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d ~ Rcm (kj + 211 ~ j ~ N).

Introduction

Conformal field theories (CFT) in two dimensions have been studied extensively in the
past few years, motivated mainly by their importance in constructing string vacua, and also
because of their relation to the critical phenomena in two-dimensional statistical mechanical
systems. This paper focuses on an important element in the Landau-Ginzburg model of
N = 2 superconfonnal field theory: the modular invariance of manifolds with S U(n )

holonomy. When n = 3, the manifolds are the Calabi-Yau (CY) spaces, corresponding
to C = 9 CFT, which are of considerable interest to string theorists. Here we propose
a mathematical fonnulation for modular invariance of (2,2) CFT based upon the works of
[4,6,7,10,15,23,25,26]. The Witten index and elliptic A-genus of CY orbifolds in weighted
projective 4-spaces will be our main concern. From the mathematical point of view, we
shall study these topological invariances based upon the Hodge structure of some specific
generators of SU(n) cobordism class by the theory of Jacobi functions of modular group.
The conclusions are delived from ~he representation theory of superconformal algebra. On
the other hand, the mathematical results obtained here have justified much analysis which are
recently expended by physicists on the study of Landau-Ginzburg models [4,10,23]. It seems
that this is the proper context to understand the modular invariance of GY spaces from the
geometry point of view. We now briefly describe the result of this paper.

For K = (kl , ... , kN), kj : positive integer, with

c(K) (~~ kj ) =N-2
3 . f:1 kj + 2 '

denote

here WP0~)1 is the weighted projective space with

d
nj = kj + 2'

Xl( is a V-manifold with (at most) cyclic quotient singularities, and has the trivial canonical
sheaf. When dime Xl(( = N - 2) ~ 3, the "minimal" toroidal resolution Xl( of Xl( has
the trivial canonical bundle. It is known that XK is a !{3 surface for N = 4, and GY
space for N = 5 [9]. But the Cl = 0 resolution of Xl( is not known to exist for a general
N. For the simplicity of the argument and also the application to c = 9 GFT, throughout
this paper Xl( will always be denoted by the manifold defined as follows:

Xl( = { the minimal toroidal resolution of Xl(, for N ~ 5,
the degree N Fermat hypersurface Xl( In pN -1 (1)

(i.e. all kj = N - 2) for N > 5.
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Consider the modular group f f) defined by

fo={MESL 2 (1)[Mcongruentto G~)orG ~)mod.2}.

Note that ff) is a conjugate of fl (2) in SL2(1). The Jacobi group fl (~ ff) ~ 12
) acts

on the space r(C x H, 0) of holomorphic functions of C x H in a well-known manner,

here H is the upper half plane [5]. An invariant function of rl is called a Jacobi function.

We shall assign to each XK a function JK(Z, T) which is a Jacobi function twisted by

a certain character of r f). The method is tlrrough the representation theory. The values of

J K( z, T) at some special points Z will give the topological invariances of XK, e.g. the
Euler characteristic and the elliptic genus defined by Ochaine, Landweber and Stong [14]. In

fact, the Euler number of X K is expressed by

X(XK) = :1K(~ + i, r) exp (c(:) 7ri(i + i)),
and JK(O, T) determines a modular form of weight c(~) for rf). This modular form equals

to zero when dime XK = odd, and coincide with the elliptic genus of K3 surface when

dime XK = 2. It is expected that the modular form obtained by J K(O, T) is the elliptic genus

of XK for any I{, and for e21riy being roots of 1, JK(Y, r) should relate to the elliptic

genera of higher level defined by Hirzebruch [11]. Work along this line is in progress. Before

going any further, I shall explain first how the function JK(Y, r) comes from. For a given

K, there associates a finite collection of highest weight representations of Neveu-Schwarz

N = 2 superalgebra A with the central charge c = c(I{). It is obtained by the Gepner's

construction [6], which is a specified procedure of selecting subrepresentations of a tensor
product of unitary irreducible c < 3 highest weight modules (HWM) of the superalgebra

A. The selection is dictated by the modular invariance of characters of the involved HWM.

These HWM form a finite dimensional C [r/J -module M (I{), which can also be described

purely from the abstract algebraic point of view. The algebraic construction of M(I{) and

its properties are given in section 2 and 3. In section 4, we discuss how the M(K) relates

to HWM of A, and tlrrough the characters of HWM, two rl -morphisms

NS, R :M(K) ---7 r(C x H,O)

are introduced for the discussion of modular invariance. There naturally associates a

"r/-invariant" vector w(K) in M(I{) and the Jacobi function JK(Z, r) is then defined to

be the image °!iSw(K) of w(K) under the above morphism NS. The Witten index Tr( _1)F

and elliptic A genus of the theory are given by

F ~ ((r 1) (c(]() .(r 1)))Tr(-1) = Rw(K)(O,r) =JK 2"+2,r exp -3-7rZ 4+2 '

elliptic A- genus = JK(O, r).

The general properties of Jacobi functions needed for our discussion are described in section

1. In section 5, the following equality is obtained:

Euler number of XK = Witten index Tr( _l)Fof M(K).
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We also give a rigorous mathematical justification of the Witten index formula obtained
by Vafa in [23] based on physicist's reasoning. In this process, the cohomology group

H* (Xl(, c) of Xl( can be identified with a certain space constructed from M(I{), which
correspond to the "massless" states of the GFT theory in physics literature. The dimension
of a cohomology element is expressed by Witten index of its associated state. So the
massless excitations of CFT are geometrically realized as the cohomology elements of the

corresponding Calabi-Yau vacua. In section 6, we discuss the relation between :JK(O, T) and
the topological elliptic genus of XK. The cases for dime XK = 2 or odd are treated and
the equality of these two data are verified.

Although the modular invariance of superconformal algebras sterns from theoretical physics,
this paper is preoccupied primarily with its related problems in mathematics. Recent devel­
opment on mirror GY spaces [28] [29] has further indicated that manifolds with SU(n)
holonomy are closely related to (2,2) superconformal theories. In this paper, we have put the
analyses of modular invariance of Calabi-Yau vacua on a more film mathematical footing.
We have found that through the modular transform, the spectral flow is conjugate to the
integral-charge operator. Using the former structure, C. Vafa derived the formula of Witten
index of CFT in [23] by the physicist's argument. On the other hand, through the charge
operator, the Euler number of a GY orbifold is also expressed by Vafa's formula in [21]
from the topological method. In this paper, we also give a ,y-igorous mathematical argument

on Vafa's approach of the GY Fermat hypersmfaces in weighted projective spaces. This

leads the speculation that the discussion in this paper should also apply to the more general
hypersurfaces defined by superpotentials composed of A-D-E type singularities. Furthermore,
we believe a deeper understand of the modular invariance will almost certainly clarify the
meaning of certain invariances of manifolds with trivial canonical bundle, as indic~ted in the
relationship between Witten index and Euler number of GY space. The study of mirror GY
spaces is under consideration along these lines.

I am much indebted to Prof. S-K Yang for the invaluable help in leaming the modular
invariance of CFT. I wish to thank Prof. K. Saito, G. Höhn for the inspiring conversation
on the singularity theory and elliptic genus. I would also like to thank Research Institute
for Mathematical Science at Kyoto and Max-Planck-Institut für Mathematik at Bonn for the
warm hospitality while this work was done.

