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Introduction

Conformal field theories (CFT) in two dimensions have been studied extensively in the
past few years, motivated mainly by their importance in constructing string vacua, and also
because of their relation to the critical phenomena in two-dimensional statistical mechanical
systems. This paper focuses on an important element in the Landau-Ginzburg model of
N = 2 superconformal field theory: the modular invariance of manifolds with SU(n)
holonomy. When n = 3, the manifolds are the Calabi-Yau (CY) spaces, corresponding
to ¢ = 9 CFT, which are of considerable interest to string theorists. Here we propose
a mathematical formulation for modular invariance of (2,2) CFT based upon the works of
[4,6,7,10,15,23,25,26]. The Witten index and elliptic A -genus of CY orbifolds in weighted
projective 4-spaces will be our main concern. From the mathematical point of view, we
shall study these topological invariances based upon the Hodge structure of some specific
generators of SU(n) cobordism class by the theory of Jacobi functions of modular group.
The conclusions are derived from the representation theory of superconformal algebra. On
the other hand, the mathematical results obtained here have justified much analysis which are
recently expended by physicists on the study of Landau-Ginzburg models [4,10,23]. It seems
that this is the proper context to understand the modular invariance of CY spaces from the
geometry point of view. We now briefly describe the result of this paper.

For K = (ki,...,kn), kj : positive integer, with

k -

?;k,+2

=N-2,

denote

fx(Z4, ... Zz’"“

X = {[Z1,- .., Zn) € WP fk(21,..., Zn) = 0},

here WPéV )1 is the weighted projective space with
d

= — d=1¢ k; <j<N).

X 1s a V-manifold with (at most) cyclic quotient singularities, and has the trivial canonical
sheaf. When dimg¢ Xg(= N —2) < 3, the “minimal” toroidal resolution X k of Xg has
the trivial canonical bundle. It is known that X Kk is a K3 surface for NV =4, and CY
space for N =5 [9]. But the ¢; = 0 resolution of X is not known to exist for a general
N. For the simplicity of the argument and also the application to ¢ =9 CFT, throughout
this paper Xg will always be denoted by the manifold defined as follows:

the minimal toroidal resolution of X g for N <5,
the degree N Fermat hypersurface X in PV !
(ie. all kj =N —2) for N > 5.

Xk ={ (1)



Consider the modular group ['y defined by

Ty ='{M € SLy(Z)|M congruent to ((1) (1)> or (? é) mod. 2}.

Note that Ty is a conjugate of T';(2) in SILy(Z). The Jacobi group T’} (: Ty x Zz) acts
on the space I'(C x H,O) of holomorphic functions of C x H in a well-known manner,
here H is the upper half plane [5]. An invariant function of Fg is called a Jacobi function.
We shall assign to each Xk a function J, k(z,7) which is a Jacobi function twisted by
a certain character of I'y. The method is through the representation theory. The values of
JKk(z,7) at some special points z will give the topological invariances of Xk, e.g. the
Euler characteristic and the elliptic genus defined by Ochaine, Landweber and Stong [14]. In
fact, the Euler number of Xg is expressed by

X(XK> = j]g(% + %,T) exp (C(;{)m(i + %)),

and Jgk(0,7) determines a modular form of weight 4352 for I'y. This modular form equals
to zero when dimg X kx = odd, and coincide with the elliptic genus of K3 surface when
dime X = 2. Itis expected that the modular form obtained by Jx (0, 7) 1is the elliptic genus
of Xy for any K, and for e™¥ being roots of 1, Jx(y,7) should relate to the elliptic
genera of higher level defined by Hirzebruch [11]. Work along this line is in progress. Before
going any further, I shall explain first how the function Jx(y,7) comes from. For a given
K, there associates a finite collection of highest weight representations of Neveu-Schwarz
N = 2 superalgebra A with the central charge ¢ = ¢(K). It is obtained by the Gepner’s
construction [6], which is a specified procedure of selecting subrepresentations of a tensor
product of unitary irreducible ¢ < 3 highest weight modules (HWM) of the superalgebra
A. The selection is dictated by the modular invariance of characters of the involved HWM.
These HWM form a finite dimensional C[I'j] -module M(K), which can also be described
purely from the abstract algebraic point of view. The algebraic construction of M(K) and
its properties are given in section 2 and 3. In section 4, we discuss how the M(K) relates
to HWM of fl, and through the characters of HWM, two I‘;,’ -morphisms

NS, R: M(K) — T'(C x H,0)

are introduced for the discussion of modular invariance. There naturally associates a
“T'J -invariant” vector w(K) in M(K) and the Jacobi function Jx(z,7) is then defined to
be the image N Sw(k) of w(K) under the above morphism N.S. The Witten index Tr(—l)F
and elliptic A genus of the theory are given by

N 1 (
i Rt 15 3o (25 3).
elliptic A — genus = Jx(0,7).

The general properties of Jacobi functions needed for our discussion are described in section
1. In section 5, the following equality is obtained:

Euler number of X = Witten index T'r( ~1)fof M(K).



We also give a rigorous mathematical justification of the Witten index formula obtained
by Vafa in [23] based on physicist’s reasoning. In this process, the cohomology group
H* (X K, C) of Xx can be identified with a certain space constructed from M (K), which
correspond to the “massless” states of the C'F'T' theory in physics literature. The dimension
of a cohomology element is expressed by Witten index of its associated state. So the
massless excitations of CFT are geometrically realized as the cohomology elements of the
corresponding Calabi-Yau vacua. In section 6, we discuss the relation between Jx (0, 7) and
the topological elliptic genus of X k. The cases for dimg X k = 2 or odd are treated and
the equality of these two data are verified.

Although the modular invariance of superconformal algebras stems from theoretical physics,
this paper 1s preoccupied primarily with its related problems in mathematics. Recent devel-
opment on mirror CY spaces [28] [29] has further indicated that manifolds with SU(n)
holonomy are closely related to (2,2) superconformal theories. In this paper, we have put the
analyses of modular invariance of Calabi-Yau vacua on a more firm mathematical footing.
We have found that through the modular transform, the spectral flow is conjugate to the
integral-charge operator. Using the former structure, C. Vafa derived the formula of Witten
index of CFT in [23] by the physicist’s argument. On the other hand, through the charge
operator, the Euler number of a C'Y orbifold is also expressed by Vafa’s formula in [21]
from the topological method. In this paper, we also give a yigorous mathematical argument
on Vafa’s approach of the C'Y Fermat hypersurfaces in weighted projective spaces. This
leads the speculation that the discussion in this paper should also apply to the more general
hypersurfaces defined by superpotentials composed of A-D-E type singularities. Furthermore,
we believe a deeper understand of the modular invariance will almost certainly clarify the
meaning of certain invariances of manifolds with trivial canonical bundle, as indicated in the
relationship between Witten index and Euler number of C'Y space. The study of mirror C'Y
spaces i1s under consideration along these lines.

I am much indebted to Prof. S-K Yang for the invaluable help in learning the modular
invariance of CFT. I wish to thank Prof. K. Saito, G. Hohn for the inspiring conversation
on the singularity theory and elliptic genus. I would also like to thank Research Institute
for Mathematical Science at Kyoto and Max-Planck-Institut fiir Mathematik at Bonn for the
warm hospitality while this work was done.

