) rdet @, (2.0) (this is so because t,€ P} (L)
0 0

0
and so T0 is obtained from z0 by isometric deformation). So

t

%ig det wt(Z,O)/\det mt(0,2)r= det mZD(Z,O)f\det wzg(Z,O!
= K vol (gaé(zo)) > 0. This proves that wxo(Z,O) is a
non~degenerate form since det w, (2,0) = w, (2,0)A... A w, (2,0)
X0 XO XO
L , y J

n-times

Q.E.D.

In order to finish the proof of theorem 1 we need to

check that det Wy (2,0) fulfills a),k) and ¢} of Andreotti-
o
Weil remark. Clearly d(det Wy (2,0} = 0 and
0
det wx (2,0) A det wx(§,5)>'0 so b) and c) are fulfilled.
0
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Let P be the Plucker relation. Clearly we have
P(det mt(z,O)) =0 so l1lim P(det wt(2,0)) z 0.

t+0
So Theorem 1 is proved.

Q.E.D.

§ II. Construction of the moduli space of marked polarized

Algebraic Hyper-K&hlerian manifolds
2.1. The construction is based on the following

2.1.1. Lemma. Let g be a holomorphic automorphism of X,
and suppose that g* = id, where g*:Hz(x,l) — HZ(X,Z), then
g induces the identity map on the Kuranishi space of X, i.e.

on

.
-

Proof: For the proof see [ 1.

Q.E.D.

2.1.2. The construction of the moduli space.

Let %ﬂ <— X be the Kuranishi family of the marked
+ + :
u 3 0
Algebraic polarized Hyper-Kihlerian manifold (x: YyreeeoYy ;L) ,
2
where y1p...,yb2. is a fixed basis in x,(x,xr und L is a

fixed class of cohomology in Hz (X,2) corresponding to the
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to the imaginary part of a Hodge metric on X. From local

Torelli theorem it follows that we may consider the following:

X < xy
¥ ¥ p 2
0 € US— T (H°(X,Z) o )

where p:U — IP(Hz(X,Z) @ &) 1is the period map, so
from § 1.1. we may consider U as an open set in @

this is just lemma 1.4.2.)

Let HL = {x(EIP(HZ(X,Z) ® T|<x,L>} . So from the
arguments in 1.2. we get that if we restrict the Kuranishi
Xy Xp &> X
family }° to the family V¥ ¥, where U = UNH. and
ULC#> U

UecQc ﬂ?(HZ(X,Z) ® €C), we will get the local universal family
of all Hyper—Kidhlerian manifold for which L corresponds to

an imaginary part of a Hodge metric on X for every t€U

t 1
X
From 2.1.1. it follows that we can glue all families {ﬁL} by

L

. L .
identifying isomorphic marked algebraic Hyper-Kdhlerian mani-
folds with fixed polarized class L. In such a way we will get

an universal family iL (since if @:X » X
(L;Y“I' LR 'sz)
is a biholomorphic map and ¢*(L) = L ,then ¢ must be an

isometry with respect to Yau metric and so for generic X
@o* = id on H2(X,%). See [6]al {1])
of marked polarized Hyper-Kéhlerian manifolds with the

following properties:
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a) is a non-singular complex manifold of

M(L7Y1l---'Yb )

1,1_

dimension h 1,

b) XI‘C;~> IPNxM(L;Y1,...,Yb2). This is so since L
¥
M(L?Y1l'~'rYb2)
Xy
restricted to each fibre X of corresponds to

t M(LFY1:-~-rYb )
a very ample divisor Dt' 2

From b) it follows that p(M in Q(L) 1s exactly

(L;Y1 reve 'sz)
equal to Q(L)\r"1(V), where T:Q(L) — Q(L)/PL (PI. and V 1
are defined in 1.2.).

ry = {p€ Aut H? (X,2)] @(L) = L and <u,v> = <p(u),p(v)>}

A ‘
V = p(D), where D = Hlle/IPN\\HileAPN .

§3. Torelli Problem for Hyper-Kihlerian Algebraic Manifolds.