§1. Jacobi function

Let r 8 to be the subgroup of S L 2 (1) consisting of all the elements congruent to (~ ~ )

or (~ ~) (mod 2). The Jacobi group rl is the semi-direct product rl = ro )<I 1 2

correspondlng to

((8, v), (: ~)) ~ (8a + vc, 8b+ vd).
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(2)

(3)

It is known that the substitutions in the variable z E C, 7 E H (the upper half plane
Im7 > 0):

defines an action of re on C x H. Moreover, this action normalizes the lattice action on z,

i.e. we have an action rt on C x H, where ((: ~), (8, v)) acts on C x H by

( ) (
z + 87 + 1/ a7 +b)Z,7 1---+ , •

C7 + d C7 + d

Let P be a character of rt to C*. The above action, together with P, induces a representation
of rt on the vector space r(C x H, 0) of holomorphic functions of Cx H, which is
described by

r(c x H,O) x rt ~ r(C x H,O)

(<1>1(8, 1/))(z, 7) = p((8, 1/))en[21ri8(z+v)+1ri8
2

T]</>(z + 87 + 1/,7),

( <I>I(a b))(z,7) = p((a b))en1ri;TC~:</>( z ,a7 + b),
C d C d C7 + d C7 + d

here (8, v) E 'P, (: ~) E r 0 . TIris representation is called the index i representation

of rt and its invariant function is the Jacobi function of index ~ with character p. Let
a, ß, s, t be the elements of rt defined by

a=(l,O),ß=(O,l),s= (~l ~),t= (~ n·
They satisfy the relations:

aß = ßa s4 = 1 s2t = ts2, , ,
t-Iat = aß2, t-Ißt = ß, s-las = ß, s-lßs = a-l.

It is known that rt is characterized as the group generated by 4 elements a, ß, s, t with
the above relations. We define the following characters of rt which will appear later in
this paper,

with

Pn,Xn : rt ~ C* (n E I)

Pn(a) = Pn(ß) = (_l)n, Pn(s) = Pn(t) = (-1) -2

n

;

Xn(a) = Xn(ß) = 1, Xn(s) = Xn(t) = (-1)~.

Consider the classical theta function

'l9(z, 7) = L e21ri8z+1ri82T, (Z,7) E C x H.

8EZ

4
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(5)

l.e.

It is known [18] that 19(z, 7)2 satisfies the relations:

19 (z +1,7)2 = 19 (z, 7)2,
e2(1l"ir+21l"iz)19(z + 7,7)2 = 19(z,7)2,

c(C D) (er +d)-le2~i;T';~19 er: d' :;:~r= 19(z, r)2,

here (: ~) E f o, c : the character of fo with c(i) = 1 and c(s) = i.

Proposition 1 Let n be an positive integer and </;(Z,7) be a Jacobi function of index I
with character xn . Then

(i) When n is odd, </;(0,7) = °for all 7 E IH.

(ü) When n is even, the function of IH

4J(0, 7) ( )3n
19(0,7)n1] 7

is a modular form of roof weight n, here 1](7) is the Dedekind eta function defined by

I/(r) = exp ( ~i;) TI (1 - exp(27ribr)).
8=1

Proof: (i) By the equality

we have (-1)n4J(-z,7) = 4J(Z,7) for (Z,7) E C x IH. It follows that 4J(Z,7) is an odd

function of the variable z for odd n, hence 4>(0,7) == 0.

(ü) Assume n is an even positive integer. It is known [19] that 1](7 )3n is a modular form
for roof weight 32n with the character

* n7ri -3n7ri
(j : ro ----* C , t f--+ exp-, S f--+ exp ,

2 4

1/ G;: ~yn = (T ( ( : D}er +d) 3; 1/(r )3n .

By (2) and (5), the function

n/.( ) ~ 4J(z, 7) ()3n
0/ Z,7 . 19(z,7)n1] 7

satisfies the relation

7jJ(z +87 +V,7) = 7jJ(z, 7),
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7jJ ( Z d' a7 +~) = (CT +d)n7jJ(z, T),
CT + CT +

here (z,7)ECxH, (8,V)EZ2, C~) Ere·As 19(0,7)#0

modular fonn for r() of weight n.

§2. Algebraic preliminary

For a positive integer k, define

for T E H, 7jJ(0, T) is a

q.e.d.

Lk = {(l, m) E Z2 10 ::; l ::; k, l - m == 0 (mod 2) },

r : Lk --+ Lk, (l, m) ~ (k - l, m + k + 2),

~k = Lk/ < r >,
f : ~k --+ ~k, [l, m] --+ [l, m - 2],

3 : 'Bk -; C', [I,m] .-. expG7~),

~ : 'Bk -; C', [l,m].-. eXP(1riC+k2~~ m
2

- 2k~ 4)),

/ / 2 (-Jrimm/)' (7r(l+1)(l'+1))
!i : ~ k X ~ k --+ C, ([l, m], [l ,m ]) ~ k + 2exp k + 2 SIn k + 2 .

It is easy to see that the above maps f, ~, f),!i are weIl defined.

Lemma 1. {(l, m) E Lk I Im I ::; l} is a set of complete representatives of ~ k·

Proof:

Since r 2(l, m) = (l, m + 2k +4) for (l, m) E Lk, every elem~nt of Lk/ < r2 > can be
uniquely represented by an element (l, m) in Lk with -l ::; m < -l +2k +4. For any two
elements (li , rJ~i), i = 1,2, with -li::; mi < -li + 2k +4,

Then it is easy to see that every element of ~ k is uniquely represented by (l, m) E Lk with
Iml ::; l. q.e.d.

Definition: An element (l, m) of Lk with Iml ::; l is called the standard representative
of the class [l, m] in ~k.

Denote Vk = the Hennitian vector space over C with ~ k as the orthononnal base. We
shall identify an element A of ~ k with the associated base element of Vk. We are interested
in the following linear maps
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whieh aets on the veetors of Vk from the right, and their values for the base element A E ~k
are defined by:

Alu = f(u), Alq = 3(A)A, AIH = q(A)A,

AIS = L Sfjj with Sf = $(A, Il)'
ttEQ3k

It is easy to see that u, q, H are the unitary transformations of Vk.

Proposition 2. 5· is an order 4 symmetrie, unitary transformation of Vk. 52 is the linear
map sending [l, m) E ~k (Imi::; l) to [l, -m) E ~k'

Proof:

The symmetrie property follows from the definition of S. We need only to show the unitarity
of Sand the statement for S2. The following identities are needed for the argument: For

integers M, a, b with M ~ 3, 1 ::; a, b ::; M - 1,

'" ,ja7r. jb1r M c
LJ SIll M SIll M = TUa,b

l~i~M-l

L ( )i+l. ja1r . jb7r M
-1 SIll - SIll - = -8 +bMM M 2 a , .

l~i~M-l

(6)

(7)

(A proof of the above equalities is given in the appendix.).

Let A, jj be elements in ~k' The standard representatives of A, jj are denoted by
(b, a), (ß, 0;) respeetively in this proof.