§1. Jacobi function

Let I'y to be the subgroup of S Ly(Z) consisting of all the elements congruent to (é (1))

0 1 :
or ( 1 o (mod 2). The Jacobi group I‘g is the semi-direct product I‘g = Ty x 2?2

corresponding to

((5, ), <‘c‘ 2)) s (6 + ve, 8b + vd).



It is known that the substitutions in the variable z € C, 7 € H (the upper half plane

Imt > 0):
z at +b a b
(Z,T) — <m’m), fOI' (c d) € Fg,

defines an action of I'y on C x H. Moreover, this action normalizes the lattice action on z,

ie. we have an action I'j on C x H, where 3),(6, u)) acts on C x H by
(2,7) o z4+6r+v ar+b
’ er+d er+d)’

Let p be a character of I‘g to C*. The above action, together with p, induces a representation
of I‘HJ on the vector space I'(C x H,O) of holomorphic functions of C x H, which is
described by

I'(C x H,0) x T — I'(C x H,0)

(¢,%) > dl*,

(81(8,))(2,7) = p((8, 1)) P78+ TN g (o 4 67 1y 1),
a b a b nrize z art+b )
(¢|<c d))(“):”((c d))e T ¢(c7‘+d’c¢+d>’

b
5 2 ([
here (6,v) € 77, (C d
of I‘g and its invariant function is the Jacobi function of index 7 with character p. Let
a, B,s,t be the elements of I'j defined by

a=(1,0), B = (0,1), s = (_01 (1)) p= ((1) ?)

They satisfy the relations:

n

) € I'p. This representation is called the index 7 representation

aff = Ba, st =1, s’t = ts?,
-1 2 -1 -1 -1 -1 3)
tTat=af,tTpt=0,8 as=4,8 Ps=a ". :

It is known that Fg is characterized as the group generated by 4 elements «,,s,t with
the above relations. We define the following characters of I'j which will appear later in
this paper,

pr,Xn:T§ = C* (n€2)
with .
pr(@) = pu(B) = (__1)71, pu(s) = pu(t) = (-1)7; @)
Xn(a) = Xp(B) =1, Xp(s) = Xp(t) = (—1)=.
Consider the classical theta function

Iz,m) =Y 2 HTET (5 7)€ C xH.
6eZ



It is known [18] that 19(z,7')2 satisfies the relations:

I(z + 1,'r)2 = '19(2,7’)2,
e?(ﬂ'ir+27riz)19(z + T, 7_)2 — '19(27 7_)2,

a b\’ _1 opize? z ar+b 2_ 2
6<(c d))(CT+d) ° +dl9(67'+d’c7'+d =9(z7)%

here <Z Z) € Iy, € :the character of I'y with £(¢) = 1 and &(s) = z.

&)

Proposition 1 Let n be an positive integer and ¢(z,7) be a Jacobi function of index %
with character &,,. Then

(i) When n is odd, ¢(0,7) = 0 for all 7 € H.
(i1)) When n is even, the function of H

f((oo’ TT)L n(r)*"

is a modular form of I'y of weight n, here n(r) is the Dedekind eta function defined by

n(r) = exp(%) ﬁ (1 — exp(27267)).

6=1

Proof: (i) By the equality
X (s%) (0ls%) = ¢,

we have (—1)"¢(—z,7) = ¢(z,7) for (2,7) € C x H. It follows that #(z,7) is an odd
function of the variable z for odd n, hence ¢(0,7) = 0.
)Sn

(i) Assume 7 is an even positive integer. It is known [19] that n(7)”" is a modular form

for Ty of weight 3 with the character

—3nm
4 b

"(Z:iz)% - U(((CZ 2)>(cr +d) ()"

By (2) and (5), the function

J:FgeC*,tHexp?,s'—»exp

i.e.

Y(z,7) : 1;]5((;’7_3)7& 77(7_)311

satisfies the relation

Y(z+ 6T +v,7) =9%(z,7),



b n
52 ) = e+ vt

here (z,7) € C x H, (6,v) € 77, (Z Z) € I'g.As 9(0,7) #0 for 7 € H, ¥(0,7) is a

modular form for I'y of weight n. g.ed.

§2. Algebraic preliminary

For a positive integer k, define

Li={(I,m)e2?0< 1<k, I-m=0 (mod2) },
roly — Ly, (bm) = (k=1 m+k+2),

Br=Ly/ <r>,

f: B — By, [I,m] — [l,m - 2],

o
3: B> C* [[,m] — exp(kﬁrg),

. (420 —m? k
b.%k—ﬁC,[l,m]v—)exp<7rz< P —2k+4>>’

) —mimm\ . (r(l+ D) +1
s: By x By - C, ([l,mla["’m'Dkaexp( F+2 )sm( | kJ)r(Z ))'

It is easy to see that the above maps f,3,h,s are well defined.
Lemma 1.{({,m) € Li| |m| <[} is a set of complete representatives of By.
Proof:

Since r2(I,m) = (I, m + 2k +4) for (I,m) € Ly, every element of L/ < r? > can be
uniquely represented by an element (I,m) in L with —] <m < —[+ 2k +4. For any two
elements (l;,m;), 1 = 1,2, with —; < m; < —I; + 2k + 4,

r(ll,ml) =(lg,me) & (k—1li, mi+k+2)= (I2,my2).

Then it is easy to see that every element of B is uniquely represented by (I,m) € Ly with
|m| < 1. q.ed.

Definition: An element (I,m) of L; with |m| < [ is called the standard representative
of the class [/,m] in By.

Denote Vi =the Hermitian vector space over C with Bj as the orthonormal base. We
shall identify an element A of B with the associated base element of V;. We are interested
in the following linear maps

uaqu,S:Vk_)Vk



which acts on the vectors of V; from the right, and their values for the base element A\ € B
are defined by:

Alu=f(u), Alg =3(A)A, AlH = h(M)A,
NS =Y Sip  withS§ = s() p).
REDB
It is easy to see that u, q, H are the unitary transformations of V.

Proposition 2. S is an order 4 symmetric, unitary transformation of V. S? is the linear
map sending [[,m] € By (Im| <) to [I,—m] € By.

Proof:

The symmetric property follows from the definition of S. We need only to show the unitarity
of S and the statement for S2. The following identities are needed for the argument: For
integers M,a,b with M > 3,1 <a, b6 <M -1,

. jam . gbm M
E : Jam a2 _ M
1<]‘<M_lsm i 5 dap ©6)
oy . gjam . jbr M
E (—1)]+1 Sll’ljﬁ sin :]—M- = 76a+b"M. (7)
1<j<M -1

(A proof of the above equalities is given in the appendix.).

Let X, p be elements in By. The standard representatives of A, p are denoted by
(b,a),(B,a) respectively in this proof.