Theorem 3, Let Xy, > M be the universal

(L3Y1l---le )
family of marked Hyper-Kihlerian manifolas with fixed polariza-

tion class L coning from the embedding:

N
X‘L S w

m(L;Y1 resenYp )
. u//// 2

M
(L;Y1roo-le2)

then there exists auniversal partial compactification
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“L’XL —_ M(L;Y1:---:Yb2) of the universal family of

marked polarized Hyper-Rdhlerian manifolds definds

up to an isomorphism such that:

T N

a) X > %, <> T M‘L?V""bz)
+ +
M S M

(LF L A bz) (L; qrect bz)

. -3 @
and every fibre of mw:X —> M(L;Y1;...;Yb )

isomorphic to a non-singular Hyper-Kdhlerlan manifold.

is birationally

b} the period map p:M ~» Q{L) can be prolonged

(L;Y‘!""'Yb )
to a holomorphic isomorphism: 2

o (L)

Tl

'M(L7Y1l---le2)

I

Remark p: y 1is defined up to a component.

MLivge. s Yo,

Proof: First we will construct the partial compactification of

X, &> IPNxH

+ /
M(L;Y1,...,Yb2)

"X Mgy, ) (L3vgseee oty )

In the proof of theorem 1 we used the fact that

Q(L)~p (M =V=VUV,U...UV, ...

(L;Y1,...,Yb2)) oV Yy X
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is a countable union of analytic subsets. Now let D be

a disc in Q(L) and D* = D*~{0}, i.e. D intersects V
in one point. From the arguments on p. 22 and 23 it follows
that over D* we have a family of marked algebraic Hyper-

K&hlerian manifolds with polirization class L:
X* —»> D* ,

and this family has the properties stated on p. 23. Now we

can apply Theorem 1 to X* — D* and we will get a family

w:x —> D, where all the fibres are non-singular Hyper-K&hlerian
manifolds. So from here it follows the existence of a family

of non-singular Hyper-Kihlerian marked manifolds

X. > ™

L such that

‘L,Y1I°"IYb2)

a) XL e o

¥

;Q

X -

S

M
(Li'Y-‘l---lez) (L;Y1;-..;Yb2)

b) the period map

p:M(L’YV‘“'Yba) - (L)

is a surjective map and étale map.

3.1.1. Lemma. There exists meromorphic map
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) M(L;n.---.yb )
2
(L;Y1’ Ly ,Yb )
2
such that:

a the restricti £ P =5
) ction of @ on ¥ M(L;Y1:---:Yb )

gives the embedding 2
P:1X, S>> IPNxM
L (L;YQI---le )
/ 2
+
M
(LiYqreoory, )
1 b2
b) for each tEMud1’”.lb}\ (L:1’”"b) he map ¢
defines a holomorphic map 2 2
@tzxt — Xt
where it is the closure of the fibre X, in ®Y  under

the map $t and 'Et is a birational map.

Proof: We know that:
M, ~M
(L;Y I"‘I’Y ) (L;Y reew; Y ‘
1 b 1 b2
closed analytic sabsets

a) is a countable union of

- N
b) XL 1w XM(L;Y1Ia--le )

e 2

M(L;Y-‘l" .'sz’
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So from a) & b) it follows that it is enough to prove the
lemma for a family w: X—» D, where D %» M(I‘”‘t""”b )

and D* S M Since D* S D S (L},

u‘”l""'*b )*
from the arguments on p.2421t follows that the family

n*:X* — D* has the following property:

{(*) there exists an embedding X* S X4 e IPN’(D

+ +
D*%D/

Now let {wo(t),...,wu(t)} (t €D*) are the section of

the line bundle L* , that gives the embedding X* C> IPE XD¥,

+
D¥*

From the fact that we have

x* Coge x1 C—p IPNXD

¥ +
D* ©—» D

it follows that we can continue {wo(t),...,wN(t)} to
sections in 7 1(0) = X, r where X, 1is the zero fibre of
phe family of the non-singular Hyper-Kihlerian manifolds

fa. So from here we get that there exists a birational map

between

)(.1 e IPNvD

and LR /
D D

- X
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since if (mo(t),...,mN(t))teD have fixed point then
these fixed point are in Xo so the set of fixed points
of the linear system (wo(t),...,wN(t)) can be at most a

