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Abstract. We propose an authentication scheme where forgery (a.k.a. imperson-
ation) is apparently infeasible without finding the prover’s private key. The latter
is equivalent to solving the conjugacy search problem in the platform (noncommuta-
tive) semigroup, i.e., to recovering X from X−1AX and A. The platform semigroup
that we suggest here is the semigroup of n×n matrices over truncated multivariable
polynomials over a ring.

1. Introduction

For a general theory of public-key authentication (a.k.a. identification) as well as
early examples of authentication protocols, the reader is referred to [3]. In this paper,
we propose an authentication scheme where recovering the private key from the public
key is equivalent to solving the conjugacy search problem in the platform (noncommu-
tative) semigroup, i.e., to recovering X from X−1AX and A. There were some previous
proposals based on this problem, see e.g. [6, 8], so it would make sense to spell out
what makes our proposal different:

(1) Forgery (a.k.a. impersonation) is apparently infeasible without finding the
prover’s private key. In other proposals, there is usually a “shortcut”, i.e.,
a way for the adversary to pass the final test by the verifier without obtaining
the prover’s private key. In particular, in the proposal of [6] modeled on the
Diffie-Hellman authentication scheme, there is an alternative (formally weaker)
problem that is sufficient for the adversary to solve in order to impersonate the
prover. Namely, it is sufficient for the adversary to obtain Y −1X−1AXY from
X−1AX, Y −1AY , and A.

(2) Our platform semigroup seems to be the first serious candidate for having gener-
ically hard conjugacy search problem. It can therefore be used with some other
previously suggested cryptographic protocols based on the conjugacy search
problem, e.g. with the protocols in [1] or [4].

(3) One of the most important new features is that the verifier selects his final test
randomly from a large series of tests. This is what makes it difficult for the
adversary to impersonate the prover without obtaining her private key: if the
adversary just “studies for the test”, as weak students do, he/she at least should
know what the test is.
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(4) Unlike the proposals in [5, 8], our authentication scheme does not use the Feige-
Fiat-Shamir idea [2] involving repeating several times a three-pass challenge-
response step (to avoid predicting, by the adversary, the challenge with non-
negligible probability). In our scheme, we have just one challenge and one
response.

(5) To prevent attacks by malicious verifier, there is an intermediate “commitment
to challenge” step for the verifier. Malicious verifier might present the prover
with a carefully selected challenge that may result in leaking information about
the prover’s private key at the response step. This is similar to the “chosen-
plaintext attack” on an encryption protocol.

2. The protocol, beta version

In this section, we give a preliminary description of our authentication protocol. Here
Alice is the prover and Bob the verifier. We call this a “beta version” of the protocol
because what we describe here represents a single session; repeating this particular
protocol several times can compromise the long-term private key of the prover. This
is why extra care has to be taken to protect the long-term private key; this is done in
the complete protocol described in the following section, while here, in an attempt to
be helpful to the reader, we describe the “skeleton” of our scheme where all principal
(i.e., non-technical) ideas are introduced.

The platform semigroup G that we suggest is the semigroup of n× n matrices over
N -truncated k-variable polynomials over a ring R. The reader is referred to our Sec-
tion 4 for the definition of N -truncated polynomials as well as for suggested values of
parameters n, N , k, and the ring R.

Protocol, beta version

(1) Alice’s public key is a pair of matrices (A, X−1AX), where the matrix X is
Alice’s long-term private key. The matrix A does not have to be invertible.

(2) At the challenge step, Bob chooses a random matrix B from the semigroup G
and sends it to Alice.

(3) Alice responds with the pair of matrices (B, X−1BX).
(4) Bob selects a random word w(x, y) (without negative exponents on x or y),

evaluates the matrices M1 = w(A, B) and M2 = w(X−1AX, X−1BX), then
computes their traces. If tr(M1) = tr(M2), he accepts authentication. If not,
then rejects.

The point of the final test is that M2 = w(X−1AX, X−1BX) should be equal to
X−1M1X = X−1w(A, B)X. Therefore, since the matrices M1 and M2 are conjugate,
they should, in particular, have the same trace. Note that the trace in this context
works much better (from the security point of view) than, say, the determinant, because
the determinant is a multiplicative function, so the adversary could use any matrix with
the same determinant as B in place of X−1BX, and still pass the determinant test.
With the trace, the situation is quite different, and there is no visible way for the
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adversary to pass the trace test for a random word w(x, y) unless he/she actually uses
the matrix X−1BX.