For 0 ::; e ::; [~], we have

'" (-a + 0; ,) '" (-a +o;(l ') ,)LJ exp k + 2 m7r'l = ~ exp k + 2 + 2) 1r'l
(l,m) E Lk O~J<k+2

m O(2k + 4)

( -a+o;l ,) '" (.-a+o;.)= exp k 2 1r'l LJ exp) k 2 27r'l
+ O~i<k+2 +

{

k + 2 ifa = 0;
= O(-l/(k +2) ifa - 0; = ±(k+2)

otherwise (": I - a + 0;1 ::; 2k),

7
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(
-a+a .). 1r(b+1)(1+1) . 1r(ß+1)(1+1)

exp """"f+2 m7rZ SIn k+2 SIn k+2
(l,m)ELk,09~ k'2 1

m::O(2k+4)

for k == odd,

'" (-a+a') . 1r(b+1)(1+1) . 1r(ß+1)(1+1)
Li exp """"f+2 m7rz SIn k+2 SIn k+2

(l,m)ELk,09~ ~-1
m::O(2k+4)

+( 2 )2. 1 '" exp(-a+a m7r i) sin 1r(b+1) sin 1r(ß+1)
k+2 2 Li k+2 2 2

(~,m)ELk
m::O(2k+4)

(9)

for k == even. (10)

By (8), I: S~Sr == 0 when a - 0: =I- 0 or ±(k +2). Claim: When a - 0: == ±(k +2),
8

we have

"'" 8 - '"b+ß =I- k and LJ S)..S8 == O.
8

In fact, if b + ß == k and a - 0: == k + 2,

lai::; b~ 0: + k + 2 ::; k - ß~ 0:::; -ß - 2.

This contradicts Ial ::; ß, so b+ß =I- k. The same argument for the case a- 0: == - (k + 2).
By (8), (9), (10),

_4_ '" (_1)1. 1r(b+1)(1+1) . 1r(ß+1)(1+1)
k+2 Li SIn k+2 SIn k+2

0<1< k-l
- - 2

for k == odd.

_4_ '" (_1)1. 1r(b+1)(l+1) . 1r(ß+1)(1+1) +
k+2 Li SIll k+2 SIll k+2

0:::;1:::;~-1

2 ( 1)!i.· 1r(b+1)( ~+1) . 1r(ß+1)( ~+1)
k+2 - 2 SIll k+2 SIn k+2

for k == even.
Since b == a == 0: + k _ ß + k (mod 2), (_l)k == (_l)b+

ß
. Then it is easy to see that

"'" S8S-'" - _2_ "'" (_1)i+ 1 . 7r(b + l)j . 7r(ß + l)j - 0 (By (7))
LJ ).. 8 - k 2 LJ SIll k 2 SIll k 2 -.

8 + 1< "<k 1 + +_J_ +

Now we consider the case when a == 0:. We have b=ß (mod 2). By (8), (9), (10),

"'" S8S-'" __2_ ~ . 7r(b + l)j . 7r(ß + l)j _ {'
LJ ).. 8 - k 2 L.J SIn k 2 SIll k 2 - vb,ß' (By (6))

8 + 1:::;j:::;k+1 + +
Hence we obtain the unitarity of S. Replacing Sr, 0: by sr, -0: respectively in the above
argument. We have

L S~S'" == {1 if (b, a) == (ß, -0:)
8 8 0 otherwise.
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This completes the proof of tbis proposition. q.e.d.

Theorem 1. Let Vk, u, q, H, S be the same as before. denote c = k~2' d = k + 2. Then
u, q, H, S are unitary transformations of Vk satisfying the following conditions:

Proof: It is easy to see that qd = ud = H 2d = id., H- 1 qH = q. By Proposition 2,
S4 = id., S2H = HS2. For A = [l,m] E ~k,

(Alu)1 q = [I, m - 2]1q = expC(:+-22) 1ri) (Alu) =exp(i21ri) (AI q)lu,

AluS = L Sr1u . J.l = L J(/-l)Sf . J.l = AISq.
I-t I-t

q.e.d.

ß. Representation of r()
Let k1, ... kN be positive integers and K = (k1, . .. , kN ) . Denote

c(K) = ~ k3kj ,
L...J ..+ 2

1< '<N J_J_

d(I<) = lcm(k1 + 2, ... ,kN + 2),

6(K) = {a : permutation of {I, ... ,N} with kaU) = kj for 1 ~ j ~ N}.
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v(I{) = Vk 1 0 .. 0 Vk N as the tensor product of Helmitian vector spaces.

Let Ui, qi, Hi, Si be the unitary transfOlmations of Vki as in the previous section. By
tensor product, we have the unitary transfOlmations u, q, H, S of V(I{) defined by U =

Ul 0··' 0 UN, q = ql 0···0 qN, H = Hl 0 ···0 HN, S = SI 0 ···0 SN, which
acts the vectors of V(I{) from the right. On the other hand, 6(I{) acts on V(K) from

the left as unitary transfoImations by

It is easy to see that the action of 6(K) commutes with u, q, H, S, and we have the action:

6(I{) x V(I{) x < u, q, H, S >-+ V(K).

As before, rl is the Jacobi group for ro, which is generated by 0'., ß, s, t with the relation
(3). As a corollary of Theorem 1 we obtain the following result.

Proposition 3. When c(~) E 1., V(K) is a C [r/J - module under the following

correspondence:

0'. = (1,0) r--+ U

ß= (0,1). r--+ q

Remark: The above representation of rl can be factored through the representation of

the finite group r/,d ~ rO,2d >4 (1./d1.)2, here rO,2d = {M E SL2(1./2d1.)IM congruent

to (~ ~)or G~ )mOd 2}.

From now on, we shall always assurne

c(I{) .
-- = Integer

3

for the rest of this paper, unless otherwise specified. In this case, q and U generate an abelian

group isomorphic to (1./d7J2 with d = d(I{). Identity < q, U > with (1./d1.)2 VIa
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The group of characters of < q, U > lS

As < q, U > ,is normalized by < S, H >, The eigenspaces of V(]{) for < q, U >
are permuted by the action of < S, H > (~re). In fact, The eigenspace of V (]{) with

eigenvalue (~~) is mapped to the one with eigenvalue M- l (~~) (mod d) under the action
of M E re. The following re- submodules of V (]() are needed for OUT discussion:

M(]{) = V(K)<q,u>,K(K) = V(]{)<6(K),q,u>.

It is clear that the above re representation can be factored through re,2d. We have the
re - morphism

M(]() ---7 K(I()

(11)
Xf--t 16(K)1 I: a· x,

O"E6(K)

. and we shall denote the image of Al @ ... @ AN, Aj E Vkj' by Al··· AN. The following
lemma is obvious.

Lemma 2. Let 6' be the 6(I{)- isotropy subgroup of the element Al @ ... @ AN and
B be the 6(K)- orbit of Al @ ... @ AN in V(]{). Then

IBI = 16(I{)1
16'1 '

Now we define an important notion, which corresponds to the chiral primary fields in CFT
[15].

Definition. For Ai E ~ki' 1:::; i :::; N, the element A = Al @ ... @ AN in V(I{) is called
chiral (antichiral) if the standard representative of Ai is the form [li, li] ([li - li] resp.) for
each i.

It is obvious that the chiral and antichiral elements in V(K) are in one-one correspondence

by [li, li] r+ [li, -li].

~ Superconformal algebra and JK(Z, T)

Having given the algebraic construction of the C[re]- module M (K), we are in the
,position to relate it to the representations of the Neveu-Schwarz N = 2 algebra. We here
list some properties of the representations of N = 2 superconformal algebra needed for
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the diseussion of this paper. Comprehensive deseriptions ean be found in [1], [2], [20] and
referenees quoted there.

Definition. The Neveu-Sehwarz N = 2 subalgebra A is the eomplex Lie superalgebras

generated by {Lm , Jn, Gi Im, n E 7L, p E ~ + 7L} and a eentral element c with the following
super-Lie braekets:

[Lm,Lnl = (m - n)Lm+n + l~ (m3
- m)Om+n,O

[Lm, Jn] = -nJm+n
c

[Jm, Jn]= 3" mOm+n,o

[Lm,Gn±] = (; -n)G~+n

[Jm,Gn±] = ±G~+n

{G,;t-,G';:;} = 2Lm+n + (m - n)Jm+n +~(m2 - DOm+n,o

{G~,G:} = {G~,Gn-} = O.