divisor in XQ, and so has codimension2 2 in X. So from

1 N,
here we obtain that § — ¥ P 45 4 birational map.
Dy ~—D

Even more we will prove that there exists a holomorphic map

. 1 N =
ch.x0 — xO S 1P X T (0)

which ‘is induced by the birational isomorphism between X and"Xa

Proof: Let H be the closure of the very ample divisor H*

X

that difines L* in x. Let L = O0(H) and let LQ = Li
0

we will prove that L0 gives us

. 1 N
wo.xo — X0 > TP

Fist it is easy to see that on X, ~ Sing (Xg) there

1
exists a Kdhler metric; this is the restriction of Fublini-
Study metric + dt o dt on X,~A, A = Sing (X;). For each
t €D* the restriction of the imaginary part of this Kdhler
metric gives the Cﬁern class of L{Xt . Notice that codim
A22 in X1. Let {Wp} be a covering of X such that

Y

e_ . i -3 — _ iaT
i(z 943 (t) \dz A az + dt Adt})! (We\(we na) - 1aaue

where u, is a plurihsubharmonic function. From a theorem
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about the continuation of plurisubharmonic functions proved
in [91] it follows that we can continue u, in W, and

we will have
i 23 uez:o

From this fact we get:

For every effective analytic cycle CcXj dim C = k

we have

(*) J cy(Lg) AceoaclLy) 20
C

(*} is equivalent to the following inequality

(**) <H§“’k,c>z 0

wheve H, = H|

0 Xo
lHOi gives a holomorphic map:

. (*,*) means that the linear system

This is Kleinman-Moishezon criterion []4]. So this proves

lemma 3.1.1.

Q.E.D.

Now we can define the family m:X; -> E(L'Y Y. )
H 1'.00' b

in the following way: )?L — E(L'y yo ) is the &losure
PYqrecerYy

of the fibres of the image of the family 2 YL - .ﬁ(lny Y. )
' 1'..0' b
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N.—
in P XM(L3Y1:---:Yb2)

Lemma 3.1.2. Suppose that:

a) T§:x}y —> D* and wj:xj —> D* are two isomorphic
families of marked polarized Hyper-Kdhlerian algebraic

manifolds with trivial monodromy.

b) Let TyiXqy —> Dy and my:ix, —> D, are obtained from

n?:x? —_ D? and ngz 3 — D§ in the following way:

xjfc»x_‘ C—-)-S(;;C--}]PNx-ﬁ

¥ " vy

(LiYqreseryy )
1’ "'b,

%

(L:Y1,-...Yb2)

where x; —> M(L?Y1t--~:Yb ) is defined on p. 49.

Then the two families X1 —> Dy and X = D, are

biholomorphically isomorphic

> %3
Proof: Let ¢ : + ¥ be a holomorphic isomorphism
D* == D¥*

between those two marked polarized families of algebraic
Hyper—Kihlerian manifolds. From the definition of ¢ it

follows that:

1) w*(Lz) = Ly, where Ly is the polarization class

on w¥:xf —> D*

2) w*:HZ(X,Z) - HZ(X,Z) is the identity map.
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N

Since = and Ly is the restriction of the
D*
Fubini-Study metric on Eﬁk D* and from 1) and 2} we get
X3 > 1% .
that ¢ : ¥ ¥ is induced by a biholomorphic map
D* == D¥
IPNx D¥* — PNx D*
yx: . + + . Indeed ¢ is given by the sections
D¥* D*

of the line bundle G{H) & D*lx* , where H is the hyper-
1

plane section. Let PW* be the graph of the map Y¥* in
(2™ p*) x [, (PN D*) = B PMx px, since ¥* induces the

identity map H*(]PN Z), Bishop criterium and the fact that
(PN xD) x (B’ D) = B'x XD is a K&hler manifold we get

N
that P‘P* can be prolonged to T in IP x I’Nx D . The

¥
arguments are exactly the same as Proposition 3.1. of [23].