For 0 < ¢ < [g], we have

—a+ : - N
Z exp( ka+ ;mm) = Z exp( ka:2a(l+2])m)

(I,m) € Ly 0<y<k+2
m = 0(2k + 4)
—a+t«a .—a+«
= l
exp 510 ) Z exp(] ) 27m>
0<j<k+2
k+2 ifa =«
={ (=D (k+2) fa—a==L(k+2)
0 otherwise (". | — a + a| < 2k),

@)



2 \?2 —ata, ) oo TOHDHL) o w(B+1)(1+1)
(m) )y exp( Fpz M) sin T sin 512 (9)
(bm)eLg,0<i< izt
m=0(2k+4)
for £ = odd,
= 2 \2 —ata N oo (b1 (I41) . w(B+1)(1+1)
Z S (533) > exp(FEErma) sin T sin Ty
(L,m)€L,0<t<E 1
56‘Bk mE:(2k+4)§
2 \2 — N . b+1) . +1
+(m) % > exp( “_|_+2°’m7rz)sm"(2 )sm’r(ﬂ2 )
(brJer
m=0(2k+4)
for k =even.  (10)

By (8), 3,554 =0 when a—a # 0 or £(k+2). Claim: When ¢ — o = £(k +2),
)

we have

b+B#k and » S35 =0.
5

Infact,if 6+ 8 =% and a—a = k+ 2,
la| <b=> a+k+2<k—-f=> a<-F-2.

This contradicts |a| < 8, so b+ 3 # k. The same argument for the case a — o = —(k + 2).
By (8), (9), (10),

' I . w(b+1)(1 T !
pr 5 (=1) sin TR g B
o<i<Est
for k = odd.
§ & N m
DS = gy T (<)) sin TN gy nEHDIRD
6 0<i<i—1
E o ow(b+1)(E+1) . w(B+1)(E+1
7-:%(—1)2 sin ( kl—(z ) sin ( kl(z )
\ for k = even.
Since b=a=a+k =+ k(mod 2), (—l)k = (—1)b+ﬁ. Then it is easy to see that
_ 2 41 . m(b+ 1) . w(B+ 1)
oSSt =—= Y (~1)"sin sin = 0. By (7))
- k+21stk+1 k+2 k+2
Now we consider the case when ¢ = o. We have b = § (mod 2). By (8), (9), (10),
~ 2 . mb+1)y . w(B+1)5
Z Sng =— Z sin sin = &y 5. (By (6))
> k+21sjsk+1 k+2 k+2

Hence we obtain the unitarity of S. Replacing S g‘ , a by Sg‘ , —a Tespectively in the above
argument. We have

Zggsg:{l if (b,0) = (8, ~0)
)

0 otherwise.



This completes the proof of this proposition. qg.ed.

Theorem 1. Let Vi, u,q,H,S be the same as before. denote ¢ = %_’“—2-, d =k + 2. Then
u,q,H,S are unitary transformations of V; satisfying the following conditions:

q¢ = ul = H¥ = §* = id.
uq = exp(%Qm’) qu, S?H = HS?,
| S7lg7lS =u, S7uS =g,
H™YqH = q, H'uH = exp (§2m) q%u.
Proof: It is easy to see that q¢ = u? = H? = 4d., H 'qH = q. By Proposition 2,

S$* =4d., S’H = HS? For )\ = [l,m] € By,

(Alwla = [tl,m—2)jq = exp(%m’) (M) = exp(S2m) (A a)l

T

(W) |H = exp(k > (Z+20—(m- 2)2)) (Au) = exp(§2m) (A H ),

_ —2mms -1
Alg 1S=exp< ) )25f'u=25§'” p = A|Su,
7

I

Aus =" S B = > 3(w)Sh = ASq.
n

n

g.e.d.

§3. Representation of I'y

Let ky,...ky be positive integers and K = (k1,...,ky). Denote

o(K) = 3k;

1en Bt 2

d(K)=lem(ky +2,...,kxy +2),

S(K) = {o : permutation of {1,..., N} withk,(jy = k; for1 <j < N}.



V(K) =W, ® - ®Vk, as the tensor product of Hermitian vector spaces.

Let u;,q;,H;,S; be the unitary transformations of V}, as in the previous section. By
tensor product, we have the unitary transformations u,q, H,S of V(K) defined by u =
B --Ruy, =0QR - ®qdy, H=H ®---QHy, S=5® --® SN, which
acts the vectors of V(K') from the right. On the other hand, &(K) acts on V(K) from
the left as unitary transformations by

(0,018 - ®UN) = Vy(1) ® -+ @ Vg():
It is easy to see that the action of &(K') commutes with u, q, H, S, and we have the action:
S(K)x V(K)x < u,q,H,S >— V(K).

As before, l‘g is the Jacobi group for I'g, which is generated by «, 3, s,t with the relation
(3). As a corollary of Theorem 1 we obtain the following result.

Proposition 3. When C(gi) € Z, V(K) is a C[['J]—module under the following
correspondence:

a=(1,0)—u

B=(0,1)—q

1 2
3=<_01 ;)HS.

Remark: The above representation of I‘OJ can be factored through the representation of
the finite group Poj’d : Ty 24 x-(Z/dZ)?, here Looa = {M € SLy(Z/2dZ)|M congruent

10 0 1
to (0 1)01<1 0)modZ}.

From now on, we shall always assume
c(K)

— — inte
3 integer

for the rest of this paper, unless otherwise specified. In this case, q and u generate an abelian
group isomorphic to (Z/dz)2 with d = d(K). Identity < q,u > with (Z/dz)2 via

< g,u>= {(a1,az)|a; € Z/dz}, g« (0,1) ue(1,0).

10



The group of characters of < gq,u > 1is

. b
< g u>= {(b1)|bi € Z/dZ}'
2

As < q,u > is normalized by < S,H >, The eigenspaces of V(K) for < q,u >
are permuted by the action of < S, H > (=1Y). In fact, The eigenspace of V(K) with
eigenvalue (2;) is mapped to the one with eigenvalue M~} 2; (mod d) under the action
of M € I'y. The following ['¢— submodules of V(K) are needed for our discussion:
M(EK) = V(K)<W K(K) = V(K)<SE»a>
It is clear that the above I's representation can be factored through I'g .4 We have the
['y— morphism
M(K) — K(K)
. (11)
T — S > oz,

seS(K)
. and we shall denote the image of A\ ® --- ® Ay, A; € ij, by A1---Ay. The following
lemma is obvious.

Lemma 2. Let &' be the G(K)— isotropy subgroup of the element A\; ® --- ® Ay and
6 be the &(K)—orbit of \; ® --- ® Ay in V(K). Then

_ [6(K)|
!0‘_ |G‘| ’

: 1
. e 2:_

Now we define an important notion, which corresponds to the chiral primary fields in CFT
[15].

Definition. For A; € B, 1 <:< N, theelement A=A ®---® Ay in V(K) is called
chiral (antichiral) if the standard representative of \; is the form [l;,l;] ([l; — ;] resp.) for
each .

It is obvious that the chiral and antichiral elements in V(K) are in one-one correspondence
by [l L] < [L, -]

§4. Superconformal algebra and Jg(z,7)

Having given the algebraic construction of the C[I'y]—module M(K), we are in the
position to relate it to the representations of the Neveu-Schwarz N = 2 algebra. We here
list some properties of the representations of N = 2 superconformal algebra needed for

11



the discussion of this paper. Comprehensive descriptions can be found in [1], [2], [20] and
references quoted there.

Definition. The Neveu-Schwarz N = 2 subalgebra A is the complex‘Lie superalgebras
generated by {Lm, JIn,s G;H m,n € ZL,p € % + Z} and a central element ¢ with the following
super-Lie brackets:

¢
[Lm, Ln] = (m - n)Lm+n + ﬁ(mz3 - m)6777,+n,0
[Lim, Jn] = —nJmn

C

[Jma-]n] = 3m6m+n,0
[LmsGiE] = (5 = )G

[Jm, GE] = £GE .,
C

{G,j_, G,;} = 2Lm—|—'n, + (m — N)Jm+n =+ g (TI'LZ — i) 5m+n,0
{Gm, G} ={Gm, Gy} =0.