Consider the standard deeomposition of A :

here
H=<c,Lo,Jo>

C

N+ =< Lm, Jn,Gp±lm,n,p > 0

N_ =< Lm,Jn,Gp±lm,n,p < 0

>
C

>.
C

A highest weight module (HWM)over A is eharaeterized by the highest weight -\ E H*
and highest veetor Vo sueh that X Vo = 0 for X E N+ and X Vo = -\(X)vo for X E H. Let
-\(c) = c, -\(Lo) = h, -\(Jo) = Q. The largest HWM with weight -\ is the Verma module
vc,h,Q. Denote by Lc,h,Q the faetor-module vc,h,Q / jc,h,Q where jc,h,Q is the maximal

proper submodule of vc,h,Q. Then every irredueible HWM' over A is isomorphie to some
Lc,h,Q. A HWM over A is ealled unitary if it satisfies

For (l, m) E Lk (defined in §2), denote

1 ( 2 2) m
hZ,m = 4(k + 2) l +2l- m ,Qz,m = k +2'

It is known that for 0 < c < 3, all the unitary irredueible HWM over A are labelled by

3k
c= k+2 (k=1,2, ... )
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(12)

h = hl,m Q = Ql,m for (1, m) E Lk and Iml ~ 1.

We are mainly concerned with the characters of HWM. For the latter discussion, we introduce

the following notions.

Definition. Denote y = e27riz
, q = e27rir for z E C, T E H.

(i) For A = [l, m] E ~k, k = positive integer,

NS>.(z, T) := 'PA(Z, T)qh l ,m--i4 y Q l,m'l,m(Z, T)

here

with
o l+m+l 0 l-m+l
J= 2 ,z= 2

(ü) For A = Al ® ... ® AN, Aj E ~kj(l ~ j ~ N), !{ = (k1,'" kN),

N

N S>. (z ,T) = II N S>'i (Z,T)
i=l

RA(z,T) = NSA(Z + ~ + ~,T)exp (c(~)1ri(i +Z+D).
and the above definition is extended to the linear maps

NS : V(!{) -+ f(C x H, 0),

R :V(!<) -+ f(C x H, 0).
(13)

Because of the following lemma, the above nations are well-defined.

Lemma 3. The N S>. (z, T) in the above definition (i) depends only on the class A = [1, m],
i.e. independent of the choice af (1, m).

Proof: Let (l, m), (l', m') be elements in Lk with (k -l, m + k +2) = (l', m'). We need

only to show

h 1 Q 1 h 1/ /Q 1/ /
q ,my ,m'l,m(Z,T) = q ,m ,m 'l',m/(Z,T).

Let (Jo i) = (l+m+l I-m+l) (Jo, i') - (I/+m/+l l'-m'+l) Then
, 2' 2 ' '. - 2' 2 .

(k +2 - i, -j) = (j',i');
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(k + 2)(n - 1) + 1+ 1 == (k + 2)n - l' - 1, (k + 2)n - 1- 1 == (k + 2)(n - 1) + l' + 1;

(k + 2)(n - 1) + i == (k + 2)n - j', (k + 2) - i == (k + 2)(n - 1) + j',
(k + 2)n + j == (k + 2)n - i', (k + 2)(n - 1) - j == (k + 2)(n - 1) + i'.

Hence

and the result follows immediately. q.e.d.

For a positive integer k, we have the one-one correspondence between the following sets:

{ irreducible unitary HWM of Awith C = k~2} <::-+ 'Bk

Lc,hl,mQI,m f---+ A,
here (1, m) is the standard representation of A. It is known that N S>. (Z,7) is equal to
the character T1~(qLo-:f4yJo) of the HWM Lc,hl,mQI,m. Here several physicists have made

contributions but the author is not familiar with the exact nature and extent of these. So we
adher to three reference [2] [16] [20], which are most suitable for OUT purpose.

Lemma 4 [20] For a positive integer k, let J, q, sr, u be the same as in §2, and C == k~2.

Then the following equalities hold:

J(A)NS>.(Z, 7) == NS>.(z + 1,7)

NSu(>.)(Z,7) == exp (7ri(7 + 2z)~)NS>.(z + 7,7)

q(A)NS>.(z, 7) == N S>. (z, 7 + 2)

(
-C7ri z2) (-z -1)

~ SrNSp.(Z, 7) == exp -3--; N S>. --:;:-'--:;:-
p.E~lh

3(A)RA(z, T) = exp (-;iC)RA(Z + 1, T)

RU(>.)(Z,7) == exp (7ri(7 + 2z + l)~)R>.(z, 7)

~(A)RA(Z' T) = exp ( ~C1ri)3(A)-1RA(z, T+ 2)

""" ~ 1 ( - C7r i (z 2 1)) ~ (-Z -1)L srRp.(Z, 7) == J(A)- exp -3- -; + 2" R>. --:;:-, --:;:- .
p.E~!h

Proof: The equalities for N S>. follows from (2.4) of [4] and (26a), (26b), (28a) of [20].
Then the equalities for R>. follows from its definition. q.e.d.

Remark: For A E ~k, and [1, m] == standard representative of A, from (2.3) of [4],

R>.(z,7) is equal to the quantity chf~2'~)(7,Z +t)of [20].

Definition. Let ]{ == (kl,· .. ,kN) and A== Al Q9 ... Q9 AN E V(]{) with Aj E ~kj" Let
(lj, mj) be the standard representative of Aj. The charge of A is defined by

N

Q>. == ~ k~~ 2·
j=l J

14



if A = a chiral element,
otherwise.

Proposition 4 Let N S, R be the linear map from V(I{) to r(C x H, 0) in (13), and
A = Al ® ... ® AN E V(I{) for Aj E ~kj. Then

(i)

(ü)

if Aj = [0,0] for all j
otherwise.

Proof:

(i) It suffices to show that for a positive integer k, and A E ~k,

~ _ (-1)Q>'-2(k~2) if A = chiral
RA (0, T) = {° otherwise.

Let (l, m) be the standard representative of A, and j' = l+;m + 1, i' = 12m. By the remark
of Lemma 4, and (4b), (5b), (7), (10) of [20], we have

ih(z,T) = epp(z + ~,T)qC~(-y)<:j:;' [*],

heTe 'PP(Z,T) = (y1h + y-1h) n~l (1+yq(7i~~rqn),

00 (1 _ q(k+2)(n-l)+i+i) (1 _ q(k+2)n-i -i) (1 _ q(k+2)n) 2

[*] = !! (1 - yq(k+2)n-i ') (1 - y-lq(k+2)(n-l)+i') (1 - y-lq(k+2)n-i') (1 _ yq(k+2)(n-l)+i')·

By °~ j' - 1, i', j' + i' :s; k + 1,

RA(z,T) = ((_y)lh + (_y)-lh)(l_yqi)-lqffi(_y)j~+~1 q{some series in C[[y,y-l,q]]}

Hence RA (0, T) = °if i' =I 0, i.e. l =I m. When i' = 0,

~ 1 L Q k
RA(O,T) = (-1)-2(-1)k+2 = (-1) >'-2(k+2).

(ü) It suffices to show that for A E ~k, k = positive integer,

lim NSA(O, T)q8(:+2) = {I ifA=[O,~],
I mT-+OO 0 othelW1se.