3. The protocol, full version

Compared to the beta version described in the previous section, the full protocol
given in this section has an extra feature of protecting the long-term private key X
from overexposure. This is needed because upon accumulating sufficiently many ma-
trices of the form X−1BiX with different Bi but the same X, the adversary may
recover X more easily. To avoid this, we make Alice (the prover) apply a non-invertible
endomorphism (i.e., a homomorphism into itself) of the ambient semigroup G to all
participating matrices. This endomorphism is selected by Bob in the beginning of each
new session. We also note yet another extra feature of the protocol below, namely, a
(mild) commitment by the verifier (step 2(i)) preceding the actual challenge.

Protocol, full version

(1) Alice’s public key is a pair of matrices (A, X−1AX), where the matrix X is
Alice’s long-term private key. The matrix A does not have to be invertible.

(2) At the “commitment to challenge” step, Bob chooses: (i) a random matrix B
from the semigroup G; (ii) a random non-invertible endomorphism ϕ of the
semigroup G. Bob then sends B and ϕ to Alice.

(3) In order to prevent the adversary from impersonating Bob, Alice publishes
random positive integers p and q and asks Bob to create his challenge in the
form B′ = c1A + c2B + c3A

pBq for some random non-zero constants ci.
(4) Upon receiving B′, Alice responds with the pair of matrices

(ϕ(B′), ϕ(X−1B′X)).
(5) Bob selects a random word w(x, y) (without negative exponents on

x or y), evaluates the matrices M1 = w(ϕ(A), ϕ(B′)) and M2 =
w(ϕ(X−1AX), ϕ(X−1B′X)), then computes their traces. If tr(M1) = tr(M2),
he accepts authentication. If not, then rejects.

4. Parameters and key generation

Our suggested platform semigroup G is the semigroup of all n × n matrices over
truncated k-variable polynomials over the ring Z12. Truncated (more precisely, N -
truncated) k-variable polynomials over Z12 are elements of the factor algebra of the
algebra Z12[x1, . . . , xk] of k-variable polynomials over Z12 by the ideal generated by
all monomials of degree N . In other words, N -truncated k-variable polynomials are
expressions of the form

∑
0≤s≤N−1

aj1...js · xj1 · · ·xjs , where aj1...js are elements of Z12,

and xjs are variables.
To make computation efficient for legitimate parties, we suggest to use sparse poly-

nomials as entries in participating matrices. This means that there is an additional
parameter d specifying the maximum number of non-zero coefficients in polynomials
randomly generated by Alice or Bob. Note that the number of different monomials of
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degree N in k variables is M(N, k) =
(
N+k

k

)
. This number grows exponentially in k

(assuming that N is greater than k). The number of different collections of d mono-
mials (with non-zero coefficients) of degree < N is more than

(M(N,k)
d

)
, which grows

exponentially in both d and k. Concrete suggested values for parameters are given
below; right now we just say that, if we denote the security parameter by t, we suggest
that the number M(N, k) =

(
N+k

k

)
is at least t. At the same time, neither N nor k

should exceed t. As for the parameter d, we require that d
m
n · k · log N · n2 < t, where

m is yet another parameter, defined in the following subsection 4.1.
Since the questions of generating random invertible matrices or random polynomial

endomorphism have not been addressed in the literature on cryptography before (to
the best of our knowledge), we address these questions below.

4.1. Generating matrices. Our notation here follows that of Section 3.
Since the matrices A and B do not have to be invertible, they are easy to generate.

We require that each entry is a
√

d-sparse N -truncated k-variable polynomial over Z12,
which is generated the obvious way. Namely, one first chooses

√
d random monomials

of degree at most N−1, then randomly chooses non-zero coefficients from Z12 for these
monomials.

An invertible matrix X can be generated as a random product of m elementary
matrices. A square matrix is called elementary if it differs from the identity matrix
by exactly one non-zero element outside the diagonal. This single non-zero element is
generated as described in the previous paragraph. Denote by Eij(u) the elementary
matrix that has u 6= 0 in the (i, j)th place, i 6= j.

We note that multiplying m elementary matrices may result in the number of non-
zero coefficients in some of the entries growing exponentially in m. More precisely,
when we multiply Eij(u) by Ejk(v), the result is Eik(uv), and the polynomial uv is
no longer d-sparse, but d2-sparse. However, this phenomenon is limited to products of
elementary matrices of the form Eij(u) · Ejk(v), and the expected maximum length of
such “matching” chains in a product of m elementary n×n matrices is m

n . We therefore
require that d

m
n · k · log N · n2 < t, where t is the security parameter.

4.2. Generating an endomorphism. At step 2 of the protocol in Section 3, Bob has
to generate a random non-invertible endomorphism ϕ of the semigroup G of matrices
over N -truncated k-variable polynomials over Z12.