~

Consider the standard decomposition of A :

A=N,®Ho® N_
here
H =< Lo, Jo >
Ny =< Lm,Jn,Gpi{m,n,p >0 >C

N_ =< Lm,Jn,Gpi|m,n,p <0 >c .

A highest weight module (HWM) over A is characterized by the highest weight A € H*
and highest vector vy such that Xvg =0 for X € Ny and Xvg = A(X)vy for X € H. Let
A(E) = ¢, AM(Lo) =h, A(Jo) = Q. The largest HWM with weight A is the Verma module
VehQ  Denote by LS9 the factor-module Vc’h’Q/Ic,h’Q where 79M@ is the maximal

proper submodule of V"%, Then every irreducible HWM over A is isomorphic to some
Lom@ A HWM over A is called unitary if it satisfies

.‘. —
(Lm)]L = L_m, (‘]n)T =J_ g, (Gpi) = Gj—p

For (I,m) € L; (defined in §2), denote

m

2 _ 2 -
(P+20=m?), Qum 7

h =
bm = 4k + 2)
It is known that for 0 < ¢ < 3, all the umtary rreducible HWM over A are labelled by
3k

12



h=him Q@=Q, for(l,m)e Ly and|m|<I.

We are mainly concerned with the characters of HWM. For the latter discussion, we introduce
the following notions.

' Definition. Denote y = e2™% g = ¢?™" for z € C, 7 € H.

(1) For A = [l,m] € By, k = positive integer,

NSA(2,7) = pal(z, 7)g"m Ty “ by L (2,7) (12)
here
_ 3k

“Try2

00 (1 + yq"‘%) (1 +y~lg® 2)
QPA(Z, T) =

nl;Il (1—qm)°

o ( _ gk+2)(n- 1)+1+1) (1 _ q(k+2)n—l—1) (1 _ q(k+2)n)2

m m(z T n-_-l 1 + yq(k+2) —]) (1 + y—lq(k+2)(n—1)+j) (1 + y—lq(k+2)n—i) (1 + yq(k+2)(n-1)+i)
with

l+m+1 . l—m+1
= —— =
2 ’ 2

(11) For A = /\1®'®AN3/\ € %k](IS]SN)v I{:(klakN)7
NSy(z,7) = HNS,\ Z,7T)

% _ 1 oK) (7 1
Ry(z,7) = NS,\(Z‘|' 5+ 2,'r>exp (—3—m(4 +z4 5))

and the above definition is extended to the linear maps
NS :V(K)—-T(CxH,0),
R:V(K)—T(C x H,0).

Because of the following lemma, the above notions are well-defined.

(13)

Lemma 3. The NS)(z,7) in the above definition (i) depends only on the class A = [I,m],
i.e. independent of the choice of (I,m).

Proof: Let (I,m),(!',m') be elements in Lj with (k—I,m+k+2) = (I',m'). We need
only to show

!

Plm QPlm ’)’I',m’(Z,T)-

¢ "y " m(z,T) = ¢

Mm@l m

Let (j,i) = (I+m+1 Lomily (5, i) = (1/“3,“,"”’;"“). Then

(k+2—14,—7)=(4,7);
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k+2)n—1)+1+1=((k+2n—-0—-1, (k+2Qn—-1-1=(k+2)(n-1)+1+1;
(k4+2)(n=D+i=(k+2n—j, (k+2)—i=(k+2)(n—-1)+7,
(k+2n+j=((k+2n—1, (k+2)(n-1)—j=(k+2)(n-1)+7.
Hence
Yom(2,7) = (L4367 7 (1437 1m(27) = ¥ P m(2,7),

and the result follows immediately. g.e.d.

For a positive integer k£, we have the one-one correspondence between the following sets:

: . k
{irreducible unitary HWM of A withc = k3—-|—2} = B,

Lcahl,le,m ¢ , A,

here (I,m) is the standard representation of A. It is known that NS)(z,7) is equal to
the character 7'r (qL"‘%yJ 0) of the HWM L[&MmQun_ Here several physicists have made
contributions but the author is not familiar with the exact nature and extent of these. So we
adher to three reference [2] [16] [20], which are most suitable for our purpose.

Lemma 4 [20] For a positive integer &, let 3,5, Sﬁf , U be the same as in §2, and ¢ = ¢ _fz.
Then the following equalities hold:

3(ANSy(2,7) = NSy(2 + 1,7)
NSy (z,7) = exp (mi(r +22)2 )N Sa(z+7,7)
BA)NSA(2,7) = NSA(Z T+ 2)

2 —
5~ S0, ) - (222, (2,2)

HEDBy
3(\)Ra(z,7) = exp (%) Ry(z+1,7)
Rugny(2,7) = exp (mi(r + 22 + 1)%)}?,\(2', 7)
B(A)Ra(2,7) = exp (%%) 3(N) 1B (z, 7+ 2)

> Sthuer) =3 7o (S (24 1) (22,

p€eDBy

Proof: The equalities for N.S) follows from (2.4) of [4] and (26a), (26b), (28a) of [20].
Then the equalities for Ry follows from its definition. q.e.d.

Remark: For A € B;, and [/,m] =standard representatlve of A, from (2.3) of [4],
Ry(z,7) is equal to the quantity ch( "")( + 1) of [20].

Definition. Let K = (k;,---,ky) and A = )\1 ® - @Ay € V(K) with A\j € B;.. Let
(I;,m;) be the standard representative of A;. The charge of A is defined by

N
-y
k42
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Proposition 4 Let NS, R be the linear map from V(K) to I'(C x H, ) in (13), and
A= Q® - ®Ay € V(K) for A\; € B;,. Then

(i) o(K)
~ _ (—l)Q*"_(G”l if A = a chiral element,
RBx(0,7) = { .
0 otherwise.
(1)
oK), .\ _,1 ifd;=][0,0] forall j
Iw}:’r-l-’l-»oo NS»(0,7)exp ( 91 2miT | = {0 offerwise.
Proof:

(1) It suffices to show that for a positive integer k, and X\ € By,
Ry (0,7) = (~1)@ T if A = chiral
otherwise.

Let (I,m) be the standard representative of A, and j' = 5™ +1, i’ = I5® By the remark

of Lemma 4, and (4b), (5b), (7), (10) of [20], we have
. 1 gt it
Raer) = or (= 5. ) (-) SFp

here ¢p(z,7) = (yl/z _|_y—1/2) I (1+yq("1)_(zn+)y2' ¢")

n=1

0o ( _ g2 (n- 1)+]+z) (1 _ q(k+2)'n—j—i) (1 _ q(k+2)")2
1;[ 1 — yqtt2n=0") (1 — y=1qk+2(n=D43") (1 — y=1g(E+Dn=i) (1 — yg(h+D(n-1)47")

Y

Y / I

By 0<j —1,4¢,7/+4¢ <k+1,
Ba(z,m) = (=) + (=9)7*) (1 = y¢") " 45 () ¥ g {some series in C[[y,y7,4]]}

Hence R)(0,7) = 0 if ¢’ # 0, ie. | # m. When ¢ = 0,

Ba(0,7) = ()1 = (1)@

(i1) It suffices to show that for A € By, k = positive integer,
7—5 if A=[0,0],
lim NS)(0,7)¢" = {(1) i)thel[WN(;]SC.