Let (l,m) be the standard representative A, <PA(Z,T) and Il,m(Z,T) the functions in (12).
By

15



the conclusion follows from

lim <PA(O, T) = lim Il,m(O, T) = 1,
ImT-+-oo ImT-+-oo

lim qh l,m = {I if (l,m)~(O,O)
I mT-+-OO 0 othelWIse.

q.e.d.

Theorem 2 For K = (kl,···, kN ), let

. c(K)
n = the Integer -3-.

V(I<), M(I<) = the C [r/J - module'in §3,

r(C x IHI, O)f},P = r(C x IHI, 0) with the index I representation of r~ for a character p.

pj : rl -+ C*, the character in (4) for j E 1...

Then

(i) The linear maps of (13) define the r/- morphism:

N S : V(K) -7 r (C x IHI, 0) ~ ,Po'

R: V(I<) -7 r(C x IHI, 0) ~,Pn.

(ü) For v E M(I<), let

<p(z, T) = NSv or Rv .

Then for fixed T E IHI, the function z f-7 cP(z, T), if not identically zero, has exactly ~ zeros
(counting multiplicity) in any fundamental domain for the action of the lattice IT + I on C.

(üi) Let X be a character of rl with XI<u,g> =: trivial. If v is an eigenvector in M(K)
for r (} with eigenvalue X, then N Sv is a Jacobi function of index I with character X-I.

Proof: (i) follows from Lemma 4 and the structure of r/- module V(I<). For v E M(I<),
the < u, q > - invariant property of v implies the function <p(z, T) in (ü) is a theta function
for z E C with lattice I T +1... Then the result follows from the standard argument of contour
integral over its fundamental domain. (iii) is obvious. q.e.d.

For each I< there is an element w(K) in M(K) with the property (ii) in the above
theorem. The construction is as follows. Consider the subset of the base of V(K),
{A = AI0··· 0 ANIAj E SB kj , q(A) = A}. It is stable under< u> -action, and let

. {A = Al ® ... 0 ANIAj E SB kj , q(A) = A} = U Si (14)

1~i~8

be the < u > - orbit decomposition. Define

Vi = L A, vi = dl~~) Vi forl::: i ::: 8.
AESi

16



Then {viiI:::; i :::; 8} is an orthogonal base of M(I{) with Ilvil12 == ISil, and

< Vi, vi >== d(I{)8{ for 1 :::; i,j :::; 8.

~ eCK) Q
By Proposition 4, RVi(O, 7) == (-1) 6 L: (-1);\.

A E Si
A : ehiral

Definition.

(i) w(I<) == L: RvJO, 7 )v i E M (I<).
'1,

(ü) JK(Z, 7) == N Sw(K)(Z, 7) E f(C x H, 0).

(üi) Wittenindexof M(I{),Tr(-I)F == RW(K)(O,r)(== :JJ((~ + !,7)exP(c(~)1ri(~ +!))).

(iv) Elliptie A- genus of M(I<) == JJ((O, 7).

Theorem 3. Let X* be the eharaeter of f () in (4) for * E 1.

(i) Tr( _1)F of M (I<) is equal to

"d(I<) R .(0 7)2 == (-1)=ip " (-l)Q;\+Q;\, d(I<)
~ II V il1 2 v, , (LJ) I < u > -orbit of AI'

Z A,A'

here the A, A' in the above index TUn over all the values of ehiral elements of V(I<) with
the same < u > - orbit.

(ü) The element w(I{) of M(I{) is a f()- eigenveetor with eigenvalue X- c(J()/3.

(üi) J K( Z, 7) is a Jaeobi funetion of index c(f) with eharaeter X c(K)/3, and the elliptie

A- genus of M(I<) is a f()- eigenfunetion with eigenvalue Xc(K)/3.

Proof: Let U Si be the same in (14). We have
1:Si:S6

and (i) follows from Proposition 4.

Let ai, bi, 1 :::; i :::; 8, be the entries of 8 x 8 matriees defined by

17



Then
(v1Ist, ,V8Ist) = (vl,"'V 8

) (a{) ,
(v1 IHt, ,v8 IHt) = (V!, ... ,V8

) (biO{).

which implies (ii). (iii) follows from Theorem 2 (iü). q.e.d.

The following lemma is convenient for the computation of Tr( _l)F and elliptic A- genus
of M(I<).

Lemma 5. [4] Let {al,"" a m } be the images of {VI,"" V8} under the projection
M(I<) -+ K(I<) of (11). Denote

1 ::; i ::; m,

q.e.d.

here Vj(i) is an element whose image under (11) equals to ai. Then

w(I<) = I: DiRai(O,T)ai'
l:::;i:::;m

Proof: By Lemma 2, for each i, I{vjlvj r-+ adl = Ilaill-2. If Vj and Vj' have the same
image ai, IIvjl12 = Ilvj' 11

2 and

RvAO, T) = RVj (0, T) = Rai(O, T).

Then the result follows easily from the definition of Di and 11 ai 11
2

.

We now give some examples for the expression of w( I<).

Example (i). c(I<) = 3.

By Theorem 2 (ü), for V E M(I<), NSv(Z,T) = 'l9(Z,T) . (some function of T), and
Rv(O,T) = 'l9(~ + !,T)(some function of T) = 0. Therefore, w(K) = 0, which implies
Tr( _l)F = elliptic A - genus = 0.

Example (ü). K = (2,2,2,2) (by S-K Yang).

We have c( I<) = 6, d( I<) = 4, and the chiral elements of ~2 are

a = [0,0], b= [2,2], e = [1, 1].

18



By Lemma 5 and Proposition 4, we have

w(I() = -2[a . a . a . a] + 2[e . e . e· e] +12[a . b· e . e] +6[a . a . b· b],

henee
Tr( -1 )F = 2 . 2 + 2 + 12 +6 = 24.

Example (üi). !( = (2,2,2,6,6). we have c(!() = 9 and d(!{) = 8. Let a, b, e be the
elements of ~2 as in Example (ii). The ehiral elements of ~6 are:

A = [0,0], B = [1,1], C = [2,2], D = [3,3], E = [4,4], F = [5,5], G = [6,6].

For Xl, X2, X3 E ~2, Y4, Ys E ~6 with q(XI . X2 . X3 . Y4 . YS) = Xl . X2 . X3 . Y4 . YS, denote

[Xl' X2 . X3 . Y4 . Ys] = I: « u > -orbit of Xl . x2 . x3 . Y4 . YS) E K(K).

Then

-3

(-l)T w (I{) =
2(- [a . a . a . C . G] - [a . a . a . D . F] - [e . e . e . A . C] + [e . e . e . E . G]

+ [b . b . b . A . E] + [b . b . b . B . D]) + 3(- [a . a . b . C . C] - [a . e . e . C . C]

- [a . b . b . A . A] - [e . e . b . A . A] + [a . a . b . G . G] + [a . e . e . G . G]

+ [a . b . b . E . E] + [e . e . b . E . E]) +6(- [a . a . e . A . G] - [a . a . e . B . F]

- [a . a . e· C . E] - [a . a . e . D . D] - [a . a· b· A . E] - [a . a . b· B· D]

- [a . e . e' A . E] - [a . e· e . B . D] - [a . e· b· B . B] + [a . e· b· F . F]

+ [a . b . b . C . G] + [a . b . b . D . F] + [e . e . b . C . G] + [e . e . b . D . F] +
[e . b . b . A . G] + [e . b . b . B . F] + [e . b . b . C . E] + [e . b . b . D . D])

+ 12([a . e . b . A . C] + [a . e . b . E . G]),

Tr( _l)F = -12 - 24 - 108 - 24 = -168.