Since Y¥* 1is given by O]PN(H L 0 and T can be

D* ¥
D*
N N we get that the sections of

prolonged to I‘\y in P7x }PNx D

I‘(IPNXD*,OIPN (1) o, 0

Ops D¥

sections of I‘(]PN D'OIPN (1) L OD) can be prolonged to
D
meromorphic section of I‘(JPNK D'OIPN (1) L OD) so this

¥

sections can have poles along 1 '(0) = P, where

) can be prolonged to meromorphic

N
n:lPx D—> D,

From here we get that if we multiply each section tpi(t) by

ni nj_ N
t then we will get a section t L7 € T(I xD,0

ny

PN "OD%)
abd even more t "¢, # 0 on Y0y,

So from here directly lemma 3.1.2. follows, because we

can prolong VY* +to an isomorphism
PNx D —> F“x D

. +
¥ D === D



57~

The end of the proof of Theorem 3.

F miX M
rom 3.1.2, it follows that m:x; —> M(L;Yi""'yb )

is a unique family up to an isomorphism and so it induce% a

Hausdorf topology on M . We know that the

(Lsvqresaryy )
1 b2
pexiod map

p:M
p (L;Y-‘I"'IY )
b,

is a surjective map. From local Torelli theorem and the

—> QL)

—

way we constructed X, — M we get

L (LiY1l---rYb )
that p is an étale map. Now if we prov% that p is a

proper map, since
QL) s S(?)‘,(Z,h2 - 3)/80(2) x SO{}D2 - 3)

and so simply connected Theorem will follow. So we need
to chéck that p is a proper map. So we need to use the
valuative criterium of Grothendieck of a properness ., L[96A],

so we need to prove that if
X € (L)

and if @:D - Q(L) is a holomorphic map from any disc

such that:

a) ¢(0) =x

b} the following diagramm is commutative
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— P
* >
¢ M(L?Y1:--.:Yb ) a(L)
2
¥ o* ®
D* s> D

then ¥- can be prolonged to a map ¥:D —> M
(L;Y1:~--1Yb2)

such that the diagram is commutative:

(**)
(L YT”"’YZ Q(L)

/

If we prove this (which is exactly Grothendieck's criterion

of properness) the map p:M —» Q{L} will

(LIY»‘I.O'I Yb )
be an étale and proper. On the other haﬁd we know that

(L) = SO(Z,bZ-3)/SO(2) SO(bz-B)

is Siegel domain of IV type and so Q(L) is a simply

connected manifold. From this fact it follows that

M(L,Y1:---ryb2)

— QL)

is a biholomorphic map. This will prove theorem 3. So

we need to prove the valuative criterium of Grothendieck,
X . e *

i.e. we showed that the map ©@*:D* — H(L:Y1:---:Yb )

of the commutative diagram can be prolonged to a map 2
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—

¥:D —» M so that the diagramm (**) must

(L;Y«‘l'-- Isz)
be commutative one. See [ ]. We must consider two cases:

X1,
+

a) Let ¥*¥:D* —» M . In this case we have

(L;y1,...,yb )
a family X* — D¥* of marked poiarized Hyper—-Kdhlerian mani-
folds. The condition that the map p:D* — Q(L) can be
continued to the map p:D —% 2 (L) means that the monodromy of
the family X* —» D* isg trivial. This follows from theorem

9.5. proved by Griffiths in [/3]. Then Theorem 1 says that we

*C .
can embeded % § T in a family 7:X — D, where all
D*&» D

fibres are non-singular Hyper-K#dhlerian manifolds. Now lemma

3.1.1. shows that Grothendieck's criterium is fulfilled.

b Let gr{A%) cM ~
) © (4%) (Livqreseryy )

M .
(L;YqareserYy. ) .Since
2 L b2

M Liymreeerye ) MLiyare o ) is a union of closed
1 b, 1 b,

X*

¥

complex analytic subsets and the periocd map p:D —> Q(L)
can be continued to a map p:D — Q(L) it follows that we
can find a disc D1 such that

1 D* ¢ M
) 1 (L;Y1:---1Yb2)

2) p:D? — Q(L) can be continued to a map p:D1 - Q(L)

and p(01)= p(0), where 01601 and 0¢€D.

3y D and D1 are contained in U , where U = p—1(U), U
is a policynder dimh U = dim&n(L) such that p{(D) €U.