Imr—oo
t (I,m) be the standard representative A, p4(z,7) and v m(2,7) the functions in (12)

By
NSA(0,7)gT 8 = (0, 7)™ ™ 31,m (0, 7),

15



the conclusion follows from
im 4(0,7)= lim 3m(0,7) =1,

Imr—oo Imr—oo

. Pim _ g1 1f (1,m)=(0,0)
Imhrrilooq - {0 otherwise.

q.e.d.
Theorem 2 For K = (ky,---,ky), let
c(K)

n = the integer 3

V(K), M(K) = the C[T'J]—module in §3,

I'(C xH,0)x , =T(C x H,O) with the index 7 representation of I'% for a character p.
2

pj : I‘g — C*, the character in (4) for j € Z.

Then

(1) The linear maps of (13) define the I‘g — morphism:
NS :V(K)—-T(Cx H’O)g,po’
R:V(K) - T(CxH,0)a .

(i) For v € M(K), let
é(z,7) =.N.5'v or R,.

Then for fixed 7 € H, the function z — ¢(z,7), if not identically zero, has exactly £ zeros
(counting multiplicity) in any fundamental domain for the action of the lattice Z7+Z on C.

(iii) Let X be a character of I'J with X|., 4> = trivial. If v is an eigenvector in M (K
9 N

for I'y with eigenvalue &', then NS, is a Jacobi function of index 3 with character &’ -1

Proof: (i) follows from Lemma 4 and the structure of I'j — module V(K). For v € M(K),
the < u,q > — invariant property of v implies the function ¢(z,7) in (ii) is a theta function
for z € C with lattice Z7+ Z. Then the result follows from the standard argument of contour
integral over its fundamental domain. (iii) is obvious. q.e.d.

For each K there is an element w(K) in M(K) with the property (ii) in the above

theorem. The construction is as follows. Consider the subset of the base of V(K),
{A=X1®---®An|A; € By, q9(A) = A}. It is stable under < u > — action, and let

=@ € B, a) =2} =[] s (14)
1<i<é
be the < u > — orbit decomposition. Define
;_ d(K)
; = A7 ¢ =
Vg - Z v sil

| v; forl <i2<é.
AEs;

16



Then {v;|1 < < 6} is an orthogonal base of M(K) with ||v;||> =

<0t >=d(K)§ for1<i,j<8é.

By Proposition 4, R,,(0,7) = (=1)7¢ > (—l)Q*.
A E s;

A : chiral
Definition.
@) w(K) = 3 Ry (0,7)v" € M(K).
(i) Jk(z,7) = NSy)(z,7) € T(C xH,0).
(iii) Witten index of M(K), Tr(—1)" = f%w(K)(O,T)( Tk (5 +
(iv) Elliptic A— genus of M(K) = Jk(0,7).
Theorem 3. Let A, be the character of I'y in (4) for * € Z.
6)) Tr(—l)F of M(K) is equal to

|si], and

1,7)exp (—(Qm'(

d(K)

2 — Q;\‘*’le
vi =(-1) 2 -1 , ,
ZHUH2 ' =1 Z (=1) | < u> —orbit of \|

()

r
4

here the A, X’ in the above index run over all the values of chiral elements of V(K)

the same < u > — orbit.

(ii) The element w(K) of M(K) is a I'y— eigenvector with eigenvalue X_xy/3.

+

L
2

)

with

(i) Jx(z,7) is a Jacobi function of index 5(651 with character X(fy/3 and the elliptic
A— genus of M(K ) is a T'y— eigenfunction with eigenvalue X(f3.

Proof: Let ][] s; be the same in (14). We have
1<i<6
= ZRvi(O,T)Rv-‘(O,T)

d(K)
z:ll'l()zll2 (1)

:ZHWH?Z > Ra(0,7)Bx(0,7),

(A A)€Esixs;

and (1) follows from Proposition 4.

Let af , b, 1 < ¢ <6, be the entries of § x § matrices defined by

(2)-6()
(2)-4)

17



Then
(v1|5'T,'“,v6|ST) — (vl,- U‘S)
v

(v1|HT,-~,v‘$|HT) — (vl,---, 5)(

By Theorem 2 (i) and Proposition 4, we have

@)
bisl).

WWELT (i’“m’” ) iy (RZ’ | (0’7)) ,

R,,(0,7)

~

(c(K) ) (va (0,7) ) (BI‘RUI(S’T) )
exp 1 : = 5
6 Rw (0,7') Zééva (077-)

By St = §5-1, Ht = H~!, we obtain

K K) |
w(K)|S™ = exp(c( )m') w(K), w(K)|H™ = exp(c( : )7rz> w(K),
which implies (11). (iii) follows from Theorem 2 (ii1). g.e.d.
The following lemma is convenient for the computation of Tr(—l)F and elliptic A— genus

of M(K).
Lemma 5. [4] Let {oi,...,an} be the images of {vi,...,vs} under the projection
M(K) — K(K) of (11). Denote

D; =

d() i< m
|2) — _— 7

sl [* (v |
here v;(;) is an element whose image under (11) equals to o;. Then

w(K)= Y DiRa,(0,7)cs.

1<i<m

Proof: By Lemma 2, for each i, |{vj|v; — ;}| = ||ei|| 7% If v; and v have the same
image ai, [[v;|* = |lvy|* and

Rvj‘(oa T) = Rvi (077-) = Rai(O’T)‘

Then the result follows easily from the definition of D; and ||os||?. q.ed.
We now give some examples for the expression of w(K).
Example (i). c(K) = 3.

By Theorem 2 (ii), for v € M(K), NS,(z,7) = ¥(z,7) - (some function of 7), and
R,(0,7) = 9(F + %,7)(some function of 7) = 0. Therefore, w(K) = 0, which implies
Tr(—l)F = elliptic A — genus = 0.

Example (i)). K = (2,2,2,2) (by S-K Yang).
We have ¢(K) = 6, d(K) = 4, and the chiral elements of B, are

a=1[0,0], b=1[2,2], e=[1,1].

18



For z; € B,, 1 <17 <4, with q(z1-z9-z3-24) = 1 - 23 - T3 - T4, denote
[z1 -T2 23 24] = Z(< u > —orbit of 1 - x5 - z3 - 24) € K(K).
By Lemma 5 and Proposition 4, we have
w(K)=-2[a-a-a-a]+2[e-c-e-e+12[a-b-e-e]+6[a-a-b-b],

hence
Tr(-1)F =2-242+12+6=24.