The Witten index of the above examples have the following topologieal interpretation:

Tr( _l)Fof (ii) = Euler number of !{3 surfaee;

Tr( _l)Fof (iii) = Euler number of the Calabi-Yau resolution of the hypersurfaee

zl + Z2
4 + Z3

4 +zl + zl =° in WIP(2,2,2,1,1) (Example (I) in [21]).
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The above relations illustrate the general propelty of the equality of Witten index and the
Euler number of Calabi-Yau orbifolds, whieh are diseussed in the next seetion.

~ Witten index of manifolds with Cl == 0

As before, I{ = (k1,···, kN), kj = positive integer. FOT the rest of this paper, we shall
always assume

c(I() = N - 2
3 '

whieh is equivalent to

N 1
"'--1LJk·+2-·
j=l J

"'-

Let X K be the manifold defined in (1). In tbis seetion, we shall show that the Euler number
of XK is equal to the Wirten index of M (I{).

Definition Let ,\ be an element in {'\1 0 .. ·0 '\N I'\j E ~kJ'}' and U, q : V(K) ---t V(K)
the same as before.

(i)

P(K) = {(I, '\)1'\ : chiral with q(,\) = '\, 1 E< U >},

P(I{) = The Hermitian veetor spaee with P(I{) as an othonormal basis.

(ü)
CP (I{) = {(I, ,\) E P(I{) I ,\ and ,\ 1I are ehiral in V(K) }.

CP(I{) = The subspace of P(I{) generated by CP(I{).

(ili) (-1); = R,xlf(O, r)R,x(O, r) for p = (1,'\) E P(I{).

Remark: The elements of CP(I{) are eorresponding to the ehiral primary fields of the
(2,2) CFf in [23].

By Proposition 4 (i), we have

if pff.CP(K),

if P=(f,,x)ECP(K).

Lemma 6 Tr( _l)Fof M(I{) = 2: (-1);.
pECP(K)

Proof: For a ehiral element ,\ in V(I(), we have

(-1)~ '" d(I{) (-l)Q>/+Q>. = '" (_l)F.
LJ I < U > ,\/ Li P

'\' E< U> ,\ pE CP(I{)
'\' : ehiral p = (I, ,\)
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Then the result follows from Theorem 3 (i). q.e.d.

Lemma 7. Let W be a quasi-smooth hypersurface in WIPt:n~) defined by a quasi­
homogenous polynomial g(Zl,···,ZN) = 0 ofdegree d. Assurne qcd(mili=Jj) = 1 for

N
eaeh j, and d = L mi·

i=l

(i) For an element y of W with the coordinate y = [Y1,···, YN],

Y E Sing (W) {:} qcd(mil 1 :::; i :::; N, Yi =J 0) > 1

(ü) When

the following equality holds

(-1)N-2 hN-2(w)o = ~~ II (1- :J
r-o rqiEZ

here qi = t1> rr (1 - i) ~ 1 if no qi with rqi E71..,
rqiEZ

hN- 2(W)o = dime (primitive part of I]N-2(W, C)).

Proof:

(i) We may assume the N - th homogeneous coordinate of Y equal to 1 and denote

Then the order IGI of G divides d and equals to gcd qed (mil1 :::; i :::; N, Yi =J 0). Consider
the linear aetion of G on CN -1 ,

N
By d = L.: mi, G is a subgroup of SU(N -1) and h(z) is aG-invariant function.

i=l
{h(z) = O} is a non-singular hypersurface passing through the point fj := (Yl,··· YN-1).
Then the following spaces are isomorphie as germs of analytic spaces:

(W,y) ~ ({h(Z)=O}/c,y)

(
C

N
-

2
)

~ /J.L,O ,

here "" is a small cyclie subgroup of SU(N - 2) with order = IGI. Henee Y is singular if
"" =J id, and the conclusion follows immediately.
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(ii) The following relation holds between Euler numbers of Wand W' (~ wpN -1 - w) :
x(W) +X(W') = X(l;f!pN-l) = N.

By [3], X(W) = (_1)N hN - 2(W)o +N - 1, hence (_1)N hN - 2(W)o = 1 - X(W'). It is

easy to see that

W' = F I<a>

here

Then the conclusion follows from the following fOTmula in [17]:

1 d-l ( 1 )
1 - X(W') = dL II 1 - qi

r=O rqiEZ

q.e.d.

For the rest of this section, we are going to prove the following result.

Theorem 4 Let XK be a projective manifold defined in (1); Then there is a

C- isomorphism between CP(K) and the cohomology space H* (XK, C) ( = E!J Hr
( XK, c)),

c.p : CP(K) -7 H* (XK, c)
such that for p E CP(I<), c.p(p) is an element in Hr(p) (XK, C) for some r(p) with the
property

(-1): = (-1 r(p) .

As a consequence, Witten index of M (K) equals to the Euler number of XK ,

Tr( _l)Fof M(I<) = x(XK).

(15)

Proof: The last statement follows from the rest by Lemma 6. We are going to define the
map c.p. Denote

n = N - 2.

qj = kj~2' Uj = the linear automorphism U of Vkj in section 1 for 1 ::; j ::; N.

JK = {m = (mI, .. . mN)lmj E 1,0::; mj::; kj}.
N

Q(m) = 2:miqi, zm=Z~l ... ZNN form = (ml, ... ,mN)EJK.
i=l

IK = {m E JKIQ(m) E 1}.
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Then {Zml Tn E JK} forms a base of the Jacobian ring C[Z]j < 8fK(Z) > of the
polynomial fK(Z). By [22], the subspace of C[Z]/(ßfId generated by {Zmlm E IK} is
isomophic to the primitive n - th cohomology group Hn(XK, C)o of XK. We shall identify
these spaces and the cohomology element in I]n(XK, C)o corresponding to zm will be
denoted by [zm] for mElK.

For a positive integer k, the chiral elements in ~k are given by [l, l], 1 ~ l ~ k. We
have the following one-one correspondence:

JK f-t {chiral elements in V(I{) }

and Q(m) is the charge QAm of Am. Hence under the above correspondence,

IK f-t {A : chiral element of V (I{), q(A) = A}.

Now the set P(I{) can be identified with < u > XIK. Then

CP(K) = U Tß
ßE<U>

here
Tß = {(ß, m)lm E IK, (AmIß) = dural} for ß E< U > .

We are going to define the map <p on each Tß. For ß = the identity element 1,

<p : Tl -+ Hn(XK, C)o ~ H'* (XK,C)

is defined by <p(1, m) = [zm]. By

F e(K) n
(-l)(I,Am) = (-1) 3 = (-1) for mElK,

Tl is bijective to a basis of Hn(XK, C)o via <p which satisfies (15). Now we consider
the case for ß i:- 1.

For a chiral element [1,1], 0 ~ 1 ~ kj, of ~kj'

kj+2 if kj=even and 1=1-,
I < Uj > - orbit of [l, l] I = {kj~2 otherwise,

and

[l, l] Iuj = chiral {:} r = 0, l +1.

For an element ß E< U >,' we denote r(ß) the element in ZN whose i - th coordinate
r(ß)i satisfies the equation:

{l - r(ß)i (mod.ki + 2), 0 ~ r(ß)i < ki + 2,
ß = u/.

23



Define F(ß) = {i11 :::; i :::; N, r(ß)i = O}. We now process the proof of this theorem in
the following steps.

Step (I). Claim: For ß =1= 1, we have the following description of the elements (ß, m) of

Tß for m = (1TI1, ... mN) E IK.