Then everything follows from a.

Theorem 3 is proved.
Q‘Elnt



10.
11.

12.

13.

14.

15.

-6~

REFERENCES

A. Beauville "vVariétés Kihleriennes dont la primiére
class de Chern est nulle "J. of Diff. Geometry 18 (1983).

A. Beauville "some remarks of K&hler manifolds with
¢, = 0", Progress in Mathematics vol. 39, Birkh#user Inc.,

1126.

F. Bogomolov "On decomposition of Kidhler manifolds with
trivial canonical class" Math. USSR Sbornik 22(1974),
580-583.

F. Bogomolov "Kihlerian varieties with trivial canonical
class", Preprint, I.H.E.S. February 1981.

A. Borel, "Some metric properties of arithmetic quotients
of symmetric spaces and an extension theorem". I. of
Diff. Geometry", (1972) 543-560.

D. Burns and M. Rapoport, "On the Torelli problem for
K&hlerian K3 surfaces", Ann. Sci. ENS 8(1975), 235-274.

E. Calabi "Métrique K#éhleriennes et fibres holomorphes"
Ann. Sci. E.N.S. 12(1979), 269-294.

§.5. Chern "Complex Manifolds"™ Chicago University, 1957.

S.S. Chern "Seminar on Partial Diff. Equations® Math.
Sciences Research Institute Publ. vol. 2, Springer Verlag
New York 1984,

0. Debarre, in preparation.

R. Friedman,"A degeneration family of qunitic surfaces with
trivial monodromy" Duke Math. J. vol. 50, N1 (1983),
203-214.

A. Fujiki "On primitively symplectic compact K&hler V-mani-
folds" Progress in Math. vol. 39, Birkh#duser Boston 1963,
435-442,

Ph. A. Griffiths "Periods integrals on Algebraic Manifolds
III". I.H.E.S. Publ. Math. vol. 38 (1970), 125-180.

K. Kodaira, J. Morrow, "Complex Manifolds" Holt, Rinehart
and Winston Inc., New York 1971.

V.S. Kulikov, "Degenerations of K3 and Enriques surfaces",
Math. USSR Izvestija 11(1977), 957-989.



16. M.L. Michelson "Chifford and spinor cohomology of
K8hler manifolds", Amer. J. of Math. 102 (1980),
1083-1196.

17. S. Mukai, "Symplectic structure of the moduli of
sheaves on an abelian or K3 surface" Inv. Math.
71 (1984) 101-116.

18. D. Morrisson, personal communication.

19. U. Persson, H. Pinkham, "Degeneration of surfaces with
trivial canonical bundle", Ann. of Math. 113(1981),
45-66.

20. I, pPiateckii-Sapiro, I.R. Safarevit, "A Torelli theorem
for algebraic surfaces of type K3" Math. USSR Izvestija 5
(1971), 547-588.

21. A. Todorov, "Applications of the Kihler-Einstein-Calabi~
Yau metric to moduli of K3 surfaces", Inv. Math. 61
(1980), 251-265.

22, S.T. Yau, "On the Ricci curvature of a compact Kdhler
manifold and the complex Monge-Amper-equation, I,
Comm. Pure and Applied Math. 31 {1978), 229-411.



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 
	Seite 15 
	Seite 16 
	Seite 17 
	Seite 18 
	Seite 19 
	Seite 20 
	Seite 21 
	Seite 22 
	Seite 23 
	Seite 24 
	Seite 25 
	Seite 26 
	Seite 27 
	Seite 28 
	Seite 29 
	Seite 30 
	Seite 31 
	Seite 32 
	Seite 33 
	Seite 34 
	Seite 35 
	Seite 36 
	Seite 37 
	Seite 38 
	Seite 39 
	Seite 40 
	Seite 41 
	Seite 42 
	Seite 43 
	Seite 44 
	Seite 45 
	Seite 46 
	Seite 47 
	Seite 48 
	Seite 49 
	Seite 50 
	Seite 51 
	Seite 52 
	Seite 53 
	Seite 54 
	Seite 55 
	Seite 56 
	Seite 57 
	Seite 58 
	Seite 59 
	Seite 60 
	Seite 61 
	Seite 62 