Example (iii). K = (2,2,2,6,6). we have ¢(K) =9 and d(K) = 8. Let a,b,e be the
elements of B, as in Example (ii). The chiral elements of B are:

A=10,0], B=[1,1],C =1[2,2], D=1(3,3], E = [4,4], F = [5,5], G = [6,6].
For z1,x2,z3 € B2, ya,ys € Be with q(z1-x2- T3 ya-ys) =21 T2 T3-y4 - Y5, denote
[:cl-:tg-:cg-y4-y5]:Z(<u>——orbitof:z:1~a:2-:c3-y4-y5)E}C(K).
Then

(~1) 7 w(K) =
2(—[a-a-a-C-Gl-[a-a-a-D-Fl—[e-e-e-A-Cl+[e-e-e-E-G]

+[b-b-b-A-E]+[b-b-b-B-D))+3(—-[a-a-b-C-Cl—[a-e-e-C-C]
—[la-b-b-A-Al—[e-e-b-A-Al+[a-a-b-G -Gl+a-e-e-G-G]
+la-b-b-E-El+[e-e-b-E-E]))+6(—[a-a-e-A-G)—[a-a-e-B-F]
—[la-a

ce-C-FE]—[a-a-e-D-D)—[a-a-b-A-E]—]a-a-b-B-D]
—la-ece-A-E]—[a-e-e-B-D)—[a-e-b-B-B]l+[a-e-b-F-F]
+a-b:-6-C-Gl+[a-b-b-D-Fl+[e-e-b-C-G]l+[e-e-b-D-F|+
le-b-b-A-Gl+[e-b-b-B-Fl+[e-b-b-C-E]+[e-b-b-D-D)
+12(fa-e-b-A-Cl+a-e-b- E-G)),

Tr(-1)F = —12 — 24 — 108 — 24 = —168.

The Witten index of the above examples have the following topological interpretation:

Tr(—1)%of (i) = Euler number of K3 surface;
Tr(——l)F of (ii1) = Euler number of the Calabi-Yau resolution of the hypersurface
ZH 475+ 28+ 28+ 29 =0 in WP(y9,,,) (Example (1) in [21]).
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The above relations illustrate the general property of the equality of Witten index and the
Euler number of Calabi-Yau orbifolds, which are discussed in the next section.

§5. Witten index of manifolds with ¢; = 0

As before, K = (ki,---,kn), kj= positive integer. For the rest of this paper, we shall
always assume

c(K)

=N —2,

which is equivalent to

D
j=1kj+2

Let X K be the manifold defined in (1). In this section, we shall show that the Euler number
of Xg is equal to the Witten index of M (K).

Definition Let \ be an elementin {\; ® --- ® Ay|A; € By}, and u,q: V(K) — V(K)
the same as before.
®)
P(K) = {(f,A)|A : chiral with g(A\) = A, f e< u >},
P(K) = The Hermitian vector space with P(K) as an othonormal basis.

® CP(K) = {(f,\) € P(K)| \and \|f are chiral in V(K)}.

CP(K) = The subspace of P(K) generated by CP(K).

i) (—1)5 = Byp(0,7)RA(0,7)  forp = (£,)) € P(K).
Remark: The elements of C'P(K) are corresponding to the chiral primary fields of the
(2,2) CFT 1n [23].
By Proposition 4 (i), we have
(_1)17‘ _ 40 if pgCP(K),

P (_1)%@(_1)%”*% if p=(f,A\)eCP(K).

Lemma 6 Tr(-1)"of M(K) = Y (-1)..
peCP(K)

Proof: For a chiral element A in V(K), we have

ZCO d(K) Qu+Qr _ F
(_1) Z | <u> Al(_l) - Z (_1)1) :
MNe<u> A p € CP(K)
A : chiral p=(f,A)
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Then the result follows from Theorem 3 (i). g.e.d.
Lemma 7. Let W be a quasi-smooth hypersurface in WPgn ‘)1 defined by a quasi-

homogenous polynomial g(z1,---,zy) = 0 of degree d. Assume gcd(m;|i # j7) = 1 for
N
each j, and d = > m,.
=1
(i) For an element y of W with the coordinate y = [y, --,yn],

y € Sing (W) & qed(m|l <i <N, y; #0) > 1

(i1)) When
g(z1,,2n) = Zfl +"’+Z}1VN>

the following equality holds

d-1
" = 330 T (1- 1),

here qi:alj_" 11 (1—%)%1 if no ¢; with rq; € Z,
rq;€Z

hWV=2(W), = dimc (primitive part of HY~2(W,C)).
Proof:

(i) We may assume the N — th homogeneous coordinate of y equal to 1 and denote

h(z) = h('zl)" : aZN—l) : 9(21,' v >ZN—-171)’

G = {XA € C*|\™y,; =y, for all }.

Then the order |G| of G divides d and equals to gcd ged (m;|1 <z < N, y; # o). Consider
the linear action of G on CV-1,

(AN z) = Aoz = (Azy, - A™-12y ), (\z)e G x CVL

N
By d = ) m,;, G is a subgroup of SU(N —1) and h(z) is a G—invariant function.

i=1
{h(z) = 0} is a non-singular hypersurface passing through the point ¥ := (y1,...yy—_1)-
Then the following spaces are isomorphic as germs of analytic spaces:

(W,y) = (*O=Y/5,7)

= (CN#/uaO)a

here p is a small cyclic subgroup of SU(N — 2) with order= |G|. Hence y is singular if
p # td, and the conclusion follows immediately.

21



(ii) The following relation holds between Euler numbers of W and W' <= wphN-1_ W) :
X(W) + x(W') = X(WPN -1) = N.

By [3], x(W) = (-1)YrY=2(W), + N — 1, hence (—1)MrV=2(W), = 1 — x(W'). Tt is
easy to see that

W' = F/<a>

here
={(2,....25) e Mg(2) =1},

m m 2
o:F—F (Z1,...,2y5) — (w 170, w NZN), with w*exp( Z;Z)

Then the conclusion follows from the following formula in [17]:

dEH(“;)

rg;€Z

il.l’—‘

g.e.d.
For the rest of this section, we are going to prove the following result.
Theorem 4 Let X kx be a projective manifold defined in (1): Then there is a
C— isomorphism between CP(K ) and the cohomology space H* (X K, C) (: pH (X K, C)) ,
T

@:CP(K) - H*(Xx,C)

such that for p € CP(K), ¢(p) is an element in H™®) (X K C) for some r(p) with the
property
(-1), = (=), (15)

p

As a consequence, Witten index of M (K) equals to the Euler number of Xk,

Tr(—1)Fof M(K) = X(XK).

Proof: The last statement follows from the rest by Lemma 6. We are going to define the
map ¢. Denote

n=N-2
g = E,—lﬂ’ u; = the linear automorphism u of V4, insection 1 for 1 < j < N.
Jgk = {m = (m1,...mpy)|m; € Z,0 <my; < k;}.

N
Q(m) = Emiqi, 7™M = Z{nl ...ZX;N for m = (ml,...,mN) € Jk.
=1

= {m € Jg|Q(m) € Z}.
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Then {Z™|m € Jx} forms a base of the Jacobian ring C[Z]/ < 9fx(Z) > of the
polynomial fx(Z). By [22], the subspace of clZ] /(a5x) generated by {Z™|m € Ik} is
isomophic to the primitive n—th cohomology group H"(Xg,C), of Xg. We shall identify
these spaces and the cohomology element in H™( X, C), corresponding to Z™ will be
denoted by [Z™] for m € Ik.

For a positive integer k, the chiral elements in By are given by [[,I], 1 <1 < k. We
have the following one-one correspondence:

Ji « {chiral elements in V(K)}

m = (my,...my) & Ap = [m1,m1] Q... ® [my,mpl,

and Q(m) is the charge @), of An,. Hence under the above correspondence,

I < {) : chiral element of V(K), q(A\) = A}.

Now the set P(K) can be identified with < u > xIg. Then
cP(K)= ][] s
pe<u>

here
Tg = {(B,m)|m € Ig, (Am|B) = chiral} for B €< u > .