Such an endomorphism is going to be naturally induced by an endomorphism of the
ring of N -truncated k-variable polynomials over Z12. The latter endomorphism can
be constructed as follows. Start by randomly selecting k0 variables out of k and send
them to 0, while fixing other variables. Denote the corresponding endomorphism by
ϕ0. Then, compose ϕ0, on the left and on the right, with 2 endomorphisms ϕ1 and
ϕ2 defined on the variables as follows: ϕi : xj → fij , where fij = fij(x1, . . . , xk) are
sparse N -truncated k-variable polynomials over Z12 with zero constant term. The latter
condition is needed for ϕ to actually be an endomorphism, i.e., to keep invariant the
ideal generated by all monomials of degree N . For efficiency reasons, it makes sense
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to have those polynomials
√

d-sparse. Below we give a toy example to illustrate the
procedure.

Example 1. Let k = 3, and let ϕ0 take x2 to 0, while fixing x1 and x3. Then, let ϕ1

take x1 to x2
2 +x3, x2 to x1x2 +x1x3, x3 to x3, and let ϕ2 take x3 to x1x2 +x2x3, while

fixing other variables. Then the composition ϕ1ϕ0ϕ2 (meaning that ϕ1 is applied first)
takes x1 to x1, x2 to x1x2x3 + x2

1x2, and x3 to x1x2 + x2x3.

4.3. Suggested parameters. Suggested values for parameters of our scheme are:
(1) The suggested value of n (the size of participating matrices) is n = 3.
(2) Presently, N = 1000, d = 25, and k = 10 should be quite enough to meet the se-

curity conditions specified above. In particular, with these values of parameters,
the number M(N, k) of different monomials is greater than 1020.

(3) The matrix X (Alice’s long-term private key) is generated by Alice as a product
of m random elementary matrices, where the value for m is randomly selected
from the interval n3 ≤ m ≤ 2n3.

(4) Parameter k0 used in constructing a non-invertible endomorphism (subsection
4.2 above) can be specified as follows: k0 is randomly selected from the interval
k
3 ≤ k0 ≤ 2k

3 .
(5) Values of random positive integers p and q in step 3 of the protocol in Section

3 can be bounded by 5.

4.4. Key size and key space. To conclude this section, we point out that the size of
a random matrix in our scenario (e.g. Bob’s commitment B) is

√
d · k · log N · n2. The

size of an invertible matrix X is, roughly, (d · k · log N + log n) ·m.
The size of the key space for the long-term private key (i.e., the matrix X) is, roughly,

exp((d · k · log N + log n) ·m).

5. Cryptanalysis

We start by discussing how the adversary, Eve, can attack Alice’s long-term private
key (the matrix X) directly, based just on the public key P = X−1AX. The relevant
problem is known as the conjugacy search problem. Note that the equation P = X−1AX
implies XP = AX, which translates into a system of n2 linear equations for the entries
of X, where n is the size of participating matrices. Thus, a natural way for Eve to
attempt to find X would be to solve this system. However, there are some major
obstacles along this way:

(1) The matrix equation XP = AX is not equivalent to P = X−1AX. The former
equation has many solutions; for example, if X is a solution, then any matrix
of the form X ′ = f(A) · X · g(P ) is a solution, too, where f(A) and g(P )
are arbitrary polynomials in the matrices A and P , respectively. However,
only invertible matrices X ′ will be solutions of the equation P = X−1AX. If
participating matrices come from a semigroup where “generic” matrices are
non-invertible (which is the case for our suggested platform semigroup), then
Eve would have to add to the matrix equation XP = AX another equation
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XY = I, where X,Y are unknown matrices, and I is the identity matrix. This
translates into a system of n2 quadratic equations, not linear ones.

(2) As explained in the previous paragraph, Eve is facing a system of n2 linear
equations and n2 quadratic equations, with 2n2 unknowns, over a ring R, which
in our scheme is the ring of N -truncated k-variable polynomials over Z12. She
can further translate this into a system of linear equations over Z12 if she
collects coefficients at similar monomials, but this system is going to be huge:
as explained in our Section 4, it is going to have more than 1020 equations
(by the number of monomials). Note that, although entries of all participating
matrices are sparse polynomials, Eve does not know which monomials in the
private matrix X occur with non-zero coefficients, which means she has to
either engage all monomials in her equations or try all possible supports (i.e.,
collections of monomials with non-zero coefficients) of the entries of elementary
matrices in a decomposition of X (see subsection 4.1).

(3) Eve may hope to get more information about the matrix X if she eavesdrops
on several authentication sessions between legitimate parties. More specifically,
she can accumulate several pairs of matrices of the form (ϕi(Bi), ϕi(X−1BiX)).
Note however that even if a pair like that yields some information, this is going
to be information about the matrix ϕi(X) rather than about X itself. To
recover X from ϕi(X) is impossible because ϕi has a large kernel by design.
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