(i) When F(ß) = </l and Tß =1= </l, Tß consists of only one element (ß, m) with
mj = r(ß)j - 1 for all j. Conversely, if ß E< u > and mElK satisfy the relation

mj = r(ß)j - 1 for all j, then F(ß) = cf; and Tß = {(ß,m)}.

(ü) When F(ß) =1= </l, we have

(ß m) E T {:} {m j=T(ß)j-1 for jfJ.F(ß)
, ß L (mi+1)QiEZ.

iEF(ß)

Furthermore,

in which situation, XK n (Zj = Olj tj. F(ß)) is a non-empty subset contained in Sing(XK).
For (ß,m) ETß and m'= (m~, ... ,m~) EIl<: with AmIß=Am', wehave

and

mj = mj ork'-m'J J,

mj = kj - mj {:} r(ß) j - 1 = mj.

For j tj. F(ß), if mj = mj, then [mj,mj] = [mj,mj]lu;(ß)j = [mj,mj]' whichimplies

( )
, k·

r ß j - 1 = n~j = mj = T. Therefore we obtain

mj = r(ß)j - 1 for j tJ. F(ß). (16)

(by (16))

When F(ß) = </l, we have mj = kj - mj for all j. Then (i) is obvious. Write ß = ul for
some 0 < l < d. When F(ß) =1= </l, l is divided by ki + 2 for all i E F(ß). Hence

lcm(ki + 21i E F(ß)) < cl,

which is equivalent to

qcd(nili E F(ß)) > 1.

N
For (ß, m) E Tß' by I: qi = 1, we have

j=1

Q(m) - L (mi + 1)-qi + L r(ß)jqj
iEF(ß) j fJ.F(ß)

= L (mi + 1)qi (mod 1).
iEF(ß)

Therefore L (n~i + 1)qi E 1, and IF(ß)I ~ 2. By Lemma 7, XKn(Zj = Olj tj. F(ß)) ~
iEF(ß)

Sing(XK). By reversing the above argument, we obtain the conclusion of (ii).
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Step (11). Claim: Denote

BI = ~ L TI (1 - :) fOT 0~ I ~ d - l.
O~r~d-l/qi,rqiEl z

Then (i) L: (-1); == BI for all 1.
pETul

d-l
(ü) Witten index Tr( _l)F of M(I<) == L: Bz

z=o
When F (u1) == cP, Tul consists of only one element (ß, m) with Am Iß == AK-m by Step

(D (i), then the conclusion follows iminediately. We now consider the case when F(ß) f: cP.
For a subset I ~ {I, ... , N}, define

XK(I) == XK n (Zj == Olj E I)

e(I) == qcd(njlJ (j. I).,

By Step (I) (ii), there is an one-one correspondence between the following sets:

(ß,m) ~ rr Z~i.
iEF(ß)

By [22], the monomials in the right hand side form a basis of

(17)

(18)

For (ß, m) E Tß' we have

(-l)~,m) == (_1)N(_1)N-IF(ß)I+2 L (mi + l)qi == (_l)dimXK (I). (19)

iEF(ß)

So (i) follows from Lemma 7 (ü). By Lemma 6,

d-l

Tr(-l)F == L (-1): == L L (-1): == LBz.
pECP(K) O~Z~d-lpEI:I( 1=0

hence we obtain (ü).

Step (111). We have the equality

Tr( _l)Fof M(I{) == Euler number x(XK) of XK.

When n == 3, by Theorem 1 of [21], we have

d-l

X(XK) == LEI.
z=o
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With the same proof given there , the above equality holds also for dirn X K 2 or
XK = XK. Hence the conclusion follows from Step (Il) (ü).

Step (IV). We are going to define a C- isomorphism

({J : CP(K) ~ H* (:kK , c).
We shall assign a cohomology class in Hr(p) (XK' C) with the property (15) for an element

p of Tß, ß i= 1. Denote

/11 = { The image of the standardgenerator of H2j (WP(,:~)\ C)in H2j(XK, C)for 2j S n,

The POlncare dual of I\n-J In H2J(XK, C) for 2J > n.

By [3], H 2j(XJ(, C) is aI-dimensional space with base I\j, and H 2j+1(XK, C) = 0 for

2j + 1 i= n. For the convenience, we shall divide the XK in the following cases.

Case (i). Xl( = the degree N Fermat hypersulface in pN-1,

XK : Zr + ... ,Z% = o.

For 0 ::; I ::; N - 2, we have F(U1+1) cP. By Step (I) (i), TUl+1

{ (u1+1, [I, I] (29 ••• (29 [I, I)) }. Define

({J ( UI+\ [I, I] (29 • • • (29 [I, I]) = 1\ I for 0 ::; I ::; N - 2,

Since the value (_l)F of (U1+1, [I, I] (29 ••• (29 [I, I)) = 1, the induced C-linear map

({J : CP(K) ~ H*(XK, C)

is an isomorpip.sm with the property (15).

Case (ü). The case for n = 1.

XK = XK is a non-singluar elliptic curve. lK consists of ooIy two elements: 0 =
(0, ... , 0), J{ = (k1 , . .. , kN ). Hence GP (K) - Tl = Tu II Tu -1. Then

Tu = {(U,O)}, Tu-1 = {(u-I,K)},

and (-l)~,O) = (-1)~-1,K) = 1. Then the conespondence

(u, 0) 1-+ 1\ 0

(u-1 , J{) 1-+ 1\1

defines the isomormorphism ({J.

Case (iii). The cases for N = 4,5 (hence Xl{ is a K3 or GY space respectively).

H 1 (XK , c) = H 2n- 1 (XK , c) = O. In the following, I always denote a subset of

{I, ... ,N} with 111 ::; N -2 and XK(l), eK(l) the same as in (17).

D t S { {IIIII=2, e(I»1} for n=2enoe =
{IIIII=2,3, e(I»I} for n=3.
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Then Sing(Xld = u{XK(I)1 ES}. Denote the birational morphism from XK to XK
by

The exceptional divisors in XK over X K (I), 1 ES, can be described as follows [9]:

For n = 2, * E XK(l),

0--
1(*) = a union of e(I)'exceptional pI - curves with e(I)' ~ e(l) - 1.

For n = 3,

0--
1(')') =a union of e(I)' mIed sUlfaces over an irreducible

component I of Xf{(I) for 111 = 2 with e(I)' ~ e(l) - 1,

0--
1(*) =a union of e(J)'rational surfaces over an element * E XK(J) for IJI = 3 with

2e(J)' ~ e(J) - 1- L {e(l) -111 E S, I ~ J, 1=1= J}.

We have the following natural isomorphisms:

For n = 2

H2 (Xf{, c) ~ H 2(Xf{, C) EB EB HO(XK(l), C)Ege(I)'

IES

For n = 3 [21],

H 2 (XK' C) ~ H2(XK, C) E9 EB HO(XK(l), C)ffie(I)' E9 EB HO(XK(J), C)Ege(J)' ,

111 = 2 IJI = 3
lES JES

EB H1(XK(I), C)Ege(I)'

111 = 2
1ES

For the simplicit)' of notations, we shall make the above identifications in what follow.

For ß =1= 1 with F(ß) =1= cjJ, the image of an element (ß, m) in Tß under the map (18)

determines acohomologyclassin H dimXK(I/3)(XK(Iß),C)o with 1ß ~ {l, .. ·,N}-F(ß),
hence an element of H*(XK, C) through the above identification of cohomology spaces.