We are going to define the map ¢ on each 7. For § = the identity element I,

0: Ty — H*(Xg,C), C H* (XK,C)

is defined by ¢(1,m) = [Z™]. By

(K

(_1){1,«\,,1) =(=1)"* =(-1)" forme Ik,

T, is bijective to a basis of H™(Xg,C), via ¢ which satisfies (15). Now we consider
the case for § # 1.

For a chiral element [/,{], 0 < I < k;, of By,
52X if k;=even and 1=,

| <uj > —ombitof (11| = {,” ) Gnérwise,

and
(1, ]]|uj = chiral & r =0, [ 4 1.

For an element # €< u >, we denote r(3) the element in Z¥ whose i — th coordinate
r(B); satisfies the equation:

I=r(B); (modk;+2),0<r(B),<ki+2,
B =ut. A

23



Define F(8) = {i]l <: <N, 'r(ﬂ)i =0}. We now process the proof of this theorem in
the following steps.

Step (I). Claim: For 3 # 1, we have the following description of the elements (3,m) of
Tﬂ for m = (7n1,...mN) € Ig.

(i) When F(8) = ¢ and Tp # ¢, T consists of only one element (f3,m) with
m; = r(#); — 1 for all j. Conversely, if 8 €< u > and m € I satisfy the relation
m; = r(B); — 1 for all j, then F(8) = ¢ and Tj = {(B,m)}.

(i) When F(B3) # ¢, we have

m;=r(8),~1 for j¢F(8)
(/37 )e T <:>{ Z (m +1)q‘€Z

iEF(B)

Furthermore,
T # ¢ < |F(B)| > 2,

in which situation, Xg N (Z; = 0|5 ¢ F'(B)) is a non-empty subset contained in Sing(Xk).
For (B,m) € Tg and m' = (m},...,mly) € I with A\y,|8 = Apy, we have

I_. . [~ . .
m; =m; or kj —mj,

and
For j ¢ F(B), if mj = mj, then [mf,mi] = (m;,mylju] " = m;,m;], which implies
r(B); —1=mj =m; = %’- Therefore we obtain

mj =r(B); — 1for j & F(B). (16)

When F(8) = ¢, we have m; = k; —m; for all ;. Then (i) is obvious. Write 8 = u! for
some 0 <! < d. When F(B) # ¢, | is divided by k; + 2 for all 7 € F(3). Hence

lem(k; +2)i € F(B)) < d,

which is equivalent to

ged(n;li € F'(B)) > 1.

N
For (8,m) € Tg, by > ¢; = 1, we have

j=1
Qm)= Y (mi+1)g+ Z r(B);4
IEF(B) IEF(B)
by (16
= Z (mi + 1)g (mod Z). by (1)
1€ F(B)
Therefore )  (m;+1)g; € Z, and |F(F)| > 2. By Lemma7, XgN(Z; = 0|5 ¢ F(B)) C

i€F(B)
Sing(X ). By reversing the above argument, we obtain the conclusion of (ii).
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Step (II). Claim: Denote

Z I1 (1——) for 0<1<d—1.

0<7‘<d 1lgi,rqi€Z

Then () Y. (-1)) = B foralll.
pET,

d-1
(i) Witten index Tr(—1)F of M(K) = }j By

When F(u') = ¢, T,y consists of only one element (B,m) with A\p|B = Ag—m by Step
(I) (i), then the conclusion follows immediately. We now consider the case when F'(3) # ¢.

For a subset 7 C {1,...,N}, define
Xg(I)=XgN(Z;=0]5€l)
e(I) = qed(njly ¢ I).

By Step (I) (i1), there is an one-one correspondence between the following sets:

L:Tﬁ(—){ H Z:iI Z (ai+1)qi€Z}

i€F(B) i€F(B)

(B,m) — H Z:i
i€ F(B)

By [22], the monomials in the right hand side form a basis of

HImXe)(Xp(1),C), with I ={1,...,N} — F(B).

For (B,m) € T, we have

(—1)&’,’71) = (-—1)N(_1)N—|F(ﬂ)|+2 Z (mz + ]-)Qi _ (__1)d.imXK(I).

iE€F(B)
So (1) follows from Lemma 7 (ii). By Lemma 6,

d—1
(- = Y ni= Y Y ui=Y 8.
=0

pECP(K) 0<I<d—-1peT,,
hence we obtain (i1).

Step (III). We have the equality

Tr(—-1)Fof M(K) = Euler number X(XK) of Xg.

When n = 3, by Theorem 1 of [21], we have
d—1
x(Xx) =3 B
1=0
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With the same proof given there , the above equality holds also for dim X K = 2 or
X x = Xg. Hence the conclusion follows from Step (II) (ii).

Step (IV). We are going to define a C— isomorphism
¢ : CP(K) — H*(X,C).

We shall assign a cohomology class in H"(®) (X K C) with the property (15) for an element
p of T, B # 1. Denote

A= The image of the standard generator of H 2 (WPgLBl, C)in H% (X, C)for 2§ < n,
The Poincare dual of A"/ in H% (Xg,C) for 2 > n.

By [3], H? (X[, C) is a 1-dimensional space with base A’, and H¥+}(Xg,C) =0 for
27 + 1 # n. For the convenience, we shall divide the X in the following cases.

Case (1). X =the degree N Fermat hypersurface in py-1

Xg:2V+...,z) =o.

For 0 < I < N —2, we have F(u*!) = ¢. By Step (I) (i), Ty =
{(wH, [, ]® - ®[,1])}. Define

Sp(um,{l,l]@...@[l,ll) =Al for0<I<N -2,

Since the value (—1)% of (W1, [1,]®---®[l,]]) = 1, the induced C— linear map

¢ :CP(K)— H*(Xg,C)

is an isomorphism with the property (15).
Case (i1). The case for n = 1.

Xg = Xg is a non-singluar elliptic curve. [ consists of only two elements: 0 =
0,...,0), K = (k1,...,kn). Hence CP(K)— T, = Ty [[Tu-1. Then

Tu={(w,0)}, Tu=s = { (v, K) },

and (—1){;,0) = (—1)51_1, k) = 1. Then the correspondence

(u,0) — A°
(w1 K) = Al
defines the isomormorphism .
Case (iii). The cases for N = 4,5 (hence X x isa K3 or CY space respectively).
H1 (XK;C) = H?1 (XK,C) = 0. In the following, I always denote a subset of
{1,...,N} with |I| < N -2 and Xg(I), ex(I) the same as in (17).

_ {I)1)=2, e(T)>1} for n=2
Denote § = { 111153 o(f)>1} for n=s.
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Then Sing(Xg) = U{Xk(I)| € §}. Denote the birational morphism from Xx to Xy
by
o: Xg — Xy.

The exceptional divisors in X x over Xg(I), I € S, can be described as follows [9]:
For n = 2, * € Xg(I),

o~ (%) = a union of e(J)'exceptional P* — curves with e(7)’ = e(I) - 1.