Through this procedure, 'P is defined on the Tß for ß i- 1 and F(ß) i- cjJ :

For n = 2.
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hence

I.p : U{TßIß 1 1, F(ß) 14>} ~ EB HO(XK(l), C)EBe(I)' '--+ H 2(xK,c);
IES

For n = 3,

I.p: Tß ~ HO(XK(lß),C)o forß = u1
, 21< d, I·F(ß)I = 2,

hence

I.p: U{TßIß 1 1,IF(ß)1 = 3} '--+ EB fl 1(XK(1),C)EBe(I)' '--+ H 3 (XK'C),

111 = 2
1 ES

U{ ß = u
1

with} ffi ° EBe( J)' 2 ( '" )
I.p : Tß'IF(ß)I = 2 1< d _ 1 '--+ W H (XK(J), C) '--+ H XK, C

, ' IJI = 3
JES

and we define

I.p : U{Tß-l Iß = u1
, IF(ß) I = 2,1 < d - l} ~ H 4 (XK, c)

by requiring that I.p(Tß) and I.p(Tß-l) are the Poincare dual in H* (XK' c) corresponding
to the pairing

Tß E (ß,m) f-7 (ß-l, mIß) E Tß-1.

By (19), I.p satisfies the property (15).

We now define I.p on Tß with F(ß) = 4J. By Step (1) (i), Tß consists of only one element
whenever it is non-empty. Define I.p on the following Tßs :

Tu = {(u,O)}, l.p(u,O) ~ /\0 E HO(XK,C);

TU-I = {(u-I, K)}, I.p(u-I, 1{) ~ /\n E H 2n (XK, C);

TU2 = {(u2,Jl)}, l.p(u2 ,1) ~ 1\1 E H 2()(K,C), hefel. ~ (1,1"",1).

For 1 ~ {I,' .. ,N} with 111 ~ N - 2, e(l)'> 0, and 1 ~ j ~ e(l)~ .-'::",., we denote

d(l) = d/e(J)'

ß(l, j) = ujd(I)+l.

Then Tß(I,j) = {(ß(l,j), m(jd(l)))}, hefe m(jd(l)) = the element in lK with th i- the
coordinate mi defined by the equation

jd(I)=mi (mod. ki+2)
{0~mi<ki+2
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(which implies 0 ::; mi ::; ki). We define

r.p(ß(I,j)), m(jd(I)) = the base element of the complement of HO(XJ((I), C)o in

HO(XJ((I), C) which is identified with the 1- th factor of HO(XJ((I), C)EBe(I)' C-...+

H 2 (XJ(,C). .

For n = 3, we need to consider the following T/Js. Note that Tß(I,j)-l

{(ß(I,i)-l,I{ - m(jd(I)))}. By the relation

Q(m(jd(I))) +Q(I{ - m(jd(I))) = 3

and

Q(m(jd(I))), Q(I{ - rn(jd(I))) E l>o,

ß(I, j) -1 is not ~ny one of the elements we have considered before. We define

r.p(ß(I,j)-l, I{ - m(jd(I))) = the Poincare dual of r.p(ß(I,j), m(jd(I))) in H4(XJ(,C),

r.p(u-2, I{ -1) = 1\2 E H4(XJ(,C), (TU-2 = {(u-2, K -Jl)}).
It can be verified that the defined values of r.p satisfy the property (15).

Denote

{ß E< u > IF(ß) = 4>} - {u±\ u2 , ß(I, j) for e(I) > 1,1 ::; j < e(I)'} for n = 2

R ~ { {. ±1 ,}. {ß E< u > IF(ß) = 4>} - u±\ U±2, ß(I,j) for e(I) > 1,1 ::; j::; e(I) for n = 3

By the above construction, we have defined a C- isomorphism

r.p: EB{CPIP E CP(K) - UTß } ~ H* (XJ(, C)
ßER

satisfying the property (15).

hence X(XK) = I: {(-1);IP E CP(K) - U Tß}. By Step (ill),
ßER

X(XJ() = I: (-1);,
pECP(J()

which implies

0= I: {(-l):IP E UTß} = I: ITßI
ßER ßER

by Step (I) (i). Therefore Tß = 4> for ß E R, and the map r.p is the isomorphism from

CP(I{) to H* (XJ(, C) with the property (15). q.e.d.

Remark: The Step (1I) in the above proof corresponds to the physicist's argument employed

by Vafa in [23]. The conclusion in Step (l1I) is the mathematical argument for the equality

of the Witten index of GFT and Euler number of GY orbifold XJ(. The map r.p we have

constructed here illustrates the explicit correspondence between twisted sectors and blowing­

up müdes for the Calabi-Yau orbifolds in the physics literature.
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~ Elliptic genus of manifolds with cl = 0

By Theorem 3, JK(Z, T) is a Jacobi function of index c(~) with character Xc(K)/3.
By Proposition 1, the elliptic A- genus of M(J<), JK(O, T), is zero for c(f) = odd,
which corresponds to the vanishing (topologieal) elliptic genus (of level 2) of XK when
dimXK = odd. We now consider the case when dimXK = 2, and we shall describe the
relation between the A- genus JK(O, T) and elliptic genus of the J<3 surface XK. By
Proposition 1 (ii),

C' ( )..:.. _ JK(O, T) ( )6
'-'K T - 2 1] T

. 19(O,T)

is a modular form of Fe of weight 2. By the definition,

JK(O, T) = N Sw(K)(O, T)

" ~ d(K)=~ RVi(O, T)NSVi(O, T) Ilvill 2.
t

We may assurne VI =< U > - orbit of [0,0] 0 ... 0 [0,0]. As lim 19(0, T) = 1, by
ImT-oo

Proposition 4,

which equals to the A- genus of the J<3 surface XK. Since the dimension of space of
modular forms for re of weight 2 is equal to 1, f,K (T ) is the elliptic genus of XK .

Therefore we have shown the following result.

Theorem 5 The elliptic A- genus of M (J<) is corresponding to the topological elliptic
genus (of level 2) of XK when dimXK = 2 or odd.

Appendix We are going to prove the following equalities:

For positive integers M, a, b with M ~ 3, 1 ::; a, b ::; M - 1,

" . jaJr . j bJr M {'
~ SIll M SIll M = TUab,

l:::;):::;M -1

" ( )j+1. jaJr . jbJr M
~ -1 SIll l\!I SIll M = TOa+b,M.

1:::;j:::;M-1

Proof: For an integer d, we have

~1 jdJr 1 ~I (jdJri -jdJri)
~cos-=-~ exp--+exp--
. M 2. M M

)=1 )=1

1 { 2M-1"d "}= - -1 - (_l)d + L exp J Jr~
2 . M

)=0

M - 1 if d == ° (mod 2M)
= L;l (1+ (_l)d) if d;i 0 (mod 2M).
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~ . j a'Tr . j b7r -1~ [ j (a + b)7ri j (a - b) 'Tri]
~ SIll -M- SIll -M- = -2- ~ cos M - cos --M--
j=l j=l

1( ( )a+b) 1ML-1 j(a-b)7ri= - 1 + -1 + - cos --'----'--
4 2 . AI

}=1

(.: 2 ::; a + b ::; 2M - 2)

_{H1+ (-lt+b
) + H21

) (1+ (_l)"-b) = 0 if a fd
- 1(1 +(-1t+b

) +!(AI - 1) = 1lf if a = b

(": a -# b a - b ~ 0 (mod 2M)).

Hence we obtain the first equality. the second equality follows by substituting a by M - a

in the first one. q.e.d.
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