For n = 3,

071 (+) =a union of e(I)' Tuled surfaces over an irreducible
component v of X (I) for |I| = 2 with e(I)’ =e(I) -1,

o~1(*) =a union of e(J)'rational surfaces over an element * € Xg(J) for |J| = 3 with
2e(J) =e(J)—1=> {e(I)=1I €S, ICJI+#J}.
We have the following natural isomorphisms:
For n = 2

H? (XK,C) ~ B (X, C) PP H(Xk(1),C)%V
' IeS

For n = 3 [21],

H2(XK,C) 2H2(XK,C) D @ HO(XK(]),C)GBC(I) @ ! lea HO(XK(J),C)GBG(J) ,
| =2 J|=3
IeS Jes

i (XK, c) ~ B (Xg,C) 0| @ H'(Xk(I),0)%W
] =2
Ies
For the simplicity of notations, we shall make the above identifications in what follow.

For B # 1 with F(B) # ¢, the image of an element (3,m) in T under the map (18)
determines a cohomology class in H4mXx{Is) (X (1), C), with Iz ={1,---,N}-F(B),
hence an element of H*(Xg,C) through the above identification of cohomology spaces.
Through this procedure, ¢ is defined on the T for # # 1 and F(B) # ¢ :

For n = 2.

¢:Tg — H° (Xx(I5),C),,
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hence

o 1117518 # 1, F(8) # 6} = @ B (Xk(1),€)* D — H* (X, C);

IeS
For n = 3,

¢ : Ty — H' (Xk(Ip),C) for |F(B) =

¢ s Tp = HO(Xi(Ip),C)y forf = ul, 20 < &, [F(6)| =2

hence
o: [{Tsls # LIF@I =3} > @ H'(xx(D), O < #*(Xx,C),
ies
Jes

and we define

o:]] {Tﬁ_lm —ul |F(B) =2,1<d— z} 5 H4(XK,c)

by requiring that ¢ (T) and ¢(Ts-1) are the Poincaré dual in H* (X K C) corresponding
to the pairing

Ty € (B,m) o (8-, mlf) € Tgmr.
By (19), ¢ satisfies the property (15).

We now define ¢ on T with F(3) = ¢. By Step (I) (i), T consists of only one element
whenever it 1s non-empty. Define ¢ on the following Tﬁlis :

Ty={10)}, (u,0)=A’€ H(Xk,C);
Ty ={(v1,K)}, ¢, K)=A"eH"™Xg,C);

T = {(v?,1)}, o(uv? ) = Al e H*(Xg,C), herel=(1,1,---,1).

For I C {1,---,N} with [I| < N -2, e(I)/> 0, and 1 < j <e(I)" -, we denote
) =d]p),

B(1,5) = wiD*.

Then Tg(; ;5 = {(B(1,7),m(5d(1)))}, here m(jd(I)) =the element in Ix with th i— the
coordinate m; defined by the equation

jd(l)=m; (mod. ki+2)
{0_<_m.'<k.'+2
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(which implies 0 < m; < k;). We define
©(B(I,5)), m(jd(I)) =the base element of the complement of H°(Xg(I),C), in
HO(Xg(I),C) which is identified with the [—th factor of H°(Xg(I),C)®D" <
H*(Xx,C). |
For n = 3, we need to consider the following T[',s. Note that Tﬂ(L]-)—l =
{(ﬂ(l, )UK - m(jd(]))) } By the relation
Q(m(jd(I))) + QK — m(jd(I))) =3

and
Q(m(jd(1))), QK —m(jd(I))) € Zxo,

B(1,7)7" is not any one of the elements we have considered before. We define
(p(ﬁ(], ) K- m(jd(]))) — the Poincare dual of ¢(A(I, 7), m(jd(I))) in H* (XK c),
e(u™2, K —1) = A’ € HY(Xk,C), (Ty-2 = {(u72, K -1)}).

It can be verified that the defined values of ¢ satisfy the property (15).

Denote
{Be<u>|F(B)= ¢} — {ut u? B(I,j)fore() > 1,1 < j<e(l)}forn=2
R = .
‘ {{ﬂ E<u>|F(B) = ¢} - {uil,uﬂ,ﬂ(l,j)ilfor e(I)>1,1<j < e(f)’} forn =3
By the above construction, we have defined a C— isomorphism
@ EB{Cp|p € CP(K) — U Tﬂ} 5 H*(XK,C>

BER
satisfying the property (15).

hence x(XK) => (—1)f|p € CP(K)— U Tz ¢. By Step (II),
BER

X(XK)= o (-1,

pECP(K)

which implies

0=3" {(*Uflp el Tﬁ} =) _ |Tg|

BER BER
by Step (I) (i). Therefore T = ¢ for B € R, and the map ¢ is the isomorphism from
CP(K) to H* (XK, C) with the property (15). q.ed.
Remark: The Step (II) in the above proof corresponds to the physicist’s argument employed
by Vafa in [23]. The conclusion in Step (IIT) is the mathematical argument for the equality
of the Witten index of CF'T' and Euler number of CY orbifold X. The map ¢ we have

constructed here illustrates the explicit correspondence between twisted sectors and blowing-
up modes for the Calabi-Yau orbifolds in the physics literature.
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§6. Elliptic genus of manifolds with ¢; = 0

By Theorem 3, Jk(z,7) is a Jacobi function of index 3(651 with character X k3.
By Proposition 1, the elliptic A— genus of M(K), Jk(0,7), is zero for E%Q =odd,
which corresponds to the vanishing (topological) elliptic genus (of level 2) of Xg when
dim Xx =odd. We now consider the case when dim Xg = 2, and we shall describe the
relation between the A— genus J. x(0,7) and elliptic genus of the K3 surface Xk. By
Proposition 1 (ii),

Jk(0,7)
9(0,7)°

is a modular form of [y of weight 2. By the definition,
Tk (0,7) = NSu(x)(0,7)
= Ry(0,7)NSy(0,7)
i

Ex (1) = - n(r)°

d(K)
[[osl >

We may assume v; =< u > —orbit of [0,0]® --- ® [0,0]. As _lim ¢(0,7) = 1, by

Imr—oo

Proposition 4,
lim Ex(r)=— lim R, (0,7) =2,

Imr—oo Imr—oo

which equals to the A- genus of the K3 surface Xg. Since the dimension of space of
modular forms for Iy of weight 2 is equal to 1, Ex(7) is the elliptic genus of Xg.
Therefore we have shown the following result.

Theorem 5 The elliptic A— genus of M(K) is corresponding to the topological elliptic
genus (of level 2) of Xx when dim Xg = 2 or odd. :

Appendix We are going to prove the following equalities:
For positive integers M, a,b with M > 3,1 < a, b < M — 1,

. jJam . gbm M
Z sin ——sin — = —§,3,

11 . gam . gbw M
1<y§1—1 (F1y " sin MM T 76““"”']”'

Proof: For an integer d, we have
M-1

jdr 1 ' jdmi —jdmi
Z cos—— 5 Z (exp i + exp M

j=1

1fd=0 (mod 2M)
71(1+( 1)“) ifd#0 (mod2M).
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Ml jar . jbmr -1 M1 7(a+ b)mi cos j(a — b)mi
MMM T 2 & | M M
J=1 J=1
M-1
1 atb 1 j(a —b)ws
= — - ° < < —
4(1+( 1) )+2j§_1jcos — (2<a+b<2M —2)

HHED™) A [+ (-07) =0 et
Hi+ 0™ +i-n=%  ifa=b

(fa#tb a—b#0 (mod2M)).

Hence we obtain the first equality. the second equality follows by substituting a by M —a
in the first one. g.e.d.
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